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Different studies have demonstrated that inflammation and alterations in
glutamate neurotransmission are two events contributing to the pathophysiology
of neurodegenerative or neurological disorders. There are evidences that
N-arachidonoylphenolamine (AM404), a cannabinoid system modulator and
paracetamol metabolite, modulates inflammation and exerts neuroprotective effects on
Huntington’s (HD) and Parkinson’s diseases (PD), and ischemia. However, the effects
of AM404 on the production of inflammatory mediators and excitotoxicity in brain
tissue stimulated with N-methyl-D-aspartic acid (NMDA) are not elucidated. In this
present study, we investigated the effects of AM404 on the production of inflammatory
mediators and neuronal cell death induced by NMDA in organotypic hippocampal
slices cultures (OHSC) using qPCR, western blot (WB), and immunohistochemistry.
Moreover, to comprehend the mechanism of excitotoxicity, we evaluated the effects of
AM404 on glutamate release in hippocampal synaptosomes and the NMDA-induced
calcium responses in acute hippocampal slices. Our results showed that AM404 led
to a significant decrease in cell death induced by NMDA, through a mechanism
possibly involving the reduction of glutamate release and the calcium ions responses.
Furthermore, it decreased the expression of the interleukin (IL)-1β. This study provides
new significant insights about the anti-inflammatory and neuroprotection effects of
AM404 on NMDA-induced excitotoxicity. To understand the effects of AM404 in these
processes might contribute to the therapeutic potential of AM404 in diseases with
involvement of neuroinflammation and neurodegeneration and might lead to a possible
future treatment of neurodegenerative diseases.
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INTRODUCTION

The role of excitotoxicity in the etiology or progression of several
human neurodegenerative disorders such as Alzheimer’s (AD),
Parkinson’s (PD) and Huntington’s (HD) diseases, epilepsy
or amyotrophic lateral sclerosis (ALS) has been proposed
(Palop et al., 2006; Dong et al., 2009). Excitotoxicity is a
pathologic process characterized by the increase of calcium
ions influx through mainly N-methyl-d-aspartic acid (NMDA)
receptors that result in both, an increase of glutamate release
and activation of many enzymes culminating in neuronal
cell death (Choi, 1988; Waxman and Lynch, 2005). A
promising target for the therapeutic intervention of several
progressive neurodegenerative diseases is the modulation of the
endocannabinoid system (Scotter et al., 2010). Some studies have
suggested that the endocannabinoid system plays a protective
role against excitotoxic damage (Marsicano et al., 2003;
Mechoulam, 2003; Veldhuis et al., 2003), mostly via cannabinoid
CB1 receptor inhibiting N-type Ca2+ channels activity and
consequently reduces glutamatergic transmission (Shen et al.,
1996; Lévénès et al., 1998; van der Stelt et al., 2002). The
CB1 receptor is the most abundant G protein-coupled receptor
in the brain (Howlett et al., 1990, 2010) and it is expressed on
glutamatergic and GABAergic neurons in brain regions such as
the hippocampus, cortex, and basal ganglia (Tsou et al., 1998;
Mackie, 2005). Besides CB1 and CB2 receptors, cannabinoid
agonists also activate transient receptor potential vanilloid type 1
(TRPV1; Smart et al., 2000; Ross, 2003). TRPV1 is a non-selective
cation channel and similarly expressed in numerous regions in
the brain, including cortex, hippocampus, and corpus callosum
(Tóth et al., 2005).

N-arachidonoylphenolamine (AM404), a paracetamol
metabolite, blocks the anandamide membrane transporter
(AMT; Beltramo et al., 1997; Giuffrida et al., 2000) and is an
agonist of TRPV1 (De Petrocellis et al., 2000; Zygmunt et al.,
2000) and CB1 receptors (Khanolkar et al., 1996; Beltramo
et al., 2000; Mitchell et al., 2007). The neuroprotective effects
of AM404 on some neurodegenerative models through the
activation of the CB1 or/and TRPV1 receptors has been
demonstrated. In a rat model of HD induced by the injection
of 3-nitropropionic acid, AM404 was able to attenuate the
hyperkinetic signs and recover neurochemical (GABA
and dopamine) deficits (Lastres-Becker et al., 2002) via
TRPV1 receptor (Lastres-Becker et al., 2003). However, on an
ischemia-induced neuronal injury, AM404 protected CA1 layer
neurons of the hippocampus through CB1 and opioid receptors
but not involving TRPV1, and prevented ischemia-induced
memory impairment (Zani et al., 2007).

