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Heat transfer in counter-flow heat exchangers is modeled by using transport and balance equations with the
temperatures of cold fluid, hot fluid, and metal pipe as state variables distributed along the entire pipe length.
Using such models, boundary values problems can be solved to estimate the temperatures over all the length
by means of measurements taken only at the boundaries. Conditions for the stability of the estimation error
given by the difference between the temperatures and their estimates are established by using a Lyapunov
approach. Toward this end, a method to construct nonlinear Lyapunov functionals is addressed by relying on
a polynomial diagonal structure. This stability analysis is extended in case of presence of bounded modeling
uncertainty. The theoretical findings are illustrated with numerical results, which show the effectiveness of the
proposed approach.

1. Introduction

The mathematical modeling of heat exchangers is really important since these devices are employed
in chemical process, petroleum refineries, power systems, and heating/refrigeration of air condition-
ing plants [1, 2]. In this paper, we address the modeling of a counter-flow heat exchanger based on
transport and balance PDEs and use such models for the purpose to monitor the thermodynamic
process by solving boundary values problems that exploit only few temperature measurements at
the boundaries. A rigorous stability analysis is addressed to prove the effectiveness of the resulting
temperature estimates from the theoretical and numerical points of view in line with the widespread
of methods based on Lyapunov approach in a number of different applications [3–6].

Heat exchangers for industrial processes allow to recover lost energy from hot fluid streams or
to heat a cold fluid for the purpose of air conditioning. Finite-dimensional models of such processes
are used for fouling detection by using Kalman filtering methods [1, 2]. As compared with these
models, the proposed modeling framework is in infinite dimension since it relies on hyperbolic
PDEs. Based on such equations, first we will focus on a model with the dynamics of the tempera-
tures of cold fluid, hot fluid, and metal pipe. In addition, a reduced model is considered with only
the temperatures of cold and hot fluid as state variables in line with [7]. Since such temperatures
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cannot be determined by direct, distributed measurements, it is fundamental to estimate them by
using a few number of measures. Toward this end, using such models, we address the solution of
boundary values problems to estimate the distributed state, which provides such estimate by having
at disposal measurements of temperature only at the boundaries. We will refer to also as boundary-
output Luenberger observers or simply state observers (see [8] and the reference therein). Stability
conditions on the estimation error (i.e., the difference between the temperatures and their estimates)
will be presented to construct such estimators in case of perfect modeling and assuming bounded
uncertainty. In such a case, we will rely on the notion of quadratic boundedness (QB, for short) [9].
Finally, numerical results will be given to showcase the theoretical findings.

The stability of the estimation error is analyzed in two different settings. First, we will consider
perfect modeling and hence asymptotic stability results will be provided. Next, we will assume
the presence of additive noises, which account for bounded modeling uncertainties and stability is
studied by using QB. Generally speaking, QB allows to deal with positively invariant sets and derive
upper bounds on the trajectories of the state of a dynamic system subject to bounded disturbances
[9]. Thus, QB has been successfully used for both output feedback control [10] and state estimation
[11]. Here we will extend the use of QB for the purpose of estimation in the considered infinite
dimensional context. It is worth noting that, in lieu of searching for exact solutions of the flow
equations (see, e.g., [12,13]), here we deal with the construction of boundary-output observers with
guaranteed stability properties on the estimation error.

All the stability conditions that will be presented demand the selection of nonlinear Lya-
punov functionals. In this paper, we will address this task by using the SOS (sum-of-squares)
approach [14, 15], which was originally developed for the analysis and control of polynomial sys-
tems described by ODEs (see [16] and the references therein) and recently applied also to sys-
tems described by PDEs [17–19]. SOS methods are quite computationally efficient since they are
based on semidefinite programming (SDP) [20,21]. In this respect, the SOS approach allows to find
Lyapunov functionals just like the methods based on LMIs (linear matrix inequalities) enable to
compute Lyapunov functions for linear systems based on ODE models [22]. As compared with the
search of classical Lyapunov functions to investigate local stability [23], we do not rely on linearized
models but provide conditions of global stability.

