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A B S T R A C T

The importance of reducing the noise impact of ships is being recognised worldwide. Consequently, the
inclusion of this principle among the objectives and constraints of new designs is becoming a standard. For this
reason, considerable attention is given to the propeller being often the dominant source of underwater radiated
noise, especially when cavitation occurs, as it happens in most cases when a ship sails at design speed. The
designers of quieter propulsion systems require the availability of predictive tools able to verify the compliance
with noise requirements and to compare the effectiveness of different design solutions. In this context, tools
able to provide a reliable estimate of propeller noise spectra based just on the information available during
propeller design represent a fundamental tool to speed up the design process avoiding model scale tests. This
work focuses on developing a tool able to predict the cavitating marine propeller generated noise spectra at
design stage exploiting the most recent advances in Deep Learning, able to take advantage of both structured
and unstructured data, and in hybrid modelling, able to exploit both data and physical knowledge about
the problem. For this purpose authors will make use of a dataset collected by means of dedicated model
scale measurements in a cavitation tunnel combined with the detailed flow characterisation obtainable by
calculations carried out with a Boundary Element Method. The performance of the proposed approaches are
analysed considering different scenarios and different definitions of the input and output variable used during
the modelisation.

1. Introduction

Anthropogenic sources of sound in the marine environment are
commonly related to navigation activities. The main sources of noise
on board a vessel are machinery and propellers. The latter is the
first contributor to radiated noise in water and, in case of cavitation,
the noise levels increase abruptly (Ross, 1976). Noise pollution ad-
versely affects marine animals, people on board, and impinges with
the on board equipment like sonars. In this framework, international
organisations and class societies started to emanate non-mandatory
guidelines to reduce the noise emissions, as the adoption of the Marine
Strategy Framework Directive of the European Union (Council of Eu-
ropean Union, 2008) or the International Maritime Organisation (IMO)
guidelines (IMO, 2012).

Within the different noise mitigation strategies that can be adopted
by the shipping industry, the analysis of design solutions aimed at
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the reduction of radiated noise for new ships is of utmost impor-
tance. Focusing on conventional propeller design, cavitation should
be minimised to reduce radiated noise. This is commonly achieved
by different strategies, whose effectiveness depends on the specific
application. Non-exhaustive list includes: variation of main propeller
characteristics, increase of the blade area, unloading of the blade tip,
adoption of a proper skew distribution, modification of blade sectional
profiles. In this framework, design by optimisation may represent an
effective approach to reduce cavitation and consequently noise, as
shown in Bertetta et al. (2012) and Gaggero et al. (2017). However,
the reduction of cavitation is usually conflicting with efficiency max-
imisation, therefore an optimum trade-off must be defined case by
case. This task requires the availability of tools and procedures for the
prediction of the vessel’s radiated noise even at the design stage, to
verify and compare the benefits of different design solutions. Focusing
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on propeller noise, Model Scale Tests (MSTs) in cavitation tunnels are
traditionally considered the most reliable method for cavitation noise
prediction. MSTs make use of a prototype of the propeller, which is
tested reproducing the full scale loading conditions. This approach
represents a valuable tool both for the final verification of the propeller
design and for the comparison of few alternative solutions, although
scale effects must be carefully taken into account to retrieve the full
scale noise from MSTs. However, MSTs are time-consuming, and their
inclusion in the early stages of the design procedure is unpractical.

In this context, the availability of a propeller noise predictive tool,
based on the information available at the design stage, is of paramount
importance to reach cost and time effectiveness.

A possible approach to address this problem is represented by
the use of simplified Physical Models (PMs) combined with empirical
relations based on available experimental data. These methods are
based on simplified formulations of the propeller cavitation develop-
ment and consequent noise. These formulations are typically derived
from idealised cases and adapted to the complex problem of propeller
action, by means of fitting variables. As an example, a formulation
for the prediction of the characteristic frequency of noise generated
by cavitating vortices is presented in Bosschers (2009). Although this
formulation succeeds in describing the behaviour of vortex noise, it may
require case-by-case tuning, being based on a simple 2-dimensional
vortex model. An empirical relation for the amplitude of vortex noise
was presented in Raestad (1996). A method for the prediction of tip
vortex noise based on both methods and on a typical spectral shape,
has been presented in Bosschers (2018b). However, as claimed by the
authors, the method is not able to model the phenomenon considering
all the possible dynamics, as for instance the interactions with other
phenomena, if present. A simple empirical formulation for the noise
generated by thruster propellers has been presented in Brown (1999).
This formulation provides a simple relation between the amplitude
of noise and the area of sheet cavitation. Notwithstanding its lack of
insight into the physics of a cavitating propeller, this method can be
adopted also to predict the noise of open propellers with satisfactory
results, as presented in Lafeber and Bosschers (2016).

In general, the functional form of these formulations is derived
from the physical equations describing the phenomenon under some
simplifying assumptions. The formulations are successively tweaked on
available experimental data to adapt them to practical cases.

An attractive alternative consists of tackling the problem utilising
Data Driven Models (DDMs), as proposed in present work. DDMs
approximate the relations existing between some target quantities (the
targets) and the available data on quantities and phenomena influenc-
ing the targets (the features). This is achieved through robust statistical
inference procedures and data collected in previous experiments, in-
cluding both features and targets, to make predictions about previously
unseen cases. These methods do not need any a-priory knowledge
about the mathematical expression governing the physical system. As
a consequence, the DDMs can also model complex propeller cavitation
patterns, including possible interactions between different phenomena,
without the need to consider any simplifying assumptions.

DDMs have proven to be valuable instruments in many marine
applications, such as fuel consumption and efficiency prediction or ship
components condition-based maintenance via status prediction (Pe-
tersen et al., 2012; Smith et al., 2013; Coraddu et al., 2017; Cipollini
et al., 2018), or to determine the best propeller design given operational
requirements and constraints (Calcagni et al., 2012). The application of
DDMs in the field of ship radiated noise is mostly limited to classifica-
tion problems (Soares-Filho et al., 2001; Yang et al., 2018), while there
is a lack of work regarding their application to the problem of ship and
propeller noise modelling. Recently Aktas (2017) proposed an Artificial
Neural Network approach for the prediction of the propeller cavitation
noise given a number of design parameters and an extensive collection
of noise samples from cavitation tunnel tests.

In the view of developing DDMs, the employment of MSTs to collect
data by means of systematic investigations of propeller noise is very
desirable. Nevertheless, also in the case of MSTs, collecting a very large
set of test cases could require significant effort in terms of cost and time.
Consequently, the available data is typically not as large as required. In
this context, the capability of DDMs, which usually produce black-box
(non-parametric) models, may be limited in terms of generality.

In order to improve the performance of the DDMs, the knowledge
of the physical phenomena included in the PMs can be exploited. This
idea is the basis of Hybrid Models (HMs), which are developed to
take advantage of the best characteristics of both PMs and DDMs by
combining them together. The application of HMs to the problem of
propeller noise modelling based on data obtained through MSTs has
been presented in Miglianti et al. (2019) with satisfactory results.

Models developed in the aforementioned works consider as features
only the main characteristics and functioning parameters of the pro-
peller. However, these quantities are generally not sufficient to describe
the whole phenomenon that a cavitating propeller undergoes. Actually,
propeller noise depends on the whole propeller geometry, on the flow
field and the resulting cavitation pattern, including the effects of non-
uniform propeller inflow, as in realistic conditions. Furthermore, if the
considered features include only global parameters, it is not possible
to appreciate the effects of specific design solutions, which may be
remarkable for custom designed propellers. With the purpose to address
these limits, the approach presented in this work exploits as features
the detailed results of unsteady hydrodynamic computations, carried
out by means of an in-house developed Boundary Element Method
(BEM) (Gaggero et al., 2010, 2014; Bertetta et al., 2012; Gaggero and
Villa, 2018). These features provide an accurate characterisation of
the hydrodynamic field of the propeller at an acceptable computa-
tional cost, implicitly including the effects of the complete propeller
geometry.

The hydrodynamic quantities computed by the BEM (i.e.unsteady
surface pressure distributions over the blades, time varying strength of
the vortices shed in the propeller wake) include highly structured data
in the form of 2D and 3D tensors. In order to fully exploit all the infor-
mation contained in these tensors, some advanced techniques coming
from the world of Deep Learning (Goodfellow et al., 2016) have been
proposed. These techniques allow first to find a rich representation
of the tensors by finding all the information describing the cavitation
phenomena and then to exploit it to make an effective and sufficient
prediction of the propeller cavitation noise.

These models have been compared with the conventional models
previously presented in Miglianti et al. (2019), where the 1D represen-
tation was manually selected based on the theories on cavitation noise.
It is demonstrated that the advanced models outstand the performance
of the conventional ones if a high dimensional and complex dataset is
considered. On the contrary, if a low dimensional dataset composed
only by simple variables is taken into account, the performance of the
advanced model is close to that of the more conventional models. As
a result, the proposed approach is proven to bring significant improve-
ments with respect to more traditional techniques if a complex set of
features is provided.

Furthermore, with respect to Miglianti et al. (2019), the whole
feature set has been rearranged in order to include only data easily
obtainable at the early stage of propeller design. Different combinations
of input variables and targets have been considered, allowing to analyse
the relative merits of each.

The paper is organised as follows. Section 2 describes the experi-
mental test cases, the definition of the targets and the different feature
sets considered. Section 3 reports the adopted PMs and the proposed
DDMs and HMs. The results of PMs, DDMs, and HMs in two testing
scenarios are reported in Section 4. Finally, Section 5 concludes the
paper. For increasing the readability of the paper Table 1 reports the
acronyms exploited in the paper. Due to confidentiality issues, sensitive
data like propeller geometry and loading conditions will be omitted
or altered by means of appropriate reference values kept constant
throughout the whole article.



Ocean Engineering 209 (2020) 107481

3

L. Miglianti et al.

Table 1
Acronyms exploited in the paper.

ADDM Advanced Data Driven Model
BEM Boundary Element Method
BSRA British Ship Research Association
CDDM Conventional Data Driven Model
CPP Controllable Pitch Propeller
DDDM Deep Data Driven Model
DDM Data Driven Model
ELM Extreme Learning Machine
ERM Empirical Risk Minimisation
FS Feature Set
IMO International Maritime Organisation
ITTC International Towing Tank Conference
KRLS Kernel Regularised Least Square
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MS Model Selection
MST Model Scale test
NSP Noise Spectrum Parametrisation
OTO One Third Octave
PM Physical Model
PPMCC Pearson Product Moment Correlation Coefficient
RNL Radiated Noise Level
SDDM Shallow Data Driven Model
SNR Signal to Noise Ratio
SPL Sound Pressure Level
TF Transfer Function
UNIGE UNIversity of GEnoa

2. Problem definition

The cavitating propeller noise depends on several aspects concern-
ing the characteristics of the propeller and its functioning conditions.
Present work aims to model the unknown relation existing among
some input variables describing the propeller (the features) and the
corresponding output variables representing the radiated noise (the
targets). This relation is to be learned from the previous observations
of the phenomenon (the available dataset). The features should include
all the possible quantities which could influence the outcomes of the
modelled phenomenon; the targets represent this outcome. The final
aim of the model is to predict it for previously unseen cases.

The observations of the phenomenon are provided by model scale
tests carried out at the cavitation tunnel, for which the input features
and the targets are known from computations or direct measurements.
Both features and targets are used by the procedures employed to build
the models.

The next sections describe the different sets of features and targets
which compose this dataset; in particular, five different sets of input
features have been determined:

• Feature Set 1 (FS1), consisting in a set of scalar parameters
providing a global description of the propeller and its functioning;

• Feature Set 2 (FS2), consisting in the complete tensor of angle of
attacks;

• Feature Set 3 (FS3), consisting in the complete tensor of inflow
wake;

• Feature Set 4 (FS4), consisting in the complete tensor of pressure
coefficients on the blades;

• Feature Set 5 (FS5), consisting in the complete tensor of blades
circulations.

Moreover, five different parametrisations of the noise signals have been
determined as output features in order to allow an easy identification
of the error for each proposed model:

• Noise Spectra Parametrisation 1 (NSP1), consisting in the noise
frequency and level of the central peak characterising the spectra;

• Noise Spectra Parametrisation 2 (NSP2), consisting in the se-
ries of relevant parameters characterising the spectra proposed
in Miglianti et al. (2019);

• Noise Spectra Parametrisation 3 (NSP3), consisting in a new series
of relevant parameters characterising the spectra;

• Noise Spectra Parametrisation 4 (NSP4), consisting in the source
levels in one-third octave band representation;

• Noise Spectra Parametrisation 5 (NSP5), consisting in the radiated
noise levels in one-third octave band representation.

2.1. Model scale tests

The noise measurements campaign has been carried out, according
to the International Towing Tank Conference (ITTC) model scale noise
measurement guidelines (ITTC Specialist Committee on Hydrodynamic
Noise, 2017), at the cavitation tunnel of the University of Genoa.

The facility, described in detail in Tani et al. (2017), is a closed-
circuit water tunnel with adjustable pressure and equipped with a
square test section measuring 0.57 × 0.57 × 2 m. An impeller is used
to obtain a specific flow rate in the test section, while an independent
engine runs the tested propeller at the required shaft rate. The propeller
thrust, torque and revolution rate are measured by a Kempf & Remmers
H39 dynamometer. Specific values of the advance ratio 𝐽 , as defined
in Eq. (1), are obtained by adequately setting the flow rate and the
propeller shaft rate, while adjusting the tunnel pressure it is possible to
modify the cavitation number 𝜎 defined in Eq. (2)

𝐽 =
𝑉𝑎
𝑛𝐷

, (1)

𝜎 =
𝑝∞ − 𝑝𝑣
0.5𝜌𝑉 2

𝑟𝑒𝑓

, (2)

where 𝑉𝑎 is the advance speed, 𝑛 is the revolution rate, 𝐷 is the
propeller diameter, 𝑝∞ is the undisturbed pressure, i.e. the static head
at a certain location on propeller disc, 𝑝𝑣 is the vapour pressure, 𝜌 is
the water density and 𝑉𝑟𝑒𝑓 is a reference speed. Based on the choice of
the reference speed and the reference point for computing 𝑝∞, different
definitions of the cavitation number may be obtained. In most cases, the
cavitation number 𝜎𝑛, based on the peripheral tip speed (𝑉𝑟𝑒𝑓 = 𝑛𝐷) is
used, considering the centre disc as the reference point for the static
head.

The advance ratio and the cavitation number allow defining the
propeller loading conditions in terms of kinematic and cavitation con-
ditions, and are usually set in such a way to achieve a similarity
condition with the full-scale propeller. The equivalence of these param-
eters allows reproducing the propeller functioning conditions in terms
of average parameters. However, the real propeller operates behind a
ship hull, hence in a three-dimensional disturbed flow field. This field
is usually given as the distribution of the local velocity components
in polar coordinate in correspondence to the propeller disc. Its char-
acteristics depend on the hull geometry and shaftline configuration. In
general, a significant reduction of the axial velocity is visible in the
upper part of the disc, caused by the boundary layer of the hull and/or
the wake of appendages.

In the case of a twin screw vessel, this velocity deduction is rather
moderate whereas a significant in-plane component is present, directed
mainly upward. Several techniques exist to reproduce the wake of a
ship in a cavitation tunnel (ITTC Propulsion Committee, 2017). Those
used at UNIGE cavitation tunnel include: a small simulacrum of the
aft part of a ship and its shaft-line, wire screens, shaft appendages and
shaft inclination.

Radiated noise is measured by one, or more, hydrophone(s) placed
in the tunnel test section and it is acquired as pressure time traces.
Since most of the regulations and requirements concerning the acoustic
signature of ships are given in terms of frequency spectra, the results
of model scale noise measurements are usually given in terms of noise
spectra, obtained by the post-processing described hereafter.

Noise spectra in narrowband representation are computed with a
Fast Fourier Transform, using Welch’s method of averaging modified
spectrograms (Welch, 1967). Spectra in One Third Octave (OTO) band



Ocean Engineering 209 (2020) 107481

4

L. Miglianti et al.

are obtained by integrating the power spectral density on the relevant
bands, or by computing the root mean square of the signal filtered on
the same bands. This first processing provides narrowband and OTO
band spectra of the total received noise SPL𝑡 measured by the sensor.

