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Abstract

Early stopping is a well known approach
to reduce the time complexity for perform-
ing training and model selection of large
scale learning machines. On the other hand,
memory/space (rather than time) complex-
ity is the main constraint in many appli-
cations, and randomized subsampling tech-
niques have been proposed to tackle this is-
sue. In this paper we ask whether early stop-
ping and subsampling ideas can be combined
in a fruitful way. We consider the question
in a least squares regression setting and pro-
pose a form of randomized iterative regular-
ization based on early stopping and subsam-
pling. In this context, we analyze the statisti-
cal and computational properties of the pro-
posed method. Theoretical results are com-
plemented and validated by a thorough ex-
perimental analysis.

1 INTRODUCTION

Availability of large scale datasets requires the devel-
opment of ever more efficient machine learning proce-
dures. A key feature towards scalability is being able
to tailor computational requirements to the general-
ization properties/statistical accuracy allowed by the
data. In other words, the precision with which com-
putations need to be performed should be determined
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not only by the the amount, but also by the quality of
the available data.

Early stopping, known as iterative regularization in
inverse problem theory (Engl et al., 1996; Zhang and
Yu, 2005; Bauer et al., 2007; Yao et al., 2007; Capon-
netto and Yao, 2010), provides a simple and sound
implementation of this intuition. An empirical objec-
tive function is optimized in an iterative way with no
explicit constraint or penalization and regularization is
achieved by suitably stopping the iteration. Too many
iterations might lead to overfitting, while stopping too
early might result in oversmoothing (Zhang and Yu,
2005; Bauer et al., 2007; Yao et al., 2007; Caponnetto
and Yao, 2010). Then, the best stopping rule arises
from a form of bias-variance trade-off (Hastie et al.,
2001). Towards the discussion in the paper, the key
observation is that the number of iterations controls at
the same time the computational complexity as well as
the statistical properties of the obtained learning algo-
rithm (Yao et al., 2007). Training and model selection
can hence be performed with often considerable gain
in time complexity.

Despite these nice properties, early stopping proce-
dures often share the same space complexity require-
ments, hence bottle necks, of other methods, such as
those based on variational regularization a la Tikhonov
(see Tikhonov, 1963; Hoerl and Kennard, 1970). A
natural way to tackle these issues is to consider ran-
domized subsampling/sketching approaches. Roughly
speaking, these methods achieve memory and time
savings by reducing the size of the problem in a
stochastic way (Smola and Schélkopf, 2000; Williams
and Seeger, 2000). Subsampling methods are typically
used successfully together with penalized regulariza-
tion. In particular, they are popular in the context
of kernel methods, where they are often referred to
as Nystrom approaches and provide one of the main
methods towards large scale extensions (Zhang et al.,
2008; Kumar et al., 2009; Li et al., 2010; Dai et al.,
2014; Huang et al., 2014; Si et al., 2014; Rudi et al.,
2015).
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In this paper, we ask whether early stopping and sub-
sampling methods can be fruitfully combined. With
the context of kernel methods in mind, we propose
and study NYTRO (NYstrom iTerative Regulariza-
tiOn), a simple algorithm combining these two ideas.
After recalling the properties and advantages of dif-
ferent regularization approaches in Section 2, in Sec-
tion 3 we present in detail NYTRO and our main re-
sult, the characterization of its generalization prop-
erties. In particular, we analyze the conditions un-
der which it attains the same statistical properties of
subsampling and early stopping. Indeed, our study
shows that while both techniques share similar, opti-
mal, statistical properties, they are computationally
advantageous in different regimes and NYTRO out-
performs early stopping in the appropriate regime, as
discussed in Section 3.3. The theoretical results are
validated empirically in Section 4, where NYTRO is
shown to provide competitive results even at a fraction
of the computational time, on a variety of benchmark
datasets.

2 Learning and Regularization

In this section we introduce the problem of learning
in the fixed design setting and discuss different regu-
larized learning approaches, comparing their statistical
and computational properties. This section is a survey
that might be interesting in its own right, and reviews
several results providing the context for the study in
the paper.

