
Chapter 3

Hyperelliptic continued fractions and
generalized Jacobians (minicourse given
by Umberto Zannier)

Laura Capuano, Peter Jossen, Christina Karolus, Francesco Veneziano

These are notes from the minicourse given by Umberto Zannier (Scuola Normale Superiore
di Pisa). The notes were worked out by Laura Capuano, Peter Jossen1, Christina Karolus, and
Francesco Veneziano. Most of the material of these lectures, except for the numerical examples
which were added by us, is already available in [Zan16]. The authors wish to thank Umberto
Zannier for the lively discussions in Alpbach, and Olaf Merkert for providing computations of
the examples 3.17, 3.28, 3.29, 3.33 and 3.25.

3.1 Introduction and some history

Let d be an integer. The Pell equation, bearing John Pell’s (1611-1685) name somewhat by
mistake, is the Diophantine equation

x2 − dy2 = 1

to be solved in integers x and y. This equation was studied by Indian, and later by Arabic
and Greek mathematicians (see for example [Len02] for some history on the problem). From
a modern point of view, solutions (x, y) of the Pell equation correspond to units x + y

√
d of

norm 1 in the ring Z[
√
d]. One reason why ancient mathematicians were interested in the Pell

equation is that a solution (x, y) of the Pell equation with large x and y provides a good rational

1P. Jossen served as group leader of the working group “Minicourse Zannier”.
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52 CHAPTER 3. HYPERELLIPTIC CONTINUED FRACTIONS

approximation to the square root of d, as

d =
x2 − 1

y2
≃

(x
y

)2

.

For instance, Baudhayana (a vedic priest who lived around the 800 BC) discovered that (x, y) =
(17, 12) and (x, y) = (577, 408) are solutions for the Pell equation with d = 2, and that 17/12
and 577/408 are close approximations to

√
2. In fact,

577

408
= 1.41421568627 and

√
2 = 1.41421356237.

Methods to construct new, larger solutions of the Pell equation from a given solution were
already known to the Indian mathematician and astronomer Bramagupta in the 7th century.
The fact that for every nonsquare d > 0 the Pell equation has one (hence infinitely many)
nontrivial solutions is a result attributed to Lagrange. Long before him, Wallis and Euler
described methods finding solutions of the Pell equation, although Lagrange was the first to
show that the method actually works in any case. Euler’s method involves continued fractions.
For example, to solve the equation x2 − 3y2 = 1, we can write

√
3 = 1 +

1

1 + 1
2+

√
3

= 1 +
1

1 + 1
2+ 1

1+ 1
2+···

,

and notice that the continued fraction of
√
3 is periodic. Stopping the continued fraction at

various stages yields a sequence of rational approximations to
√
3. These are:

1,
2

1
,
5

3
,
7

4
,
19

11
,
26

15
,
71

41
,
97

56
,
265

153
,
362

209
,
989

571
,
1351

780
,
3691

2131
,
5042

2911
,
13775

7953
,
18817

10864
,
51409

29681
,
70226

40545
, . . .

In this sequence, solutions (x, y) of the Pell equation x2 − 3y2 = 1 occur as numerators and
denominators, as one stops the continued fraction at even stages:

1 = 22 − 3 · 12 = 72 − 3 · 42 = 262 − 3 · 152 = · · · = 702262 − 3 · 405452.

If we stop at odd stages we solve the equation x2 − 3y2 = −2. Lagrange’s contribution is the
statement that for every nonsquare integer d > 1, the continued fraction expansion of

√
d is

periodic.
In the 1760’s, Euler discovered several polynomial identities for the Pell equation. Among

them, for example, the following equality ([Eu1767]):

(2n2 + 1)2 − (n2 + 1)(2n)2 = 1. (3.1)

More generally, if Tk and Uk denote the Chebyshev polynomials of the first and second kind,
the relation

Tk(n)
2 − (n2 − 1)Uk−1(n)

2 = 1
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holds. Euler’s identity is the case k = 2. Such polynomial solutions to Pell equation have
interesting applications to the problem of computing class numbers of real quadratic number
fields, see [McL03], but also qualify as interesting for their own sake.

In these notes, we study the polynomial interpretation of the Pell equation

x(t)2 −D(t)y(t)2 = 1,

where D ∈ C[t] is a given polynomial with complex coefficients of even degree, to be solved
in polynomials x(t), y(t) ∈ C[t]. This topic was already studied by Abel in 1826, later also
by Chebyshev and, more recently, among others by Hellegouarch, van der Poorten, Platonov,
Akhiezer, Krichever, McMullen, Masser, Bertrand and Zannier. Abel was interested in express-
ing certain integrals in ‘finite terms’. He observed that, if x(t), y(t) ∈ C[t] form a nontrivial
solution of the Pell equation, then the equality

∫
x′(t)

y(t)
√
D(t)

dt = log
(
x(t) + y(t)

√
D(t)

)

holds. As in the arithmetic case, there is a close connection between continued fractions and the
solutions of the Pell equation. Namely, if we expand

√
D(t) as a Laurent series around ∞ and

determine its continued fraction expansion (a procedure we shall explain in more details later),
then the following holds.

Theorem 3.1 (Abel, 1826). Let D(t) ∈ C[t] be a polynomial of even degree, which is not a
perfect square. The Pell equation x(t)2 −D(t)y(t)2 = 1 has a nontrivial solution if and only if
the continued fraction expansion of

√
D(t) is eventually periodic.