This noise is generally corrupted by the background noise of the
facility SPL𝑏, such as tunnel machinery, shaft gear, flow noise and by
the propeller non-cavitating noise. As an example, it is depicted in
Fig. 1, the comparison between the total noise and the background
noise experimentally measured, for a loading condition1: it is evident
the cavitation noise contribution on the total noise, for the whole
frequency range.

As a consequence, a background noise correction is applied to
extract the cavitation contribution. In order to apply this correction, the
background noise is measured for each loading condition, reproducing
the same flow speed, shaft rate and cavitation number of the pro-
peller tests, but replacing the propeller with a dummy hub. Thereafter,
provided that a sufficient Signal-to-Noise Ratio (SNR) is obtained, the
Sound Pressure Levels (SPLs) referred to the cavitation noise SPL𝑛 are
obtained by logarithmic subtraction of the background noise from the
total noise, as specified in ITTC Propulsion Committee (2017).

Distance normalisation is required to account for the power decay
due to the radial distance r from the acoustic source to the hydrophone.
Following the hypothesis of spherical spreading loss (free-field condi-
tion), the Radiated Noise Levels (RNLs) referred to the r𝑟𝑒𝑓 distance of
1 m from the propeller disc centre are

RNLOTO = SPL𝑛 + 20 log10

(

r
r𝑟𝑒𝑓

)

. (3)

The unit of measure is, in one-third octave band levels, dB re 1 μ
Pa2 m2. The processing just described does not take into account the
influence of reverberation and other effects related to the confined
environment in which measurements are carried out. These phenomena
may be schematised by the Transfer Function (TF) of the facility, which
can be measured with the procedure described in Tani et al. (2019,
2016). The propeller Source strength Levels (SL) are then computed as

SLOTO = SPL𝑛 − TF , (4)

the unit of measure is still dB re 1 μ Pa2 m2.
The outcome of such computations is visible in Fig. 2, the loading

conditions are characterised by the same thrust coefficient but different
cavitation numbers. The transfer function correction is dependent upon
the frequency, for this the shape and levels of the noise spectra are
different between RNLs and SLs.

2.1.1. Test cases
For present work, MSTs have been carried out for three Controllable

Pitch Propellers (CPPs), considering different pitch settings and wake
configurations, as summarised in Tables 2 and 3. The adopted wake
fields are shown, in Fig. 3, in terms of distributions of the axial wake
fractions 𝑤, where (1 − 𝑤) = 𝑉𝑎∕𝑉 , being 𝑉 the undisturbed flow
velocity. In these plots, 𝑅 is the propeller radius while 𝑦 and 𝑧 are the
transverse and vertical coordinate in the propeller reference system. All
these wake fields are typical examples of wakes of twin screw ships: W1
and W3 show the larger peaks, W4 is narrower and less decelerated,
W6 is quite similar to the undisturbed flow except for the presence of
a small region of decelerated flow at outer radii. Lastly, also the cases
of uniform axial wake field (W2 and W5) have been considered. The
little disturbance visible for W2, W4, W5 and W6 near the hub is given
by the vortical flow shed by the dynamometer shaft; the influence of
these structures on the cavitation is negligible.

Tests have been carried out with a Reynolds number ranging from
1.25 × 106 to 1.6 × 106 and an advance ratio from 0.6 to 1.2. The

1 The cavitation number �̃�𝑛 is divided by a reference value for
confidentiality reasons.

Table 2
The model propellers characteristics.

Propeller P1 P2 P3

Type CPP CPP CPP
Diameter 0.25 m 0.25 m 0.2639 m
Number of blades 5 5 5
BAR 0.755 0.612 0.6549
Direction of rotation Right Right Right
Design pitch ratio at 0.7R 1.385 1.156 1.440
Reduced (−3◦) pitch ratio at 0.7R 1.229 1.013 –
Reduced (−5◦) pitch ratio at 0.7R – 0.938 –
Reduced (−6◦) pitch ratio at 0.7R 1.082 – –
Incremented (+2◦) pitch ratio at 0.7R – 1.256 –
Shaft inclination 6.8◦ 2.5◦ 6.4◦

Table 3
Propeller setups.

Pitch Propeller

P1 P2 P3

Design
Reduced (−3◦)
Reduced (−5◦)
Reduced (−6◦)
Incremented (+2◦)

W1–W2 W1 W3 W4–W5–W6

loading conditions, for which noise samples are collected, have been
defined to provide an exhaustive characterisation of cavitation noise,
including many different phenomena. However, in the present work
the attention is focused only on the loading conditions for which the
most common cavitation types, namely tip vortex and suction side sheet
cavitation, were dominant. As a result, the final dataset is composed by
258 samples, each sample corresponding to a row of the dataset.

2.2. Features definition: integral quantities

Selected features should provide complete information on the main
aspects influencing the noise generated by a cavitating propeller. To a
first approximation, this is mostly influenced by the propeller geometry,
its functioning conditions and the quality of the inflow wake. The more
detailed information is available on these aspects, the better should
perform the model.

The first proposed feature set, called FS1, consists of a set of
parameters providing a global description of these aspects. This feature
set is very similar to the one proposed in Miglianti et al. (2019), having
eliminated the features describing cavitation inception. The authors
decided to remove these features since cavitation inception data are
available at the design stage only using numerical computations charac-
terised by a significant complexity and computational demand. Aiming
to develop a predictive tool useful also during the preliminary design
of a propeller, only quantities that can be retrieved at the design stage,
using the kind of tools typically used by propeller designers, have been
considered.

The FS1 features may be divided according to the following cate-
gories: propeller geometry, propeller operational conditions, and pro-
peller inflow as summarised in Table 4.

The propeller geometry is described through typical non-
dimensional parameters such as the blade area ratio (BAR), the pitch
ratio and others. The propeller diameter is considered as well, to
provide dimensional information about the model propeller.

The operational conditions have been defined by the pair (𝐽 , 𝜎𝑛),
hence the advance ratio and the cavitation number based on the tip
peripheral speed are given by definition. The other quantities corre-
sponding to these operational conditions (e.g. propeller thrust, torque
and efficiency) have been included deriving them from the numerical
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Fig. 1. Total and background noise measure for the propeller P2 at design pitch, in a mid-loaded condition with �̃�𝑛 = 0.75.

Fig. 2. Cavitation noise comparisons for the propeller P2 at design pitch, in various loading conditions.

computations using the Boundary Element Method or simple calcula-
tions based on the known relations among these parameters. Besides,
direct measurements of these quantities are available from the MSTs,
but are not considered in the feature sets for the previously mentioned
reasons. Alternative definitions of the cavitation number have been
considered, namely 𝜎𝑣, based on the advance speed, and 𝜎𝑡𝑖𝑝, that is
the same as 𝜎𝑛, but with the static head computed with respect to the
top dead centre.

In addition to all these dimensionless parameters, dimensional
quantities defining the functioning conditions, such as the advance
speed, the revolution rate and the static pressure, are considered as
well.

The last category of features included in FS1 accounts for the char-
acteristics of the propeller inflow. Besides, also the geometric angle of
attack of the blades is considered, which results from the combination
of the inflow wake, the shaft inclination and the propeller pitch.

The hull wake field is usually known during propeller design from
previous towing tank measurements or numerical calculations, hence
it can be considered as a readily available input data for propeller
designers. The wake fields described in Section 2.1 consist of dis-
tributions of the axial wake fraction on the propeller disc, given in
polar coordinate, as shown in Fig. 3. However, in the feature set FS1
only some parameters, providing an approximate description of these
distributions, were considered.

The definition of these parameters is similar to the British Ship Re-
search Association (BSRA) wake criteria given by Odabaşi and Fitzsim-
mons (1978), and it is based on the wake distribution in the tangential
direction for the two radial sections corresponding to 𝑟∕𝑅 = 0.7 and
𝑟∕𝑅 = 0.9, as exemplified in Fig. 4. In particular, the features are

• the left and right gradients, which are the maximum and mini-
mum derivatives of the wake with respect to the angular blade
position, computed at a given radial position.

Fig. 4. Wake parameters.

• the wake width, which is the angular sector where the wake
fraction is greater than 0.05 (i.e. where the axial velocity on the
propeller plane is reduced at least of the 5%).

• the wake depth, which is the maximum value of the wake fraction
for a given radial position.

The shaft bracket produces the little decelerated peak visible at around
−30◦ and it is neglected in the computation of these features because
from experimental evidence it has only a minor effect on cavitation.
The angle of attack is the difference between the advance angle 𝛽 of a
blade section and the local pitch angle 𝛷. The angle 𝛽 is determined
by Eq. (5), including the effect of the axial wake field and the vertical
velocity induced by the shaft inclination but neglecting the self-induced
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Fig. 3. Axial wake (1 −𝑤) for the P1, the P2, and P3.

velocity field produced by the functioning of the propeller itself.

tan 𝛽(𝑟, 𝜃) =
𝑉𝑎(1−𝑤)

𝜋⋅𝐷⋅𝑛⋅ 𝑟𝑅+𝑉𝑎⋅𝑠𝑖𝑛(𝛼𝑠)⋅𝑠𝑖𝑛(𝜃)
, (5)

where 𝛼𝑠 is the shaft angle and 𝜃 is the blade angular position. The
geometric angle of attack 𝛼𝐺 is given by

𝛼𝐺(𝑟, 𝜃) = 𝛷(𝑟)−𝛽(𝑟, 𝜃) . (6)

As a result, a distribution of the angle of attack in polar coordinate
is obtained, analogous to the distribution of the wake fraction. Also, in
this case, the whole distribution is not considered in FS1, as the authors
selected an approach analogous to that used for the wake.

It is worth noting that the features enlisted in Table 4 as FS0 are
those that are directly employed in the PMs. Instead, FS02 are variables
that have been exploited to calculate other features for the PMs, as
discussed in Section 3.2.

In summary, FS1 is a set of scalar parameters, describing the average
functioning of the propeller, plus an approximate indication about the

non-stationary functioning of the blades given by the descriptors of the
wake field and of the angle of attack. Accordingly, these parameters
allow modelling the global inclination of the propeller to cavitation,
hence noise, as confirmed by the use of some of these quantities also
in many simplified methods for the preliminary analysis of propeller
cavitation, as the well-known methods from Keller (1966) and Burrill
and Emerson (1963). However, to improve the performance of the
models, allowing to take into account also the effects of advanced
design solutions, further features have been considered, as explained
in the following section.

2.3. Features definition: flow field quantities

Accurate analyses of propeller cavitation require detailed informa-
tion about the propeller inflow, the hydrodynamic pressure distribution
on the blades, and the strength of the vorticity generated by the blades
and shed in the wake. Only by the knowledge of these quantities it
is possible to discriminate between different cavitation dynamics or
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Table 4
Dataset variables description.

Symbol Description Tensor size if not scalar FS or NSP PMa

P∕D Pitch ratio

Geometry
(FS1)

D Diameter FS0
BAR Blade area ratio
Z Number of blades FS0
c∕D Chord ratio at 0.7R FS0
𝑡max∕𝑐 Blade maximum thickness at 0.7R
𝑓𝑚𝑎𝑥∕c Blade maximum camber at 0.7R

𝛼𝑠 Shaft angle

Loading Parameters
(FS1)

J Advance coefficient
KT Thrust coefficient
10KQ Torque coefficient
Va Advance velocity FS0
n Propeller rotation FS0
𝜎𝑣 Cavitation index ref. to advance velocity
𝜎𝑛 Cavitation index ref. to rotational speed FS0
𝜎tip Cavitation index ref. to resultant speed at blade tip

w Average w

Wake Parameter
(FS1)

max w07 Wake maximum at 0.7R
Wwd07 Wake width at 0.7R
𝐷𝜃𝑊 |

−
07 Left wake gradient at 0.7R

𝐷𝜃𝑊 |

+
07 Right wake gradient at 0.7R

max w09 Wake maximum at 0.9R
Wwd09 Wake width at 0.9R
𝐷𝜃𝑊 |

−
09 Left wake gradient at 0.9R

𝐷𝜃𝑊 |

+
09 Right wake gradient at 0.9R

𝛼𝐺07 Circumferential average 𝛼𝐺 at 0.7R

Angle of Attack
(FS1)

min 𝛼𝐺07 Minimum 𝛼𝐺 at 0.7R
max 𝛼𝐺07 Maximum 𝛼𝐺 at 0.7R
𝜃|𝑚𝑎𝑥 𝛼𝐺07

Angular position of maximum 𝛼𝐺 at 0.7R
𝛼𝐺09 Circumferential average 𝛼𝐺 at 0.9R
min 𝛼𝐺09 Minimum 𝛼𝐺 at 0.9R
max 𝛼𝐺09 Maximum 𝛼𝐺 at 0.9R
𝜃|𝑚𝑎𝑥 𝛼𝐺09

Angular position of maximum 𝛼𝐺 at 0.9R

w Axial wake 360 × 31 Wake Parameter
(FS2)

𝛼𝐺 Geometric angle of attack 360 × 31 Angle of Attack
(FS3)

CP Coefficient of pressure on blade 44 × 25 × 60 BEM FS0b
(FS4)

 Blade circulation 60 × 25 BEM FS0b
(FS5)

𝑓c Central peak frequency NSP1, NSP2, NSP3 �
RNLc Noise level at 𝑓c NSP1, NSP2, NSP3 �
𝑓bp1 Frequency of the first breakpoint NSP2
𝑓bp2 Frequency of the second breakpoint NSP2
RNLbp1 Noise level at 𝑓bp1 NSP2
RNLbp2 Noise level at 𝑓bp2 NSP2
RNLb Noise level at ending frequency (100 kHz) NSP2, NSP3 �
𝛼 Slope between breakpoint 1 and central peak NSP3
𝛽 Slope between central peak and breakpoint 2 NSP3
𝛾 Slope between breakpoint 2 and last point NSP3
SLOTO Source Levels in one-third octave bands 24 NSP4 �c

RNLOTO Radiated Noise Levels in one-third octave bands 24 NSP5 �c

aSee Section 3.2.
bThe variable has been used to compute a feature for a PM.
cIn this case just the last elements of the vectors can be estimated with the PMs, see Section 3.2.

to assess the effects of specific design solutions. For this reason, the
authors decided to include this information in the feature set used to
build the model, then moving to more sophisticated machine learning
tools.

These new features consist in the complete wake field (and the
resulting angle of attack), in the unsteady pressure distribution on
propeller blades and in the circulation (i.e vortex strength) shed in the
wake.

An approximate description of the wake field and angle of attack
was already present in FS1. In light of using a more detailed description
of the problem, the complete tensors (values of the velocity field for any
discrete combination of radial and angular position) of the inflow wake

and of the resulting angle of attack have been considered in present
work, resulting in the feature sets FS2 and FS3. The wake and the angle
of attack are provided for 25 radial positions and 60 angular positions.

The other additional features, which are necessary for a detailed
characterisation of the hydrodynamic/pressure field on the propeller
blades, require the use of some numerical tools since their measurement
is, generally, not feasible during MST. According to the aims of present
work, the selected method should be able to compute the unsteady pres-
sure distribution on the whole 3D geometry of the propeller functioning
in a non-uniform inflow field, since cavitation and radiated noise are
strictly related to the pressure distribution and to its variation in time,
at a limited computational cost necessary for design purposes.
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For these reasons, an in-house developed Boundary Element Method
has been used. BEM assumes incompressible, inviscid and irrotational
fluid. These are the hypotheses which turn continuity and momentum
equations, governing the flow dynamics, respectively into a Laplace
equation for the velocity potential 𝜙 and into the Bernoulli theorem. A
suitable choice of the boundary conditions allows to solve for steady
and unsteady functioning, including sheet cavitation on both blade
pressure and suction side, providing reliable estimations of the pressure
distribution over the blades and of the induced flow field in proximity
of the propeller.

