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ABSTRACT
The sampling of met-ocean variables is crucial for a plethora of applications. In coastal areas,
the management of coastal activities and shipping lanes have to account for variations on mean
sea level, wave parameters and current velocities, and coastal defences need to be designed
according to the severe sea states they will most likely have to face. Similarly, off-shore en-
gineering projects are expected to stand against forces driven by waves that might occur, e.g.,
once in ten thousand years. The assessment of design waves relies on statistical extrapolations
that need to be fed with reliable and continuous wave data. Therefore, it would be appropriate
to extend as much as possible the possible ways of sampling waves. In this regard, this thesis
first addresses the reliability of HF-radar wave measures, through a practical case study in the
Gulf of Naples. Radar data are compared to the outcomes of two numerical models: one pro-
viding the wave parameters on a regional scale, and the other specifically developed for the area
of investigation over finer resolutions. Both the models are previously validated against a buoy
installed offshore the gulf (taken as reference), which is placed outside the radar domain and
therefore cannot be employed for a direct comparison with the latter. The agreement between
the models and the HF-radars is evaluated through error indexes computed on the significant
wave heights, mean period and mean incoming directions. Results show a reasonable consis-
tency between HF-radar and models measures, leaving room for further investigations on the
use of such devices.

The aforementioned study refers to hindcast data provided by the Department of Civil,
Chemical and Environmental Engineering of the University of Genoa (Italy). The hindcast
was developed through a third generation wave model defined over the whole Mediterranean
Sea, outputting the most significant wave parameters on a hourly base in the 1979-2018 period.
Such data, being continuously defined over a long period, allow also to perform reliable anal-
ysis of the extreme waves for given locations. In particular, beyond the analysis of HF-radar
wave measurements, this thesis proposes two insights in the framework of the so-called extreme
value analysis (EVA).

First, a “bottom-up” approach for the identification and classification of the atmospheric
processes producing extreme wave conditions is revisited, and applied to several locations se-
lected among the Italian buoy network. A methodology is given for classifying samples of
significant wave height peaks in homogeneous subsets, related to the climatic forcing driving
the most severe wave states. Subsequently, the study shows how to compute the overall ex-
treme values distribution of significant wave height starting from the distributions fitted to each
single subset previously detected. From the obtained results, it is concluded that the proposed
methodology is capable of identifying clearly differentiated subsets, driven by homogeneous at-
mospheric processes: two well-known cyclonic systems are identified as most likely responsible
of the extreme conditions detected in the investigated locations. These systems are analyzed in
the context of the Mediterranean Sea atmospheric climatology, and compared with those figured
out by previous researches developed in similar frameworks. Then, it is proved that the high
return period quantiles for the significant wave height are consistent with those resulting from
the usual computational scheme of the EVA.

Finally, a simple model for evaluating non-stationarity in extreme waves is discussed, and
possible implications are analyzed through practical examples. This model takes advantage
of a linear slope estimate that allows to quantify the rate of change of a given time series of



vi

data, lowering the weight of possible outliers. The reliability of this slope is proved against
two other methods that are not bounded by the linear trend hypothesis, which in fact could
represent a too limiting assumption. This study is applied to series of significant wave height
annual statistics over the whole Mediterranean Sea. Trend tests are applied on the series carried
out from the hindcast locations, and show that the modified linear slope is sound and reliable.
Hence, it is shown how such index can be employed to evaluate for the need of non-stationary
EVA rather than the common stationary ones, i.e. when significant divergences between the two
models may arise. Finally, the linear slope estimates are used to assess the spatial distribution of
historical long-term trend in the Mediterranean Sea, showing interesting analogies with previous
works defined over similar locations.
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4.29 Correlations between Hs and ūw in location B8 for different time lags. Panel
A): ∆t equals 48 hours; panel B): ∆t equals 24 hours; panel C): ∆t equals 12
hours; panel D): ∆t equals 0 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.30 Average MSLP for the Hs peaks of WP#2. Panel A): La Spezia (B1), ∆t equals
12 hours; panel B): Alghero (B2), ∆t equals 12 hours; panel C): La Spezia, ∆t
equals 0 hours; panel D): Alghero, ∆t equals 0 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.31 Average MSLP for the Hs peaks in Ponza (B3). Panel A): WP#1, ∆t equals
12 hours; panel B): WP#2, ∆t equals 12 hours; panel C): WP#1, ∆t equals 0
hours; panel D): WP#2, ∆t equals 0 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.32 Average MSLP for the Hs peaks in Catania (B5). Panel A): WP#1, ∆t equals
12 hours; panel B): WP#2, ∆t equals 12 hours; panel C): WP#1, ∆t equals 0
hours; panel D): WP#2, ∆t equals 0 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.33 Average MSLP for the Hs peaks in Crotone (B6). Panel A): WP#1, ∆t equals
12 hours; panel B): WP#2, ∆t equals 12 hours; panel C): WP#1, ∆t equals 0
hours; panel D): WP#2, ∆t equals 0 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.34 Average MSLP for the Hs peaks in Ortona (B8). Panel A): WP#1, ∆t equals
12 hours; panel B): WP#2, ∆t equals 12 hours; panel C): WP#1, ∆t equals 0
hours; panel D): WP#2, ∆t equals 0 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.35 Monthly number of events for different WPs. The panels show in the upper left
corner the code of the location they refer to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.36 Scatter plot of Hs and θm due to different WPs. The panels show in the upper
left corner the code of the location they refer to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.37 Omni-WP extreme value distribution ofHs obtained form the whole set of peaks
(black) and from combining single-WP distribution (red), along with 90% con-
fidence interval (grey shadow and red dashed lines, respectively). The panels
show in the upper left corner the code of the location they refer to . . . . . . . . . . . . . . . . 68