The paper is organized as follows. Section 2 reports the basic definitions that will be used in
the following. Modeling of thermal flows in one-dimensional heat exchangers is faced in Section 3.
The proposed estimation approach is presented in Section 4, where stability is analyzed in a noise-
free modeling framework. This analysis is extended to models affected by bounded disturbances in
Section 5. A brief account on the use of the SOS method to find the Lyapunov functionals and thus
ensure stability is given in Section 6. Section 7 illustrates the numerical results, while conclusions
are drawn in Section 8.

2. Notations and Definitions

The set of real numbers is denoted by R and hence R+ will be used for the set of strictly positive
real numbers. The set of the integer numbers equal to or greater than zero is denoted by N.

The minimum and maximum eigenvalues of a symmetric matrix P ∈ Rn×n are denoted by
λmin(P) and λmax(P), respectively. Moreover, P > 0 (P < 0) means that it is also positive (nega-
tive) definite. Given a generic matrix M, |M| :=

(
λmax(M>M)

)1/2
=
(
λmax(MM>)

)1/2 and hence,
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for a vector x = (x1,x2, . . . ,xn) ∈ Rn, |x| :=(x>x)1/2 is its Euclidean norm. R[x] denotes the ring of
real polynomials in x ∈ Rn; R[x]d is the set of real polynomials of degree equal or less than d ∈ N.

Given the compact set Ω⊂ Rn, L2(Ω) denotes the Hilbert space of square integrable functions
γ : Ω× [0,+∞)→ Rm with norm |γ(·, t)|L2 =

(∫
Ω
|γ(x, t)|2dx

)1/2
< ∞ for all t ≥ 0. The solution

φ(x, t) ∈L2(Ω) of a PDE with initial condition φ(x,0) = φ0(x) ∈L2(Ω) is said to be

• L2 stable (to zero) if, for all ε > 0, there exists δε > 0 such that

|φ0|L2 < δε ⇒ |φ(·, t)|L2 < ε

for all t ≥ 0;
• L2 asymptotically stable (to zero) if it is stable and

lim
t→+∞

|φ(·, t)|L2 = 0;

• L2 exponentially stable (to zero) if there exists λ > 0 such that

|φ(·, t)|L2 ≤ c |φ0|L2 exp(−λ t)

for some c > 0 and all t ≥ 0.

3. Modeling Heat Transfer in Heat Exchangers

Consider the one-dimensional model of counter-flow heat exchangers with three distributed state
variables, i.e., Tc(x, t), Th(x, t), and Tm(x, t) for x ∈ [0,L] and t ≥ 0, as depicted in Fig. 1; such
variables represent the temperatures of cold fluid, hot fluid, and pipe, respectively (the subscript
indicating that is made of some metal in such a way to maximize the heat transfer). Based on the
balance of enthalpy for the hot fluid, we get

ρhchSh
∂Th

∂ t
+ ṁhch

∂Th

∂x
=Uh ph(Tm−Th) (3.1)

where ρh is the density (in kg/m3), ch is the specific heat (in J/(kg K)), ṁh is the mass flow rate (in
kg/s), Uh is the transfer coefficient (in W/(m2 K)), Sh (in m2) is the internal surface of the pipe, and
ph its perimeter (in m). Concerning the cold fluid, the balance of enthalpy is given by

ρcccSc
∂Tc

∂ t
− ṁccc

∂Tc

∂x
=Uc pc(Tm−Tc) (3.2)

where ρc the density (in kg/m3), cc is the specific heat (in J/(kg K)), Uc is the transfer coefficient
(in W/(m2 K)). Moreover, Sc (in m2) is the external surface of the pipe, and pc its perimeter (in m).
Finally, for the metal pipe it follows that

ρmcmSm
∂Tm

∂ t
=Uh ph(Th−Tm)+Uc pc(Tc−Tm) (3.3)

where ρm is the density (in kg/m3) of the metal, cm is the specific heat (in J/(kg K)) of the metal,
and Sm :=Sc−Sh (in m2) is the surface of the pipe section.
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Fig. 1. Sketch of the heat exchanger model.