The reliability and the effectiveness of Boundary Element Methods
in predicting the steady and unsteady flow around marine propellers,
also considering sheet cavitation, has been confirmed by several ap-
plications and benchmarks with overall satisfactory results. The pi-
oneering applications of BEM for the characterisation of propellers
performances were those by Kerwin et al. (1987), Kinnas and Hsin
(1992) and Kinnas and Fine (1992, 1993) which progressively ex-
tended BEM capabilities to unsteady and cavitating flows also in the
case of unconventional propellers like ducted propulsors. Midchord
cavitation detachment, approximated tip vortex cavitation and the
possibility to deal with supercavitating hydrofoils and propellers were
included by Young and Kinnas (2001, 2003) and Lee and Kinnas
(2004), while extensive validation against cavitation tunnel measure-
ments were provided by Gindroz et al. (1998) and Vaz and Bosschers
(2005, 2006).

The current implementation of the method, which includes most
of these features, has been validated accordingly. The reliability of
propeller performances predictions for steady and unsteady function-
ing, also accounting for strongly non-homogeneous wake, was shown
in Brizzolara et al. (2008) and Gaggero et al. (2010, 2014), demon-
strating acceptable performance predictions even in very off-design
functioning conditions (Gaggero et al., 2019). Cavitating flows were
considered in Gaggero and Villa (2017) for steady cases and in Gaggero
and Villa (2018) for unsteady calculations, while supercavitating pro-
pellers were addressed in Gaggero and Brizzolara (2009). In addition,
the Boundary Element Method of the University of Genoa, was success-
fully applied for the characterisation of ducted (Gaggero et al., 2013)
and tip loaded propellers (Gaggero et al., 2016) and in the framework
of Simulation Based Design Optimisation approaches (Bertetta et al.,
2012; Gaggero et al., 2017).

For the sake of completeness, Fig. 5 summarises the predicted
propeller performances in homogeneous (steady) flow for one of the
propellers considered in the present study. Calculations are compared
with the measurements at the towing tank. The agreement, as expected
from this kind of analyses, is satisfactory over the entire range of
advance coefficient under investigation. Only torque, in correspon-
dence of very loaded functioning conditions (J ≈ 0.5 − 0.7) is slightly
underestimated as the results of the approximations (no viscous forces,
only empirical frictional corrections, no leading edge suction forces)
accepted in the context of potential flow approaches.

In this work, the Boundary Element Method has been used to
carry out unsteady calculations in order to take into account, in the
definition of these additional features, the effect of the different non-
homogeneous, 3D, wake fields considered in MSTs. In order to reduce
the computational cost, indeed, numerical analyses with the BEM are
limited to the case without cavitation, meaning that the development of
the vapour cavity is not directly considered in the calculations and that
the predicted propeller performance are not affected by the presence of
the vapour cavity.

From the computations, in addition to the unsteady propeller per-
formances, namely the thrust and the torque coefficients, the unsteady
pressure coefficients (𝐶𝑝) on the blades (Eq. (7), where 𝑝 is the local
pressure) and the unsteady blade circulation () have been extracted.
The distribution of the pressure coefficient is directly related to the

Fig. 5. Predicted propeller performances (steady case) compared with towing tank
measurements.

Fig. 6. Predicted pressure distribution by BEM, propeller face (left) and back (right).

occurrence of blade surface cavitation, while the circulation is related
to the occurrence of vortex cavitation.

𝐶𝑝 =
𝑝 − 𝑝𝑠𝑡𝑎𝑡𝑖𝑐,𝑟𝑒𝑓
0.5𝜌(𝑛𝐷)2

(7)

These quantities represent the feature sets FS4 and FS5, respec-
tively. The pressure coefficients are given for 44 locations in chord-wise
direction and 25 blade radial sections that represent the 1100 points
per blade where the solution is computed. Sixty blade angular positions,
corresponding to an equivalent time step of 6 ◦ were instead considered
to solve the unsteady functioning of the propeller in the non-uniform
wakes of Fig. 3. These data, then, are organised in a 3D tensor. This
means that the dynamic pressure acting on the whole surface of the
blades during their rotation in a specific wake field is fully charac-
terised. An example of the pressure distribution acting on the suction
side and pressure side of the blades for a single propeller position
is reported in Fig. 6. In this example it is possible to observe some
typical characteristics of these pressure distributions: the red area on
the pressure side near the leading edge corresponds to the stagnation
pressure while the blue area on the suction side at similar position
is the typical negative pressure peak associated with the functioning
of a hydrofoil with a positive angle of attack. As it can be seen, the
pressure distributions on the different blades are not identical, and
this is because the non-uniform propeller inflow is considered in the
computation, hence each blade is functioning in a locally different
flow field. The phenomenon of cavitation inception and development
is very complex and involves also aspects that cannot be modelled
reliably by the BEM. Nevertheless, it is already a good approximation to
assume that cavitation occurs where the opposite of the local pressure
coefficient is higher than the cavitation index at that given functioning
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condition, meaning that the local pressure is lower than the vapour
pressure. This is a cavitation inception estimation successfully applied
for the design by optimisation of conventional and unconventional
propellers (Gaggero et al., 2017; Gaggero, 2020). Applying this cri-
terion, it is possible to estimate the occurrence of cavitation on the
blades, its location and to guess its extent. These considerations allow
appreciating the valuable information that is provided to the model by
this specific feature. Furthermore, it must be noticed that the pressure
distribution on the blades is directly related to the geometry of the
propeller, therefore this quantity implicitly takes into account also this
aspect.

The circulation produced by a foil immersed in a fluid flow is
directly related to the forces acting on the foil, and in particular to the
lift, according to the well known Kutta–Joukowski theorem. Similarly,
the circulation distribution on propeller blades correlates with the load
acting on the blades and its distribution, which in turn is strictly related
to the strength of the shed vortices. Actually, the blade circulation at
outer radii is the measure of the vortex strength also used in the PMs
considered in present work to predict the tip vortex noise, as explained
more in details in Section 3.2.

The circulation is given for 25 blade radial sections, and the same
60 blade angular positions also considered for the pressure coefficients,
resulting in a 2D tensor.

2.4. Target definition

The target of the models proposed in this work may be represented
by a suitable description of propeller noise. In this view, frequency
spectra of noise are a straightforward choice, being the most used
representation of noise in many engineering fields.

Accordingly, two alternative target definitions are represented by
the SL and RNL spectra, as defined in Section 2.1. These targets are
named NSP4 and NSP5, respectively. The OTO band representation is
used, resulting in two vectors of 24 elements corresponding to the noise
levels measured for frequency bands in the range 0.4 kHz to 80 kHz.

According to the theory of cavitation noise, correlations exist be-
tween the physics of cavitation and the main characteristics of the noise
spectrum, such as the characteristic frequencies, the peak level, the
high frequency levels and others. On the contrary, the behaviour of
a single spectral row is more challenging to interpret. Consequently,
to efficiently model the undergoing physical laws, it is necessary to
analyse the values of the 24 elements of the proposed targets as
a whole, including possible mutual interactions. This is achieved in
present work by the method described in Section 3.3.

Besides, a further approach is considered, similar to that presented
in Miglianti et al. (2019). According to this approach, only the main
characteristics of the spectrum are considered as a further alternative
definition of the target. This has a twofold objective: the first is to
analyse the performance of the method with some alternative problem
definitions, secondarily the physical models considered in present work
address only some of these spectra characteristics instead of providing
an estimate of the whole spectrum, hence to develop HMs, the same
targets as the PMs are used.

The main characteristics of the noise spectrum are defined based
on a simplified description of the spectrum, keeping only important
information from the physical and practical point of view. The typical
noise spectral shape for a propeller affected by suction side sheets
and tip vortices cavitation is represented in Fig. 7. It consists of a
hump at low–mid frequencies and of an almost constant power decay
moving towards higher frequencies. The hump, if present, is generally
associated to the major part of the evolution of large cavities, such as
growth and initial stage of collapse or cavity pulsation. In particular,
the hump is present when vortex cavitation occurs and its associated
to the pulsation of vortices. The high frequency part of the spectrum is
instead associated to the final stage of collapse and to the dynamics
of smaller cavities. The decay law of the noise spectrum at these

Fig. 7. Adopted spectrum simplification.

frequencies depends upon the dynamic of the sheet cavitation, in the
current dataset, and only partially to vortex cavitation. The simplified
spectrum is defined by the knowledge of only four points and the
relevant levels and frequencies, as visible in Fig. 7. These points are
detected automatically with a algorithm searching for the best fitting
piece-wise function. However, the automatic identification of the centre
peak is rather challenging, because of the irregular shape of noise
spectra, therefore results for the centre peak have been checked and
adjusted manually. These frequencies and levels represent a further
target definition, referred to as NSP2. As mentioned, this description of
the noise spectrum aims to focus on those spectral characteristics which
better correlate with the physics of cavitation and the output of the
physical models. This perfectly holds for the frequency and amplitude
of the maximum peak in the spectrum, as well as for the level at the
highest considered frequency that satisfactorily represents the power
content of the high frequency noise. On the other hand, it is more
difficult to correlate the behaviour of the other points with the physics
of cavitation, and this could partially explain some of the difficulties
observed in modelling these specific targets, as shown in Miglianti et al.
(2019).

To overcome this issue, an alternative description of the same
simplified spectrum is defined based on the slopes of the broken-stick
function; actually, their value is deemed to be more representative of
the physics of cavitation, even if also their behaviour is not easy to
interpret. By using these quantities, the simplified spectrum is identified
by 𝑓c, RNLc, RNLb and the three slopes 𝛼, 𝛽, 𝛾. This last alternative
targets representation is named NSP3. Lastly, NSP1, which includes
only the centre peak (𝑓c, RNLc) taken straight from NSP2, allows to
focus the attention on the most crucial target and to compare the HMs
with the PMs that predict this spectral characteristic.

3. Modelisation

In the proposed context, namely the estimation of the variables
of the different noise spectra parametrisations based on a series of
input variables characterising the propeller (see Table 4), a general
modelisation framework can be defined, characterised by an input
space  , an output space  , and an unknown relation 𝜇 ∶  → 
to be learned. In the specific case,  is composed by the FS reported
in Table 4. In particular, the FS is composed by a series of scalar
(FS1), a series of two-dimensional tensors (FS2, FS3, and FS5) and a
three-dimensional tensor (FS4). On the other hand, the output space
 , depends on the chosen parametrisation (NSP1, NSP2, NSP3, NSP4,
and NSP5). In this context, the authors define as model ℎ ∶  →  an
artificial simplification of 𝜇. The model ℎ can be obtained with different
kinds of techniques, for example requiring some physical knowledge of
the problem, as in PMs, or the acquisition of large amount of data, as
in DDMs, or both of them, as in HMs.
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Fig. 8. Schema of the tuning algorithm for the prediction of the vortex peak.

3.1. Performance measures

Independently of the adopted technique, any model ℎ requires some
data to be tuned (or learned) on the problem specificity and to be
validated (or tested) on a real-world scenario. For these purposes, two
separate sets of data 𝑛 = {(𝑋1, 𝑌1), ⋯, (𝑋𝑛, 𝑌𝑛)} and 𝑚 = {(𝑋𝑡

1, 𝑌
𝑡
1 ),

⋯, (𝑋𝑡
𝑚, 𝑇

𝑡
𝑚)}, where 𝑋 ∈  and 𝑌 ∈  , need to be exploited, to

respectively tune ℎ and evaluate its performances. It is important to
note that 𝑚 is needed since the error that ℎ would commit over 𝑛
would be too optimistically biased since 𝑛 has been used to tune ℎ.

Note that, in this specific case, 𝑌 ∈  is not a simple scalar but it
is a more complex structure since it is a characterisation of the noise
spectra.

Let us suppose, for a moment, that  ⊆ R, namely 𝑌 ∈  is a scalar.
In this case, the error that ℎ commits on 𝑚 in approximating the

real process is usually measured with reference to different indexes of
performance (Miglianti et al., 2019)

• the Mean Absolute Error (MAE) is computed by taking the abso-
lute loss value of ℎ over 𝑚

MAE(ℎ) = 1
𝑚

𝑚
∑

𝑖=1
|ℎ(𝑋𝑡

𝑖 ) − 𝑌 𝑡
𝑖 |; (8)

• the Mean Absolute Percentage Error (MAPE) is computed by
taking the absolute loss value of ℎ over 𝑚 in percentage

MAPE(ℎ) = 100
𝑚

𝑚
∑

𝑖=1

|

|

|

|

|

ℎ(𝑋𝑡
𝑖 ) − 𝑌 𝑡

𝑖

𝑌 𝑡
𝑖

|

|

|

|

|

; (9)

• the Pearson Product-Moment Correlation Coefficient (PPMCC)
measures the linear dependency between ℎ(𝑋𝑡

𝑖 ) and 𝑌 𝑡
𝑖 with 𝑖 ∈

{1,⋯, 𝑚}

PPMCC(ℎ) =
∑𝑚

𝑖=1(𝑌
𝑡
𝑖 − 𝑌 )(ℎ(𝑋𝑡

𝑖 ) − �̂� )
√

∑𝑚
𝑖=1(𝑌

𝑡
𝑖 − 𝑌 )2

√

∑𝑚
𝑖=1(ℎ(𝑋

𝑡
𝑖 ) − �̂� )2

, (10)

where 𝑌 = 1
𝑚
∑𝑚

𝑖=1 𝑌
𝑡
𝑖 and �̂� = 1

𝑚
∑𝑚

𝑖=1 ℎ(𝑋
𝑡
𝑖 ).

Other state-of-the-art measures of error exist (such as R-squared and or
the Mean Square Error) but, from a physical point of view, they give
a complete description of the quality of the model and adding more
measures would make the results less readable.

Unfortunately, in the proposed application,  ⊆ R𝑝 is a vector
representing a parametrisation of the cavitation noise spectra. For this
reason, to provide a value which reasonably represents the error that
ℎ commits on 𝑚 when 𝑌 ∈  is a parametrisation of the cavitation
noise spectra, it is necessary to use a more suitable error measure which
targets one of the particular parametrisations (NSP1, NSP2, NSP3,
NSP4, and NSP5).



Ocean Engineering 209 (2020) 107481

11

L. Miglianti et al.

For what concerns the NSP4 and NSP5 the authors will redefine
the MAPE as the average MAPE among the different parameters which
compose the parametrisations. This can be done since NSP4, and NSP5
count homogeneous quantities (see Section 2) and the average MAPE
well describes the quality of ℎ, since it represents the average difference
between actual and predicted spectra.

For what concerns NSP2 and NSP3 the approach adopted for NSP4
and NSP5 cannot be directly applied but the error can be measured
again as an average difference between spectra. Actually, keeping in
mind that the parameters of NSP2 and NSP3 allow defining a piecewise
function which simplifies the noise spectrum (see Section 2), it is
possible to redefine the MAPE for NSP2 and NSP3, as the average
percentage distance between the actual (derived from 𝑌 ) and predicted
(derived from ℎ(𝑋)) piecewise function, which in turn approximate the
actual and predicted spectra. Finally, NSP1 represents just a point of
the spectrum, therefore it is not possible to define the MAPE based on
the distance between actual and predicted spectra for this target. In this
case, the MAPE is defined as the average of the MAPE computed for the
two parameters composing NSP1, namely the frequency and the level
of the spectral hump. Due to this, the error defined for NSP1 does not
compare rigorously with the error estimated for all the other targets.

3.2. Physical Models (PMs)

PMs are derived from the physical theories and relevant equa-
tions describing the phenomenon of interest, under certain assumptions
making the solution of the equations affordable without the need
for sophisticated computational tools. Although the structure of these
formulations is derived from physical equations, experimental data are
used to tune the formulations to deal with real world problems. For this
reason, these methods are usually referred to also as semi-empirical
methods. Two main physical models are considered in present work:
the first one models the noise generated by the resonance of a cavitating
tip vortex, the second regards the noise due to sheet cavitation.

Cavitating vortex noise. The resonance of the tip vortex cavity is as-
sumed to be the main responsible for the low frequency hump typically
observed in propeller noise spectra, when vortex cavitation is present,
as depicted in Fig. 7. Therefore, this model is used to predict the central
frequency 𝑓c and noise level RNLc of the centre peak. Two sub-models
compose the vortex noise model:

I the model representing the relation between the dimension of
the vortex (namely the cavitating radius 𝑟𝑐) and its characteristic
noise.

II the vortex model describing the vortex tangential velocity given
a measure of the vortex strength.