Among the myriad of interesting questions that one may ask about continued fraction ex-
pansions of algebraic functions such as

√
D(t), or of Laurent series in general, we will focus

on two. The first concerns the behaviour of the solvability of the polynomial Pell equation for
families of polynomials. Consider the a family of polynomials Dλ(t) ∈ C(λ)[t] depending on a
parameter λ, for example, Dλ(t) = t4 + λt2 + t+1. We may ask for which specializations of the
parameter λ ∈ C the equation

x(t)2 −Dλ(t)y(t)
2 = 1

has a nontrivial solution. These problems for different pencils of polynomials have been studied
by several authors (see [MZ15] for Dλ(t) = t6 + t + λ, and [Ber13] and [Sch15] for some non-
squarefree families of Dλ(t)). We also point out that these questions are related to problems of
Unlikely Intersections in families of Jacobians of hyperelliptic curves (or Generalized Jacobians,
as they are called in the non-squarefree case). For a survey on this, see also [Zan14]. We will
discuss this matter in Section 3.6.
The second question concerns the behaviour of the partial quotients in the continued fraction
expansion of

√
D(t) in the non-periodic case. Here we will prove that at least the sequence of

degrees of the partial quotients is periodic, which is a recent result of Zannier (Theorem 3.30).
We will give a proof of this result in Section 3.9.
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3.2 The continued fraction expansion of real numbers

In this section we review several classical definitions and results related to the continued frac-
tion expansion of real numbers, and illustrate them by examples. A good general reference is
Khinchin’s book [Khi97].

— 3.2. Let r be a real number. The continued fraction expansion of r is an expression, either
finite or not, of the form

r = a0 +
1

a1 +
1

a2+
1

a3+···

where the an are integers, and are positive for n ≥ 1. The continued fraction expansion of a
given real number r can be obtained as follows. Denote by ⌊r⌋ the integral part of r, that is,
the largest integer which is smaller or equal to r, so that 0 ≤ r − ⌊r⌋ < 1 holds. Set a0 = ⌊r⌋
and r0 = r − a0, then an+1 = ⌊r−1

n ⌋ and rn+1 = r−1
n − an+1. If ever rn = 0, which happens if

and only if r is a rational number, the procedure stops. The integers a0, a1, . . . are called partial
quotients. As a matter of notation, we usually denote the continued fraction by

r = [a0; a1, a2, a3, . . . ]. (3.2)

Given any finite or infinite sequence of integers a0, a1, a2 . . ., we define two new sequences {pn}
and {qn} by setting2

{
pn+1 = anpn + pn−1, p−1 = 0 and p0 = 1

qn+1 = anqn + qn−1, q−1 = 1 and q0 = 0.
(3.3)

An elegant way of rewriting (3.3) is
(
a0 1
1 0

)(
a1 1
1 0

)(
a2 1
1 0

)
· · ·

(
an 1
1 0

)
=

(
pn+1 pn
qn+1 qn

)

from which we obtain the relation pnqn−1−qnpn−1 = (−1)n. In particular, pn and qn are coprime.
We have for instance

p0 = a0 p1 = a0a1 + 1 p2 = a0a1a2 + a0 + a2
q0 = 1 q1 = a1 q2 = a1a2 + 1

We may look at pn and qn as elements of the ring of polynomials Z[a0, a1, . . .]. The equality

pn
qn

= [a0; a1, a2, . . . , an−1] = a0 +
1

a1 +
1

a2+··· ···

1
an−1

holds in the fraction field of Z[a0, a1, . . .]. In our concrete situation, the ratios pn/qn are just
rational numbers, called convergents, and the meaning of equality (3.2) is that

lim
n→∞

pn
qn

= r (3.4)

holds.
2Several authors use shifted indices, so that their pn are our pn+1.



3.2. THE CONTINUED FRACTION EXPANSION OF REAL NUMBERS 55

— 3.3. The convergents pn/qn obtained from the continued fraction expansion of a real number
r are the “best” rational approximations of r; this statement can be made precise in several
different ways.

The convergents approximate r better than any other rational number with a smaller denom-
inator: If pn/qn is a convergent (so it is automatically a reduced fraction), then the inequality

|pn − qnr| < |p− qr|

holds for all rational numbers p/q with q ≤ qn and p/q 6= pn/qn. And viceversa if p/q is a
rational number with the property that the inequality |p− qr| < |p′ − q′r| holds for all rational
numbers p′/q′ with q′ ≤ q and p′/q′ 6= p/q, then p/q is a convergent.

The convergents have also the property that they approximate the number r with an error
very small compared to the denominator qn:

∣∣∣∣
pn
qn

− r

∣∣∣∣ <
1

q2n
.

The converse of this statement holds up to a factor 2: If p/q is a rational number such that
∣∣∣∣
p

q
− r

∣∣∣∣ <
1

2q2
,

then p/q is a convergent of the continued fraction expansion of r.

Example 3.4. Let us compute the continued fraction expansion of
√
13. We have 3 <

√
13 < 4,

so a0 = 3 and r0 =
√
13− 3. We continue with the algorithm, where at each step we rationalize

the denominators:

a1 =
⌊

1√
13−3

⌋
=

⌊
1
4
(
√
13 + 3)

⌋
= 1 r1 =

1
4
(
√
13 + 3)− 1 = 1

4
(
√
13− 1)

a2 =
⌊

4√
13−1

⌋
=

⌊
1
3
(
√
13 + 1)

⌋
= 1 r2 =

1
3
(
√
13 + 1)− 1 = 1

3
(
√
13− 2)

a3 =
⌊

3√
13−2

⌋
=

⌊
1
3
(
√
13 + 2)

⌋
= 1 r3 =

1
3
(
√
13 + 2)− 1 = 1

3
(
√
13− 1)

a4 =
⌊

3√
13−1

⌋
=

⌊
1
4
(
√
13 + 1)

⌋
= 1 r4 =

1
4
(
√
13 + 1)− 1 = 1

4
(
√
13− 3)

a5 =
⌊

4√
13−3

⌋
=

⌊
(
√
13 + 3)