2.1 The Learning Problem

We introduce the learning setting we consider in the
paper. Let X = R? be the input space and J) C R the
output space. Consider a fized design setting (Bach,
2013) where the input points z1, ..., z, € X are fixed,
while the outputs y1,...,y, € Y are given by
yZ:f*(SIJZ)—f—G“ VZG{I,,'H}
where f, : X — ) is a fixed function and €1, ..., €, are
random variables. The latter can be seen seen as noise
and are assumed to be independently and identically
distributed according to a probability distribution p
with zero mean and variance o2. In this context, the
goal is to minimize the expected risk, that is

n

1

min £(f), E(f) =B > (fle) —w)*, VfEH,
(1)

i=1
where H is a space of functions, called hypothesis
space. In real applications, p and f, are unknown
and accessible only by means of a single realization

(1,y1),- .-, (Tn, yn) called training set and an approx-
imate solution needs to be found. The quality of a
solution f is measured by the excess risk, defined as

R(f) = £(f) — inf £(v),

Inf VfeH.

We next discuss estimation schemes to find a solution
and compare their computational and statistical prop-
erties.

2.2 From (Kernel) Ordinary Least Square to
Tikhonov Regularization

A classical approach to derive an empirical solution to
Problem (1) is the so called empirical risk minimiza-
tion

n

fors = argmin L > (fl@i) —wi)* 2)

fer N3

In this paper, we are interested in the case where H is
the reproducing kernel Hilbert space

H = span{k(z,) | z € X},

induced by a positive definite kernel &k : X x X — R
(see Scholkopf and Smola, 2002). In this case Prob-
lem (8) corresponds to the Kernel Ordinary Least
Squares (KOLS) and has the closed form solution

fols(m) = Zaols,ik(xyxi)a Qols = KT% (3)
=1

for all x € X, where (K) denotes the pseudo-inverse
of the € R"*" empirical kernel matrix K;; = k(z;, x;)
and y = (y1,...,Yn). The cost for computing the co-
efficients as is O(n?) in memory and O(n3 4 ¢(X)n?)
in time, where ¢(X)n? is the cost for computing K
and n? the cost for obtaining its pseudo-inverse. Here
q(X) is the cost of evaluating the kernel function. In
the following, we are concerned with the dependence
on n and hence view ¢(X) as a constant.

The statistical properties of KOLS, and related meth-
ods, can be characterized by suitable notions of di-
mension that we recall next. The simplest is the full
dimension, that is

d* =rank K

which measures the degrees of freedom of the kernel
matrix. This latter quantity might not be stable when
K is ill-conditioned. A more robust notion is provided

by the effective dimension
dep(A) = Tr(K (K + AnI)™h), A >0.

Indeed, the above quantity can be shown to be related
to the eigenvalue decay of K (Bach, 2013; Alaoui and
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Mahoney, 2014; Rudi et al., 2015) and can consider-
ably smaller than d*, as discussed in the following.
Finally, consider

d(\) = nmax(K (K + M)V, A>0.  (4)
It is easy to see that the following inequalities hold,

deg(N) < d(N) <1/, deg(N) < d* <n, VA > 0.

Aside from the above notion of dimensionality, the sta-
tistical accuracy of empirical least squares solutions
depends on a natural form of signal to noise ratio de-
fined next. Note that the function that minimizes the
excess risk in H is given by

n

fopt = Zaopmk(x,xi), Vee X (5)
i=1

Qopt = KTy, with p = Ey. (6)

Then, the signal to noise ratio is defined as

| fopt I3
SNR = % (7)
Provided with the above definitions, we can recall a
first basic result characterizing the statistical accuracy
of KOLS.