The formulation adopted to describe the relationship between the
pulsation frequency of a cavitating vortex and its radius can be derived
from the analysis of the pulsation of a single bubble of gas immersed
in an infinite fluid domain. The relation takes the form of Eq. (11)

𝑓c
𝑛𝑍

= 𝑐1
1

𝑟𝑐∕𝐷

√

𝜎𝑡𝑖𝑝
𝑍

+ 𝑐2 , (11)

where 𝑟𝑐 is the cavity radius, 𝑍 is the number of blades, 𝜎𝑡𝑖𝑝 is the
cavitation number evaluated at the blade tip, 𝑐1 and 𝑐2 are unknown
constants whose values can be determined by fitting on experimental
data, as done in Maines and Arndt (1997).

The amplitude of the noise generated by vortex pulsation depends
again on the cavity radius. The formulation used in present work has
been derived following an approach similar to that proposed by Raestad
(1996). The original formulation gives the noise level in dB as a func-
tion of some parameters describing the propeller and its functioning
condition. In the formulation used in present work, the noise level in dB
is given as a function of the vortex cavity radius, the propeller diameter
and the number of blades, as shown in Eq. (12)

RNLc = 𝑎𝑝 + 20 log10

[

(

𝑟𝑐
𝐷

)𝑘
√

𝑍

]

, (12)

where 𝑎𝑝 and 𝑘 are again unknown constants to be found through data
fitting.

Both formulations used to compute the frequency and the noise
amplitude of vortex pulsation require the knowledge of the cavity
radius. This radius can be found as the radial distance 𝑟 from the vortex
axis, where the local pressure equals the water vapour pressure; the
local pressure can be determined if the velocity field around the vortex
is known and this requires the use of a vortex model.

Within the several vortex models available in the literature, the one
described in Proctor et al. (2010) has been used to estimate the radial
distribution of the azimuthal velocity component. This model is based
on the assumptions of 2D and axisymmetric flow, implying constant
axial velocity, negligible radial velocity with respect to the tangential
velocity, and constant velocity distribution in the azimuthal direction.
According to this model, the azimuthal velocity is given by:

𝑣(𝑟) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1.0939
∞
2𝜋𝑟

{

1 − exp
[

−𝛽
(1.4𝑟𝜈
𝐷∕2

)𝑝]
}

×

×
{

1 − exp
[

−𝜁
( 𝑟
𝑟𝜈

)2]
} 𝑟 ≤ 1.4𝑟𝜈

∞
2𝜋𝑟

{

1 − exp
[

−𝛽
( 𝑟
𝐷∕2

)𝑝]
}

𝑟 > 1.4𝑟𝜈

(13)

where ∞ is the vortex strength, 𝜁 is a prescribed parameter taking the
value of 1.2564, and 𝑝 has been fixed at 0.75 as suggested by Proctor
et al. (2010). The coefficient 𝛽 has to be found by least square fitting
on data.

The viscous core radius 𝑟𝜈 is an input and may differ for every
propeller and functioning condition. Since direct measurements are not
available for present cases, literature values reported in Jessup (1989)
have been exploited. These values have been scaled according to the
procedure proposed by Shen et al. (2009) to take into account the
different Reynolds number.

This scaling provides a first reasonable estimate of the viscous core
for the current test cases, however, as also suggested in Bosschers
(2018a), it could be useful to adjust the obtained values by means of a
constant multiplication factor, to better fit the formula to the data. The
factor used in present work is equal to 0.5.

Eventually, the vortex strength ∞ is needed to compute the vortex
velocity distribution using Eq. (13). In this work, this quantity has been
computed by BEM in correspondence to the blade section at 𝑟∕𝑅 = 0.95.
The circulation, for a propeller operating in a non-uniform inflow,
depends on the blade angular position. The average value on the whole
revolution has been used, multiplied by a factor 0.7 used again to fit
the data.

At this point, the azimuthal velocity distribution in the vortex
radial direction is known. Under the previously mentioned hypotheses,
the pressure distribution can be predicted integrating the momentum
equation in the radial direction (Hommes et al., 2015), therefore the
cavitating radius can be found.

In summary, the structure of the whole physical model for the tip
vortex noise is represented by the flow chart in Fig. 8: the vortex model,
represented by Eq. (13), is used to obtain the cavitating radius based on
some input data, successively Eq. (11) and Eq. (12) are used to derive
the noise based on the knowledge of the cavitating radius.

The different equations included in the model involves the intensive
use of data fitting to determine the value of different parameters that
are not known a priori. In principle, the vortex flow model should
be tuned on flow quantities (e.g. velocity distributions and the cav-
itating radii), while the relations between the cavitating radius and
the resulting noise should be tuned on noise data. Since the vor-
tex flow quantities were not measured in present campaigns, all the
formulations have been tuned on the experimentally measured 𝑓c.
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Fig. 10. Multiple linear model functional form for ℎ. In red are identified the inputs,
in green the weights, and in yellow the output of one neuron of the architecture. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

High frequency noise. The second model is used to predict the contri-
bution of sheet cavitation that is assumed to dominate measured noise
spectra in the frequency range 10 kHz to 80kHz. The model chosen is
Brown’s empirical formula discussed in Brown (1999).

𝐿 = 𝐾 +

[

10 𝑙𝑜𝑔10(𝑍𝐷4𝑛3𝑓−1) + 10 𝑙𝑜𝑔10
(𝐴𝐶
𝐴𝐷

)

]

, (14)

where 𝐴𝐷 is the propeller disc area, 𝑓 is the frequency and 𝐿 is the
noise dB level. The cavitating area 𝐴𝐶 has been derived from the
distribution on the blades of the pressure coefficient 𝐶𝑝, assuming that
cavitation is present where 𝜎𝑛 < −𝐶𝑝. This approximation neglects
bubble dynamics and the real development of cavitation, therefore the
predicted area is expected to be underestimated.

In the formula, the unknown parameter is the constant 𝐾 which
has been found by fitting to the experimental radiated noise levels and
source levels. It is not surprising to find that 𝐾 is the same value both
for the RNL and the SL; at higher frequencies, the effect of the confined
environment is practically negligible.

3.3. Data Driven Models (DDMs)

In this section the authors will present the proposed DDMs for
predicting the different NSPs based on the different FSs (see Table 4)
exploiting the data presented in Section 2.

Even if the scenario of this paper is slightly different with respect
to the one of Miglianti et al. (2019) (see Section 1), a first idea could
be to exploit the same methodology for defining new DDMs and HMs
and adapt it to the scope of this work. Unfortunately, for the reasons
that will be clarified in this section (Shalev-Shwartz and Ben-David,
2014; Goodfellow et al., 2016), this approach would result in very low
performance, in terms of accuracy, as will be shown in the experimental
results of Section 4.2. The reasons behind this decay in performance
need to be searched in the philosophy behind the methodology pro-
posed in Miglianti et al. (2019) that, from now on, will be named as
Conventional DDMs (CDDMs) or Shallow DDMs (SDDMs). CDDMs rely
on the simple pipeline presented in Fig. 9(a):

• from the available inputs, i.e. the propeller characteristics and
operational conditions, the raw information about the FSs of
Table 4 are extracted;

• from the raw FSs, experts of the problem together with data
scientists extract a series of rich features, that should be able to
provide all the information about the desired output, in this case
the different parameters of the NSPs (this process is called Feature
Engineering);

• a functional form of the predictive model, the SDDM, is defined by
the data scientist. Then the parameters of the SDDMs are learned
from the input/output samples, called dataset, where the input is
coded with the features engineered in the previous step;

• finally the learned model can be exploited to make prediction
about the NSPs.

This approach is very effective under a simple, but quite strict, as-
sumption: the feature engineered by the experts should be rich enough
to describe the phenomena, but characterised by a cardinality not
too high compared to the number of samples of the dataset (Shalev-
Shwartz and Ben-David, 2014; Goodfellow et al., 2016). If only FS1 is
available, somehow analogously to the work of Miglianti et al. (2019),
then CDDMs would be the correct choice. As a matter of fact, in
this case also FS2, FS3, FS4, and FS5 are available, and exploiting
the CDDMs of Miglianti et al. (2019) would result in an exploding
number of features, because of the FSs intrinsic cardinality, and the
model would be not able to learn the correct model with a dataset of
limited cardinality like the one available for this study (see Section 2).
Moreover, the extraction of rich and representative features from the
FS2, FS3, FS4, and FS5 is a complex task not suited for a human expert.

For these reasons, in this paper, the authors will exploit an Ad-
vanced DDMs (ADDMs) or Deep DDMs (DDDMs). ADDMs rely on the
pipeline presented in Fig. 9(b)

• as for the CDDMs, from the available inputs, (propeller character-
istics and operational conditions), the raw information about the
FSs of Table 4 are extracted;

• contrary to the CDDMs, experts of the problem together with data
scientists do not perform a Feature Engineering phase, but they
define a functional form of the model, namely a structure of the
model, to be learned from the data. This structure is composed
of two levels: a first level (DDDMS) is dedicated to learning the
features to be provided to the same SDDM exploited for the
CDDMs;

• from the dataset, both the SDDM and the DDDM parameters are
learned;

• finally the learned model can be exploited to make prediction
about the NSPs.

The main differences between the CDDMs and the ADDMs rely on the
fact that, in the ADDMs there is just minimal intervention of experts
and data scientists in the definition of the model. In fact, in ADDMs, as
it will be shown in this section, just the functional form of the features
must be designed, while in CDDMs the features are basically handmade,
everything else is learned from the dataset.

In this work, the CDDMs are not described in details, nevertheless,
all the relevant details are reported in the original work of Miglianti
et al. (2019). For completeness, the authors just recall that the CD-
DMs proposed in Miglianti et al. (2019) is a combination of fea-
tures engineered by experts plus a Kernel Regularised Least Squares
(KRLS) (Shawe-Taylor and Cristianini, 2004) model plus a Feature
Reduction phase (Guyon and Elisseeff, 2003) plus an advance Model
Selection phase (Oneto, 2020).

Instead, from now on, a detailed description of the proposed ADDMs
is reported, starting from the basic principles that guided the definition
of the proposed functional form until the final proposed model. In
particular, the authors will first explain the building blocks of the
proposed ADDM, and then they will show how to combine them to
derive the proposed architecture and solve the problem faced in this
work. For simplicity, if not specified otherwise, the proposed ADDMs
is simply referred as DDMs since, as it will be shown in Section 4.2, the
ADDMs are the most effective ones for the purpose of this paper.

Let us start by making the hypothesis that  ⊆ R𝑞 with 𝑞 ∈
N∗, namely the input space is composed by different features stacked
together in a vector (e.g. when only FS1 is considered), and that 𝜇 is
a simple linear function. Note that, for each one of the different NSPs
 ⊆ R𝑝 with 𝑝 ∈ N∗, namely the output space is composed by different
features stacked together in a vector. In this case, the best functional
form of the model can be defined as follows

ℎ(𝑋) = 𝑊𝑋 + 𝐵, (15)
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Fig. 9. Conventional (Shallow) DDMs vs. Advanced (Deep) DDMs.

where 𝑊 ∈ R𝑝×𝑞 and 𝐵 ∈ R𝑝, namely the functional form of the model
is a multiple linear model in the space defined by  and {𝑊 ,𝐵} are
the parameters of the model. The functional form of the model can also
be interpreted as 𝑝 different neurons reacting to the input stimulus in
different ways based on the different weights. The model of Eq. (15) is
also graphically depicted in Fig. 10. {𝑊 ,𝐵} need to be tuned in such
a way that ℎ is a good representation of 𝜇. However, the quality of
ℎ in representing 𝜇 is defined by the index of performance defined in
Section 3.1 for each of the NSPs computed on 𝑛. The authors will
refer to these measure of accuracy with the symbol L̂(ℎ,𝑛), namely
the Empirical Error L̂ of the model ℎ on the dataset 𝑛. Consequently,
the best parameters of ℎ, namely P(ℎ) (in the case of Eq. (15) P(ℎ) =
{𝑊 ,𝐵}), are the ones which minimise the following problem

ℎ∗ ∶ min
P(ℎ)

L̂(ℎ,𝑛). (16)

In general, Problem (16) can be convex or not, depending on the func-
tional forms of ℎ or L̂(ℎ,𝑛) (Boyd and Vandenberghe, 2004; Pardalos
and Romeijn, 2013). For this reason, if, at least, L̂(ℎ) is differentiable
in P(ℎ) (e.g. the model of Eq. (15) should be differentiable in {𝑊 ,𝐵}),
it is possible to exploit one of the various forms of the gradient descend
algorithm (Goodfellow et al., 2016) (e.g. SGD, RMSprop, Adagrad,
Adadelta, Adam, etc.) to find the best set of P(ℎ). Note that each
algorithm has hidden hyperparameters that need to be tuned to reach
satisfying solutions (Goodfellow et al., 2016) (e.g. Learning Rates, Mo-
mentum, Batch Sizes, etc.). Another critical aspect which deeply affects
the results of the optimisation process in gradient-based methods is the
starting point, or initialisation, of P(ℎ); also in this case many options
exist, but they are grouped in two big families (Goodfellow et al.,
2016): the first one is the deterministic initialisation (e.g. Random
Normal, Random Uniform, LeCun, Glorot, He, etc.) while the second
one is the learned initialisation (e.g. Autoencoders, etc.).

This approach of Problem (16) is known as Empirical Risk Min-
imisation (ERM) (Vapnik, 1998). However, ERM is usually avoided in
DDMs as it leads to severe overfitting of the model on the training
dataset. As a matter of fact, in this case the process of learning the
P(ℎ) could choose a model good just for describing 𝑛 which has been
exploited to learn P(ℎ) (including noise, which afflicts 𝑛). In other
words, ERM implies memorisation of data rather than learning from
them. For this reason, some regularisation effect in Problem (16) has
been included, allowing to find a P(ℎ) good enough to both learn
from 𝑛 and generalise, namely have good performance, also on 𝑛.
Many ways exist to introduce this regularisation (Goodfellow et al.,
2016) (e.g. Early Stopping, Weights Decay, Dropout, etc.) and with

a little abuse of notation all of them will be modelled by modifying
Problem (16) into the following one

ℎ∗ ∶ min
P(ℎ)

L̂(ℎ,𝑛) + 𝜆 R(ℎ), (17)

where R(ℎ) represents the regularisation term and 𝜆 ∈ [0,+∞) repre-
sents the regularisation hyperparameter, that need to be tuned, in order
to find the best trade-off between ability of P(ℎ) to learn from 𝑛 and
to generalise.

The limitations that are still considered are the hypothesis of the
linearity of 𝜇 and then the linearity of functional form of the model
presented in Eq. (15). In order to address this issue, it is possible to
combine multiple linear models in this way

ℎ(𝑋) = 𝑊2𝛤 (𝑊1𝑋 + 𝐵1) + 𝐵2, (18)

where 𝛤 2 is an activation function (Goodfellow et al., 2016) (e.g. Sig-
moid, Hyperbolic Tangent, Rectified Linear Unit, etc.), 𝑊1 ∈ Rℎ×𝑞 with
ℎ ∈ N∗, 𝐵1 ∈ Rℎ, 𝑊2 ∈ R𝑝×ℎ, and 𝐵2 ∈ R𝑝. The model of Eq. (18) is
also graphically depicted in Fig. 11. If 𝛤 is, for example, a Sigmoid or
a Hyperbolic Tangent it is possible to prove that, for ℎ large enough,
the model Eq. (18) can describe every possible function mapping points
from R𝑞 to R𝑝 (Goodfellow et al., 2016). The type of activation function
and ℎ are hyperparameters which characterise the architecture that
need to be tuned. The model of Eq. (18) is also called Shallow (SDDM)
since it can be interpreted as the concatenation of multiple neurons
with a single hidden layer of neurons. Note that this SDDM is somehow
analogous to the one exploited in the CDDMs where the hidden layer
represents the feature mapping, which is deterministic in CDDMs, while
in this case is learned from the data and the last layer is a simple linear
function (note that, if the representation is good, linear functions are
powerful enough). Since the structure of the brain is not so simple but
it has a deeper structure, in the last years (Goodfellow et al., 2016)
Deep Models (DDDMs) have been developed and have shown to out-
perform many SDDMs in many real world problems involving natural
signals (Goodfellow et al., 2016) (e.g. Image and Video Recognition,
Natural Language Processing, Speech Recognition, etc.). In this case,
the model is a concatenation of multiple neurons in a series of multiple
hidden layers as follows

ℎ(𝑋) = 𝑊𝐻𝛤𝐻 (⋯𝛤2(𝑊2𝛤1(𝑊1𝑋 + 𝐵1) + 𝐵2)⋯) + 𝐵𝐻 , (19)

2 With a little simplification the authors exploited the same activation
function element of the vector 𝑊1𝑋 + 𝐵1 but in general it is possible to use
different activation functions.
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Fig. 12. Deep DDM.