⌋
= 6 r5 = (

√
13 + 3)− 6 =

√
13− 3

We find r5 = r0, hence a6 = a1 and r6 = r1, and the pattern repeats. The continued fraction
expansion of

√
13 is therefore given by

√
13 = [3; 1, 1, 1, 1, 6]

where the bar indicates that the pattern of partial quotients 1, 1, 1, 1, 6 repeats periodically. We
compute a few convergents. Starting with p0 = a0 = 3 and q0 = 1, we find

p1
q1

=
3

1
,

p2
q2

=
4

1
,

p3
q3

=
7

2
,

p4
q4

=
11

3
,

p5
q5

=
18

5
,

p6
q6

=
119

33
,

p7
q7

=
137

38
, . . .
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and, with the help of a machine

p101
q101

=
6787570465375238075075157060001

1882533334518107155172472208200

which yields about 65 ≃ log10(p101) + log10(q101) correct decimals of
√
13. We point out that,

from a computational point of view, continued fractions are not the optimal tool to approximate
square roots (Newton’s method for example is much faster).

Theorem 3.5 (Euler, Lagrange). Let r be a real number. The continued fraction expansion of
r is eventually periodic if and only if r is an irrational algebraic number of degree 2.

It was Euler’s observation that real numbers with an eventually periodic continued fraction
expansion satisfy a quadratic equation with integer coefficients, and Lagrange proved the con-
verse by showing that there are only finitely many possible inner terms rn – in Example 3.4 it
is clear that inner terms are of the shape 1

P
(
√
13 + Q) for integers P,Q of bounded size. De-

termining the length of the period of the continued fraction expansion of a quadratic algebraic
number is a difficult problem. Denoting by l(d) the length of the period of the continued fraction
expansion of

√
d for a nonsquare integer d > 0, estimates such as

l(d) ≤ 7

2π2

√
d · log(d) +O(

√
d)

as d→ ∞ can be proven by making Lagrange’s finiteness result effective, as done in [Coh77].

— 3.6. We have explained in 3.3 how convergents of the continued fraction expansion of a
real number r are the best possible approximations of r by rational numbers as one imposes an
upper bound for the denominator. How well a real number r can be approximated by rational
numbers with bounded denominator is measured by the irrationality measure µ(r) of r, also
called Liouville-Roth constant of r, which is defined as follows. Let M(r) be the set of those
real numbers µ ∈ R for which the inequality

0 <

∣∣∣∣r −
p

q

∣∣∣∣ <
1

qµ

has infinitely many solutions in rational numbers p/q, where p and q > 0 are integers. The set
M(r) is not empty, for it contains the whole interval (−∞, 1). The irrationality measure of r
is defined by µ(r) := supM(r) which is either a real number or the symbol +∞. The most
important theorem about irrationality measures is Roth’s Theorem.

Theorem 3.7 (Roth, 1955). Let r ∈ R be an irrational, algebraic number. The irrationality
measure of r is 2.

— 3.8. Roth’s Theorem, also called the Thue-Siegel-Roth theorem, has a long history, starting
with Dirichlet and Liouville. For a real number r, there are two possible regimes for µ(r):

µ(r) =

{
= 1 if and only if r is rational

≥ 2 if r is irrational (exactly equal to 2 if r is algebraic).
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All algebraic irrational numbers satisfy µ(r) = 2, but there exist also transcendental numbers
with irrationality measure equal to two; this can be shown by a simple counting argument, but
it is also known that µ(e) = 2 holds. The numbers for which µ(r) = ∞ are called Liouville
numbers ; an example of a Liouville number is Liouville’s constant

L =
∞∑

n=1

10−n! = 1.1000100000000000000000100 . . .

which served as an explicit example of a transcendental number in 1850, about 40 years before
Cantor’s diagonal argument. The relation between continued fractions and irrationality mea-
sures, already established in Paragraph 3.3, is further illustrated by the following proposition
([Son04], Theorem 1).

Proposition 3.9. Let r be a real number with continued fraction expansion r = [a0; a1, a2, . . .].
The irrationality measure µ(r) of r is given by

µ(r) = 1 + lim sup
n→∞

log(qn+1)

log(qn)
= 2 + lim sup

n→∞

log(an)

log(qn)

where pn/qn are the convergents of the continued fraction expansion of r.

Example 3.10. The continued fraction expansion of Liouville’s constant starts with

L = [0, 9, 11, 99, 1, 10, 9, 999999999999, 1, 8, 10, 1, 99, 11, 9,

999999999999999999999999999999999999999999999999999999999999999999999999, . . .]

and these extremely large terms continue to appear. For infinitely many n, the partial quotient
an+1 is much larger than qn, which is a polynomial expression in a0, a1, . . . an.

3.3 Continued fractions in more general settings

One may think of several variants of continued fraction expansions, for real or complex numbers,
or even in other fields such as the p-adic numbers. Continued fractions in p-adic numbers were
studied by Mahler in [Mah34].

— 3.11. Let us sum up what we needed in 3.2 in order to create a theory of continued fractions.
First of all we need a topological field k, so that the limit of convergents (3.4) makes sense. Then
we also need a notion of integral part and fractional part of elements of k. What we want is two
subsets I and F of k, which satisfy the following properties:

1. For every r ∈ k there exists a unique i ∈ I satisfying r − i ∈ F .

2. The subfield k0 ⊆ k generated by elements of I is dense in k.

3. r ∈ F, r 6= 0 =⇒ r−1 /∈ F .
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We call integral part of r and denote by ⌊r⌋ the unique element i ∈ I satisfying r − i ∈ F .
A sequence of partial quotients for r ∈ k with respect to the chosen pair of sets (I, F ) can be
obtained in the usual way. Set a0 = ⌊r⌋ and r0 = r−a0, then an+1 = ⌊r−1

n ⌋ and rn+1 = r−1
n −an+1.