After dividing each of the three previous equations for the first coefficient in each respective
l.h.s., we get

∂Th

∂ t
+a1

∂Th

∂x
= b1(Tm−Th) (3.4a)

∂Tc

∂ t
−a2

∂Tc

∂x
= b2(Tm−Tc) (3.4b)

∂Tm

∂ t
= b3(Th−Tm)+b4(Tc−Tm) (3.4c)

where

a1 =
ṁh

ρhSh
a2 :=

ṁc

ρcSc
b1 :=

Uh ph

ρhchSh
b2 :=

Uc pc

ρcccSc
b3 :=

Uh ph

ρmcmSm
b4 :=

Uc pc

ρmcmSm

or, more concisely, as follows

∂tT +A1 ∂xT = B1 T (3.5)

where T (x, t) :=col(Th(x, t),Tc(x, t),Tm(x, t)) ∈ R3 and

A1 :=

a1 0 0
0 −a2 0
0 0 0

 B1 :=

−b1 0 b1

0 −b2 b2

b3 b4 −b3−b4

 .

The system (3.5) is solved with initial conditions

Th(x,0) = T 0
h (x), Tc(x,0) = T 0

c (x), Tm(x,0) = T 0
m(x) , x ∈ [0,L] (3.6)

and Dirichlet boundary conditions

Th(0, t) = T h(0, t), Tc(L, t) = T c(L, t) (3.7)
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for all t ≥ 0. The boundary conditions on Tm are not necessary since the equation (3.4c) does not
contain spatial derivatives of Tm.

Likewise in [7], a reduced model can be easily derived from (3.5) by neglecting the dynamics
of the temperature in the pipe, i.e., assuming that such a temperature is fixed by the values of the
temperatures of cold and hot fluids, i.e., imposing that the r.h.s. of (3.3) is null. Therefore, we obtain

∂Th

∂ t
+a1

∂Th

∂x
=− b1b4

b3 +b4
Th +

b1b4

b3 +b4
Tc

∂Tc

∂ t
−a2

∂Tc

∂x
=

b2b3

b3 +b4
Th−

b2b3

b3 +b4
Tc

or, more compactly,

∂tT +A2 ∂xT = B2 T (3.8)

where T (x, t) :=col(Th(x, t),Tc(x, t)) ∈ R2 and

A2 :=
(

a1 0
0 −a2

)
B2 :=

1
b3 +b4

(
−b1b4 b1b4

b2b3 −b2b3

)
with initial conditions

Th(x,0) = T 0
h (x), Tc(x,0) = T 0

c (x) , x ∈ [0,L] (3.9)

and Dirichlet boundary conditions

Th(0, t) = T h(0, t), Tc(L, t) = T c(L, t) (3.10)

for all t ≥ 0.
The model (3.5) is of hyperbolic type but not strictly hyperbolic since the matrix A1 has a zero

eigenvalue. By contrast, (3.8) is strictly hyperbolic since the eigenvalues of A2 have non null real
part. In the next section, we will consider the problem to reconstruct all the temperatures by using a
generic hyperbolic model.

4. Estimation for Heat Exchangers with Stable Estimation Error

Consider the hyperbolic equation

∂tT +A∂xT = BT (4.1)

where T (x, t) ∈Rn, A ∈Rn×n diagonal and B ∈Rn×n. Consider also the observer for (4.1) given by

∂t T̂ +A∂xT̂ = BT̂ (4.2)

where T̂ (x, t) ∈ Rn is the estimate of T (x, t). Such PDEs need some suitable boundary conditions,
which will be given later. The stability of the estimation error can be guaranteed under suitable
conditions as follows.
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Theorem 4.1. The estimation error e(x, t) :=T (x, t)− T̂ (x, t) ∈ Rn is L2 asymptotically stable if
there exists a diagonal matrix P(x) ∈ Rn×n with P(x)> 0 for all x ∈ [0,L] such that

e(0, t)>AP(0)e(0, t)− e(L, t)>AP(L)e(L, t)≤ 0 (4.3)

and

A∂xP(x)+B>P(x)+P(x)B < 0 (4.4)

for all x ∈ [0,L].

Proof. Consider the Lyapunov functional

V (t) :=
∫ L

0
e(x, t)>P(x)e(x, t)dx (4.5)

and note that the asymptotic stability of the estimation error is ensured if

V̇ (t)< 0 (4.6)

for all e(x, t) ∈ Rn since P(x)> 0 for all x ∈ [0,L]. Since P does not depend on time, we get

V̇ (t) =
∫ L

0
−∂xe>A>Pe− e>PA∂xe+ e>(B>P+PB)edx

and, owing to the diagonal structure of A and P,

−∂xe>A>Pe− e>PA∂xe =−∂x(e>APe)+ e>A∂xPe .