Fig. 11. Shallow DDM.

where 𝛤𝑖
3 with 𝑖 ∈ {1,… ,𝐻} and 𝐻 ∈ N∗ are the different activation

functions at each layer, 𝑊1 ∈ Rℎ1×𝑞 , 𝐵1 ∈ Rℎ1 , 𝑊𝐻 ∈ R𝑝×ℎ𝐻−1 with
ℎ𝐻−1 ∈ N∗, 𝐵𝐻 ∈ R𝑝, 𝑊𝑖 ∈ Rℎ𝑖×ℎ𝑖−1 , and 𝐵𝑖 ∈ Rℎ𝑖 with 𝑖 ∈ {2,… ,𝐻−1}.
The type of activation function, 𝐻 , and ℎ𝑖 with 𝑖 ∈ {1,… ,𝐻 − 1} are
hyperparameters which characterise the architecture that need to be
tuned. The model of Eq. (19) is also graphically depicted in Fig. 12.
Note that in DDDMs, the representation that can be learned from the
data is richer with respect to the SDDMs since it allows building more
complex and, in principle, richer structures (Goodfellow et al., 2016).

The problem of the models of Eqs. (18) and (19) is that the car-
dinality of the matrices of parameters explodes too fast (curse of
dimensionality) and then, in order to be able to learn them, millions
of samples need to be available (Goodfellow et al., 2016). In this case,
this is not possible since the cardinality of the dataset is very limited
and fixed as described in Section 2 and this is also the reason why the
CDDMs cannot be exploited.

One way to overcome this problem is to exploit the solution of
the Extreme Learning Machines (ELMs) (Kasun et al., 2013; Tang
et al., 2016) which show that the ability to learn a good model from

3 With a little simplification the authors exploited the same activation
function in each hidden layer but in general each hidden layer may exploit
different activation functions.

Fig. 13. Sparse version of the SDDMs of Fig. 11. Dotted rows means that weight is
set to zero, namely the connection is dropped.

data, in the form of Eqs. (18) and (19), improves dramatically, in
the case of limited number of samples, when 𝑊1 for model Eq. (18)
and 𝑊1,… ,𝑊𝐻−1 for the one of Eq. (19) are simply set randomly.
Counterintuitive as it may seem, this solution represents the state of
the art in many real world applications (Kasun et al., 2013; Tang et al.,
2016).

Another way to overcome the curse of dimensionality is to introduce
the concept of sparsity on the architecture. Sparsity means that many
weights in the architecture are zero or missing (an example, for simplic-
ity on a SDDM, is reported in Fig. 13). This property can be achieved
in two ways.

The first one, the naive one, is to use as R(ℎ) the L1 (Tibshirani,
1996) or the L1–L2 (Zou and Hastie, 2005) regularisation which implies
a sparse solutions in Problem (17). Unfortunately, this approach does
not really mitigate the curse of dimensionality and presents some
intrinsic limitations (Goodfellow et al., 2016). The reasons of these
limitations lie in the fact that, simply adding a regularisation, does not
help the model in reducing the intrinsic dimensionality of the space of
the parameters since it still has to learn what parameters need to be set
to zero.

The second option is to exploit the intrinsic structure of the FS.
Until this point the hypothesis that was made considers that the input
space is composed by different features stacked together in a vector
(e.g. when just FS1 is considered) but, in the specific problem, some
parts of the FS have a particular structure. In fact, FS2, FS3, and FS5
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Fig. 14. Convolution on a two-dimensional tensor. The tensor has been indicated in blue, the learned filter (the sparse weights) in green, the output of one sparse neuron in
yellow, the resulting two-dimensional tensor in purple, the padding in white. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

are two-dimensional (2D) tensors while FS4 is a three-dimensional (3D)
tensor (please refer to Table 4 for simplicity or to Section 2 for the
detailed explanation of these FSs). These 2D and 3D-tensors, contrarily
to the FS1, have a particular property. Apart from the specific value of
each particular element in the tensor, also the location in the tensor has
a meaning related the tensor’s construction (see Section 2). In a simpler
case, like greyscale images, which can be represented as a 2D-tensor,
pixels which are close to each other have some proximity property,
called structure, which can help, for example, in distinguish things
that are close or distant from each other or pixel which belongs to the
same object (Goodfellow et al., 2016). In this case, it does not make
any sense to stack neurons in layers which react to all the elements in
the tensor contemporary (basically to build a structure like the ones
in Figs. 10, 11, and 12) but each neuron should react to particular
portion of the tensors, ignoring the other ones. This corresponds to
deterministically set to zero some weights of the neurons and then,
to fully process the tensor, to stack neurons which react to different
portion of the tensors (namely a structure like the one of Fig. 13 is
deterministically defined). The problem that remains to be solved is
how to define a structure of these neurons, and for this reason the
authors will rely on a simple idea (Goodfellow et al., 2016): each
neuron should react to part of the tensors which are close, in some
sense, to each other. This idea comes from the use of convolution which
Gabor applies in image processing (Russ, 2016), which emulates how
the brain process the images to detect, for example, objects, distances,
and contours. The only difference here is that these filters, instead of
being deterministically defined to react to certain stimulus, are learned
from the data. An example of the structure of the network for a 2D-
convolution layer is reported in Fig. 14 where, for simplicity, just two
neurons are fully depicted. The architecture has several parameters.
The input space, being a 2D-tensor, is a matrix of size R𝑞1×𝑞2 . The patch,
or the size of the filter to be learned, is R⌊𝑟𝑓 𝑞1⌋odd×⌊𝑟𝑓 𝑞2⌋odd where 𝑟𝑓 ∈
(0, 1) is an hyperparameter which regulates the ratio between the size
of the 2D-input tensor and the filter while ⌊⋅⌋odd represents the closer
smaller odd number. The padding is the addition of elements at the
border of the tensor to mitigate the edge effects, and its size is depicted
in Fig. 14 (in this case the zero padding has been used, but also other
types of padding exists like the ‘‘mirror’’ or ‘‘same’’ padding). The stride
is the movement step of the filter on the tensor which is ⌊𝑟𝑠𝑞1⌋ along
the first dimension of the tensor and ⌊𝑟𝑠𝑞2⌋ along the second dimension,
𝑟𝑠 ∈ (0, 1) is an hyperparameter which regulates this movement. The
dilation is a further sparsity capability of the filter reaction, which is
⌊𝑟𝑑𝑞1⌋ along the first dimension of the tensor and ⌊𝑟𝑑𝑞2⌋ along the
second dimension, 𝑟𝑠 ∈ (0, 1) is an hyperparameter which regulates

Fig. 15. Max pooling on a two-dimensional tensor: substitution of the deterministic
function max to the learned filter in a convolution on a two-dimensional tensor (see
Fig. 14). Note that, for simplicity, the padding, the dilation, and the stride have been
not reported, since they are analogous to the ones of Fig. 14.

Fig. 16. Convolution on a three-dimensional tensor (see Fig. 14 for the meaning of
the colours). Note that, for simplicity, the padding, the dilation, and the stride have
been not reported, since they are analogous to the ones of Fig. 14.

it. Obviously the number of neurons, and consequently the number of
outputs of this 2D-convolution layer, depends on all these parameters
and is reported in Fig. 14. Please refer to Goodfellow et al. (2016) for
a more detailed treatment of the convolutional networks.

The 2D-convolution can be defined by a learned filter but also by a
deterministic function like the maximum, the average, or the median.
For example, in Fig. 15 a 2D-max-pooling layer is reported, which is
a 2D-convolution layer where, instead of learning a filter, the authors
just apply the maximum operator.

Using the same principles described for the 2D-tensors (FS2, FS3,
and FS5) it is possible to build a convolutional network for 3D-
tensors (in this case FS4). The input space, in this case, will be
a tensor of size R𝑞1×𝑞2×𝑞3 and, consequently, the filter size will be
R⌊𝑟𝑓 𝑞1⌋odd×⌊𝑟𝑓 𝑞2⌋odd×⌊𝑟𝑓 𝑞3⌋odd . In an analogous way the other dimen-
sions (padding, stride, and dilation) will change. An example of 3D-
convolutional network is represented in Fig. 16. Analogously, the
3D-max-pooling can be defined.
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At this point all the building blocks required to build the proposed
architecture and DDMs for estimating the different NSPs based on the
different FSs are present. In particular, the authors defined a Dense
Layer (Fig. 11) with its different activation functions (e.g. RELU, Linear,
Hyperbolic Tangent, etc.) and regularisation (e.g. L2, Dropout, etc.),
a Random Layer, namely a Dense Layer with random weights, the
2D and 3D Convolutional Layers (again with its activation functions),
the 2D and 3D Max Pooling Layer. Since it will be required later, it
has also been defined a Concatenation Layer, which simply takes in
input whatever structure (e.g. scalars, vectors, or tensors) and reshapes
everything in a large vector. The point is then how to combine them to
get a suited architecture for the problem under exam.

The architecture of the proposed DDMs will be built incrementally
to explain the different choices.

For what concerns the FS1, this FS is somehow analogous to the
one of Miglianti et al. (2019) and for this reason a simple SDDMs
like the one of Fig. 11 is enough. In order to limit the number of
weights to be learned, the hidden layer will be a simple Random Layer
(ELMs-style) with a hyperbolic tangent activation function to provide
the necessary non-linearity, and the output layer will be a simple Dense
Layer with linear activation function and the L2 regularisation to limit
the overfitting. This structure basically emulates, with much fewer
parameters to tune, the one proposed in Miglianti et al. (2019). The
hyperparameter to be tuned are just the number of neurons of the
hidden layer 𝑛HL ∈ 2{2,4,6,8,10} and the amount of regularisation defined
by 𝜆 ∈ 10{−4.0,−3.5,…,+3.0} (see Eq. (17)) in the output layer since the
number of inputs is defined by FS1 and the number of output neurons
is defined by the particular NSP to be predicted. The initialisation of
the output Dense Layer is a simple zero-valued initialisation.

For what concerns instead FS2, FS3, FS4, and FS5, the process is
a bit more complicated. The authors will first present the proposed
method for dealing with the 2D-tensors (FS2, FS3, and FS5) and the
treatment of the 3D-tensor (FS4) will be just summarised because
analogous. As already mentioned before, the 2D-tensors cannot be
simply stacked with FS1 by means of a Concatenation Layer and fed to
the architecture of Fig. 11 (see results of this approach in Section 4.2).
For this reason, a more condensed representation of these FSs needs
to be learnt, and, for this purpose, the convolution layers is the best
choice. The only problem of the Convolutional Layers is that, based
on the setting of their parameters, they are designed to react to just
a particular scale of dimension and for this reason it would be good
to have more layers which react to different scales. The solution that
has been adopted in this paper is to use and Inception Layer (Szegedy
et al., 2017) composed of three parallel Convolutional Layers (equipped
with linear activation functions to mitigate the gradient vanishing
effect, that will be clarified later, and no regularisation because of the
intrinsic sparsity of the architecture) reacting to different scales. In
order to limit the number of weights to be learned, one of the three
Convolutional Layers is a simple 2D Max Pooling Layer. Then, in order
to agglomerate all the information at different scales and produce a
condensed representation, the outputs of the two 2D Convolutional and
the 2D Max Pooling Layers are combined adopting a Concatenation
Layer and then exploiting a Dense Layer (equipped with linear acti-
vation functions, again to mitigate the gradient vanishing effect, and
dropout as regulariser). This building block is depicted in Fig. 17. The
architecture has multiple hyperparameters that have to be tuned. For
the padding, a zero padding has been exploited. It is now necessary
to tune for the 2D Convolutional and the 2D Max Pooling Layers the
𝑟𝑓 (𝑟C2D1

𝑓 , 𝑟C2D2
𝑓 , 𝑟MP2D1

𝑓 ∈ {0.1, 0.2, 0.4}), the 𝑟𝑠 (𝑟C2D1
𝑠 , 𝑟C2D2

𝑠 , 𝑟MP2D1
𝑠 ∈

{0.1, 0.2, 0.4}), and the 𝑟𝑑 (𝑟C2D1
𝑑 , 𝑟C2D2

𝑑 , 𝑟MP2D1
𝑑 ∈ {0.1, 0.2, 0.4}). Then,

for the dense layer, it is necessary to tune the number of neurons
𝑛DL ∈ 2{2,4,6,8,10} and the dropout rate 𝑟𝑑 ∈ 10{−3,−4,−2,−1}, namely the
number of neurons to randomly deactivate during training (Goodfellow
et al., 2016). The problem of this architecture is its initialisation phase
since a deterministic or random initialisation would not be sufficient
to guarantee good performances (Goodfellow et al., 2016). For this

Fig. 17. Proposed architecture for extracting a good representation from the two-
dimensional tensors (see FS2, FS3, and FS5 in Table 4) in the dataset described in
Section 2.

reason the authors initialise, or more precisely pre-trained, the archi-
tecture of Fig. 17 with a surrogate problem, using the autoencoders
approach (Goodfellow et al., 2016). Basically, since the output of the
dense layer in Fig. 17 should be a good and condensed representation
of the FSs (FS2, FS3, and FS5), based on that representation it should
be possible to retrieve the original FSs. Subsequently, the weights have
been initialised using the approach proposed in He et al. (2015), the
authors attach to the Dense Layer of Fig. 17 another Dense Layer where
the outputs are the same FS provided to the block as input, and finally
the network is trained using the algorithms that will be explained later
in this section. The architecture of the autoencoder for pre-training the
block of Fig. 17 is depicted in Fig. 18. After this pre-training phase
the last Dense Layer added for the pre-training is removed, and the
Inception Layer plus the dense layer after that have been kept.

The extension of this 2D block defined for FS2, FS3, and FS5 can
be trivially extended to the case of FS4 where a 3D block needs to be
developed.

At this point, it is possible to combine all outputs of the blocks
developed for FS2, FS3, FS4, and FS5 in a Concatenation Layer together
with FS1 and fed them to the same SDDMs described for FS1. It is pos-
sible to do perform this action since FS1 plus the outputs of the blocks
developed for FS2, FS3, FS4, and FS5 is an informative and condensed
information about all the features. The resulting architecture, namely
the proposed DDM, is depicted in Fig. 19.

What still needs to be described is how the network has been trained
(or pre-trained the blocks just described for FS2, FS3, FS4, and FS5). As
described before, many gradient descend-based algorithms (Goodfellow
et al., 2016) (e.g. SGD, RMSprop, Adagrad, Adadelta, Adam, etc.) exist
for solving the problem. The only issue of these algorithms is the
Gradient Vanishing effect (Goodfellow et al., 2016), namely the fact
that in deep network the gradient tends to go to zero exponentially in
the number of layers. For this reason, in the proposed architecture, the
authors have exploited, in all the trained layers, linear or RELU activa-
tion functions which mitigate this problem (Goodfellow et al., 2016).
Then, the Mini Batch Stochastic Gradient Descent (SGD) algorithm has
been used, characterised by three hyperparameters (Goodfellow et al.,
2016): learning rate of the gradient, momentum that accelerates SGD
in the relevant direction, and batch-size of each iteration.