If some rn = 0, then r belongs to the subfield of k generated by I, and the procedure stops. The
sequence of partial quotients

[a0; a1, a2, . . .]

satisfies a0 ∈ I and an ∈ I0 := {⌊f−1⌋ | f ∈ F, f 6= 0} for n ≥ 1. Conditions (2) and (3) are
necessary for the sequence of convergents of the so constructed continued fraction expansion to
converge to r, but not sufficient. Condition (3) states that 0 is not an element of I0. In order
to guarantee continued fraction expansions to converge, one should probably replace (3) by a
stronger condition which states that elements of I0 are sufficiently far away from 0.

Example 3.12. Consider the field k = R with set of integral parts I = Z, but with set of
fractional parts F = [−1

2
, 1
2
). The continued fraction expansion with respect to this choice will

have positive or negative partial quotients an ∈ Z of absolute value ≥ 2. The reader may
compute the continued fraction expansion of

√
13 with respect to this choice of fractional parts.

Interestingly enough, one finds a periodic pattern, with period length 3, different from the period
length 5 in the standard expansion that was given in Example 3.4.

√
13 = [4;−3, 2, 7]

Here is a list of convergents:

4,
11

3
,
18

5
,
137

38
,
393

109
,
649

180
,
4936

1369
,
14159

3927
,
23382

6485
,
177833

49322
,
510117

141481
,
842401

233640
,
6406924

1776961
,
18378371

5097243
.

The numerators and denominators of the convergents pn/qn are solutions to p2n−13q2n = c where
c is 3, 4,−1,−3,−4, 1, depending on the congruence class of n modulo 6. In particular, we find
the solutions

6492 − 13 · 1802 = 1 8424012 − 13 · 2336402 = 1

of the Pell equation.

Example 3.13. Consider the field k = C with set of integral parts I = Z[i] and set of fractional
parts F = [−1

2
, 1
2
) × [−1

2
, 1
2
)i. This choice yields a theory of continued fractions for complex

numbers which extends the continued fractions for real numbers given in example 3.12. For
example we have √

2 + 3i = [2 + i;−3 + i, 4 + 2i]

where the square root is the one which is about 1.67415 + 0.895977i. The first few convergents
are

2 + i,
17 + 9i

10
,
290 + 155i

173
,
1239663i

740
,
42358 + 22669i

25301
,
72407 + 38751i

43250
,
6188662 + 3312071i

3696601
,

but, somewhat disappointingly, numerators and denominators of these convergents do not solve
the Pell equation for d = 2 + 3i. It was rather important that we chose F as we did, and not
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F = [0, 1) × [0, 1)i. With the latter choice, reciprocals of elements of F may have too small
norms for continued fractions to converge. To see what goes wrong, consider with the latter
choice for F the expansion of the 12-th root of unity exp(2πi/12). It is [0; i, i, i, i, . . .] and does
not converge.

Example 3.14. Let Qp denote the field of p-adic numbers. There is no canonical way to define
the continued fractions in this context, as we do not have a canonical definition of “integral
part”. Our setup here is the same as Ruban’s in [Rub70]. Declare the set of fractional parts to
be F = pZp, and the set of integral parts I to be the set of all sums

c0 + c1p
−1 + c2p

−2 + · · ·+ cnp
−n,

with ci ∈ {0, 1, 2, . . . , p − 1}. Notice that also rational numbers may have infinite continued
fraction expansions, for instance for p = 3 we find

1
7
= [1; 1

3
, 7
3
, 8
3
, 8
3
, 8
3
, 8
3
, . . .].

As a more elaborate example, let us compute the continued fraction expansion of
√
13 in Q3,

where
√
13 is the unique element of Z3 whose square is 13 and whose class modulo 3 is 1 (and

not 2). From 162 = 256 ≡ 13 mod 243 = 35 we get

√
13 = 1 · 30 + 2 · 31 + 1 · 32 + 0 · 33 + 0 · 34 + · · · , (3.5)

for some remainder in 35Z3. So a0 = 1 and r0 =
√
13− 1. To compute the 3-adic expansion of

r−1
0 we complete the square and use 4 · 61 ≡ 1 mod 243:

r−1
0 = 1

12
(
√
13 + 1) = 2 · 3−1 + 0 · 30 + 1 · 31 + 2 · 32 + 0 · 33 + · · ·

From this expansion we read off a1 = 2 ·3−1 and r1 =
1
12
(
√
13−7), and proceed with calculating

the 3-adic expansion of r−1
1 in the same fashion

r−1
1 = −1

3
(
√
13 + 7) = 1 · 3−1 + 1 · 30 + 0 · 31 + 2 · 32 + 2 · 33 + · · ·

hence get a2 =
4
3
. Next up we find

r−1
2 = 1

36
(
√
13− 11) = 2 · 3−2 + 2 · 3−1 + 0 · 30 + 2 · 31 + 2 · 32 + · · ·

hence a3 =
8
9
. So far we have computed

√
13 = [1; 2

3
, 4
3
, 8
9
, . . .]

by hand. Here is a machine computation using Sage [S+09]. We start with
(1) sage: R=Zp(3, prec = 1000, print mode = ’series’)

(2) sage: A=sqrt(R(13))
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so A is the square root of 13 in Z3 up to precision 31000. Printing A yields the first 999 terms of the
series representation (3.5). To compute the first 100 terms in the continued fraction expansion,
we use the following algorithm:
(3) sage: n=100

(4) sage: fraction=[]

(5) sage: for i in range(n):

(6) sage: v=A.valuation()

(7) sage: B=A/3^v

(8) sage: C=B.residue(1-v)

(9) sage: D=int(C)

(10) sage: DD=D*3^v

(11) sage: print DD

(12) sage: fraction = fraction + [[D , v]]

(13) sage: A=1/(A-R(D)*3^v)