5.1 ITA plot for datasets characterized by positive (black crosses), negative (black
x) and no trend (black circles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Correlations between b and pMK due to different values of α. Panel a): α=0.05;
panel b): α=0.1; panel c): α=0.9; panel d): α=0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 ρs evaluated between b and pMK for different values of α. Panel a): AM data;
panel b): annual 98th percentile of Hs; panel c): annual mean Hs . . . . . . . . . . . . . . . . . 76

5.4 Locations of the hindcast points employed for the graphical comparison be-
tween b and δi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



xiii

5.5 Panels a) and c): AM Hs series with respective TS slopes for upward trends.
Panels b) and d): downward trends. Red markers: AM Hs characterized by
positive trends; blue markers: AMHs characterized by negative trends (original
time series are not shown for the sake of clarity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 δi ecdf for the locations characterized by different trend intensities for AM Hs

series shown in Figure 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7 Comparison betweenHst100 andHnst100 for AMHs series. Left panel: Point 021272;

right panel: Point 013330. The black dashed line indicates the µ1 slope . . . . . . . . . . 80
5.8 Comparison betweenHst100 andHnst100 for AMHs series. Left panel: Point 005995;

right panel: Point 001337. The black dashed line indicates the µ1 slope . . . . . . . . . . 80
5.9 Locations characterized by MK trends for α equal 0.05. Panel a): AMHs; panel

b): annual 98th percentile of Hs; panel c): annual mean Hs. Red dots indicate
positive trends, blue dots indicate negative trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10 Spatial distribution of b in the MS. From top to bottom: Panel a): bAM ; panel
b): b98; panel c): bMEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



List of Tables

3.1 SWAN settings tested for the model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Comparison of the statistical indexes employed to validate SWAN . . . . . . . . . . . . . . . . 29

4.1 Lon/lat coordinates and depths of the hindcast locations employed in the study
(reference system: WGS84) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 GPD parameters for the different clusters resulting from the k-means analysis.
The table reports as well the GPD parameters for the starting dataset (referred
to as ID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Values of ρs computed between the series of sums of δi and b for the annual
statistics taken into account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Parameters of non-stationary EVA for the locations of Figure 5.4 . . . . . . . . . . . . . . . . . 79
5.3 Results of trend analysis for the peaks series belonging to WP#1 . . . . . . . . . . . . . . . . . . 81
5.4 Results of trend analysis for the peaks series belonging to WP#2 . . . . . . . . . . . . . . . . . . 81

xiv



INTRODUCTION

The characterization of waves in seas and oceans is of primary importance in several fields
of investigation. As an instance, waves are one of the most promising renewable energy sources,
whose consumption is expected to rise considerably over the next decades, placing this source
among the major carbon-free ones in many countries (Clément et al., 2002; Iglesias et al., 2009;
Ferrari et al., 2019). Wave energy production can take place both off-shore, with floating devices
that take advantage of the vertical motion of the sea surface (Henderson, 2006), and onshore;
in the latter case, it is converted the energy carried by the waves when impacting the shore
(Contestabile et al., 2016; Centurioni et al., 2017). Actually, as regards the coastal zones, the
need of investigating the sea surface is manifold. Indeed, waves directly affect the variation
of coastline profiles (Hanson, 1989). Driving the sediment dynamics in coastal regions, sea
waves in turn influence the evolution of beach faces (Kraus et al., 1991). For example, seasonal
variations in the average wave climate intensity, result on different equilibrium profiles for
the cross-sections of a shore between winter and summer months, inducing periodic cycles
of accretion and erosion of the emerged beach (see the left panel of Figure 1.2). In addition
to that, intense storms impacting to the coast may lead to considerable retreats of a shoreline
(Davis, 2012; Sherwood et al., 2014, an example is reported in the right panel of Figure 1.2).
Information on wave characteristics are therefore needed for being able to get an insight on
the coastal morphodynamic, which allows a proper planning of coastal land-use in the long
term (Cicin-Sain, 1993). On the other hand, real-time monitoring and forecast of sea waves are
crucial to predict hazardous conditions on coastal areas, providing decision-makers with prompt
tools useful to manage the activities along the seaside.

Figure 1.1: Devices for wave energy conversion. Left panel: example of technology that uses the motion
of ocean surface waves to create electricity (www.emec.org.uk); right panel: energy is produced by
waves overtopping on a breakwater (www.conisma.it)

http://www.emec.org.uk/
www.conisma.it
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Figure 1.2: Left panel: example of seasonal variations of a beach face (Fletcher et al., 2012); right panel:
storms-induced erosion of a cliff in UK (www.independent.co.uk)

Furthermore, the knowledge of sea conditions represents a key input for another relevant
area, such as the maritime trade. In the past years cargo shipping has been one of the fastest
growing economic sectors (Grossmann et al., 2007), and the United Nations Conference on
Trade and Development is projecting a 3.4% growth in the world maritime trade for the period
20192024 (www.unctad.org). Needless to say, the optimization of shipping lanes and harbour
operability, need to be tackled by especially considering the state of the sea surface (Bressan
and Tinti, 2016).