Thus, it follows

V̇ (t) =−e(L, t)>AP(L)e(L, t)+ e(0, t)>AP(0)e(0, t)+
∫ L

0
e>(A∂xP+B>P+PB)edx

and hence (4.6) holds owing to (4.3) and (4.4). �

Note that if, instead of (4.4), we consider

A∂xP(x)+B>P(x)+P(x)B+αP(x)< 0 (4.7)

with α > 0 for all x ∈ [0,L], the estimation error is L2 exponentially stable with rate of decrease
equal to α . Thus, a design goal may consist in maximizing α , which can be regarded as a sort of
generalized eigenvalue problem for Lyapunov functionals instead of Lyapunov functions [22].

In case of the reduced model (3.8) (i.e., with A = A2 and B = B2) the stability conditions of
Theorem 4.1 can be greatly simplified according to [7] by using

P(x) :=diag(exp(µ1x),exp(µ2x)) (4.8)

and boundary conditions

T̂h(0, t) = Th(0, t)+ `1(Tc(0, t)− T̂c(0, t)) (4.9a)

T̂c(L, t) = Tc(L, t)+ `2(Th(L, t)− T̂h(L, t)) (4.9b)

for all t ≥ 0 with `1, `2,µ1,µ2 ∈ R to be suitably chosen. More specifically, in [7] it is proposed to
satisfy (4.4) by using an LMI-based discretized approach to get µ1,µ2 and then select `1, `2 such
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that

a2`
2
2 exp(µ2L)−a1 exp(µ1L)≤ 0

a1`
2
1−a2 ≤ 0

by choosing, for example,

`1 =

√
a2

a1
`2 =

√
a1

a2
exp((µ1−µ2)L/2) . (4.10)

The construction of Lyapunov functionals is not an easy task to solve in general and will be
addressed later in Section 6.

5. Estimation Under Modeling Uncertainties

Let us focus on estimation in the presence of bounded disturbances. More specifically, instead of
(4.1) we consider

∂tT +A∂xT = BT +Dw (5.1)

where D ∈ Rn×q and w(x, t) ∈ Rq such that |wi(x, t)| ≤ 1, i = 1, . . . ,q for all x ∈ [0,L] and t ≥ 0
without loss of generality (different upper bounds can be taken into account by suitably scaling the
coefficients of D), where q is an integer number no larger than n. Estimation will be performed by
using the same observer adopted in the noise-free case, i.e., (4.2).

The presence of the system noises prevents from ensuring asymptotic stability but, since such
disturbances are bounded, an invariant set for the estimation error exists and can be studied by using
QB [9].

Toward this end, first of all we need to define QB in the L2 sense. More specifically, the estima-
tion error is said to be L2 quadratically bounded with Lyapunov functional V (t) as defined in (4.5)
if

V (t)> L⇒ V̇ (t)< 0 , ∀w ∈ [−1,1]q . (5.2)

As a matter of fact, any positive constant can be chosen instead of L, but with such a choice we
reduce the notational burden. This does not entail loss of generality since the conditions ensur-
ing QB are homogeneous in the design parameters, which scales with L and thus allows for this
simplification.

Owing to (5.2), the set

E :=
{

e ∈L2([0,L]) :
∫ L

0
e(x)>P(x)e(x)dx≤ L

}
turns out to be positively invariant and it is attractive (i.e., if the error is out of E , it approaches E
asymptotically).
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Theorem 5.1. The estimation error is quadratically bounded if there exist a diagonal matrix P(x)∈
Rn×n with P(x)> 0 for all x ∈ [0,L] and α ∈ Rq

>0, β > 0 such that (4.3) and(
A∂xP(x)+B>P(x)+P(x)B+βP(x) P(x)D

D>P(x) −diag(α)

)
< 0 (5.3)

q

∑
i=1

αi−β ≤ 0 . (5.4)

hold for all x ∈ [0,L].