It works as follows. In lines (3) and (4) we choose the number n=100 of iteration steps, and
create an empty list named fraction. We need this list only later to compute convergents.
Lines (6) to (13) are then repeated n times. In line (6) we assign to v the 3-adic valuation of
A, which is zero or a negative integer, and in line (7) scale A to a 3-adic integer B of valuation
0. Then we define C to be the residue modulo 3−v+1, which encodes the first −v + 1 coefficients
in the series expansion of A. Sage [S+09] sees C as an element of Z/3−v+1Z, and we need to
reconvert C to an integer D and scale back by the power of 3 we divided in line (7). Now DD is
the integral part of the series expansion of A, and we print it. In line (12) we add the pair (D,V)
to the list fraction for later use. Finally, in line (13) we subtract from A its integral part and
invert. Here is the output:

1 2
3

4
3

8
9

5
3

4
3

5
9

2
3

5
3

8
3

16
9

7
3

5
9

76
27

8
3

8
3

1
3

7
3

43
27

7
3

64
27

536
243

8
3

5
3

8
3

4
3

4
9

26
9

4
3

25
9

50
243

1
3

5
3

1
9

5
3

25
9

8
3

7
3

1
3

1
3

4
3

2
3

7
3

58
27

8
3

5
3

4
3

2
3

1
27

7
9

4
9

4
3

5
3

34
27

2
3

5
3

5
3

7
3

16
9

4
9

2
3

73
27

8
3

4
3

43
27

7
3

2
3

7
3

2
3

203
81

5
3

10
9

10
9

7
3

5
3

8
9

59
27

2
3

5
3

8
3

8
3

14
9

2
3

23
9

23
9

2
3

7
3

20
9

2
3

2
3

8
3

4
3

5
9

2
3

7
3

1
3

20
9

5
3

4
3

569
243

The first fourteen convergents we get from our computation are:

1, 5
2
, 29
17
, 367
190
, 2618
1409

, 13775
7346

, 139561
74773

, 651047
347888

, 4511284
2412397

, 41949695
22430168

, 792999788
424017407

, 6683640281
3573736385

, 54829195681
29317151914

, 5791143460039
3096521487019

The last error term here is

√
13− 5791143460039

3096521487019
= 1 · 339 + 2 · 341 + 2 · 342 + 2 · 343 + 2 · 344 + 1 · 345 + 1 · 346 + · · ·

which is very close to
√
13 in Z3. To compute the convergents, we used the following algorithm

in Sage [S+09]: After resetting the correct value for A in line (14), it computes the convergents
using the Euler-Wallis formulas (3.3), and prints the valuation of the difference

√
13− pn/qn.
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(14) sage: A=sqrt(R(13))

(15) sage: p0=R(fraction[0][0])*3^fraction[0][1]

(16) sage: q0=1

(17) sage: q1=R(fraction[1][0])*3^fraction[1][1]

(18) sage: p1=p0*q1+1

(19) sage: for i in range(2,n):

(20) sage: an=R(fraction[i][0])*3^fraction[i][1]

(21) sage: pn=an*p1+p0

(22) sage: qn=an*q1+q0

(23) sage: p0=p1

(24) sage: q0=q1

(25) sage: p1=pn

(26) sage: q1=qn

(27) sage: error= A-pn/qn

(28) sage: print error.valuation()

The output reads

6, 9, 11, 14, 17, 19, 21, 24, 27, 30, 35, 39, . . . , 309

which gives us a pretty good idea of what the speed of convergence might be. However the
matter of the convergence of Ruban’s continued fraction in Qp is not a simple one: unlike the
real case, it is not true in general that the convergents always provide good approximations.

It is clear that if r ∈ Qp admits a periodic continued fraction expansion, then r must be
a quadratic algebraic number over Q. It is easy to engineer examples in which the continued
fraction expansion is periodic. For instance

1
2p
(−1 +

√
4p2 + 1) = [0; 1

p
, 1
p
, 1
p
, 1
p
, . . .]

in Qp is periodic and indeed the right hand side solves the following quadratic equation

r =
1

1
p
+ r

.

In a very recent work [CVZ18], Capuano, Veneziano and Zannier found an effective criterion to
detect periodicity of Ruban’s continued fraction of quadratic irrational numbers. In particular,
their criterion shows that

√
13 has not periodic continued fraction in Q3.

Example 3.15. Let k((s)) be the field of Laurent series in the variable s and coefficients in a
field k. Let us declare the set of fractional parts to be Taylor series with zero constant term,
and the set of integral parts to be polynomials in s−1. This choice yields a theory of continued
fractions for Laurent series. It is the topic of the next section, except that we shall prefer to
work with the variable t−1 in place of s, so that integral parts become polynomials in t.
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3.4 The continued fraction expansion of Laurent series

In this section we describe the continued fraction expansion of Laurent series, and show some
analogies with continued fraction expansions of real numbers. Later we will be interested in the
continued fraction expansion of square roots of polynomials.

— 3.16. Let k be a field, and write k((t−1)) for the field of Laurent series in the variable t−1

and coefficients in k. An element of k((t−1)) is a formal series

f(t) =

n0∑

n=−∞
cnt

n

with cn0
6= 0, and we call ν(f) := −n0 ∈ Z the valuation of f . For f = 0 we set ν(f) = ∞. The

sets {f ∈ k((t−1)) | ν(f) ≥ n} form a fundamental system of neighbourhoods for a topology on
k((t−1)). Let us write

⌊f⌋ =
n0∑

n=0

cnt
n

for the integral or polynomial part of f . We obtain the continued fraction expansion of a Laurent
series f ∈ k((t)) as follows. Set a0 = ⌊f⌋ and f0(t) = f(t)− a0(t), and then

an+1(t) = ⌊fn(t)−1⌋ and fn+1(t) = fn(t)
−1 − an+1(t)

recursively for n ≥ 1. We obtain the obtain the continued fraction of f

f(t) = a0 +
1

a1 +
1

a2+···
= [a0; a1, a2, . . .] (3.6)

with an ∈ k[t] for every n. The convergents pn/qn of the sequence of polynomials a0, a1, . . . are
given, as in the real case, by the recurrence formula (3.3). The meaning of equation (3.6) is that

f(t) = lim
n→∞

pn(t)

qn(t)

holds, for the topology on k((t−1)) induced by the valuation ν.