AM404 ameliorates parkinsonian effects induced by
6-hydroxydopamine in rats (Fernandez-Espejo et al., 2004)
and recovered the dopamine depletion and tyrosine hydroxylase
deficit, probably by an antioxidant effect (García-Arencibia
et al., 2007). In this model of 6-OHDA, enhanced glutamatergic
transmission after DA depletion has been shown and AM404 was
able to reduce the frequency of glutamatergic spontaneous
activity and SR141716 (CB1 antagonist) but not capsazepine
(TRPV1 antagonist) blocked this effect (Gubellini et al., 2002).

Moreover, AM404 has been described to attenuate seizures from
epilepsy models using pentylenetetrazole (PTZ; Manna and
Umathe, 2012) or kainic acid (Shubina et al., 2015, 2017). Manna
and Umathe (2012) further demonstrated that in an epilepsy
model using PTZ, the protective effects of AM404 involved
CB1 but not TRPV1 receptors.

The effects of AM404 on the excitotoxicity and production
of inflammatory mediators in brain tissue stimulated with
NMDA are not elucidated. Thus, in this current study,
we evaluated if AM404 is able to prevent NMDA-induced
excitotoxicity and inflammation by evaluating cell death and
inflammatory parameters in organotypic hippocampal slices
cultures (OHSC), glutamate release in synaptosomes, and
intracellular calcium responses in acute hippocampal slices
stimulated with NMDA.

MATERIALS AND METHODS

Ethics Statement
The experiments were performed using neonatal female
and male C57BL/6 wild-type (WT). Neonatal mice pups
were obtained from Center for experimental models
and transgenic services (CEMT, Freiburg) and used in
accordance with the German animal welfare law for the use
of experimental animals (approved protocol No. X-13/06A by
the Regierungspräsidium Freiburg).

Drugs
AM404 (Alomone Labs) was dissolved in the physiological
medium for the synaptosome experiment and in DMSO for
the other experiments (Merck KGaA, Darmstadt, Germany).
NMDA was resuspended in Dulbecco’s phosphate-buffered
saline (DPBS; Gibcor by Life Technologies, Germany) as
100 mM stock, and was used at a final concentration of
10–50 µM in the OHSC. Lipopolysaccharide (LPS) from
Salmonella typhimurium was resuspended in DPBS as 5 mg/ml
stock and was used at a final concentration of 10 ng/ml or
100 ng/ml. Solvent concentrations in the culture media were
maintained at 0.1%.

Preparation of Organotypic Hippocampal
Slice Cultures (OHSC)
As previously described (Saliba et al., 2017a), OHSCs were
prepared from 2 to 3 days old C57BL/6 WT mice. Animals
were decapitated, the hippocampi were dissected and placed in
a chopper for the preparation of the slices with a thickness
of 350 µM. The integral slices were selected and transferred
to a 0.4 µM culture plate inserts (Millipore). The inserts were
placed in a 6-well culture plate containing 1 ml of OHSC
medium [0.5× minimum essential medium (MEM) containing
Earl’s salts, 25% horse serum, 25% basal medium (BME) without
glutamate and containing Earl’s salts, 2 mM glutamax, and
0.35% glucose]. Then, the plate was incubated at 35◦C in a
humidified atmosphere with 5% CO2 and the culture medium
was changed after the first day of preparation following every
2 days.
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Quantification of Neuronal Cell Death in
OHSC
After 7 days in culture, OHSCs were pre-treated with AM404
(10, 25, or 50 µM) for 30 min and NMDA (25 µM) was
added for additional 4 h. The slices were then washed with
37◦C DPBS and the media replaced with NMDA-free medium
containing 5 µg/ml propidium iodide (PI, Sigma), and incubated
for 24 h. Thereafter, OHSCs were washed with cold DPBS
followed by 4% PFA incubation for 1 h. After fixation, the
slices were washed with DPBS and incubated with 5% normal
goat serum (NGS) in PBS containing 0.3% Triton X-100 (PBS+)
for at least 2 h. Then, slices were incubated overnight with
an anti-mouse-NeuN-488 (1:1,000) in 1% NGS/PBS+ at 4◦C.
Analyses of the slices were done by confocal imaging using a Zeiss
microscope (Zeiss, Oberkochen, Germany) from Life Imaging
Center (LIC, Center for Biological Systems Analysis, Freiburg,
Germany). Quantification of fluorescence intensity was done
using ImageJ software.