As for the design of coastal defences (e.g. seawalls or rubble-mound breakwaters) and
off-shore platforms, it is particularly relevant to characterize the condition of extreme waves
(Pullen et al., 2007). Structures in the sea need to stand against forces driven by waves that
are more extremes than any that might have been previously observed (Kottegoda and Rosso,
1997). This is aimed at minimizing the failure probability for maritime projects, as such an event
would be extremely dangerous. The computation of design waves require to refer to statistical
models, that allow to extrapolate the parameters of extreme waves beyond those sampled or
modelled at a given location. These models do not depend upon the physical laws that rule the
behavior of geophysical quantities, as such, they are often characterized by a huge uncertainty.
Nevertheless, the availability of highly-populated and continuous wave datasets helps to reduce
this uncertainty, leading to a better characterization and forecasting of unusually intense sea
states.

The computation of design waves through statistical approaches belong to the branch of the
so called Extreme Value Theory (“EVT”): this thesis introduces new methodologies in such
framework. First, a new methodology for performing extreme waves based on Weather Patterns
classification is introduced. Second, it is investigated how to properly detect trends in time series
of data in order to evaluate the need of employing non-stationary models for the computation
of design waves. These researches are shown in Chapter 4 and Chapter 5, respectively.

https://www.independent.co.uk/environment/uk-weather-british-coasts-suffer-years-of-erosion-in-just-weeks-of-storms-says-national-trust-9142338.html
https://unctad.org/en/PublicationsLibrary/rmt2019_en.pdf
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Figure 1.3: Examples of extreme waves impacting on maritime structures. Left panel: wave over-
topping over a breakwater (www.ilmeteo.it); right panel: off-shore platform for oil & gas extraction
(www.theamericanenergynews.com)

The examples so far introduced, highlight some of the applications for which it is essential
to dispose of real-time wave data and/or historical records of wave fields at given locations.
Therefore, it is worth to mention some of the most diffused methods among the surface gravity
wave measurements.

The instrument that best catches the three dimensional motion of the sea surface is obvi-
ously the floating buoy (Figure 1.4 a)). This instrument is equipped with an accelerometer able
to measure its vertical and horizontal motion, and radio communication to send their signals
to land-based receiving stations (Krogstad et al., 1999). Among the in-situ techniques, there
are also instruments usually fixed to the sea bottom, which measures the waves characteris-
tics through up-looking beams that are reflected by the sea surface and/or suspended material
(Van Haren, 2001); Figure 1.4 c) shows the example of an Acoustic Doppler Current Profiler.
On the other hand, remote sensing techniques are mainly represented by satellite data, which
receive reflections of the sea surface on the infra-red part of the light spectrum (Hwang et al.,
2000), and HF-radars, which obtain the measurements from time-averaged power spectrum of
the backscattered emitted signal (Wyatt et al., 2011). Examples of remote sensing techniques
can be appreciated in Figure 1.4, panels c) and d).

Among the aforementioned instruments, HF-radars represent a challenging opportunity
since they allow to take measures of both velocity currents and wave parameters. Other strengths
of HF-radars are that they are installed on the ground, thus they are easy to access, and that they
allow to collect information on wide portions of the surface, while e.g. buoys can only pro-
vide punctual information. Nonetheless, the use of radars for wave measurements present some
drawbacks for which their use is still not diffused and precise and need to be further investi-
gated. In view of the above, a case study on the analysis of radar-induced wave measures is
reported in Chapter 3.

https://www.ilmeteo.it/
http://theamericanenergynews.com/energy-news/shell-submits-plan-dismantling-brent-north-sea-production-platforms
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b)a)

d)c)

Figure 1.4: Devices for sampling the elevation of sea free surface. Panel a) waverider buoy at sea
(source: www.emec.org.uk); panel b): sketch of data taken by a satellite (source: www.eumetsat); panel
c) bottom-fixed ADCP (souce: www.sedexp.net); panel d): HF-radar (www.ioos.noaa.gov)

1.1. Outline of the thesis

The core of this thesis can be broken down into four main parts as follows.

Chapter 2

This Chapter introduces the basic theory of the sea waves. It first recalls the main parameters
characterizing a wave. Then, it shows the methodologies for computing the wave characteristics
of a sea state from the record of the surface oscillations. First, the up-crossing and down-
crossing methods for the statistical description of sea states are introduced, then the spectral
analysis is deepened. At a second time, a brief review of the types of extreme waves is presented.
Finally, the models belonging to the Extreme Value Theory are explained and related to the
applications explained further on the text.

Chapter 3

This Chapter shows a comparison between numerical models and HF-radar wave measure-
ments. A case study in the Gulf of Naples is presented. This study takes advantage of two
models defined at different spatial scales: one providing wave data on a regional scale, while
the other is specifically set on the local area of investigation, and is defined over finer resolu-
tions. Both the models are validated against data of a buoy placed just outside the gulf, and are

http://www.emec.org.uk/?attachment_id=5704
https://www.eumetsat.int/jason/print.htm
http://sedexp.net/
https://ioos.noaa.gov/project/hf-radar/
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therefore taken as references in order to test the reliability of HF-radars measurements inside
the gulf.