Example 3.17. Let us compute a few terms of the continued fraction expansion of the expo-
nential function. The polynomial part of

exp(t−1) = 1 + t−1 + 1
2
t−2 + 1

3!
t−3 + 1

4!
t−4 + · · ·

is the constant polynomial a0 = 1. Subtract a0 from exp(t−1), invert and write the resulting
Laurent series:

1

exp(t−1)− 1
= t− 1

2
+
t−1

12
− t−3

720
+

t−5

30240
− t−7

1209600
+ · · ·
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The polynomial part is a1 = t− 1
2
. Again, subtract a1, invert and write the Laurent series:

1
1

exp(t−1)−1
− t+ 1

2

=
exp(t−1)− 1

1
2
+ t− (t− 1

2
) exp(t−1)

= 12t+
t−1

5
− t−3

700
+

t−5

63000
− 37t−7

194040000
+ · · ·

The integral part, which is the next partial quotient, is thus a2 = 12t. The following table was
calculated for us by Olaf Merkert:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

an(t) 1 t− 1
2

12t 5t 28t 9t 44t 13t 60t 17t 76t 21t 92t

13 14 15 16 17 18 19 20 21 22 23 24 25

25t 108t 29t 124t 33t 140t 37t 156t 41t 172t 45t 188t 49t

26 27 28 29 30

204t 53t 220t 57t 236t
We observe, and once we know what we are looking for, it is not hard to prove either, that

for n ≥ 2 the partial fraction an is equal to (2n− 1)t for odd n, and 4(2n− 1)t for even n. Let
us compute a few convergents:

1,
1
2
+ t

−1
2
+ t

,
1 + 6t+ 12t2

1− 6t+ 12t2
,

1
2
+ 6t+ 30t2 + 60t3

−1
2
+ 6t− 30t2 + 60t3

,
1 + 20t+ 180t2 + 840t3 + 1680t4

1− 20t+ 180t2 − 840t3 + 1680t4

The Taylor series expansion at infinity of the convergent of degree 2 reads

1 + t−1 +
t−2

2
+
t−3

6
+
t−4

24
+
t−5

144
− t−7

1728
− t−8

3456
− t−9

10368
− t−10

41472
+ · · ·

hence agrees with exp(t−1) up to order O(t−5). These are the so called Padé-approximations of
the function exp(t−1).

— 3.18. We may try to link the irrationality measure of a Laurent series f ∈ k((t−1)) with the
degrees of the partial quotients an in the continued fraction expansion

f = [a0; a1, a2, a3, . . .]

as we did in Proposition 3.9. In view of the recurrence (3.3) and the fact that deg(an) > 0 for
all n > 0, the equalities

deg pn+1 = deg an + deg pn

deg qn+1 = deg an + deg qn

hold, which make it easy to compute the degrees of convergents. The degrees of the partial
quotients an are connected to the ranks of the so-called Hankel matrices, which are associated to
the Laurent coefficients of f . In fact, a partial quotient of large degree amounts to the vanishing
of several determinants in these matrices. The convergents provide Padé-approximations to f ,
which are of importance in transcendence theory and Diophantine approximation.
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— 3.19. Let us recapitulate briefly what Padé-approximations are. In a standard setup, Padé-
approximations are associated with power series in a variable t instead of Laurent series in t−1.
Let

f(t) =
∞∑

n=0

cnt
n ∈ k[[t]]

be a formal power series, and pick two integers m ≥ 0 and n ≥ 1. The Padé-approximant of f
of order (m,n) is the rational function

R(t) =
p(t)

q(t)
=
a0 + a1t+ a2t

2 + · · ·+ amt
m

1 + b1t+ b2t2 + · · ·+ bntn

which agrees with f up to order m+ n. The requirement q(0) = 1 determines p and q uniquely.
There exist several efficient algorithms to compute Padé-approximants. From an elementary
point of view, one has to solve the linear system of m+ n+ 1 equations

k-th Taylor coefficient of q(t)f(t) = k-th Taylor coefficient of p(t)

for 0 ≤ k ≤ m+ n in the m+ n+ 1 variables a0, . . . , am, b1, . . . , bn, but this is computationally
not very efficient. Now if f is a Laurent series in t−1 rather than a Taylor series in t, say

f(t) =

n0∑

n=−∞
cnt

n ∈ k((t))

we can still look for rational functions R = p/q with deg p ≤ m and deg q ≤ n such that ν(f−R)
is as large as possible. Comparing to the Taylor series case, the difference is that we don’t need
to prescribe a bound on the degree of the nominator p anymore - there is only so much one can
do if deg q ≤ n is imposed. We may thus define the n-th Padé-approximant of f ∈ k((t)) as the
rational function R = p/q with deg q ≤ n such that ν(f −R) is maximal. The next proposition
is an analogue of the statements in 3.3.

Proposition 3.20. Let f ∈ k((t−1)) be a Laurent series in the variable t−1, and let p(t) and
q(t) be coprime polynomials. Then p(t) − q(t)f(t) = O(t− deg q−1) holds if and only if p/q is a
convergent of the continued fraction expansion of f .

Proof. See [PT00], Proposition 2.1.