Proof. Likewise in the proof of Theorem 4.1, we easily compute the time derivative of the Lyapunov
functional (4.5) and get that V̇ (t)< 0 subject to (4.3) is equivalent to

e>(A∂xP+B>P+PB)e+w>D>Pe+ e>PDw < 0 (5.5)

Since −e>Pe+1 > 0 implies V (t)> L and −w2
i +1 > 0 holds, using the well-known S-procedure

(see [22, p. 23]) we obtain that that QB holds if

e>(A∂xP+B>P+PB+βP)e+w>D>Pe+ e>PDw−
q

∑
i=1

αiw2
i +

q

∑
i=1

αi−β < 0 (5.6)

for some α ∈ Rq
>0 and β > 0 or equivalently if (5.3) and (5.4) hold. �

Clearly, (5.3) implies

A∂xP(x)+B>P(x)+P(x)B+βP(x)< 0

for all x∈ [0,L], which ensures that the estimation error in the absence of noises is L2 exponentially
stable with rate of decrease equal to β . Thus, a convenient design goal may consist in maximizing
β , as pointed out in [7]. Another, quite popular objective of design is related to the L2 gain between
disturbance and estimation error.

Theorem 5.1 provides conditions ensuring that the set E is attractive. Thus, one can design the
estimator in such a way to keep E as small as possible. Toward this end, note that

λmin(P(x)) |e|2 ≤ e>P(x)e , x ∈ [0,L]

for all e ∈ E and hence, as a design objective, we may maximize the minimum eigenvalue of P(x)
since

|e(x, t)| ≤ 1√
λmin(P(x))

for all t ≥ 0, x ∈ [0,L]. The inequality above allows to prove the boundedness in the L2 sense as

|e(·, t)|L2 ≤
L√

min
x∈[0,L]

λmin(P(x))

for all t ≥ 0.
To compare the effectiveness of a given observer in terms of rejection of the noise, it is quite

popular to rely on the notion of the L2 gain by assuming finite-energy noises, i.e., w(·, t) ∈L2(Ω).
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More specifically, we say that the proposed observer admits and L2 gain between disturbance and
estimation error equal to γ > 0 if∫ T

0
|e(·, t)|L2 dt ≤ γ

2
∫ T

0
|w(·, t)|L2 dt

for T > 0. It is straightforward to show that the bound of the L2 gain holds if(
A∂xP(x)+B>P(x)+P(x)B+ 1

γ2 I P(x)D
D>P(x) −I

)
< 0 . (5.7)

Note also that this condition is quite similar to (5.3). Moreover, minimizing γ is equivalent to max-
imize 1/γ2 in accordance with the goal of maximizing β .

6. Search of Lyapunov Functionals Using the SOS Approach

Stability conditions such as (4.4), (4.7), (5.3), or (5.7) (each together with P(x)> 0) demand the sat-
isfaction of LMIs in P(x) for all x ∈ [0,L], i.e., the solution of semi-infinite programming problems.
Such problems arise in a variety of applications and are usually approximately solved in discretized
form on a sufficiently fine mesh of points (see, e.g., [24]). The main difficulty to address semi-
infinite programming problems concerns both the choice of a sufficiently large number of points
and especially the local minima trapping, by which nonlinear programming solvers may be affected
in trying to find the solution. A more appealing way to solve such problems consists in resorting to
the SOS paradigm, which enables to turn the construction of a Lyapunov functional into a convex
problem that can be efficiently solved by using SDP without encountering such issues due to local
minima.

The idea behind such an approach is the SOS decomposition of a candidate Lyapunov functional
as well as of the opposite of its time derivative by using a positivity certification, which does not
depend on the characteristics of the chosen polynomial [21, 25]. More specifically, the following
result holds.

Theorem 6.1. A polynomial p(x) ∈ R[x]2d in x = (x1, . . . ,xn) ∈ Rn has sum-of-squares decompo-
sition (or is said to be SOS) if and only if there exists a real symmetric and positive semidefinite
matrix Q∈Rs(d)×s(d) such thatp(x) = vd(x)>Qvd(x), where vd(x) is the vector of all the monomials
in the components of x ∈ Rn of degree equal to or less than d ∈ N, i.e.,

vd(x) := (1,x1, . . . ,xn,x1x2, . . . ,xn−1xn,x2
n, . . . ,x

d
1 , . . . ,x

d
n)

of dimension

s(d) :=
( n+d

d

)
.