Synaptosome Purification
Synaptosomes were prepared from C57BL/6 WT mouse
hippocampus as described (Raiteri et al., 2008). The tissue
was homogenized in 0.32 M sucrose, buffered at pH 7.4.
The homogenate was centrifuged (5 min, 1,000× g at 4◦C) and
the supernatant again centrifuged at 12,000× g for 10 min. The
pellet was resuspended in Tris-buffered 0.32 M sucrose, layered
on a discontinuous Percollr gradient (2, 6, 10, and 20% v/v in
Tris-buffered 0.32 M sucrose), and centrifuged at 33,500× g for
5 min. The layer between 10 and 20% Percollr was collected,
washed and centrifuged at 20,000× g for 15 min. The pellet
was resuspended in physiological medium having the following
composition (mM): NaCl, 140; KCl, 3; MgSO4, 1.2; NaH2PO4,
1.2; NaHCO3, 5; CaCl2, HEPES, 10; glucose, 10; pH 7.4.

Release Experiments
Synaptosomes were incubated (15 min, 37◦C) with 0.05 µM
[3H]D-Aspartate ([3H]D-Asp), a non-metabolizable analog of
Glu which labels the intra-terminal releasable pools of the
excitatory amino acid (Fleck et al., 2001; Raiteri et al., 2007).
Aliquots were distributed on microporous filters placed at the
bottom of a set of 24 parallel superfusion chambers maintained
at 37◦C (Superfusion System, Ugo Basile, Comerio, Varese, Italy)
and superfused as described (Milanese et al., 2010). Superfusion
was started with a physiological medium at a rate of 0.5 ml/min
and continued for 51 min. After 36 min of superfusion, to
equilibrate the system, six samples (t = 33–36; t = 36–39;
t = 39–42; t = 42–45; t = 45–48; t = 48–51) were collected.
NMDA (30 µM) plus glycine (1 µM) was added at t = 39 min;
and AM404 (0.1, 1 or 50 µM) at t = 30 and maintained until
the end of the experiment. Then, samples were collected and
superfused synaptosomes were counted for radioactivity. Tritium
released in each sample was calculated as fractional rate × 100
(percentage of the total synaptosomal neurotransmitter content
at the beginning of the respective collection period). Drug
effects were evaluated by calculating the ratio between the
efflux in the fourth sample collected (in which the maximum
effect of NMDA was generally reached) and the efflux of the

second sample collected (basal efflux). This ratio was compared
to the corresponding ratio obtained under control conditions.
Appropriate ratios in each experiment were compared to evaluate
the AM404 effect.

Calcium Imaging
Acute brain slices of C57BL/6 WT mice were prepared as
described (Dawitz et al., 2011; Holz et al., 2019). In brief,
6 days old animals were decapitated and the forebrain was
removed and replaced in carbogenated (5% CO2 and 95% O2)
ice-cold artificial cerebrospinal fluid (ACSF; 125 mM NaCl,
25 mM NaHCO3, 27 mM Glucose, 2.5 mM KCl, 1.25 mM
NaH2PO4, 1 mM MgCl2 and 2 mM CaCl2). Four to six coronal
slices (300 µm thickness) containing the hippocampus area
were cut by using a vibratome (DTK-1000, Dosaka, Japan).
The slices were collected and recovered at room temperature
(RT) for 30 min in carbogenated ACSF. In a chamber
containing 1 ml of carbogenated ACSF, the hemispheres were
separated and incubated with 50 mM Fura-2 acetoxymethyl
ester (Invitrogen) in the presence of 0.1% pluronic acid
(Invitrogen), for 20–30 min at 35◦C protected from the light.
After incubation, the slices were rinsed in carbogenated ACSF
and incubated with 50 µM AM404 for 30 min. One slice was
placed in the imaging chamber and fixed with a metal harp
superfused with carbogenated ACSF containing 1.5 mM MgCl2
and 1.6 mM CaCl2. The fluorescence imaging was taken at the
light microscope (Axioskop FS2, Zeiss; 40× water immersion
objective, Olympus Optical, Tokyo, Japan) using the TILLvisION
program. Single Fura-2-fluorescent neurons were selected as
regions of interest and the baseline fluorescence signal (F0)
was recorded for at least 30 s before NMDA. The changes on
the fluorescence signals (∆F) were calculated with the formula
(F-F0/F0) where F is fluorescence intensity and F0 is baseline
fluorescence intensity. The area under the curve was determined
for 90 s after NMDA.