Chapter 4

This Chapter presents the study on the extreme wave height classification according to the
weather patterns they most likely belong to. The methodology proposed is applied to eight
hindcast locations along the Italian coastline, characterized by different wave climates. A clus-
tering technique is employed to classify extreme wave heights in different clusters, according to
the wind fields directly affecting the wave climate at the selected locations. At a second time,
a Monte Carlo scheme is suggested for the development of long return period wave heights
starting from the models fitted to each subset.

Chapter 5

This Chapter reports a critical review on the use of linear slope estimates for the detection of
climate trends in wave height series. Three different models for trend analysis are applied to
annual statistics of wave hindcast data in the Mediterranean Sea. The outcomes of the models
are compared in order to evaluate their consistency. At a second time, trend tests are evaluated
in relation to the non-stationary Extreme Value Analysis, and finally the spatial distribution of
trends in the Mediterranean Sea is analyzed.



STATE OF THE ART

2.1. Waves in sea and ocean

According to the Encyclopaedia Britannica, a wave is a propagation of disturbances from
place to place in a regular and organized way. This implies a periodic change from the equilib-
rium profile of a certain field: in case of sea waves, this field is the sea surface.

Figure 2.1 reports a sketch of a wave, showing as well the parameters that characterize it;
these parameters as summarized as follows:

• Ac is the wave amplitude. It indicates the vertical distance between a crest or a trough
and the equilibrium profile, the latter being represented by the black horizontal line;

• H is the wave height, defined as the total distance between the crest and the trough. For
monochromatic waves, H is twice Ac;

• T is the wave period. It is the time elapsed between the passage of two successive points
at the same elevation. In this case, the x-axis in the sketch refers to time;

• L is the wavelength. It is the distance over which the wave’s shape repeats. In this case,
the x-axis in the sketch refers to space.

Figure 2.1: Parameters of a wave (Brodtkorb, 2004)

As regards the sea waves, they can be thought as vertical motion of the ocean surface
(Holthuijsen, 2010); such waves can be ordered due their lengths and periods, as shown in
Figure 2.2 (Munk, 1949).
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Figure 2.2: Frequencies and periods of different waves in the ocean environment

From now on, the text will refer to ordinary gravity waves, whose periods range in the 1-30
s interval. This class of waves embeds two different wave systems, i.e. wind waves and swells.
The former are driven by the wind blowing over the sea surface and transferring energy to the
water body; these waves are characterized by a huge randomness and are most likely to be
observed in their area of generation. The latter are waves no longer affected by wind; indeed,
they can travel over long times and distances, and they might have been generated very far
from where they are observed. These waves are characterized by a more regular shape (Komar,
1998). Examples of these systems can be appreciated in Figure 2.3.

By looking at the examples it appears clear how the sea waves are characterized by more
complex and chaotic shapes than that of Figure 2.1 (especially in case of wind waves). There-
fore, sea states are always defined according to average parameters, that summarize the infor-
mation of sea states taking place over certain intervals of time. The averaging of the sea surface
should be performed over sea states characterized by statistical stationarity, which at sea im-
plies to refer to time frames of 15-30 minutes (Holthuijsen, 2010). In such an interval, from the
records of the mean water level elevation it is possible to describe the mean sea state parameters
via two different approaches: a statistical description of sea waves, and/or a spectral analysis.
Both the approaches are following introduced.

Figure 2.3: Different types of waves. Left panel: wind waves in the deep water; right panel: swell
approaching the shore
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2.1.1. Statistical short-term description of sea waves

Suppose to have a time record of surface elevation such that of Figure 2.4; surface elevation
is defined as the instantaneous elevation of sea surface with respect to a reference level (e.g.
the mean sea level). From now on, surface elevation will be referred to as η. In such a record,
a single wave can be identified in two different ways: i) as the profile embedded between two
successive points where η passes from negative to positive values (underlined with the red letter
u in Figure 2.4); ii) as the profile embedded between two successive points where η passes from
positive to negative values (underlined with the red letter d in Figure 2.4). The first and the
latter approaches are called up-crossing and down-crossing method, respectively.

Figure 2.4: Sketch for the up-crossing and down-crossing methods; the points used as reference for
defining the single waves are highlighted with red letters

Once a wave has been defined, it is possible to assign the respective heightH , defined as the
vertical distance between the highest and the lowest elevation of η between either two successive
up-ward or down-ward zero crossing points. Accordingly, the horizontal distance between such
pairs of points defined the period T of the single wave.

Given a series of H1:N data, after the sample has been sorted in increasing order, the follow-
ing parameters, related to a certain time frame, can be computed:

• mean wave height: H̄ =
1

N

∑N
i=1 Hi

• root mean-square wave height: Hrms =

√
1

N

∑N
i=1 H

2
i

• significant wave height: H1/3 =
1

N/3

∑N
i=2/3N Hi

• one-tenth wave height: H1/10 =
1

N/10

∑N
i=9/10N Hi
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The significant wave height, most often referred to as Hs, is close to the wave that can
be visually observed in a sea state, and it is therefore the most used statistic in met-ocean
applications.