Theorem 1. Under the assumptions of Section 2.1,
the following inequality holds,
o?d*

ER(fois) = o

The above result shows that the excess risk of KOLS
can be bounded in terms of the full dimension, the
noise level and the number of points. However, in
general empirical risk minimization does not yield the
best results and regularization is needed. We next re-
call this fact, considering first Tikhonov regularization,
that is the Kernel Regularized Least Squares (KRLS)
algorithm given by,
n

fr = argmin = 3 (F(z:) = ) + A fI3 (8)

n
fer o

The above algorithm is a penalized empirical risk mini-
mization problem. The representer theorem (Scholkopf
and Smola, 2002) shows that Problem (8) can be re-
stricted to

My = {Z aik(,x;) | a1,...,an € R} 9)
i=1

Indeed, a direct computation shows that the solution
of Problem (8) is

f)\(l') = Zo’o\ik(x,xi% ay = (K + )\nI)_ly7 (10)
=1

for all x € X. The intuition that regularization can
be beneficial is made precise by the following result
comparing KOLS and KRLS.

Theorem 2. Let \* = ﬁ, the following inequalities
hold,

old*
< = ER(fols)-

n n

ER(fy.) < 20

We add a few comments. First, as announced, the
above result quantifies the benefits of regularization.
Indeed, it shows that there exists a A* for which the
expected excess risk of KRLS is smaller than the one
of KOLS. As discussed in Table 1 of Bach (2013), if
d* = n and the kernel is sufficiently “rich”, namely
universal (Micchelli et al., 2006), then deg can be less
than a fractional power of d*, so that deg < d* and

ER(fr+) < ER(fos)-

Second, note that the choice of the regularization pa-
rameter depends on a form of signal to noise ratio,
which is usually unknown. In practice, a regulariza-
tion path is computed and then a model selected or
found by aggregation (Hastie et al., 2001). Let A C R
be the discrete set of regularization parameter guesses.
Assuming the selection/aggregation step to have negli-
gible computational cost, the complexity of performing
training and model selection is then O(n?) in memory
and O (n®[A]) in time. These latter requirements can
become prohibitive when n is large and the question is
whether the same statistical accuracy of KRLS can be
achieved while reducing time/memory requirements.

2.3 Early Stopping and Nystrom methods

In this section, we first recall how early stopping reg-
ularization allows to achieve the same statistical ac-
curacy of KRLS with potential saving in time com-
plexity. Then, we recall how subsampling ideas can be
used in the framework of Tikhonov regularization to
reduce the space complexity with no loss of statistical
accuracy.

Iterative regularization by early stopping. The
idea is to consider the gradient descent minimization

of Problem 3 for a fixed number of steps ¢t. The corre-
sponding algorithm is then

filz) = dek‘(xi,x), (11)
i=1
L. Y,
Qr = Q-1 — E(K()Zt_l — y), (12)
where v < 1/||K]| and &y = 0. Note that, in the

above algorithm, regularization is not achieved by ex-
plicit penalization or imposing constraints, and the
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only tuning parameter is the number of steps. Indeed,
as shown next, the latter controls at the same time the
computational complexity and statistical accuracy of
the algorithm. The following theorem compares the
expected excess error of early stopping with that of
KRLS.

Theorem 3. When v < 1/|K|| and t > 2 the follow-
ing holds

ER (f'y,t) <« ER (f%) )

2
with e =4 (14 7)< 20.
The above theorem follows as a corollary of our main
result given in Theorem 5 and recovers results es-
sentially given in Raskutti et al. (2014). Combin-
ing the above result with Theorem 2, and setting

=1 = %, we have that
YA vy

ER (o) ~ER (fi) <ER(fo).

The statistical accuracy of early stopping is essentially
the same as KRLS and can be vastly better than a
naive ERM approach. Note that the cost of comput-
ing the best possible solution with early stopping is
O(n?t*) = O(n?SNR). Thus the computational time
of early stopping is proportional to the signal to noise
ratio, hence could be much better than KRLS for noisy
problems, that is when SNR is small. The main bot-
tle neck of early stopping regularization is that it has
the same space requirements of KRLS. Subsampling
approaches have been proposed to tackle this issue.