The last problem that authors need to solve is how to tune the
hyperparameters of the proposed architecture. Since all DDMs are
characterised by a set of hyperparameters  influencing their ability
to estimate 𝜇, a proper Model Selection (MS) procedure, namely the
process of tuning them to achieve optimal performances, needs to
be performed (Oneto, 2020). Several methods exist for MS purpose
but resampling methods, like the well-known 𝑘-Fold Cross Validation
(KCV) or the nonparametric Bootstrap (BTS) approaches represent
the state-of-the-art MS approaches when targeting real-world appli-
cations (Oneto, 2020). Resampling methods rely on a simple idea:
the original dataset 𝑛 is resampled once or many (𝑠) times, with or
without replacement, to build two independent datasets called training,
and validation sets, respectively 𝑖

𝑙 and 𝑠
𝑣 , with 𝑖 ∈ {1,… , 𝑠}. Note

that 𝑖
𝑙 ∩  𝑖

𝑣 = ⊘ and 𝑖
𝑙 ∪  𝑖

𝑣 = 𝑛. Then, in order to select the
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Fig. 18. Architecture of the autoencoder for initialising the architecture presented in Fig. 17.

Fig. 19. Proposed DDM architecture.

best combination the hyperparameters  in a set of possible ones H
= {1,2,…} for the proposed architecture or, in other words, to
perform the MS phase, the following procedure has to be applied

∗ ∶ arg min
∈H

1
𝑠

𝑠
∑

𝑖=1
L̂
(

ℎ∗
{,𝑖

𝑙}
, 𝑖

𝑣

)

(20)

where ℎ∗
{,𝑖

𝑙}
is the model with its set of hyperparameters  learned

with the data 𝑖
𝑙. Since the data in 𝑖

𝑙 are independent of the ones in
 𝑖
𝑣, the idea is that ∗ should be the set of hyperparameters which

allows achieving a small error on a dataset that is independent of the
training set. In this work, the authors will exploit the BTS procedure

and consequently 𝑠 = 100, if 𝑙 = 𝑛 and the resampling must be done
with replacement (Oneto, 2020).

3.4. Hybrid Models (HMs)

The problem that authors want to address here is how to construct a
model able to both take into account the physical knowledge about the
problem encapsulated in the PMs of Section 3.2 and the information
hidden in the available data described in Section 2 as the DDMs of
Section 3.3. For this reason the proposed HM is a combination of the
PMs and the DDMs.

In order to reach this goal different approaches exist (see e.g.
Coraddu et al., 2017, 2018; Miglianti et al., 2019) but all these methods
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have been developed in the context of conventional DDMs (like the
KLRS mentioned above) and not for advance DDMs (es the one based on
DNNs described in Section 3.3). In fact, for conventional DDMs there
are many ways of including the knowledge encapsulated in the PMs.
For example, in Coraddu et al. (2017, 2018) authors simply add to the
input space of the DDMs the prediction of the PMs, while in Coraddu
et al. (2017), Miglianti et al. (2019) authors tried to build a model able
to contemporary learn the target task and how the PMs behave.

These different flavours of HMs, for conventional DDMs, are due
to the fact that the model functional form for conventional DDMs
cannot be arbitrary modified without compromising their ability to
effectively and efficiently learn from data or weakening they theoretical
properties (Shalev-Shwartz and Ben-David, 2014; Goodfellow et al.,
2016). Vice versa, the architecture of the advanced DDMs based on
DNNs described in Section 3.3 can be easily and almost arbitrary mod-
ified to meet the requirements of the particular application. Moreover,
different ways of changing the architecture may results in the same
effect because of the nature of the functional form of these DDMs, and
for this reason the simplest solution can be chosen.

For example, in the case under examination, it could be possible to
change the architecture of the proposed DDM depicted in Fig. 19 using
the two main different philosophies introduced in Coraddu et al. (2017,
2018) and Miglianti et al. (2019) which consists in

I changing the FS, namely the input space, or
II force the DDMs to learn contemporary the NSPs and the PMs,

namely change the output space.
For what concerns the Option II the modification is trivial while the
Option I is not as much trivial as it may seem since it is required
to define where and how the prediction of the PMs should be fed
to the DDM. Since the PMs already provide a good approximation
of the propeller characteristic, in this particular case an actual NSP
approximation, the most natural choice would be to consider this
information at the same level of the FS1 that need to be fed to the
layer which condensates all the information about the different FSs in
order to improve its representativity. But such a choice is somehow
equivalent to change the output space of the DDM since this would
result in a consistent change of the last layers of the DDMs (in particular
the expressivity, of size, of the random layer) (Goodfellow et al., 2016).
Since these two modifications, in the proposed DDM, would have a
similar effect, the authors decide to use the Option I since it affects
more directly the last layers, not influencing the other ones. The result
is the HM architecture depicted in Fig. 20, where the authors just
underline, for simplicity, the differences between the DDMs of Fig. 19
and the proposed HM.

Note that the HMs can be built just for the NSP for which a PM is
provided, able to estimate all, or just a subset, of the parameters of the
NSP. Hence, in this case, the HM can be defined for all the NSPs (see
Table 4).

Note also that the hyperparameters of the architecture, also for
the HMs, need to be tuned with the same procedure described in
Section 3.3 for the DDMs.

4. Experimental results

In this section, the performances of the PMs, DDMs, and HMs, (see
Sections 3.2, 3.3, and 3.4) are tested and compared by means of the
data described in Section 2 and the performance measures described
in Section 3.1. Two different scenarios are considered, analogously to
what presented in Miglianti et al. (2019).

For what concerns the PM, please recall that PMs are just able to
predict a subset of the parameters of the different NSPs, while the DDMs
are able to predict all the targets. HMs differ from the DDMs every time
the PMs are able to predict the spectral parametrisation or a part of it.
The set of hyperparameters tuned during the MS phase are the same as
those of the DDMs.

All the tests have been repeated 30 times and the average results
are reported, together with their t-student 95% confidence interval, in
order to ensure the statistical consistency of the results.

Fig. 20. DNN-based HM architecture (see Fig. 19 for the missing pieces).

4.1. Scenarios

Two modelisation scenarios have been studied
• Interpolation Scenario: in this case the models try to predict the

propeller noise spectra main characteristics in various, but differ-
ent, loading conditions within the ones exploited for building the
model;

• Extrapolation Scenario: in this scenario, the models try to predict
the propeller noise in groups of loading conditions characterised
by different cavitation extents with respect to those exploited
for building the model. These groups of loading conditions are
defined based on the combination of thrust coefficient and cavi-
tation number, as exemplified in Fig. 21 on a typical cavitation
bucket: the back cavitation extent grows from the upper left
corner of the plot (group G2) to the lower right corner (group
G5).

Basically the two scenarios just differ in the definitions of 𝑛 and
𝑚, that are the subset of data exploited for building and testing the
models.

The interpolation case is the simplest one. In this scenario 𝑛 and 𝑚
have been created by splitting randomly all the samples of the datasets
described in Section 2 keeping 90% of the data in 𝑛 and the remaining
10% in 𝑚. In this way the models have been tested in their ability
to predict the propeller noise spectra in various, but different, loading
conditions within those exploited for building the models.

The extrapolation scenario tests the capability of the models to
predict radiated noise for cases not included in the variable domain of
the data used to build them. The practical application of this scenario
is the prediction of noise for those full scale propeller operational
conditions which cannot be consistently reproduced at model scale
due to viscous scale effects, as explained in Miglianti et al. (2019).
In order to obtain an indication of the extrapolation performance, the
authors included in 𝑛 samples of only five of the six groups of different
operational conditions and use the sixth group as 𝑚.

4.2. CDDMs vs. ADDMs

In order to compare the CDDMs (like the KRLS-based DDMs in-
troduced in Miglianti et al. (2019) and recalled in Section 3.3) and
the ADDMs proposed in this work, the authors have first reported in
Table 5 the errors measured with the MAPE in the interpolation and
extrapolation scenarios with different FSs for the different NSPs.
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Fig. 21. Extrapolation groups.

Fig. 22. Comparison between the best PM, DDM, and HM in predicting the different parameters of NSP1 according to Table 6. Figure reports the scatter plot (measured values
on the x axis and predicted ones on the y axis) in the interpolation scenario with best FS according to Table 6 for the different parameters of NSP1 (see Table 4).
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Fig. 23. Comparison between the best PM, DDM, and HM in predicting the different parameters of NSP1 according to Table 6. Figure reports the scatter plot (measured values
on the x axis and predicted ones on the y axis) in the extrapolation scenario with best FS according to Table 6 for the different parameters of NSP1 (see Table 4).

From the results reported in Table 5, the CDDMs show comparable
performances to ADDMs only when the FS1 is considered alone, hence
when the cardinality of the FS is not too high with respect to the num-
ber of samples. If multidimensional features are considered, the error
for CDDMs is at least doubled with respect to ADDMs. The worst per-
formances for the CDDMs are attained for FS1 + FS4 (FS4 is the single
feature with the higher cardinality) and for FSAll. The lowest error for
the CDDMs, when multidimensional features are considered, is in the
case FS1 + FS5 probably because FS5 (the blade circulation) account
for important information on blade loading with smaller dimensions
than FS4. Conversely, the minimum prediction error is obtained, for
the ADDMs, when all the features are considered. Observed errors are
lower than 5% in the interpolation scenario and lower than 9% in the
extrapolation scenario.

In summary, results suggest that only by using the ADDMs it is
possible to improve the performance of the model exploiting more rich
and complex features, and the relative improvement can be larger than

50%. On the other hand, it must be noted that the absolute errors
obtained with the CDDMs and the simplest feature set FS1 are only
a few percentages higher than the minimum errors obtained with the
ADDMs. Notwithstanding this, the improvements achieved exploiting
the ADDMs with more complete and physically meaningful features are
significant.

4.3. PMs vs. DDMs vs. HMs

From now on, for the sake of simplicity, the proposed ADDMs will
be referred to as DDMs since, as reported in Section 4.2, the ADDMs are
the most effective ones for the scopes of this paper. In order to compare
the PMs, DDMs, and HMs Table 6 reports the errors measured with the
MAPE in the interpolation and extrapolation scenarios with different
FSs for the different NSPs. Note that the PMs are able to fully predict
only the NSP1 and it always uses only FS0. Instead, since the PMs is
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able to predict part of all the NSPs it is always possible to build the
HMs.

The results highlight the limits of the PMs, which are not able
to accurately predict all the trends present in the experimental data.
Nevertheless, the information enclosed in these simple formulations
allows to improve the performance of DDMs significantly, as confirmed
by the results obtained for the HMs. The improvement with respect
to the simple DDMs is more significant when all the features are
considered and, in particular, in the extrapolation scenario, where the
MAPE for the HMs is about 2% lower than the DDMs. This result
agrees with the higher capabilities of HMs to generalise, thanks to the
information included in the PMs.

4.4. The effect of using the different FSs on the DDMs and the HMs

From the results reported in Table 6, it is also possible to understand
the effect of using the different FSs on the DDMs and the HMs.

The DDMs seem to be able to well exploit these multidimensional
inputs. When one multidimensional feature (FS2, FS3, FS4, FS5) is
added to FS1, results are generally improved. Surprisingly, the effects
of the different multidimensional features are all rather similar, pre-
venting to rank these features based on their importance. The best
performances are achieved by the DDMs, when all the possible features
are considered. However, the absolute improvement with respect to the
use of one single multidimensional feature added to FS1 is not large
given the low errors.

The same patterns are reflected in the HMs (Table 6). Nevertheless,
the HMs seem to be even less influenced by the different combinations
of FS1 and multidimensional features. If all the features are considered,
the HMs show the best performances among all the considered models.

4.5. The effect of using different NSPs

Table 6 also allows us to understand the effect of the different target
definitions based on the models’ performances in predicting them, the
same order is obtained for PMs, DDMs, and HMs. In particular, going
from the best case to the worst, the order is: NSP1, NSP4 and NSP5
(similar outcome), NSP2 and lastly NSP3. However, the differences in
performances are rather small, meaning that the choice of the spectral
representation does not affect significantly the predictive performances
of the models.

The lowest error observed for NSP1 was reasonably expected. Ac-
tually, this target has a strong physical meaning and usually shows
clear trends among the dataset. In fact, NSP1 is composed by a single
point instead of a complete spectrum, therefore comparing it with the
other target definitions may be questionable. It is less trivial to explain
the good performances observed in the prediction of the whole one-
third octave spectrum (NSP4 and NSP5). This result is remarkable
because the one-third octave spectra are a representation of the noise
recognised in the acoustic field. Moreover, its definition is easier than
the simplified spectrum, being less prone to human error or susceptible
to outliers. Therefore its use may simplify the dataset building phase.

A ML tool able to reproduce accurately both the NSP4, NSP5 and
the centre peak (NSP1) represents an optimal solution for the task at
hand. The use of spectral slopes in NSP3 was an attempt to overcome
the issues related to the complex trends featured by the breakpoints.
These results demonstrate that this modification to the description of
the simplified spectrum does not provide any further improvements of
the model capabilities. Actually, the errors for NSP3 are slightly larger
than for NSP2 yet acceptable.

4.6. The best PMs, DDMs, and HMs

In order to better detail the quality of the best PMs, DDMs, and
HMs in predicting the different parameters of the different NSPs, the
errors measured with the MAE, MAPE, and PPMCC in the interpolation
and extrapolation scenarios, with the best FS according to Table 6 are
reported in Tables 7–11. The word ‘‘best’’ is used to intend the model
which produces the best accuracy, or lower error, between the ones
which use different FSs according to Table 6.

The vortex peak (frequency and level) is present in NSP1, NSP2 and
NSP3 and the errors for these targets are reported in Tables 7–9, in
terms of MAE, MAPE and PPMCC. The best interpolation MAE for fc
is below 60 Hz and for RNLc it is lower than 1 dB, both for DDMs
and HMs. In extrapolation the accuracy slightly decreases but it is still
remarkable. In Fig. 22 the comparison reported shows the PM, and the
best DDM and HM predicting the NSP1, for the interpolation scenario.
Looking more in detail, it can be noticed that the DDMs/HMs are able
to predict cases in which the PM fails, i.e. when FS0 is not sufficient
to characterise the samples. In the extrapolation (Fig. 23) the samples
are more scattered, hence the accuracy is lower but still satisfactory.
In both cases, some outliers are visible in the DDMs and HMs: these
samples should be investigated and properly treated, e.g. adjusting the
position of the peak or removing them from the dataset.

The spectrum level at 100 kHz (RNLb) is present in NSP2 and NSP3
(Tables 8–9). The MAE is lower than 1 dB both in interpolation and
extrapolation. Similar to the vortex peak, this target is easy to be
predicted because its value changes rather smoothly depending on pro-
peller loading, hence the current features are able to fully characterise
its behaviour.

The NPS2 is the best predicted spectrum simplification if it is
considered as a whole (Table 6). A detailed view of the estimation error
is reported in Table 8 for each target composing NSP2. In the prediction
of the breakpoints frequencies and level, the MAPE is almost identical
between breakpoint 1 and 2, both for interpolation and extrapolation
meaning that the absolute error is proportional to the absolute value
of the targets. Indeed, the best MAPE for fbp1 and for fbp2 is 3.0 (HM,
interpolation), but the correspondent MAE are 27.6 Hz and 2067 Hz.
Therefore, fbp2 still suffer from worse prediction compared to fbp1,
because of some outliers due to the inherent physical phenomenon.
The same tendency is visible for the levels of the two breakpoints but
being the decibel a logarithmic quantity, the MAE is somewhat more
contained.

In order to overcome the inherent weakness in the breakpoints
detection, and improve the accuracy in the simplified spectrum predic-
tion, the slopes of the different parts composing the simplified spectrum
have been considered as an alternative target. They are expressed as
dB/oct, hence they represent the change in dB corresponding to a
doubling in frequency. In Table 9 the accuracy in the NSP3 prediction
is reported. It is evident that 𝛾 has a MAE of one order of magnitude
inferior to 𝛼 and 𝛽. This can be attributed to the higher stability (with
respect to the loading conditions) of this portion of the spectrum, and
to the aforementioned ease in the detection of one of the extreme points
on which it is calculated (100 kHz, RNLb).

Conversely, the two other slopes still suffer from the same problem
discussed for the breakpoints, even if the overall prediction accuracy is
remarkable.