Proof. See [26, Proposition 2.1, p. 17]. �

Consider, for example, the estimation of the state variables of (3.4) by using the results of
Theorem 4.1. Based on Theorem 6.1, a procedure can be adopted to find suitable SOS polynomials
as diagonal elements of P(x) = diag(P11(x),P22(x),P33(x)), all to be taken in R[x]2d with x ∈ R
for increasing values of d. Toward this end, we say that p(x) ∈ R[x]2d is ε-SOS polynomial if
p(x)− ε ∑

n
i=1 x2

i ∈ R[x]2d with d ∈ N, d ≥ 1 is SOS for some “small” tolerance ε > 0 [27]. In

9
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addition, a polynomial, square matrix M(x) with Mi j(x) ∈ R[x]2d for i, j = 1, . . . ,m is said to be an
ε-SOS matrix if y>M(x)y is ε-SOS in R[x,y] with x ∈ R and y ∈ Rm.

Given d ∈ N with d ≥ 1 and ε > 0, the problem to solve when dealing, for example, with the
stability conditions of Theorem 4.1 is the following:

Problem 6.1. Find P11(x),P22(x),P33(x) ∈ R[x]2d such that

P11(x),P22(x),P33(x) are ε-SOS (6.1)

−Adiag
(
P′11(x),P

′
22(x),P

′
33(x)

)
−B> diag(P11(x),P22(x),P33(x))

−diag(P11(x),P22(x),P33(x)) B is a ε-SOS matrix (6.2)

for all x ∈ [0,L].

If Problem 6.1 admits a solution, we can follow the same reasoning that leads to (4.10) to ensure
the satisfaction of (4.3) by choosing

`1 =

√
a2P22(0)
a1P11(0)

`2 =

√
a1P11(L)
a2P22(L)

. (6.3)

Similar problems may be formulated by replacing the SOS description of (6.2) with those cor-
responding to (4.7), (5.3), and (5.7).

7. Numerical Results

For the sake of brevity, in the following we will describe only the numerical solution of the boundary
value problem that results from the discretization of the model (3.5) since this includes that of the
reduced model (3.8) as a special case. We have discretized the domain [0,L] with M equally spaced
points x j for j = 1, . . . ,M, both (3.8) and (4.2) are treated by using a finite difference method. The
equation (3.4a) and (3.4b) composed by an advection term (a1∂xTh and −a2∂xTc) and a reaction
one (the right side of the equalities) are semi-discretized in space by an upwind finite difference
scheme [28–30]. The choice of an upwind scheme is more appropriate for the convective term in
which there is a propagation direction. The boundary conditions (3.10) for (3.8) (and (4.9) for (4.2))
are given for Th and Tc only in the left (x = 0) and right (x = L) part of the domain, respectively.
The term a1∂xTh in (3.4a) is therefore discretized by using backward finite difference since a1 is
positive, whereas the term −a2∂xTc in (3.4b) is discretized by forward one since −a2 is negative.

Setting by (Th) j(t) the solution at the discretization point x j at time t (and analogously for Tc

and Tm), we obtain the following system of ODEs:

(Th)
′
j(t) =−a1 [(Th) j(t)− (Th) j−1(t)]+b1 [(Tm) j(t)− (Th) j(t)], j = 2, . . . ,M (7.1a)

(Tc)
′
j(t) = a2 [(Tc) j+1(t)− (Tc) j(t)]+ b2 [(Tm) j(t)− (Tc) j(t)], j = 1, . . . ,M−1 (7.1b)

(Tm)
′
j(t) = b3 [(Th) j(t)− (Tm) j(t)]+b4 [(Tc) j(t)− (Tm) j(t)], j = 1, . . . ,M (7.1c)

(Th)
′
1(t) = 0 (7.1d)

(Tc)
′
M(t) = 0 (7.1e)

with initial conditions

(Th) j(0) = T 0
h (x j), (Tc) j(0) = T 0

c (x j) .
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The boundary conditions (3.10) are translated in the system by setting

(Th)1(t) = T h(0, t), (Tc)M(t) = T c(L, t) .

The temperatures Th and Tc at the initial time are chosen constant and equal to the values at the
boundary points where their measures are available, i.e., equals to T h in x = 0 and T c in x = L such
as

T 0
h (x j) = T h(0,0), T 0

c (x j) = T c(L,0), j = 1, . . . ,M

with a constant value belonging to the interval [Th,Tc] taken as initial conditions for Tm, i.e.,

T 0
m(x j) = T m, j = 1, . . . ,M .