Subsampling and regularization. Recall that the
solution of the standard KRLS problem belongs to H,,.
A basic idea (see Smola and Schélkopf, 2000) is to
consider Nystrom KRLS (NKRLS), restricting Prob-
lem (8) to a subspace H,, C H,, defined as

Hm = {Zcik('a‘%iﬂch R R} (13)
i=1

Here, M = {Z1,..., %} is a subset of the training set
and m < n. It is easy to see that the corresponding
solution is given by

m
fm)\(x) = Z(&m)\)ik(x’i‘i)a (14)

i=1
Gmx = (K, Kpm + MK Ky, (15)
for all x € X, where ()T is the pseudoinverse, A > 0,
Knm S R™*™ with (Knm)m = k((l?l,(fj) and Kmm €
R™™ with (Kymm)i; = k(Zi,&;). A more efficient
formulation can also be derived. Indeed, we rewrite

Problem (8), restricted to H,, as

Gm.x = argmin||Kpma — y||?> + Xa’ Kypma  (16)
aER™

= Rargmin| K., RS — y[I” + A|8]%,  (17)
BERP

where in the last step we performed the change of vari-
able « = RS where R € R™*P is a matrix such that
RRT = K}, and p is the rank of K,,,,. Then, we

can obtain the following closed form expression,
Gmar = R(ATA+ )" 1ATy, (18)

with A = K,,,, R (see Prop. 2 in Section A of the ap-
pendix for a complete proof). This last formulation
is convenient because it is possible to compute R by
R = ST~ ! where K,,,, = SD is the economic QR
decomposition of K,,,,, with S € R™*P gsuch that
STS = I, D € RP*™ an upper triangular matrix
and T € RP*P an invertible triangular matrix that
is the Cholesky decomposition of ST K,,,,S. Assum-
ing p &~ m, the complexity of Nystrom KRLS is then
O(nm) in space and O(nm? + m3[A|) in time. The
following known result establishes the statistical accu-
racy of the solution thus obtained suitably choosing
the points in M.

Theorem 4 (Theorem 1 of Bach (2013)). Let m <
n and M = {&1,...,Tn} be a subset of the training
set uniformly chosen at random. Let f,, » be as in
Equation (14) and fy as in Equation (10) for any X >
0. Let 6 € (0,1), when

m > (32(1()\) +2> log 1<

4] OA

with d(\) = nsup; <<, (K(K 4+ Anl)™Y);, then the
following holds

EvER (fm,x) < (1+45)ER (f»).

The above result shows that the space/time complex-
ity of NKRLS can be adaptive to the statistical prop-
erties of the data while preserving the same statistical
accuracy of KRLS. Indeed, using Theorem 2, we have
that

E\ER (fma ) #ER (fr) <ER(fus).

requiring  O(nd(\*) log %) in memory  and
O(nd(X*)?(log +)?) in time.  Thus, NKRLS is
more efficient with respect to KRLS when d(\*) is
smaller than ﬁ, that is when the problem is mildly

complex.

Given the above discussion it is natural to ask whether
subsampling and early stopping ideas can be fruitfully
combined. Providing a positive answer to this question
is the main contribution of this paper that we discuss
next.
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3 Proposed algorithm and main
results

We begin by describing the proposed algorithm incor-
porating the Nystrom approach described above in it-
erative regularization by early stopping. The intuition
is that the algorithm thus obtained could have memory
and time complexity adapted to the statistical accu-
racy allowed by the data, while automatically comput-
ing the whole regularization path. Indeed, this intu-
ition is then confirmed through a statistical analysis
of the corresponding excess risk. Our results indicate
in which regimes KRLS, NKRLS, Early Stopping and
NYTRO are preferable.

3.1 The Algorithm

NYTRO is obtained considering a finite number of it-
erations of the gradient descent minimization of the
empirical risk in Problem (2) over the space in Equa-
tion (13). The algorithm thus obtained is given by,

fm,'y,t(x) = Z(dm,t)ik('jivx)a (19)

Byt = Pt = LR (KT (Ko = ).
(20)
Oyt = RBmt, (21)
for all x € X, where v = 1/(sup;<;<, k(z;,z;)) and
Bm,0 = 0. Considering that the cost of computing R is

O(m3), the total cost for the above algorithm is O(nm)
in memory and O(nmt +m?) in time.

In the previous section, we have seen that NKRLS
has an accuracy comparable to the one of the stan-
dard KRLS under a suitable choice of m. We next
show that, under the same conditions, the accuracy
of NYTRO is comparable with the one of KRLS and
NKRLS, for suitable choices of ¢ and m.