The relations between the different statistics is summarized in Figure 2.5, reporting the
probability density function of a Rayleigh distribution:

Figure 2.5: Rayleigh distribution for zero-crossing wave heights

This distribution is usually employed to describe the up-crossing and/or down-crossing wave
heights, and its density function is expressed as:

p(H;σ) =
H

σ2
R

exp

(
− H2

2σ2
R

)
(2.1)

where σR is the parameter of the distribution.
The statistics of the wave period are defined relatively to H , i.e. they are computed accord-

ing to the subsets of waves sorted due to their height (with the exception of the mean period):

• mean period: T̄ =
1

N

∑N
i=1 Ti

• significant wave height: T1/3 =
1

N/3

∑N
i=2/3N Ti

• one-tenth wave height: T1/10 =
1

N/10

∑N
i=9/10N Ti

It is evident that through the statistical description of the sea states only few parameters can
be defined, since is not possible to fully characterize the randomness of a sea state. To this end,
the surface elevation has to be modeled as a stochastic process, and therefore defined in terms
of the so-called wave spectrum.
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2.1.2. The wave spectrum

The wave spectrum theory assumes that the surface of the sea can be seen as the superim-
position of an infinite number of waves, characterized by their own frequencies and directions.
Anyhow, for the sake of clarity, suppose at first sight that the system is characterized by waves
propagating along a single direction. Under this assumption, the record of surface elevation
can be seen as the sum of a large number of harmonics wave components (a Fourier series,
Holthuijsen, 2010)

η(t) =
N∑
i=1

Aci cos(2πfit+ φi) (2.2)

where Aci and φi are the amplitude and phase, respectively, of the ith frequency.
Hence, the wave spectrum is the distribution of the energy of the single waves against the

respective frequencies. A simple example, related to few sinusoidal components, can be appre-
ciated in Figure 2.6: in case of sea waves, the frequency distribution is no longer represented by
single bins, but through a regular curve that catches the ideally infinite number of single com-
ponents. This curve can be expressed via parametric distributions, such as the JONSWAP spec-
trum (Hasselmann et al., 1973) or the Pierson-Moskowitz spectrum (Pierson and Moskowitz,
1964), among other models. These functions express the density S(f), defined as a2/(2f), as
a function of f . The JONSWAP model will be recalled further on the text (see Chapter 3),
therefore is here introduced: 

S(f) =
αg2

f 5
exp

[
5

4

(
fp
f

)4

γr

]
r = exp

[
−(f − fp)2

2σ2f 2
p

]
α = 0.076

(
U2

10

Fg

)0.22

fp = 22

(
g2

U10F

)1/3

(2.3)

where fp is the peak frequency, U10 is the wind speed at a height of 10 m above the sea
surface, F is the distance from a lee shore (the fetch), g is the gravity force, σ is equal to 0.07
(0.09) if f ≤ fp (f > fp), γ is the peak enhancement parameter. An example of the JONSWAP
spectrum is shown in Figure 2.7.

Once S(f) is known, the spectral moments ca be defined:

mr =

∫ fu

fl

f rS(f)df (2.4)

being fl and fu the lower and upper cut-off frequencies of the spectrum, respectively.
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Figure 2.6: Example of a spectral description of a sea state. Upper panel: simulation of irregular waves
by superposition of sinusoidal waves; lower panel: spectral representaion of superposed waves. This
example is taken from Goda (1988)
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S

f

σ

fp

Figure 2.7: Example of a JONSWAP spectrum (wikiwaves.org)

The spectral moments can be employed to compute the spectrum-averaged parameters:

• Hm0 = 4m0

• T01 =
m0

m1

• T02 =

√
m0

m2

• T−10 =
m−1

m0

• Tp = f−1
p

• Tc =

√
m2

m4

with Tp > T−10 > T01 > T02 > Tc. It can be noticed how much more information on a sea
state can be carried out in comparison to the statistical description of sea states.

The model so far discussed applies if all the waves are characterized by the same incoming
direction. However, in reality sea waves travel along several different directions, as shown in
the example of Figure 2.8.

In view of the above, the complete description of a sea state requires to extend the frequency
spectrum over the directions characterizing the propagation of the single waves (referred to as
θi). Therefore, it is needed to introduce the concept of directional spectrum, which describes
the distribution of S(f) with respect to all the possible θi. An example of a 2D spectrum can
be appreciated in Figure 2.9, while the mathematical formulation is expressed in Equation (2.5)
(Goda, 1988).

https://wikiwaves.org/Ocean-Wave_Spectra
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Figure 2.8: Random sea surface due to the superposition of monochromatic waves with different direc-
tions

S(f, θ) = S(f)θs(θ|f) (2.5)

where θs(θ|f) is the so spreading function, which controls the directional spreading around
the mean wave direction (Kumar et al., 2000).

Figure 2.9: Example of a 2D spectra. The wave energy density S depends on f and θ

Once the S(f, θ) spectrum of a sea state is characterized, the information on respective wave
height, period and waves incoming direction can be accordingly inferred. Other parameters that
might be of interest, such as wave celerity, wave length etc. can be computed at a second time
starting from wave height and period (details can be found in Wood and Fleming, 1981, a.o.).