The NSP4 (noise corrected by means of transfer functions) and
the NSP5 (noise corrected for spherical propagation) are visible in
Tables 10 and 11, respectively. Each column refers to a one-third
octave band (from 1 to 24) in the range 0.4 kHz to 80 kHz for the
DDM/HM, instead the PM is available only for the range 1 kHz to 80
kHz. The different levels are well predicted, both in interpolation and
extrapolation, no particular trends seem to exist among the different
parts of the spectrum.
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Table 5
Comparison between CDDMs proposed in Miglianti et al. (2019) and the proposed ADDM. Table reports the errors measured with the MAPE
(see Section 3.1) in the interpolation and extrapolation scenarios with different FSs for the different NSPs.

FS NSP1 NSP2 NSP3 NSP4 NSP5

CDDM ADDM CDDM ADDM CDDM ADDM CDDM ADDM CDDM ADDM

Interpolation

1 4.2 ± 0.2 4.4 ± 0.3 5.5 ± 0.3 5.5 ± 0.3 6.4 ± 0.3 6.4 ± 0.3 4.5 ± 0.2 4.5 ± 0.2 4.5 ± 0.3 4.5 ± 0.3
1,2 9.0 ± 0.3 3.5 ± 0.2 10.4 ± 0.3 4.6 ± 0.3 11.2 ± 0.3 5.5 ± 0.3 8.3 ± 0.3 3.8 ± 0.2 8.8 ± 0.3 3.7 ± 0.2
1,3 8.9 ± 0.3 3.3 ± 0.2 10.6 ± 0.3 4.7 ± 0.3 11.3 ± 0.3 5.5 ± 0.3 8.3 ± 0.3 3.8 ± 0.2 8.8 ± 0.3 3.7 ± 0.2
1,4 12.1 ± 0.3 3.5 ± 0.2 13.5 ± 0.3 4.6 ± 0.3 14.3 ± 0.3 5.6 ± 0.3 10.5 ± 0.3 3.9 ± 0.2 11.4 ± 0.3 3.7 ± 0.2
1,5 7.3 ± 0.3 3.7 ± 0.2 8.5 ± 0.3 4.8 ± 0.3 9.5 ± 0.3 5.5 ± 0.3 6.8 ± 0.3 3.8 ± 0.2 7.0 ± 0.3 3.7 ± 0.2
All 14.8 ± 0.3 2.8 ± 0.2 16.4 ± 0.3 3.9 ± 0.2 17.4 ± 0.3 4.7 ± 0.3 12.8 ± 0.3 3.2 ± 0.2 14.0 ± 0.3 3.0 ± 0.2

Extrapolation

1 8.0 ± 0.3 8.0 ± 0.3 9.3 ± 0.3 9.5 ± 0.3 10.6 ± 0.3 10.3 ± 0.3 7.5 ± 0.3 7.5 ± 0.3 7.9 ± 0.3 7.9 ± 0.3
1,2 13.0 ± 0.3 6.9 ± 0.3 14.5 ± 0.3 8.4 ± 0.3 15.3 ± 0.3 9.4 ± 0.3 11.2 ± 0.3 6.8 ± 0.3 12.2 ± 0.3 7.0 ± 0.3
1,3 12.9 ± 0.3 7.1 ± 0.3 14.5 ± 0.3 8.5 ± 0.3 15.3 ± 0.3 9.4 ± 0.3 11.3 ± 0.3 6.7 ± 0.2 12.2 ± 0.3 7.0 ± 0.3
1,4 16.1 ± 0.3 7.2 ± 0.3 17.4 ± 0.3 8.5 ± 0.3 18.4 ± 0.3 9.3 ± 0.3 13.5 ± 0.3 6.8 ± 0.2 14.8 ± 0.3 7.0 ± 0.3
1,5 10.9 ± 0.3 6.9 ± 0.3 12.5 ± 0.3 8.5 ± 0.3 13.4 ± 0.3 9.2 ± 0.3 9.8 ± 0.3 6.8 ± 0.3 10.5 ± 0.3 7.0 ± 0.3
All 19.0 ± 0.3 6.0 ± 0.3 20.4 ± 0.3 7.4 ± 0.3 21.4 ± 0.3 8.3 ± 0.3 15.8 ± 0.3 6.1 ± 0.2 17.5 ± 0.4 6.1 ± 0.3

Table 6
Comparison between PMs, DDMs, and HMs. Table reports the errors measured with the MAPE (see Section 3.1) in the interpolation and extrapolation
scenarios with different FSs for the different NSPs. Note that the PMs are only able to fully predict the NSP1 and they does not change if we change the
FS since they always use just a subset of the FS1 (see Section 3.2). For the detailed accuracies of the PMs in predicting each parameters which is able
to predict (see Table 4) see Tables 7, 8, 9, and 11. Instead, since the PMs is able to predict part of the NSP1, NSP2, NSP3, and NSP5 (see Section 3.2)
we cab build the HMs for those NSPs (see Section 3.4).

FS NSP1 NSP2 NSP3 NSP4 NSP5

PM DDM HM DDM HM DDM HM DDM HM DDM HM

Interpolation

1

11.6 ± 1.0

4.4 ± 0.3 4.3 ± 0.3 5.5 ± 0.3 5.6 ± 0.3 6.4 ± 0.3 6.3 ± 0.3 4.5 ± 0.2 4.5 ± 0.2 4.5 ± 0.3 4.5 ± 0.3
1,2 3.5 ± 0.2 2.8 ± 0.2 4.6 ± 0.3 3.9 ± 0.3 5.5 ± 0.3 4.7 ± 0.3 3.8 ± 0.2 3.2 ± 0.2 3.7 ± 0.2 3.0 ± 0.2
1,3 3.3 ± 0.2 2.8 ± 0.2 4.7 ± 0.3 3.9 ± 0.3 5.5 ± 0.3 4.7 ± 0.3 3.8 ± 0.2 3.2 ± 0.2 3.7 ± 0.2 3.0 ± 0.2
1,4 3.5 ± 0.2 2.9 ± 0.2 4.6 ± 0.3 3.9 ± 0.2 5.6 ± 0.3 4.7 ± 0.3 3.9 ± 0.2 3.2 ± 0.2 3.7 ± 0.2 3.1 ± 0.2
1,5 3.7 ± 0.2 2.8 ± 0.2 4.8 ± 0.3 3.9 ± 0.2 5.5 ± 0.3 4.8 ± 0.3 3.8 ± 0.2 3.2 ± 0.2 3.7 ± 0.2 3.1 ± 0.2
All 2.8 ± 0.2 2.4 ± 0.2 3.9 ± 0.2 2.7 ± 0.2 4.7 ± 0.3 3.4 ± 0.2 3.2 ± 0.2 2.2 ± 0.2 3.0 ± 0.2 2.3 ± 0.2

Extrapolation

1

12.1 ± 1.1

8.0 ± 0.3 8.0 ± 0.3 9.5 ± 0.3 9.4 ± 0.3 10.3 ± 0.3 10.4 ± 0.3 7.5 ± 0.3 7.5 ± 0.3 7.9 ± 0.3 7.9 ± 0.3
1,2 6.9 ± 0.3 6.1 ± 0.3 8.4 ± 0.3 7.3 ± 0.3 9.4 ± 0.3 8.2 ± 0.3 6.8 ± 0.3 6.0 ± 0.2 7.0 ± 0.3 6.2 ± 0.3
1,3 7.1 ± 0.3 5.8 ± 0.3 8.5 ± 0.3 7.6 ± 0.3 9.4 ± 0.3 8.5 ± 0.3 6.7 ± 0.2 6.0 ± 0.2 7.0 ± 0.3 6.2 ± 0.3
1,4 7.2 ± 0.3 6.0 ± 0.3 8.5 ± 0.3 7.5 ± 0.3 9.3 ± 0.3 8.5 ± 0.3 6.8 ± 0.2 6.0 ± 0.2 7.0 ± 0.3 6.1 ± 0.3
1,5 6.9 ± 0.3 5.8 ± 0.3 8.5 ± 0.3 7.4 ± 0.3 9.2 ± 0.3 8.3 ± 0.3 6.8 ± 0.3 6.0 ± 0.2 7.0 ± 0.3 6.1 ± 0.3
All 6.0 ± 0.3 4.3 ± 0.3 7.4 ± 0.3 5.6 ± 0.3 8.3 ± 0.3 6.4 ± 0.3 6.1 ± 0.2 4.6 ± 0.2 6.1 ± 0.3 4.5 ± 0.3

Table 7
Comparison between the best PM, DDM, and HM in predicting the different parameters of NSP1 according
to Table 6. Table reports the errors measured with the MAE, MAPE, and PPMCC (see Section 3.1) in the
interpolation and extrapolation scenarios with best FS according to Table 6 for the different parameters of
NSP1 (see Table 4). Note that for the PM the best FS is not indicated since it always use just a subset of
the FS1 (see Section 3.2).

FS* 𝑓c RNLc

MAE

Int.
PM – 202.0 ± 21.5 4.6 ± 0.3
DDM All 57.2 ± 4.1 1.0 ± 0.1
HM All 48.4 ± 3.8 0.8 ± 0.1

Ext.
PM – 206.2 ± 21.4 4.9 ± 0.4
DDM All 122.6 ± 5.5 2.1 ± 0.1
HM All 84.7 ± 5.4 1.5 ± 0.1

MAPE

Int.
PM – 9.9 ± 1.1 13.2 ± 1.0
DDM All 2.8 ± 0.2 2.9 ± 0.2
HM All 2.4 ± 0.2 2.4 ± 0.2

Ext.
PM – 10.1 ± 1.0 14.1 ± 1.1
DDM All 6.0 ± 0.3 5.9 ± 0.3
HM All 4.1 ± 0.3 4.4 ± 0.3

PPMCC

Int.
PM – 0.76 ± 0.01 0.52 ± 0.02
DDM All 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01

Ext.
PM – 0.76 ± 0.01 0.39 ± 0.12
DDM All 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01

4.7. Interpolation vs. extrapolation

Tables 6–11 also allows us to understand the behaviour of the
different models in the interpolation and extrapolation scenarios. The

models here presented show promising results both in the interpola-

tion and extrapolation scenario. Indeed, the error in extrapolation are

doubled respect to the interpolation case, but being the latter really
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Table 8
Comparison between the best PM, DDM, and HM in predicting the different parameters of NSP2 according to Table 6. Table
reports the errors measured with the MAE, MAPE, and PPMCC (see Section 3.1) in the interpolation and extrapolation scenarios
with best FS according to Table 6 for the different parameters of NSP2 (see Table 4). Note that for the PM the best FS is not
indicated since it always uses just a subset of the FS1 and that the PM is only able to predict a subset of the parameters of
NSP2 (see Section 3.2).

FS 𝑓c RNLc RNLb 𝑓bp1 𝑓bp2 RNLbp1 RNLbp2

MAE

Int.
PM – 202.0 ± 21.5 4.6 ± 0.3 14.3 ± 1.5 – – – –
DDM All 58.7 ± 4.3 1.0 ± 0.1 1.6 ± 0.1 39.3 ± 2.4 2757.9 ± 182.1 1.4 ± 0.1 2.4 ± 0.1
HM All 48.9 ± 3.9 0.8 ± 0.1 1.0 ± 0.1 27.6 ± 2.0 2067.0 ± 146.6 0.9 ± 0.1 1.5 ± 0.1

Ext.
PM – 206.2 ± 21.4 4.9 ± 0.4 14.3 ± 1.5 – – – –
DDM All 128.3 ± 5.9 2.0 ± 0.1 2.9 ± 0.1 73.1 ± 2.7 5588.0 ± 208.8 2.6 ± 0.1 4.3 ± 0.1
HM All 86.6 ± 5.6 1.5 ± 0.1 2.3 ± 0.1 55.6 ± 2.8 4339.5 ± 209.8 1.9 ± 0.1 3.3 ± 0.1

MAPE

Int.
PM – 9.9 ± 1.1 13.2 ± 1.0 38.5 ± 4.0 – – – –
DDM All 2.9 ± 0.2 2.8 ± 0.2 4.3 ± 0.3 4.2 ± 0.3 3.9 ± 0.3 4.4 ± 0.3 4.4 ± 0.3
HM All 2.4 ± 0.2 2.3 ± 0.2 2.7 ± 0.2 3.0 ± 0.2 3.0 ± 0.2 2.9 ± 0.2 2.8 ± 0.2

Ext.
PM – 10.1 ± 1.0 14.1 ± 1.1 38.5 ± 4.0 – – – –
DDM All 6.3 ± 0.3 5.8 ± 0.3 7.8 ± 0.3 7.9 ± 0.3 8.0 ± 0.3 8.1 ± 0.3 8.0 ± 0.3
HM All 4.2 ± 0.3 4.4 ± 0.3 6.2 ± 0.3 6.0 ± 0.3 6.2 ± 0.3 6.0 ± 0.3 6.0 ± 0.3

PPMCC

Int.
PM – 0.76 ± 0.02 0.52 ± 0.02 0.12 ± 0.02 – – – –
DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01

Ext.
PM – 0.76 ± 0.01 0.39 ± 0.06 0.12 ± 0.05 – – – –
DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01

Table 9
Comparison between the best PM, DDM, and HM in predicting the different parameters of NSP3 according to Table 6. Table
reports the errors measured with the MAE, MAPE, and PPMCC (see Section 3.1) in the interpolation and extrapolation scenarios
with best FS according to Table 6 for the different parameters of NSP3 (see Table 4). Note that for the PM the best FS is not
indicated since it always uses just a subset of the FS1 and that the PM is only able to predict a subset of the parameters of
NSP2 (see Section 3.2).

FS 𝑓c RNLc RNLb 𝛼 𝛽 𝛾

MAE

Int.
PM – 202.0 ± 21.5 4.6 ± 0.3 14.3 ± 1.5 – – –
DDM All 60.3 ± 4.6 1.0 ± 0.1 1.6 ± 0.1 2.4 ± 0.1 3.0 ± 0.1 0.5 ± 0.0
HM All 49.2 ± 3.4 0.8 ± 0.1 1.1 ± 0.1 1.7 ± 0.1 2.0 ± 0.1 0.3 ± 0.0

Ext.
PM – 206.2 ± 21.4 4.9 ± 0.4 14.3 ± 1.5 – – –
DDM All 127.2 ± 6.0 2.1 ± 0.1 3.0 ± 0.1 3.9 ± 0.1 4.7 ± 0.1 0.8 ± 0.0
HM All 90.3 ± 5.2 1.5 ± 0.1 2.2 ± 0.1 3.1 ± 0.1 3.8 ± 0.1 0.6 ± 0.0

MAPE

Int.
PM – 9.9 ± 1.1 13.2 ± 1.0 38.5 ± 4.0 – – –
DDM All 3.0 ± 0.2 2.8 ± 0.2 4.2 ± 0.3 5.9 ± 0.3 6.2 ± 0.3 6.1 ± 0.3
HM All 2.4 ± 0.2 2.4 ± 0.2 2.9 ± 0.2 4.2 ± 0.3 4.3 ± 0.3 4.0 ± 0.3

Ext.
PM – 10.1 ± 1.0 14.1 ± 1.1 38.5 ± 4.0 – – –
DDM All 6.2 ± 0.3 6.1 ± 0.3 8.2 ± 0.3 9.9 ± 0.3 9.9 ± 0.3 9.8 ± 0.3
HM All 4.4 ± 0.3 4.2 ± 0.3 5.9 ± 0.3 7.7 ± 0.3 8.1 ± 0.3 8.0 ± 0.3

PPMCC

Int.
PM – 0.76 ± 0.03 0.52 ± 0.01 0.12 ± 0.07 – – –
DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01

Ext.
PM – 0.76 ± 0.05 0.39 ± 0.01 0.12 ± 0.14 – – –
DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01

small, also the performances in extrapolation are widely acceptable. In
extrapolation, the MAPE for the DDMs and the HMs is lower than 10%.

5. Conclusions

In this paper, an approach to estimate propeller cavitation noise
spectrum by means of numerical models has been presented. In order
to verify a propeller to be compliant with noise requirements only
considering the information available at the design stage, the proposed
models have been developed exploiting a dataset collected through
model scale measurements in a cavitation tunnel, combined with the
detailed flow characterisation obtained by Boundary Element Method
calculations. As a result, different feature sets have been considered
with different levels of complexity, ranging from simple propeller
design parameters to quantities describing the flow on propeller blades
in details, together with different target sets, in order to assess the
model performance on different representations of cavitation noise.
Three main strategies were considered in order to create a predictive

model able to define a relationship between each combination of the
input sets with the output sets. Physical models, relying on equations
describing the cavitation phenomenon. Pure data-driven models, built
on experimental data, exploiting the most advanced deep learning
based tools since domain of the resulting feature is characterised by a
relatively high cardinality, if compared with the sample size, and then
conventional data driven models were proven to be inadequate. Finally,
hybrid models, exploiting both the physical knowledge of the problem
and the experimental data.