3.2 Error Analysis

We next establish excess risk bounds for NYTRO
by providing a direct comparison with NKRLS and
KRLS.

Theorem 5 (NYTRO and NKRLS). Let m < n
and M be a subset of the training set. Let fm,%t be
the NYTRO solution as in Equation (19), fm$ the
NKRLS solution as in Equation (14). Whent > 2 and
v < [|[KnmR||? (for example v = 1/ max; k(z;, z;)) the
following holds

ER (fm,’y,t) <c ER (szﬁ) )

2
with ¢, =4 (1+ 7)< 16.

Note that the above result holds for any m < n and
any selection strategy of the Nystrom subset M. The
proof of Theorem 5 is different from the one of Theo-
rem 4 and is based only on geometric properties of the
estimator and tools from spectral theory and inverse
problems (see Engl et al., 1996). In the next corol-
lary we compare NYTRO and KRLS, by combining
Theorem 5 and 4, hence considering M to be chosen
uniformly at random from the training set.
Corollary 1. Lett > 2, v=1/||K]||, § € (0,1) and m
be chosen as

s <3265(1/§7t)) +2) log 2D,

Let f1 be the KRLS solution as in Equation 10 and
vt
fm~,t be the NYTRO solution. When the subset M is

chosen uniformly at random from the training set, the
following holds
EAER (fne) < o ER (1))

%
2
where ¢y 5 =4 (1 + ﬁ) (1+40) < 80.

The above result shows that NYTRO can achieve es-
sentially the same results as KRLS. In the next sec-
tion we compare NYTRO to the other regularization
algorithms introduced so far, by discussing how their
computational complexity adapts to the statistical ac-
curacy in the data. In particular, by parametrizing the
learning problems with respect to their dimension and
their signal-to-noise ratio, we characterize the regions
of the problem space where one algorithm is more ef-
ficient than the others.

3.3 Discussion

In Section 2 we have compared the expected excess risk
of different regularization algorithms. More precisely,
we have seen that there exists a suitable choice of A,
that is \* = ﬁ, where SNR is the signal-to-noise
ratio associated to the learning problem, such that the
expected risk of KRLS is smaller than the one of KOLS
and, indeed, potentially much smaller. For this reason,
in the other result, statistical accuracy of the other
methods was directly compared to that of KRLS with
A=A

We exploit these results to analyze the complexity of
the algorithms with respect to the statistical accuracy
allowed by the data. If we choose m ~ d(\*) log(n/\*)
and t = 7—;*, then combining Theorem 2 with Corol-
lary 1 and with Theorem 4, respectively, we see that
the expected excess risk of both NYTRO and NKRLS
is in the same order of the one of KRLS. Both al-
gorithms have a memory requirement of O(nm) (com-

pared to O(n?) for KRLS), but they differ in their time
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Figure 1: The graph represents the family of learning problems parametrized by the dimensionality d and the
signal to noise ratio SNR (see Equations 4, 7). The four regions represent the regimes where different some
algorithm are faster than the others. Purple: NYTRO is faster, Blue: Early Stopping is faster, Orange: KRLS

is faster, Yellow: NKRLS is faster — see Section 3.3.
requirements. For NYTRO we have O(n CZ()\)‘:) log %),
while for NKRLS it is O(nd(A\*)?(log +)?). Now note
that d(\*) by definition is bounded by

deg(A\) <d(A) < =, VA>0,

1
)\ )
thus, by comparing the two computational times, we
can identify two regimes

— NKRLS faster

deg(N*) < d(N*) < =
= NYTRO faster

X Tog &
1 7 1
e <dV) < &

To illustrate the regimes in which different algorithms
can be preferable from a computational point of view
while achieving the same error as KRLS with A* (see
Figure 1), it is useful to parametrize the family of
learning problems with respect to the signal to noise
ratio defined in Equation (7) and to the dimensionality
of the problem d := d(\*) defined in Equation (4). We
choose d as a measure of dimensionality with respect
to deg, because d directly affects the computational
properties of the analyzed algorithms. In Figure 1 the
parameter space describing the learning problems is
partitioned in regions given by the curve

n
1 (SNR) = 0 msNm) |

that separates the subsampling methods from the stan-
dard methods and

SNR
NR)= — >+
c2(SNR) [log(SNR)|’

that separates the iterative from Tikhonov methods.