The sampling of 2D spectra can be carried out through in-situ or remote sensing techniques.
In this framework, HF-radars undoubtedly worth to be deepened, since they allow to sample
wave spectra over wide regions, with the advantage of being installed on the ground. These
instruments are commonly employed to sample long-shore currents; as far as wave parameters
are concerned, the use of HF-radars has just recently started to be investigated, thus further
analysis are required to test the reliability of these devices. Chapter 3 addresses this issue,
presenting a study case on the validation of HF-radar wave measures in the Gulf of Naples.
However, for the remainder of this work, it is first necessary to define what an extreme wave is,
and to introduce the theory underlying the analysis of the extremes.
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2.2. Extreme Waves

According to Hansom et al. (2015), extreme waves can be grouped in four different cate-
gories:

• Storm waves: they are commonly produced by very strong winds blowing for lengthy
periods and long fetches, resulting in high and long waves that can be amplified by high
water levels known as storm surge (Pugh and Woodworth, 2014). They can be observed
both in the open ocean and along coastlines, and their height may considerably varies due
to local effects and sampling interval;

• Giant or Rogue Waves: they occur during major storms and they are characterized by
steeper forward face preceded by a deep trough or “hole in the sea” (Mallory, 1974).
They can arise due to the interaction of different on-phase waves (Rosenthal and Lehner,
2008) and/or to current focusing (White and Fornberg, 1998);

• Tsunamis: they are single waves generated by sub-sea earthquakes. They can travel long
distances across the oceans at high speed. Although tsunamis are normally not very
high in deep water, they can significantly increase when approaching the coastline due to
bathymetry effects;

• Meteotsunamis: they are atmospherically induced ocean waves that are within the tsunami
frequency band (Bryant, 2001).

Extreme waves are fundamental in a number of different ocean and coastal engineering ap-
plications, including the design and operation of ships and offshore structures (Vanem, 2015),
marine energy generation (Agarwal et al., 2013), aquaculture and coastal installations (Pan-
chang et al., 2008) and coastal vulnerability assessment (De Leo et al., 2019). Indeed, series
of extreme Hs (either modeled and/or recorded) are used as key input to calculate the probabil-
ity of occurrence of hazardous extreme sea states according to the so-called “Extreme Values
Theory”, which is accordingly introduced in the next Section.

Figure 2.10: Left panel: storm waves approaching the coastline of Genoa (www.ilsecoloxix.it); right
panel: rogue wave approaches the Stolt Surf in Oct. 1977 (Photo: Karsten Petersen, www.global-
mariner.com)

https://www.ilsecoloxix.it/
www.global-mariner.com
www.global-mariner.com
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2.3. The Extreme Values Theory

The Extreme Values Analysis, often referred to as “EVA”, play a crucial role for most the
engineering projects and designs in the framework of geophysical sciences and applications.
The theory at the basis of such analysis, accordingly called Extreme Values Theory (or “EVT”),
allows to quantify the probability related to events more extreme than any that have already
been observed. Therefore, civil and environmental engineers have always to deal with EVA to
account for the likelihood of rare events in nature. As an instance, suppose that a skyscraper
with a lifetime of 200 years is meant to be designed at a given site. Among several design
requirements that have to be considered, one would be the resilience of the building against
the wind blowing over its surface. The easiest way to assess the maximum wind speed the
skyscraper will most likely have to face, could be that of evaluating the historical records of the
local wind climate. Nevertheless, it is unlikely to have two hundreds years of available data,
and even in that case, there is no guarantee that the maximum data occurred in the past will
be the upper limit of future wind speeds during the lifetime of the structure. EVA allows to
extrapolate the maximum expected wind velocity in a given time frame (two hundreds years
in the example). More in general, all the engineering projects and management plans need
to account for unpredictable events and the uncertainty characterizing environmental data and
processes. In fact, the survival of a given system depends on its capability to withstand the
extreme conditions it can be subjected to, and not simply the typical values (Kottegoda and
Rosso, 2008).

The EVT aroused starting from the beginning of the last century (e.g. Fisher and Tippett,
1928; Gumbel, 1935), and nowadays is one of the most important statistical disciplines for the
applied sciences. EVT is well settled among the scientific community, and applications framed
in this theory may be found in many different fields, such as (but not limited to) economy
and finance (Gençay and Selçuk, 2004, 2006; Ren and Giles, 2010), medicine and molecular
biology (Roberts, 2000; Li and Grosse, 2003), pollutant concentration (Huang and Batterman,
2003; Ercelebi and Toros, 2009), water levels and river discharge (Mudersbach and Jensen,
2010; Yang et al., 2010), met-ocean variables (Goda, 1988; Méndez et al., 2008). Needless to
say, the aforementioned list is just a short summary of what can be found in the literature related
to this theory.

EVT relies on the assumption that the events under investigation, related to a physical quan-
tity referred to as X , come from a continuous probability distribution with mass function f .

f(x) = Pr (X = x) (2.6)

with x ∈ R and being f the probability that X takes value x. Under this hypothesis, the
observations of X are simply particular realizations of the distribution. From now on, X will
refer to a variable continuous in the real space. Therefore, if f is known, it is possible to
compute the expected realizations related to defined levels of probability.