qPCR Analysis
After 7 days in culture, OHSCs were pre-treated with AM404
(10, 25 or 50 µM) for 30 min and NMDA (25 µM) was
added for an additional 4 h. Thereafter, OHSCs were washed
with cold DPBS followed the mRNA isolation was performed
using the GeneMATRIX Universal RNA Purification Kit from
Roboklon, according to the manufacturer’s protocol. After the
isolation, 500 ng RNA were mixed with 2 µg of random
hexamer oligonucleotides in a 30 µl total reaction volume
and denatured at 70◦C (10 min). The synthesized cDNA was
used for the real-time PCR amplification that was carried out
using the CFX96 real-time PCR detection system (Bio-Rad
Laboratories GmbH, Munich, Germany). The primers (table
below) were designed by using Universal Probe Library Assay
Design Center.

Western Blot (WB)
After 7 days in culture, OHSCs were pre-treated with AM404
(10, 25 or 50 µM) for 30 min and NMDA (25 µM) was
added for an additional 4 h. The slices were then washed with
37◦C DPBS and the media replaced with NMDA-free medium
and incubated for 24 h. Thereafter, OHSCs were washed with
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Gene Forward primer (5′–3′) Reverse primer (5′–3′)

CD11b TACCGTCTACTACCCATCTGGC TTGGTGAGCGGGTTCTGG
CSF1R CGAGGGAGACTCCAGCTACA GACTGGAGAAGCCACTGTCC
GAPDH TGGGAAGCTGGTCATCAAC GCATCACCCCATTTGATGTT
GFAP GGAGGTGGAGAGGGACAAC GTTTCATCTTGGAGCTTCTGC
Iba-1 CAGGGATTTGCAGGGAGGAAA AGTTTGGACGGCAGATCCTC
IL-1β TGTGATGAAAGACGGCACAC CTTCTTCTTTGGGTATTGTTTGG
IL-6 CCTGGAGTTTGTGAAGAACAACT GGAAGTTGGGGTAGGAAGGA
iNOS CTTTGCCACGGACGAGAC TCATTGTACTCTGAGGGCTGAC
mPGES-1 GCACACTGCTGGTCATCAAG ACGTTTCAACGCGTCCTC
TNFα CCCACGTCGTAGCAAACCACCA CCATTGGCCAGGAGGGCGTTG

cold DPBS and lysed in the lysis buffer (42 mM Tris-HCl,
1.3% sodium dodecyl sulfate, 6.5% glycerin, 100 µM sodium
orthovanadate, and 2% phosphatase and protease inhibitors;
Saliba et al., 2017a). The protein concentration of the samples
was measured using the bicinchoninic acid (BCA) protein
assay kit (Thermo Fisher Scientific, Bonn, Germany) according
to the manufacturer’s instructions. For western blot (WB),
10–20 µg of total protein from each sample were subjected to
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) under reducing conditions. Afterward, proteins were
transferred onto polyvinylidene fluoride (PVDF) membranes

FIGURE 1 | Effects of N-arachidonoylphenolamine (AM404) on excitotoxicity in mouse hippocampal slices cultures [n = 3 organotypic hippocampal slices cultures
(OHSCs)/group]. (A–F) Representative confocal images of the immunostaining with propidium iodide (PI; red) and with the neuronal nuclear marker NeuN (green).
(G) Quantitative analysis of the PI fluorescence. The results are expressed as mean ± SEM. ∗p < 0.05 with respect to negative control and #p < 0.05 compared with
N-methyl-D-aspartic acid [NMDA; 25 µM; one-way analysis of variance (ANOVA), Newman–Keuls test].
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FIGURE 2 | Effects of AM404 on [3H]D-Asp release in hippocampal synaptosomes and intracellular Ca2+ responses. (A) Time course of [3H]D-Asp release induced
by NMDA plus Gly and effects of AM404 in hippocampal synaptosomes. Results are expressed as fractional rate percent. (B) AM404 inhibition of the NMDA plus
Glycine-evoked-[3H]D-Asp release in hippocampal synaptosomes. (C) Data of calcium imaging expressed as fluorescence intensity (∆F/F baseline) vs. time. (D) Data
of calcium imaging calculated the area under the curve (AUC). Data are means ± SEM of three independent experiments. #p < 0.05 and ###p < 0.001 compared to
NMDA (one-way ANOVA followed by Bonferroni post hoc tests for [3H]D-Asp release and unpaired t-test of three independent experiments for calcium imaging).