Table 1: Specifications of the datasets used in time-
accuracy comparison experiments. ¢ is the bandwidth
of the Gaussian kernel.

Dataset n Ntest d o
Insurance Company 5822 4000 85

Adult 32562 16282 123 6.6

Ijenn 49990 91701 22 1

YearPrediction 463715 51630 90 1

CovertypeBinary 522910 58102 54 1

As illustrated in Figure 1, NYTRO is preferable when
SNR < 1, that is when the problem is quite noisy.
When SNR > 1, then NYTRO is faster when the di-
mensionality of the problem is sufficiently big. Note
that, in particular, the area of the NYTRO region
when SNR > 1 increases with n, and the curve c;
is quite flat, when n is very large. On the opposite
extremes we have early stopping and NKRLS. Indeed,
one is effective when the dimensionality is very big,
while the second when it is very small. There is a
peak around SNR ~ 1 for which it seems that the only
useful algorithm is NKRLS when the dimensionality is
sufficiently large. The only region where KRLS is more
effective is when SNR & 1 and the dimensionality is
close to n.

In the next section, the theoretical results are validated
by an experimental analysis on benchmark datasets.
We add one remark first.

Remark 1 (Empirical parameter choices and regu-
larization path). Note that an important aspect that
is not covered by Figure 1 is that iterative algorithms
have the further desirable property of computing the
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reqularization path. In fact, for KRLS and NKRLS
computations are slowed by a factor of |A|, where A
is the discrete set of cross-validated A guesses. This
last aspect is practically very relevant because the op-
timal regularization parameter values are not known
and need to be found via model selection/aggregation.

4 EXPERIMENTS

In this section we present an empirical evaluation of
the NYTRO algorithm®, showing regimes in which it
provides a significant model selection speedup with re-
spect to NKRLS and the other exact kernelized learn-
ing algorithms mentioned above (KOLS, KRLS and
Early Stopping). We consider the Gaussian kernel
and the subsampling of the training set points for ker-
nel matrix approximation is performed uniformly at
random. All experiments have been carried out on a
server with 12 x 2.10GHz Intel® Xeon® E5-2620 v2
CPUs and 132 GB of RAM.

We compare the algorithms on the benchmark datasets
reported in Table 12. In the table we also report
the bandwidth parameter o adopted for the Gaussian
kernel computation. Following (Si et al., 2014), we
measure performance by the root mean squared er-
ror (RMSE). Note that for the YearPredictionMSD
dataset outputs are normalized to be between 0 and 1.

Model selection. For all the algorithms, model
selection is performed via hold-out cross validation,
where the validation set is composed of 20% of the
training points chosen uniformly at random at each
trial. The Tikhonov regularization parameter A for
KRLS and NKRLS is chosen among 100 guesses log-
arithmically spaced in [10_157 1], by computing the
validation error for each model and selecting the A\*
associated with the lowest one. The regularization pa-
rameter for ES and NYTRO is the number of iterations
t. The optimal t* is selected by considering the evolu-
tion of the validation error. As an early stopping rule,
for each dataset an iteration t* is chosen such that the
relative decrease of the validation error at ¢* is smaller
than a threshold. After model selection, we evaluate
the predictive performance on the test set. We report
the results in Table 2 and discuss them further below.

Time complexity comparison. We start by show-
ing how the time complexity changes with the subsam-
pling level m, making NYTRO more convenient than
NKRLS if m is large enough. For example, consider

!Code available at: http://lcsl.github.io/NYTRO/

2Datasets available at http://archive.ics.uci.
edu/ml or  https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/

150 T
NKRLS

NYTRO

o
o

Model Selection Time (s)
3

0 1000 2000 3000 4000
m

Figure 2: Training time of NKRLS and NYTRO on the
cpuSmall dataset as the subsampling level m varies
linearly between 100 and 4000. Experiment with 5
repetitions. Mean and standard deviation reported.