— 3.21. The classical theorem of Roth, which we recalled in 3.7, has a function field analogue,
due to Saburô Uchiyama. For a Laurent series f ∈ k((t−1)) we may consider the set M(f) of
those real numbers µ for which the inequality

ν
(
f − p

q

)
> µ · deg(q)

has infinitely many solutions in rational functions p/q ∈ k(t), where p and q are polynomials.
If we define, as Uchiyama does, an absolute value for Laurent series by setting |f | := c−ν(f) for
some fixed real constant c > 1, then the above inequality becomes

∣∣∣∣f − p

q

∣∣∣∣ <
1

|q|µ ,
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similar to the inequality in 3.6. Again, M(f) contains (−∞, 1), and we define the irrationality
measure of f to be µ(f) := supM(f). Then [Uch61a, Theorem 3(i)] states that if f is not
rational, then µ(f) ≥ 2 holds, while [Uch61a, Theorem 2(i)] is an analogue of Roth’s theorem.

Theorem 3.22 (Uchiyama). Let k be a field of characteristic zero and let f ∈ k((t−1)) be
algebraic but not rational over k(t). Then the irrationality measure of f is 2.

— 3.23. Let k be a field of characteristic zero and let f ∈ k((t−1)) be algebraic but not rational
over k(t). Uchiyama’s Theorem states that for any ǫ > 0, the inequality

ν
(
f − p

q

)
> (2 + ǫ) · deg(q)

has only finitely many solutions p/q ∈ k(t). The possible periodic behaviour of the degrees of
the partial quotients in the continued fraction expansion of f is related to a stronger version
of Uchiyama’s theorem, namely a uniform version with 2 deg q + O(1) in place of (2 + ǫ) deg q.
Such an estimate should follow for algebraic functions of degree ≤ 3 over C(t) from Min Ru’s
effective version of Uchiyama’s theorem (see [Ru00] extending work of J. Wang [Wan96]).

— 3.24. Analogously to the irrationality measure for real numbers, we can express the irra-
tionality measure of a Laurent series in terms of its continued fraction expansion. With notations
of 3.18, the equalities

µ(f) = 1 + lim sup
n→∞

deg qn+1

deg qn
= 2 + lim sup

n→∞

deg an+1

deg qn

hold when f has an infinite continued fraction expansion.

Example 3.25. Let us look at the function field analogue of Liouville’s constant, which we
introduced in Example 3.10. Set

L(t) =
∞∑

n=1

t−n! = t−1 + t−2 + t−6 + t−24 + t−120 + t−720 + · · ·

Power series like this go under the name of lacunary series, of which Jacobi’s theta series is
another example. The continued fraction expansion of L, again computed by Merkert, reads

a0 = 0
a1 = t− 1 a11 = −t+ 1 a21 = −t2 a31 = t− 1
a2 = t+ 1 a12 = −t72 a22 = −t− 1 a32 = t+ 1
a3 = t2 a13 = t− 1 a23 = −t+ 1 a33 = −t2
a4 = −t− 1 a14 = t+ 1 a24 = −t480 a34 = −t− 1
a5 = −t+ 1 a15 = t2 a25 = t− 1 a35 = −t+ 1
a6 = −t12 a16 = −t− 1 a26 = t+ 1 a36 = t72

a7 = t− 1 a17 = −t+ 1 a27 = t2 a37 = t− 1
a8 = t+ 1 a18 = t12 a28 = −t− 1 a38 = t+ 1
a9 = −t2 a19 = t− 1 a29 = −t+ 1 a39 = t2

a10 = −t− 1 a20 = t+ 1 a30 = −t12 a40 = −t− 1

and we observe the sporadic large terms a6, a24 whose degree is much larger than the degrees
of all previous terms combined. It seems safe to conjecture that µ(L) = ∞.
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3.5 Pell equation in polynomials

In this section we take a closer look at the continued fraction expansion of f(t) =
√
D(t), viewed

as a Laurent series in s = t−1. As in the case of continued fraction expansions of real numbers,
the behaviour of the continued fraction expansion of

√
D(t) is related to the solvability of the

Pell equation x(t)2 −D(t)y(t)2 = 1.

Definition 3.26. Let k be a field, and let D(t) ∈ k[t] be a nonconstant polynomial. We say
that D is Pellian if the Pell equation

x(t)2 −D(t)y(t)2 = 1 (3.7)

has a solution x(t), y(t) ∈ k[t], with y 6= 0.

— 3.27. The Pell equation is solved by x = ±1 and y = 0. We call this the trivial solution.
The notion of Pellianity may depend on the arithmetic of the ground field k. We will often stick
to algebraically closed fields, or just to k = C. A polynomial D(t) ∈ k[t] is Pellian if and only if
the polynomial cD(at+ b) is Pellian for some a, c ∈ k∗ and b ∈ k. Polynomials of odd degree are
never Pellian. The link between the polynomial Pell equation and continued fractions is given
by Abel’s Theorem 3.1, stated in the introduction. It says that D is Pellian if and only if the
continued fraction expansion of

√
D(t) is eventually periodic.

Example 3.28. Let us compute the continued fraction expansion of the square root of the
polynomial D(t) = t2 + 1. Set s = 1

t
. The Laurent series3

√
D(s) = s−1

√
1 + s2 = s−1 +

s

2
− s3

8
+
s5

16
− 5s7

128
+

7s9

256
− 21s11

1024
+ · · ·

has polynomial part a0 = s−1 = t. For the next step, we have to compute the Laurent expansion
of (

√
D(s)− a0)

−1:

(
√
D(s)− s−1)−1 = 2s−1 +

s

2
− s3

8
+
s5

16
− 5s7

128
+

7s9

256
− 21s11

1024
+ · · · .

We find a1 = 2t. The remainder (
√
D(s)− s−1)−1− 2s−2 is the same as the one obtained in the

previous step, and the continued fraction expansion of
√
D(t) is thus periodic.