(Merck Millipore, Darmstadt, Germany) by semi-dry blotting.
After blocking with Roti-Block (Roth, Karlsruhe, Germany),
membranes were incubated overnight with primary antibodies:
goat anti-COX-2 (1:500; Santa Cruz Biotechnology, Heidelberg,
Germany), and rabbit anti-actin (1:5,000; Sigma Aldrich). The
proteins were detected with horseradish peroxidase-coupled
rabbit anti-goat IgG (Santa Cruz, 1:100,000 dilution) and
goat anti-rabbit IgG (GE Healthcare, 1:25,000 dilution) using
enhanced chemiluminescence (ECL) reagents (GE Healthcare,
Freiburg, Germany). Densitometric analysis was performed
using ImageJ software (NIH, Bethesda, MD, USA), and β-actin
control was used to confirm equal sample loading and
normalization of the data.

Data Analysis
The results were presented as mean ± SEM. Data were analyzed
using one-way analysis of variance (ANOVA) followed by
Newman–Keuls post-test. The level of statistical significance was
considered as ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Graph Pad
Prism (Graph Pad Software, San Diego, CA, USA) was used for
performing all statistical analysis.

Data for synaptosomes are expressed as mean ± SEM and
p-value < 0.05 was considered significant. Multiple comparisons
were performed using the ANOVA followed by Bonferroni post
hoc test. Analyses were performed by SigmaStat (Systat Software,
Inc., San Jose, CA, USA) software.

Data for calcium imaging were expressed as fluorescence
intensity (∆F/F baseline) vs. time and calculated the area under
the curve (AUC). To compare the groups, unpaired t-test was
evaluated using Graph Pad Prism (Graph Pad Software, San
Diego, CA, USA).

RESULTS

AM404 Prevented the NMDA-Induced
Neuronal Toxicity in OHSC
We studied whether AM404 has a neuroprotective effect on
excitotoxicity induced by NMDA in OHSC. As shown in
Figure 1B, the intensity of PI uptake was increased in OHSC
after NMDA (25 µM) stimulation compared with negative
control (Figure 1A). Incubation of OHSC with 10 or 25 µM of
AM404 did not alter the intensity of PI uptake (Figures 1D,E,G).
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However, pre-treatment with 50 µM of AM404 (Figures 1F,G)
potently prevented the increase of PI uptake levels and
thus excitotoxicity induced by NMDA back to basal levels
(Figures 1A,C).

AM404 Reduced [3H]D-Asp Release in
Hippocampal Synaptosomes and the
NMDA-Induced Calcium Responses in
Acute Hippocampal Brain Slices
In order to investigate whether AM404 might modulate
glutamate release and calcium responses contributing to its
neuroprotective effect, we evaluated the effect of AM404 on
[3H]D-Asp release induced by NMDA plus glycine (Gly)
in hippocampal synaptosomes and calcium imaging in
OHSC. As shown in Figure 2A, NMDA (30 µM) plus
Gly (1 µM) increased [3H]D-Asp release and this effect
reached the maximal value starting from t = 45 min of
superfusion. AM404 (0.1, 1 and 50 µM) strongly and
concentration-dependently reduced NMDA plus Gly-
evoked-[3H]D-Asp release by about 30%, 51%, and 87%,
respectively (Figure 2B). In addition, NMDA increased the
calcium ions responses, which was prevented by AM404
(50 µM; Figures 2C,D).