Figure 2. We performed training on the cpuSmal13
dataset (n = 6554, d = 12), with m spanning between
100 and 4000 at 100-points linear intervals. The ex-
periment is repeated 5 times, and we report the mean
and standard deviation of the NYTRO and NKRLS
model selection times. We consider 100 guesses for A,
while the NYTRO iterations are fixed to a maximum
of 500. As revealed by the plot, the time complexity
grows linearly with m for NYTRO and quadratically
for NKRLS. This is consistent with the time complex-
ities outlined in Sections 2 and 3 (O(nm? + m?) for
NKRLS and O(nmt + m3) for NYTRO).

Time-accuracy benchmarking. We also compare
the training time and accuracy performances for
KRLS, KOLS, Early Stopping (ES), NKRLS and
NYTRO, reporting the selected hyperparameter, the
model selection time and the test error in Table 2.
The model selection time refers to the choice of A\*
for KRLS and NKRLS and of the iteration t* for
ES and NYTRO, realized via hold-out cross vali-
dation as previously specified. All the experiments
are repeated 5 times. On the considered datasets,
NYTRO achieves comparable or superior predictive
performances with respect to its counterparts in a frac-
tion of the model selection time. In particular, the
absolute time gains are most evident on large scale
datasets such as Covertype and YearPredictionMSD,
for which a reduction of an order of magnitude in cross-
validation time corresponds to saving tens of minutes.
Note that exact methods such as KOLS, KRLS and ES
cannot be applied to such large scale datasets due to

3Available at http://www.cs.toronto.edu/~delve/
data/datasets.html
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Table 2: Model selection time and test accuracy comparison on benchmark datasets.

Early

Dataset KOLS KRLS . ; NKRLS NYTRO
Stopping
InsuranceCompany — Time (s) 1.04 97.48 £ 0.77 2.92 £ 0.04 20.32 £ 0.50 5.49 £0.12
n = 5822 RMSE 5.179 0.4651 £+ 0.0001 0.4650 £+ 0.0002 0.4651 + 0.0003 0.4651 = 0.0003
m = 2000 Par. NA 3.27e-04 494 +£ 1.7 5.14e-04 £ 1.42e-04 491+3
Adult Time (s) 112 4360 + 9.29 5.52 £0.23 5.95+0.31 0.85+0.05
n = 32562 RMSE 1765 0.645 £+ 0.001 0.685 & 0.002 0.6462 £ 0.003 0.6873 £ 0.003
m = 1000 Par. NA 4.04e-05 £ 1.04e-05 392 £ 1.1 4.04e-05 £ 1.83e-05 4.9+0.3
Ljenn Time (s) 271 825.01 +6.81 154.82+1.24 160.28 £+ 1.54 80.9+04
n = 49990 RMSE 730.62 0.615 £ 0.002 0.457 £+ 0.001 0.469 £ 0.003 0.457 £ 0.001
m = 5000 Par. NA 1.07e-08 % 1.47e-08 489 £ 7.2 1.07e-07 & 1.15e-07 328.7+£2.6
YearPrediction Time (s) 1188.47 + 36.7 887+ 6
n = 463715 RMSE NA NA NA 0.1015 + 0.0002 0.1149 £ 0.0002
m = 10000 Par. 3.05e-07 £ 1.05e-07 481 £ 6.1
CovertypeBinary — Time (s) 1235.21 +42.1 92.69 + 2.35
n = 522910 RMSE NA NA NA 1.204 +0.008 0.918 + 0.006
m = 10000 Par. 9.33e-09 £ 1.12e-09 39.2+23

their prohibitive memory requirements. Remarkably,
NYTRO’s predictive performance is not significantly
penalized in these regimes and can even be improved
with respect to other methods, as in the Covertype
case, where it requires 90% less time for model selec-
tion.

Acknowledgments

The work described in this paper is supported by
the Center for Brains, Minds and Machines (CBMM),
funded by NSF STC award CCF-1231216; and by
FIRB project RBFR12M3AC, funded by the Italian
Ministry of Education, University and Research.