The scheme for the observer (4.2) is the same by replacing (Th) j(t) with (T̂h) j(t), (Tc) j(t) with
(T̂c) j(t) and so on, except for the boundary conditions, which are the following:

(T̂h)1(t) = T h(t)+ l1[(Tc)1(t)− (T̂c)1(t)]

(T̂c)M(t) = T c(t)+ l2[(Th)M(t)− (T̂h)M(t)] .

For the observer, the initial conditions in the simulation are chosen as:

T̂ 0
h (x) = T h(0,0)+3sin(1.2πx)

T̂ 0
c (x) = 6sin(1.2πx)−9.539x+0.535x2 +18

T̂ 0
m(x) = T m .

The system of ODEs (7.1) is solved by using a fourth-order Runge-Kutta method (implemen-
tated in the ode45 function of Matlab) with variable time step. In the first instants of the simulation
the fast dynamics of the convective part prevails, while later the reaction term predominates. To
accurately simulate the model, it is therefore necessary to select a very small time step in the first
time instants, while it may be chosen larger afterwards but, of course, always respecting the stability
condition of the numerical scheme. Implicit methods (e.g., the scheme implemented in the routine
ode15s of Matlab) are tested, since they generally allow to use a larger time step. The running time
is resulted longer, due to the higher complexity to complete each iteration. Then, explicit methods
seem to be the most appropriate choice for this problem.

In the numerical case study, we have fixed L = 5 m, a1 = 1 m/s, a2 = 1 m/s, b1 = 0.01 1/s,
b2 = 0.01 1/s, b3 = 0.01 1/s, and b4 = 0.01 1/s. Concerning the proposed estimation approach with
(3.5) and (3.8), we have solved Problem 6.1 by using the SOS toolbox [27] and the numerical solver
Yalmip [31] with ε = 10−6. In the first case (i.e., A = A1 and B = B1) we have got a solution to such
a problem with d = 1 given by

P(x) = diag
(
(1.096 ·10−4x+1.017)2 +(0.0017x−1.096 ·10−4)2 ,

(2.8477 ·10−4x+0.9864)2 +(0.0017x+2.8477 ·10−4)2 ,

(1.4496 ·10−4x+1.0093)2 +(0.0017x+1.4496 ·10−4)2)
and select `1, `2 according to (6.3). The same has been done for the reduced model with A = A2 and
B = B2 by obtaining

P(x) = diag
(
(1.9955 ·10−4x+0.9546)2 +(0.001x+1.9955 ·10−4)2 ,

(4.1525 ·10−4x+0.9124)2 +(0.001x+4.1525 ·10−4)2)
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Fig. 2. Simulation run in a noise-free case at different time steps for the model (3.5).

and taking `1, `2 again according to (6.3). We have chosen M = 500, T h(0,0) = 55, T c(L,0) =−15,
T m = 50.a

Fig. 2 shows the behavior of the temperatures Th, Tc, and Tm and their estimates given by T̂h, T̂c,
and T̂m at different time instants, all based on (3.5). Fig. 3 shows the behavior of the temperatures
Th, Tc and the corresponding estimates T̂h, T̂c, based on the reduced model (3.8).

8. Conclusions

Two models have been presented to account for the temperature dynamics in heat exchangers. Such
models are based on hyperbolic PDEs with the most complete having the temperatures of cold
fluid, hot fluid, and pipe as state variables, whereas the reduced one relies only on the temperatures
of cold and hot fluids. Estimators resulting from the solution of boundary values problems based

aThe simulation code is available upon request to Angelo Alessandri, email: alessandri@dime.unige.it.
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Fig. 3. Simulation run in a noise-free case at different time steps for the reduced model (3.8).

on such models have been proposed and provided with a rigorous stability analysis with the Lya-
punov approach. To this end, the existence of nonlinear polynomial Lyapunov functionals has been
addressed by using the SOS approach.

Future work will concern the investigation on the stability of systems described by nonlin-
ear hyperbolic equations (see, e.g., [32]). Another direction of research is the study of stability
of cascaded hyperbolic and other nonlinear PDEs such as the normal flow equation to deal with
multi-phase problems, which turn out to be increasingly difficult but with a wide range of potential
applications [33].
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