AM404 Prevented NMDA-Induced Increase
of IL-1β Expression but Did Not Affect the
NMDA Mediated Expression of IL-6, TNFα,
mPGES-1, and iNOS
The excitotoxicity process is directly correlated with
inflammation. To confirm this, we first evaluated the
effects of different concentrations of NMDA on the
expression of inflammatory mediators in OHSC. As shown
in Supplementary Figure S1, NMDA (25 µM) increased all
inflammatory parameters tested. To investigate the effects
of AM404 on inflammation induced by excitotoxicity, we
stimulated the slices with 25 µM of NMDA for 4 h. LPS
(10 ng/ml) was used as a positive control. As expected, LPS
and NMDA statistically increased inflammatory mediators
(Figures 3A–E). The pre-treatment with AM404 statistically
prevented NMDA-induced IL-1β expression (Figure 3A) and
tended towards a decrease of COX-2 protein (Figure 3F).
AM404 did not affect the levels of the other cytokines, mPGES-1,
and iNOS.

AM404 Did Not Alter the mRNA Expression
of Microglia and Astrocytes Markers
The main source for neuroinflammatory mediators are immune
cells. Thus, we next investigated the effect of AM404 to
modulate the activation of microglia and astrocytes. As
demonstrated in Figure 4, NMDA statistically increased the
expression of microglia (Figures 4A–C) and astrocyte markers
(Figure 4D). However, the pre-treatment with AM404 did not
alter these effects.

FIGURE 3 | Effects of AM404 on NMDA-induced inflammatory mediators in
organotypic hippocampal slices cultures (OHSC). OHSCs were pre-treated
with two concentrations of AM404 (25 or 50 µM) for 30 min before stimulating
with 10 ng/ml LPS or 25 µM NMDA. After 4 h, interleukin (IL)-1β (A), IL-6 (B),
TNFα (C), mPGES-1 (D), and iNOS (E) were measured by PCR. After 24 h,
COX-2 (F) was evaluated by western blot (WB). Data are expressed as
mean ± SEM of at least three OHSCs/group. ∗p < 0.05, ∗∗p < 0.01 and
∗∗∗p < 0.001 with respect to negative control and #p < 0.05 in comparison to
25 µM NMDA (one-way ANOVA followed by the Newman–Keuls post-test).

DISCUSSION

In this study, we have demonstrated that NMDA increased
cell death in OHSC and AM404 prevented this effect in
a concentration-dependent manner through a mechanism
possibly involving the decrease of glutamate release in
hippocampal synaptosomes and intracellular calcium responses
in hippocampal slices. The cannabinoid modulator/paracetamol
metabolite also reduced the production of IL-1β, an
important mediator associated with neurodegenerative and
neuroinflammatory conditions.

In accordance with our results, some studies have shown
neuroprotective effects of AM404 on different models.
AM404 has been found to protect against neuronal death
in an animal model of ischemia (Zani et al., 2007) and epilepsy
(Shubina et al., 2017). Huang et al. (2019) demonstrated the
treatment with AM404 significantly induced neuroprotection
in hippocampal neuronal culture. Moreover, the combination
of AM404 and AM374 (Fatty acid amide hydrolase, FAAH,
inhibitor) protected against excitotoxicity induced by AMPA
(Karanian et al., 2005).
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FIGURE 4 | Effect of AM404 on microglia and astrocyte after 25 µM NMDA in OHSC. The OHSCs were pre-treated with two concentrations of AM404 (25 or
50 µM) for 30 min before stimulating with 25 µM NMDA. After 4 h, microglia markers, Iba-1 (A), CSF1R (B) and CD11b (C), an astrocyte marker, GFAP (D) were
measured by qPCR. Data are expressed as mean ± SEM of at least three OHSCs/group. ∗p < 0.05, ∗∗p < 0.01 with respect to negative control (one-way ANOVA
followed by the Newman–Keuls post-test).

The effects of AM404 on calcium entry have been
demonstrated contradictory, depending on the cell type
used. AM404 decreased calcium influx in hippocampal neurons
(Hampson et al., 2011; Nazığlu et al., 2019). Moreover,
AM404 directly inhibited the function of L-type voltage-
dependent Ca2+ channels in rat myotubes (Alptekin et al.,
2010) and weakly inhibited Cav3.2 T-type calcium channel in
mouse supraspinal (Kerckhove et al., 2014). In contrast, it has
been described that AM404 increased the influx of intracellular
calcium in a concentration-dependent manner in human
MG63 osteosarcoma cells (Chang et al., 2008).