However, in practice it is often easier to refer to the probability distribution function, defined
as:

F (x) = Pr (X ≤ x) (2.7)
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Starting from F , it is possible to compute the value of x that is characterized by a given
probability of not being exceeded by all possible realizations of X , which is a more reliable
assumption, since it is not possible to uniquely assign probabilities to all the values a continuous
variable might span (Coles et al., 2001).

F (x) is accordingly referred to as “probability of non-exceedance” of x and is in turn related
to the so called return period according to the following relation:

F (x) = 1− 1

λTr
(2.8)

where λ is the yearly number of expected occurrences of x and Tr is the return period,
defined as the average time between two successive events characterized by intensity x (Mays,
2010). Tr is widely used, for example, in risk analysis and engineering projects, whose design
requires to compute the intensity of forcing related to return periods specified in regulations and
recommended practices.

The selection of the extreme data can be performed in three different ways (DNV, 2010):

• retaining the whole starting dataset. This approach is commonly called global model or
Initial Distribution (ID) approach;

• retainig the annual maxima (AM) for the variable under investigation;

• retaining all the exceedances above a given threshold. This approach is referred to as
Peak Over Threshold or POT approach.

The selection of the data is characterized by a trade-off. When the ID approach is chosen
the whole dataset is used, thus the number of points is large (for example in hundreds of thou-
sands for a hindcast covering around 40 years of data) and the uncertainty in the fitting of the
distribution is reduced. In this case, the main problem is that the data are highly correlated and
this may cause the distribution fitting to be unable to discriminate the tail behavior properly.
Moreover, EVT requires the data to be independent and identically distributed (the so called iid
condition, see Lang et al., 1999, for details). Since the ID dataset violates this condition, some
precautions have to be taken for the computation of the high return period values of x, making
the ID approach no longer competitive. For AM and POT approaches, where a subset of the
whole dataset is used, the iid condition is most likely to be matched, but the scarceness of the
data might increase the statistical uncertainty. This makes the POT the preferred approach, since
it is not confined to one event per year, leading to a smaller statistical uncertainty. However, the
selection of the threshold is critical and still a widely questioned topic (Cavanaugh et al., 2015;
Davison and Huser, 2015), thus it should be carefully performed. A sketch representing the se-
lection of data within the POT approach is reported in Figure 2.11. It can be noticed how, even
in the framework of the POT data selection, there exist two different approaches. One implies
to retain all the exceedances, like those highlighted with the red color in the example (Fawcett
and Walshaw, 2007, 2012). Such approach guarantees the availability of huge samples, since
there is no need to waste any data, though it requires to modify the computation of the error
related to the fitting of the distribution, to consider the serial dependence between the selected
data. The other approach implies to perform a de-clustering of the exceedances, i.e. groups of
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exceedances are separated due an inter-event duration (often referred to as inter-arrival thresh-
old time, henceforth Ith). If the time elapsed between two clusters is higher than Ith, the clusters
are considered as different events, and the two maximum values of each cluster are retained for
further computations (the blue triangles in the example). Otherwise, in case the elapsed time is
lower than Ith, the clusters belong to the same event, and just the absolute maximum is retained
(examples can be found in Claps and Laio, 2003; De Michele et al., 2007; Callaghan et al.,
2008, among others). In the latter case, one points will be retained instead of one (the first peak
among the two blue triangles in the example).

Figure 2.11: Example of a POT data selection. Red circles indicate the exceedances of the threshold,
underlined with the black dashed line; blue triangles refer to the peaks of the single clusters

Looking at Equation (2.8), it is evident how the length of the starting dataset directly affects
the levels of F (x), since it is reflected on the term λ (i.e. in the average frequency of occur-
rence of the extreme events). In addition to that, data selection conditions also the probability
distribution that shall be tested. For example, if the analysis takes advantage of AM dataset, it
is a common practice to rely on the so called Generalized Extreme Value distribution (hence-
forth GEV, Muraleedharan et al., 2011; Coles et al., 2001; DNV, 2010; Vanem, 2015), whose
cumulative distribution function is defined as follows:

F (x) = exp

[
−
[
1 + ξ

(
x− µ
σ

)]]
(2.9)

where ξ, µ and σ are the shape, location and scale of the distribution, respectively. Three
sub-families of distribution depend on the GEV one. The cases ξ = 0, ξ > 0 and ξ < 0
correspond to the Gumbel (Type I), Fréchet (Type II) and Weibull (Type III) distribution, re-
spectively.

If POT data are employed, a common adopted distribution is instead the Generalized Pareto
(henceforth GPD, see Pickands III et al., 1975; Hosking and Wallis, 1987; Castillo and Hadi,
1997):

F (x) = 1−
[
1 + ξ

(
x− µ
σ

)]−1

ξ (2.10)
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according to the notation introduced for the GEV, ξ, µ and σ indicate the shape, location
and scale of the distribution, respectively. If the shape ξ and location µ are both zero, then the
GPD is equivalent to the exponential distribution.

The aforementioned models arise from the so called extremal types theorem for block max-
ima (in case of GEV) and high threshold exceedances (in case of GPD). However, the mathe-
matical proof leading to the definition of the distribution families is beyond the scope of this
summary; interested readers are referred to Coles et al. (2001).