Results obtained with the different modelling strategies in two dif-
ferent scenarios have been compared, allowing formulating interesting
conclusions:

• the performance of the proposed approach in the tested scenarios
are remarkable, confirming the effectiveness of the proposed
methods;

• only exploiting deep learning bases methodologies it is possible
to exploit the rich information enclosed in the more complex
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Table 10
Comparison between the best PM, DDM, and HM in predicting the different parameters of NSP4 according to Table 6. Table reports the errors measured with the MAE, MAPE,
and PPMCC (see Section 3.1) in the interpolation and extrapolation scenarios with best FS according to Table 6 for the different parameters of NSP4 (see Table 4). Note that for
the PM the best FS is not indicated since it always uses just a subset of the FS1 and that the PM is only able to predict a subset of the parameters of NSP4 (see Section 3.2).

FS SLOTO(1) SLOTO(2) SLOTO(3) SLOTO(4) SLOTO(5) SLOTO(6) SLOTO(7) SLOTO(8) SLOTO(9) SLOTO(10) SLOTO(11) SLOTO(12)

MAE
Int. DDM All 1.7 ± 0.1 1.2 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.2 ± 0.1 1.2 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 1.2 ± 0.1 1.2 ± 0.1 1.0 ± 0.1 1.0 ± 0.1

HM All 1.1 ± 0.1 0.8 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 0.6 ± 0.1 0.7 ± 0.1

Ext. DDM All 3.3 ± 0.1 2.4 ± 0.1 2.8 ± 0.1 2.6 ± 0.1 2.6 ± 0.1 2.7 ± 0.1 2.6 ± 0.1 2.2 ± 0.1 2.1 ± 0.1 2.2 ± 0.1 1.9 ± 0.1 1.8 ± 0.1
HM All 2.4 ± 0.1 1.7 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 1.8 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.7 ± 0.1 1.4 ± 0.1 1.4 ± 0.1

MAPE
Int. DDM All 4.1 ± 0.3 4.2 ± 0.3 4.3 ± 0.3 4.4 ± 0.2 4.0 ± 0.3 3.8 ± 0.2 4.3 ± 0.3 4.4 ± 0.3 4.5 ± 0.3 4.3 ± 0.3 4.4 ± 0.3 4.3 ± 0.3

HM All 2.8 ± 0.2 2.9 ± 0.2 2.9 ± 0.2 3.0 ± 0.2 2.8 ± 0.2 3.1 ± 0.2 3.0 ± 0.2 2.8 ± 0.2 3.0 ± 0.2 3.2 ± 0.2 2.7 ± 0.2 3.3 ± 0.2

Ext. DDM All 8.0 ± 0.3 8.3 ± 0.3 7.8 ± 0.3 7.6 ± 0.3 8.4 ± 0.3 8.5 ± 0.3 8.0 ± 0.3 7.9 ± 0.3 8.0 ± 0.3 8.1 ± 0.3 8.1 ± 0.3 8.1 ± 0.3
HM All 5.8 ± 0.3 5.9 ± 0.3 5.8 ± 0.3 6.2 ± 0.3 5.9 ± 0.3 6.2 ± 0.3 6.2 ± 0.3 5.8 ± 0.3 6.2 ± 0.3 6.1 ± 0.3 6.2 ± 0.3 6.1 ± 0.3

PPMCC
Int. DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

Ext. DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

FS SLOTO(13) SLOTO(14) SLOTO(15) SLOTO(16) SLOTO(17) SLOTO(18) SLOTO(19) SLOTO(20) SLOTO(21) SLOTO(22) SLOTO(23) SLOTO(24)

MAE

Int.
PM – – – 14.0 ± 1.1 14.8 ± 0.9 14.1 ± 1.1 13.8 ± 1.3 14.7 ± 1.3 14.1 ± 1.4 15.0 ± 1.2 14.2 ± 1.5 14.6 ± 1.5 14.9 ± 1.5

DDM All 1.1 ± 0.1 0.9 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 1.6 ± 0.1 1.7 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.5 ± 0.1 1.3 ± 0.1 1.4 ± 0.1 1.7 ± 0.1
HM All 0.7 ± 0.1 0.7 ± 0.0 0.7 ± 0.1 0.9 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 1.0 ± 0.1

Ext.
PM – – – 14.0 ± 1.1 14.8 ± 0.9 14.1 ± 1.1 13.8 ± 1.3 14.7 ± 1.3 14.1 ± 1.4 15.0 ± 1.2 14.2 ± 1.5 14.6 ± 1.5 14.9 ± 1.5
DDM All 2.0 ± 0.1 1.8 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 3.0 ± 0.1 3.2 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 3.0 ± 0.1 2.5 ± 0.1 2.7 ± 0.1 2.8 ± 0.1
HM All 1.5 ± 0.1 1.3 ± 0.1 1.6 ± 0.1 1.7 ± 0.1 2.3 ± 0.1 2.4 ± 0.1 1.9 ± 0.1 1.9 ± 0.1 2.3 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1

MAPE

Int.
PM – – – 56.7 ± 4.3 51.5 ± 3.2 37.7 ± 3.0 36.0 ± 3.4 46.8 ± 4.3 45.3 ± 4.5 41.4 ± 3.3 45.6 ± 4.7 44.5 ± 4.6 41.9 ± 4.4
DDM All 4.2 ± 0.2 4.1 ± 0.3 4.3 ± 0.3 4.3 ± 0.3 4.2 ± 0.3 4.3 ± 0.2 4.3 ± 0.2 4.3 ± 0.3 4.1 ± 0.2 4.3 ± 0.3 4.3 ± 0.3 4.7 ± 0.3
HM All 2.9 ± 0.2 3.1 ± 0.2 2.8 ± 0.2 3.1 ± 0.2 2.9 ± 0.2 2.8 ± 0.2 2.8 ± 0.2 3.0 ± 0.2 2.9 ± 0.2 2.7 ± 0.2 3.0 ± 0.2 2.8 ± 0.2

Ext.
PM – – – 56.7 ± 4.3 51.5 ± 3.2 37.7 ± 3.0 36.0 ± 3.4 46.8 ± 4.3 45.3 ± 4.5 41.4 ± 3.3 45.6 ± 4.7 44.5 ± 4.6 41.9 ± 4.4
DDM All 7.8 ± 0.3 8.0 ± 0.3 8.4 ± 0.3 8.1 ± 0.3 8.0 ± 0.3 8.3 ± 0.3 8.0 ± 0.3 8.1 ± 0.3 8.3 ± 0.3 8.0 ± 0.3 8.3 ± 0.3 8.0 ± 0.3
HM All 5.9 ± 0.3 6.0 ± 0.3 6.3 ± 0.3 6.0 ± 0.3 6.2 ± 0.3 6.4 ± 0.3 6.0 ± 0.3 6.1 ± 0.3 6.4 ± 0.3 6.4 ± 0.3 6.1 ± 0.3 5.7 ± 0.3

PPMCC

Int.
PM – – – 0.10 ± 0.13 0.07 ± 0.02 0.05 ± 0.14 0.05 ± 0.16 0.05 ± 0.24 0.12 ± 0.08 0.14 ± 0.13 0.16 ± 0.08 0.17 ± 0.03 0.17 ± 0.07
DDM All 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Ext.
PM – – – 0.10 ± 0.01 0.07 ± 0.06 0.05 ± 0.03 0.05 ± 0.19 0.05 ± 0.13 0.12 ± 0.02 0.14 ± 0.04 0.16 ± 0.04 0.17 ± 0.02 0.17 ± 0.12
DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

features, like the detailed flow characterisation obtainable by
calculations carried out with a Boundary Element Method;

• among the different target definitions considered, the best per-
formances are obtained with the one-third octave band spectra
(NSP4 and NSP5 in the paper), however differences in accuracies
are in general rather small;

• among the different feature sets considered, the best perfor-
mances are obtained when all the features are considered to-
gether, and the relative trends of the errors confirm the possibility
to improve the performance of the modelling approach by consid-
ering detailed flow quantities. The effects of the different feature
sets, even if not remarkable in terms of absolute values, are still
quite noticeable since the errors are, in some cases, improved
more than 50%;

• the errors of all the considered models are almost doubled when
passing from the interpolation to the extrapolation scenario. Nev-
ertheless, in practical application, they are still satisfactory;

• the effectiveness of the physical models in modelling the complex
behaviour of cavitation noise is limited, however, the physical
knowledge encapsulated in them allows improving the perfor-
mance of the pure data driven approach, confirming the suitabil-
ity of the hybrid approach for this kind of problems.

In summary, according to these results, the proposed approach is
definitely promising, however its potential needs to be further investi-
gated. In particular, the inclusion of detailed flow quantity, although
improving the performance of the method in a relative sense, has a
somewhat limited effect from a practical point of view. This fact may be
partially ascribed to the fact that also simpler modelisation approaches
allowed obtaining good results in the tested scenario. It must be noticed
that, despite the effort spent in building the dataset, it still accounts for

a rather limited number of propellers and configurations, preventing
the opportunity to verify the performance of the method on fully
unseen cases.

Future activities will be therefore dedicated to the enlargement of
the dataset and to the investigation of more realistic scenarios, as the
prediction of noise for a completely unseen propeller and configuration.
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Table 11
Comparison between the best PM, DDM, and HM in predicting the different parameters of NSP5 according to Table 6. Table reports the errors measured with the MAE, MAPE,
and PPMCC (see Section 3.1) in the interpolation and extrapolation scenarios with best FS according to Table 6 for the different parameters of NSP5 (see Table 4). Note that for
the PM the best FS is not indicated since it always uses just a subset of the FS1 and that the PM is only able to predict a subset of the parameters of NSP5 (see Section 3.2).

FS RNLOTO(1) RNLOTO(2) RNLOTO(3) RNLOTO(4) RNLOTO(5) RNLOTO(6) RNLOTO(7) RNLOTO(8) RNLOTO(9) RNLOTO(10) RNLOTO(11) RNLOTO(12)

MAE
Int. DDM All 1.2 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.8 ± 0.1

HM All 0.9 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.6 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.6 ± 0.0

Ext. DDM All 2.4 ± 0.1 2.0 ± 0.1 2.3 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 1.6 ± 0.1 1.9 ± 0.1 1.6 ± 0.1 1.7 ± 0.1
HM All 1.8 ± 0.1 1.4 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.2 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 1.2 ± 0.1

MAPE
Int. DDM All 3.6 ± 0.2 3.3 ± 0.2 3.4 ± 0.2 3.5 ± 0.2 3.6 ± 0.2 3.8 ± 0.2 3.6 ± 0.3 3.6 ± 0.2 3.4 ± 0.2 3.3 ± 0.2 3.4 ± 0.2 3.5 ± 0.2

HM All 2.6 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 2.7 ± 0.2 2.5 ± 0.2 2.4 ± 0.2 2.7 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 2.7 ± 0.2

Ext. DDM All 6.9 ± 0.3 6.9 ± 0.3 7.2 ± 0.3 7.0 ± 0.3 6.9 ± 0.3 7.4 ± 0.3 6.6 ± 0.3 7.0 ± 0.3 6.8 ± 0.3 7.0 ± 0.3 6.9 ± 0.3 7.3 ± 0.3
HM All 5.1 ± 0.3 4.9 ± 0.3 5.3 ± 0.3 5.4 ± 0.3 5.0 ± 0.3 4.9 ± 0.3 5.0 ± 0.3 5.1 ± 0.3 5.2 ± 0.3 5.1 ± 0.3 5.3 ± 0.3 5.3 ± 0.3

PPMCC
Int. DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01

HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

Ext. DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

FS RNLOTO(13) RNLOTO(14) RNLOTO(15) RNLOTO(16) RNLOTO(17) RNLOTO(18) RNLOTO(19) RNLOTO(20) RNLOTO(21) RNLOTO(22) RNLOTO(23) RNLOTO(24)

MAE

Int.
PM – – – 14.2 ± 1.1 14.1 ± 1.2 13.8 ± 1.3 14.1 ± 1.2 14.2 ± 1.3 14.1 ± 1.3 14.0 ± 1.3 14.1 ± 1.3 14.3 ± 1.4 14.3 ± 1.4

DDM All 0.8 ± 0.1 0.7 ± 0.0 0.8 ± 0.1 1.0 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 1.2 ± 0.1
HM All 0.6 ± 0.0 0.5 ± 0.0 0.6 ± 0.0 0.6 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 0.9 ± 0.1

Ext.
PM – – – 14.2 ± 1.1 14.1 ± 1.2 13.8 ± 1.3 14.1 ± 1.2 14.2 ± 1.3 14.1 ± 1.3 14.0 ± 1.3 14.1 ± 1.3 14.3 ± 1.4 14.3 ± 1.4
DDM All 1.8 ± 0.1 1.4 ± 0.1 1.6 ± 0.1 2.0 ± 0.1 2.5 ± 0.1 2.2 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 2.3 ± 0.1 2.3 ± 0.1 2.5 ± 0.1 2.4 ± 0.1
HM All 1.3 ± 0.1 1.0 ± 0.1 1.2 ± 0.1 1.5 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.7 ± 0.1 1.8 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 1.8 ± 0.1 1.8 ± 0.1

MAPE

Int.
PM – – – 62.4 ± 4.8 50.7 ± 4.3 39.4 ± 3.6 40.6 ± 3.6 42.7 ± 3.8 43.3 ± 4.0 42.7 ± 4.1 41.6 ± 3.9 40.4 ± 3.9 41.2 ± 4.1
DDM All 3.2 ± 0.2 3.4 ± 0.2 3.6 ± 0.2 3.6 ± 0.2 3.4 ± 0.2 3.3 ± 0.2 3.6 ± 0.3 3.5 ± 0.3 3.6 ± 0.2 3.3 ± 0.2 3.4 ± 0.2 3.4 ± 0.2
HM All 2.4 ± 0.2 2.5 ± 0.2 2.7 ± 0.2 2.3 ± 0.2 2.8 ± 0.2 2.8 ± 0.2 2.4 ± 0.2 2.5 ± 0.2 2.6 ± 0.2 3.0 ± 0.2 2.5 ± 0.2 2.7 ± 0.2

Ext.
PM – – – 62.4 ± 4.8 50.7 ± 4.3 39.4 ± 3.6 40.6 ± 3.6 42.7 ± 3.8 43.3 ± 4.0 42.7 ± 4.1 41.6 ± 3.9 40.4 ± 3.9 41.2 ± 4.1
DDM All 6.8 ± 0.3 6.7 ± 0.3 6.8 ± 0.3 7.2 ± 0.3 7.0 ± 0.3 6.4 ± 0.3 7.1 ± 0.3 6.8 ± 0.3 6.9 ± 0.3 6.8 ± 0.3 7.0 ± 0.3 6.9 ± 0.3
HM All 5.1 ± 0.3 5.0 ± 0.3 5.3 ± 0.3 5.3 ± 0.3 5.2 ± 0.3 5.2 ± 0.3 5.0 ± 0.3 5.6 ± 0.3 5.0 ± 0.3 4.9 ± 0.3 5.1 ± 0.3 5.1 ± 0.3

PPMCC

Int.
PM – – – 0.14 ± 0.02 0.15 ± 0.04 0.08 ± 0.07 0.10 ± 0.12 0.08 ± 0.07 0.09 ± 0.11 0.11 ± 0.02 0.10 ± 0.22 0.11 ± 0.04 0.13 ± 0.08
DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Ext.
PM – – – 0.14 ± 0.01 0.15 ± 0.01 0.08 ± 0.04 0.10 ± 0.01 0.08 ± 0.02 0.09 ± 0.11 0.11 ± 0.02 0.10 ± 0.02 0.11 ± 0.07 0.13 ± 0.07
DDM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
HM All 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
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