The activation of NMDA receptors increased cytokines
which contribute to neurodegeneration (Kaindl et al.,
2008). Thus, we evaluated the effects of NMDA receptor
activation on the production of inflammatory mediators in
OHSCs. We first verified that mRNA expression of some
inflammatory parameters (IL-1β, IL-6, TNFα, mPGES-1,
iNOS, and COX-2) is induced by NMDA and we show here
that the pre-treatment of AM404 prevented the increase
on IL-1β expression and had the tendency to decrease
COX-2 protein levels induced by NMDA. So far, we are
not able to explain why AM404 is only able to reduce IL-1β

levels. Possible mechanism might be, that AM404 targets
specific signaling pathways involved in IL-1β expression or

affects the stability of IL-1β mRNA but not of the other
genes investigated.

The direct correlation between IL-1β and excitotoxicity has
been described (Fogal and Hewett, 2008) and its involvement in
neurodegeneration has been observed in different neurological
disorders such as epilepsy (Vezzani and Baram, 2007) and
multiple sclerosis (Rossi et al., 2014). IL-1β enhanced NMDA
receptor-mediated intracellular calcium and neuronal death
(Viviani et al., 2003) and the increase in IL-1β signaling enhanced
glutamate-mediated synaptic excitability and neurotoxicity
(Rossi et al., 2012). Moreover, an interaction between IL-1β

and the endocannabinoid system has been described, based
on the evidences that IL-1β increased the frequency of
spontaneous excitatory postsynaptic currents (sEPSCs) through
TRPV1 channels (Musumeci et al., 2011; Rossi et al., 2012) and
that it blocked the capability of CB1 receptors in the control of
glutamate transmission (De Chiara et al., 2013). Furthermore,
IL-1β plays a crucial role in the induction of COX-2, 1 and PGE2
(Fiebich et al., 2000). Non-steroidal anti-inflammatory drugs
(NSAIDs) inhibiting COX-activity, were able to decrease the
inflammatory effects of IL-1β in the brain (Favrais et al., 2007).
We show here a tendency of decreased COX-2 levels by AM404,
whereas mPGES-1 expression was not affected. In our previous
study, corroborating with our findings, we demonstrated that
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AM404 slightly decreased the levels of LPS-induced COX-2
protein but not of LPS-induced mPGES-1 (Saliba et al., 2017a).

The production of inflammatory mediators is mainly
modulated by the neuroimmune cells, microglia, and astrocytes.
IL-1β expression in microglia and astrocytes were increased
in the cortex and striatum of rats after NMDA-induced
excitotoxicity (Pearson et al., 1999). Subsequently, we verified the
expression of cellular markers of microglia and astrocytes after
NMDA stimulation and pre-treatment with AM404. NMDA
stimulation statistically increased the expression of both markers,
but AM404 did not alter these effects. In one of our previous
studies using a mouse model of quinolinic acid (QA)- induced
excitotoxicity pre-treated with rapamycin, we also observed no
correlation between the alterations on cytokine expression and
the activation of microglia or astrocytes (Saliba et al., 2017b).

Undoubtedly, further studies are still necessary to understand
the role of AM404 during excitotoxic events and, additionally,
to understand if the effects observed involve the activation of
TRPV1 and CB1 receptors.

CONCLUSIONS

In conclusion, we provide direct evidence that AM404 modulates
the two major processes involved in neurodegenerative
diseases, excitotoxicity and neuroinflammation, by decreasing
pro-inflammatory mediators, reducing glutamate release, and
calcium ions responses.

To understand the effects of AM404 in these processes might
contribute to the therapeutic potential of AM404 in diseases with
involvement of neuroinflammation and neurodegeneration and
might lead to a possible future treatment of neurodegenerative
diseases. However, further pre-clinical and clinical experiments
in humans are necessary to evaluate other pharmacological
parameters and safety of AM404 for further drug development.
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FIGURE S1 | Effects of NMDA on levels of inflammatory mediators in OHSC. The
OHSCs were stimulated with LPS or NMDA (10–50 µM). After 4 h, IL-1β (A), IL-6
(B), TNFα (C), mPGES-1 (D), and iNOS (E) were measured by qPCR. After 24 h,
COX-2 (F) was evaluated by western blot. Data are expressed as mean ± SEM of
at least three OHSCs/group. ∗p < 0.05, ∗∗p < 0.01 and ∗∗∗p < 0.001 with respect
to negative control (one-way ANOVA followed by the Newman–Keuls post-test).
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