It should be pointed out that GEV and GPD represent just two distributions among many
others, and it is not obvious which is the one best fitting the extreme data. Therefore, they
shall be used as first attempts to model the study dataset, but it is always recommended to try
different distributions, whose efficiency has to be validated either through goodness-of-fit tests
(like the Kolmogorov-Smirnov test, see Massey Jr, 1951), and/or through graphical analysis.
Figure 2.12 provides an example of the latter case. In the left panel, the empirical quantiles of
the X data are compared to those of the real parent distribution; on the right panel, quantiles
are compared to those of a distribution that clearly fails to model the data. This analysis takes
the name of qq-plot (an abbreviation for “quantile-quatile” plot).

Figure 2.12: Example of a qq-plot for two different distributions

Finally, another distribution that deserves a particular mention is the Poisson frequency
distribution (Haight, 1967), whose probability mass function reads:

f(k) =
λke−λ

k!
(2.11)

It refers to the frequency of occurrence of extreme events (instead of their magnitude, as in
the case of GEV and GPD). Theoretically, Equation 2.8 holds just if the events under investi-
gation come from a Poisson-point-process, i.e. if the events are randomly located within the
overall time window they belong to. Under this assumption, every year has the same proba-
bility of providing λ extreme events, being λ the average yearly amount of events identified.
Nonetheless, it is worth to mention that the condition on the frequency of occurrence of the
data is not as much relevant as the iid condition, since the former has proved not to significantly
affect the subsequent EVA (Cunnane, 1979; Önöz and Bayazit, 2001).

As for the fitting of the distribution to the extreme data, commonly used techniques are i)
the Method of Moments (MOM or MME), which implies to equal the datasets moments (mean,
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variance and skewness) to the moments of the population that depend on the parameters of the
selected distribution (Bowman and Shenton, 2014); ii) the Maximum Likelihood Estimation
(MLE, see Myung, 2003), which requires to maximize the so called log-likelihood function:

L(θ) =
n∑
i

log(fi(xi; θ)) (2.12)

where x1:n are independent realizations of a random variable having probability density
function f(xi; θ0), being θ0 the parameters of the distribution.

iii) Last, it is introduced the method of the L-moments, since the research further shown
will take advantage of it. L-moments are an alternative system of describing the shapes of
probability distributions (Hosking and Wallis, 2005). Analogously to the MOM, this method
first requires to compute the moments (in this case the L-moments) of the sample:

l1 = b0

l2 = 2b1 − b0

l3 = 6b2 − 6b1 + b0

l4 = 20b3 − 30b2 + 12b1 − b0

(2.13)

where b is computed as:

br = n−1

n∑
j=r+1

(j − 1)(j − 2) . . . (j − r)
(n− 1)(n− 2) . . . (n− r)

xj:n (2.14)

the moments of Equation 2.13 are then used to estimate the parameters of the selected distri-
bution. Examples of different fitting methods used can be found in Goda (1989) and Mathiesen
et al. (1994).

When the parameters, and thus the shape, of the parent distribution are known, it is enough
to equal its cumulative distribution function with Equation 2.8, to compute the value of x cor-
responding to an assigned return period.

In summary, for a given variable of interest (say X), the work-flow of the EVA reads:

1. select the referring extreme events to be modeled through an extreme value distribution

2. select the distribution best modeling the peaks previously identified (the so-called “parent
distribution”)

3. compute the values of X related to target probabilities and due to its parent distribution

Although the methodology of the EVA seems straightforward, there are still some open
issues that worth to be deepen. For example, there is still no consensus on how to properly select
the starting dataset of extremes; this is a crucial stage of the analysis, since all the following
computations will be strongly affected by the sample of data retained. Furthermore, once the
starting set has been chosen, it could be interesting to perform independent EVA on subsets
related to particular features of X , though the clustering of X need to comply with statistical
hypothesis that complicate the whole procedure. Finally, it is worth to deepen how the possible
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time dependency structure of the data affects the EVA. As a matter of fact, the models so far
discussed assume stationary conditions for the data but this is not always a reliable condition, for
example due to climatic trends driven by global climate change. Usually, a pragmatic approach
to embed the intra-period trend in the EVA is that of modeling the distribution parameters as
functions of time. This approach has been applied to several different environmental data, such
as ocean waves (Vanem, 2015), air temperature (Wang et al., 2013), droughts (Burke et al.,
2010) etc. In case of GEV distribution, the three parameters can be defined as:

µ(t) = µ0 + µ1t

σ(t) = e(σ0+σ1t)

ξ(t) = ξ0 + ξ1t

(2.15)

The methodologies used to fit the distributions vary according to the modified relations of
the parameters. Please note that the model proposed in Equation 2.15 is just one possible way of
explaining the time-dependency of the parameters. To include non-stationarity of the extremes
is not trivial, and the time dependency of the variables should be characterized starting from
detailed analysis on the starting dataset.

To conclude, it is worth to mention that this Chapter is not intended to exhaustively explain
the cornerstone of the EVA. It is meant instead to trace the basis of the EVA that will be used for
the researches shown further on the text, where novel methodologies for the analysis of extreme
sea states will be developed in the framework of EVT.
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