References

Ahmed Alaoui and Michael W Mahoney. Fast Ran-
domized Kernel Methods With Statistical Guaran-
tees. arXiv, 2014.

Francis Bach. Sharp analysis of low-rank kernel ma-
trix approximations. In COLT, volume 30 of JMLR
Proceedings, pages 185-209. JMLR.org, 2013.

F. Bauer, S. Pereverzev, and L. Rosasco. On regu-
larization algorithms in learning theory. Journal of
complezity, 23(1):52-72, 2007.

A. Caponnetto and Yuan Yao. Adaptive rates for reg-
ularization operators in learning theory. Analysis
and Applications, 08, 2010.

Bo Dai, Bo Xie 0002, Niao He, Yingyu Liang, Anant
Raj, Maria-Florina Balcan, and Le Song. Scalable
Kernel Methods via Doubly Stochastic Gradients.
In NIPS, pages 3041-3049, 2014.

Heinz Werner Engl, Martin Hanke, and Andreas
Neubauer. Regularization of inverse problems, vol-
ume 375. Springer Science & Business Media, 1996.

Trevor Hastie, Robert Tibshirani, Jerome Friedman,
and James Franklin. The elements of statistical

learning: data mining, inference and prediction. The
Mathematical Intelligencer, 27(2):83-85, 2001.

A. E. Hoerl and R. W. Kennard. Ridge regression: Bi-
ased estimation for nonorthogonal problems. Tech-
nometrics, 12:55—-67, 1970.

Po-Sen Huang, Haim Avron, Tara N. Sainath, Vikas
Sindhwani, and Bhuvana Ramabhadran. Kernel
methods match Deep Neural Networks on TIMIT.
In ICASSP, 2014.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar.
Ensemble Nystrom Method. In NIPS, pages 1060—
1068. Curran Associates, Inc., 2009.

Mu Li, James T. Kwok, and Bao-Liang Lu. Making
Large-Scale Nystrom Approximation Possible. In
ICML, pages 631-638. Omnipress, 2010.

Charles A Micchelli, Yuesheng Xu, and Haizhang
Zhang. Universal kernels. The Journal of Machine
Learning Research, 7:2651-2667, 2006.

Garvesh Raskutti, Martin J. Wainwright, and Bin Yu.
Early stopping and non-parametric regression: An
optimal data-dependent stopping rule. J. Mach.
Learn. Res., 15(1):335-366, January 2014. ISSN
1532-4435.

Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regular-
ized least-squares classification.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo
Rosasco. Less is more: Nystrom computational reg-
ularization. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages

1657-1665. Curran Associates, Inc., 2015.

Bernhard Scholkopf and Alexander J. Smola. Learning
with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond (Adaptive Compu-
tation and Machine Learning). MIT Press, 2002.

1410



Raffaello Camoriano’, Tom&s Angles', Alessandro Rudi, Lorenzo Rosasco

Si Si, Cho-Jui Hsieh, and Inderjit S. Dhillon. Mem-
ory Efficient Kernel Approximation. In ICML,
volume 32 of JMLR Proceedings, pages 701-709.
JMLR.org, 2014.

Alex J. Smola and Bernhard Scholkopf. Sparse Greedy
Matrix Approximation for Machine Learning. In
ICML, pages 911-918. Morgan Kaufmann, 2000.
ISBN 1-55860-707-2.

A. N. Tikhonov. On the solution of ill-posed problems
and the method of regularization. Dokl. Akad. Nauk
SSSR, 151:501504, 1963.

Christopher Williams and Matthias Seeger. Using the
Nystrom Method to Speed Up Kernel Machines. In
NIPS, pages 682—688. MIT Press, 2000.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto.
On early stopping in gradient descent learning. Con-
structive Approximation, 26(2):289-315, 2007.

Kai Zhang, Ivor W. Tsang, and James T. Kwok. Im-
proved Nystrom Low-rank Approximation and Er-
ror Analysis. ICML, pages 1232-1239. ACM, 2008.
doi: 10.1145/1390156.1390311.

Tong Zhang and Bin Yu. Boosting with early stopping:
convergence and consistency. Annals of Statistics,
pages 1538-1579, 2005.

1411