√
D(t) = [t; 2t, 2t, 2t, . . .]

To justify this properly, set h(t) =
√
D(t)− t. We need to show that h(t)−1 − 2t = h(t) holds,

but this is immediate: complete the square in the denominator in the left hand side

1√
t2 + 1− t

− 2t =
√
t2 + 1− t,

3Such a Laurent expansion would not exist if D had an odd degree, because then the two roots of D(t) would
be interchanged by monodromy around ∞. In other words, if D(t) has odd degree < 2d−1, then the polynomial
s2dD(s) has a simple zero at s = 0, hence sd

√
D(s) does not define an analytic continuation around s = 0.
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and notice that the fact that both sides are equal is all but Euler’s identity (3.1). Therefore,
this example is an illustration of Abel’s Theorem 3.1. As a corollary, we find the continued
fraction expansion of

√
n2 + 1 for all integers (or even that of 1

2
+
√
n2 + 1 for half-integers) n;

for example: √
101 = 10 +

1

20 + 1
20+ 1

20+ 1
20+···

Example 3.29. To give a nonexample to Abel’s Theorem 3.1, let us examine the continued
fraction expansion of the square root of the polynomial D(t) = t6 + 2t3 + t + 1. The Laurent
series of

√
D(t) around t = ∞ (same procedure as in the previous example) reads

t3+1+
t−2

2
− t−5

2
− t−7

8
+
t−8

2
+
3t−10

8
− t−11

2
+
t−12

16
− 3t−13

4
+
t−14

2
− 5t−15

16
+
5t−16

4
− 69t−17

128
+ · · ·

and we calculate a0, a1, . . . just as before. Here is the list a0, a1, . . . a13 provided by Merkert:

a0 = t3 + 1

a1 = 2t2

a2 = 1
2
t

a3 = −8t

a4 = −1
2
t+ 2

a5 = −1
8
t− 65

128

a6 = −2048t− 8064

a7 = −1
65536

t+ 3
32768

a8 = 524288
33

t+ 35651584
1089

a9 = 35937
4259840

t− 4886343
138444800

a10 = 562432000
81828549

t+ 52597667200
1882056627

a11 = −129861907263
204068345000

t− 161124749894097
4665818640080000

a12 = 52089490911518125
8659797998530734

t+ 7401227721243151250
18830730747805081083

a13 = 72795420464181597893304
219213673999487434840625

t− 435427467400545923209648896
645584269928490495605640625

This suggests that an is of degree 1, but that the height of the coefficients of an tends to +∞ as
n → ∞. In particular, the sequence of polynomials a1, a0, a2, . . . is not periodic. How to show
directly that the Pell equation

x(t)2 − (t6 + 2t3 + t+ 1)y(t)2 = 1

has no nontrivial solution? See exercise 3.44, 2. below.

Although the periodicity of the continued fraction for
√
D(t) is a very “rare” phenomenon,

some periodicity survives in full generality. Indeed, we have the following:
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Theorem 3.30 (Theorem 1.1 [Zan16]). Let k be an algebraically closed field of characteristic
0. Let D ∈ k(t) be a polynomial of even degree, and let

√
D(t) = [a0; a1, a2, a3, . . .]

be its continued fraction expansion. The sequence deg(a0), deg(a1), deg(a2), deg(a3), . . . is even-
tually periodic.

This analogue of Lagrange’s theorem for the polynomial case seems not to have been noticed
until now, as the most common behaviour, which can be seen in many examples, is that all the
degrees are equal to 1 or eventually constant. In particular, when d ≤ 3 (or when the genus
of the curve given by u2 = D(t) is 0), it may be seen that deg an is eventually constant in the
non-Pellian case. More specifically, one can prove the following:

Proposition 3.31. If d ≤ 3 or the geometric genus is 0 (even if D is non-squarefree), either
D(t) is Pellian or there are only finitely many partial quotients with deg an > 1.

A proof of this, in the special case D(t) = t2(t2 − 1), can be found in [Zan16, Example 4.2].
We also point out that, if d ≥ 4, this is not true anymore, as the following example (found by
Merkert, see [Mer16]) shows.

Example 3.32. The polynomial D(t) = t8−t7−(3/4)t6+(7/2)t5−(21/4)t4+(7/2)t3−(3/4)t2−
t + 1 yields infinitely many partial quotients of degrees 1 and 2, with the periodic pattern of
degrees 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, ....

— 3.33. We shall prove Theorem 3.30 in Section 3.9. It is not clear for which algebraic functions
the sequence of degrees of partial quotients is periodic. The phenomenon seems not to be limited
to square roots, for example the convergents of the continued fraction expansion at infinity of
4
√
t4 + 3 are

a0 = t
a1 = 4

3
t3 a11 = 9196

1989
t3 a21 = 23896908

3739405
t3 a31 = 115963743148

14934083745
t3

a2 = 2
3
t a12 = 1326

4807
t a22 = 7478810

36698823
t a32 = 1422293690

8416723293
t

a3 = 12
5
t3 a13 = 19228

3825
t3 a23 = 375143524

56091075
t3 a33 = 370335824892

46224544925
t3

a4 = 10
21
t a14 = 11050

43263
t a24 = 37394050

191649409
t a34 = 92449089850

563920460631
t

a5 = 28
9
t3 a15 = 173052

32045
t3 a25 = 109513948

15705501
t3 a35 = 76279096124

9244908985
t3

a6 = 30
77
t a16 = 320450

1341153
t a26 = 15397550

82135461
t a36 = 92449089850

580265981229
t

a7 = 2156
585

t3 a17 = 54188
9425

t3 a27 = 2956876596
408035075

t3 a37 = 773687974972
91199777825

t3

a8 = 26
77
t a18 = 64090

284487
t a28 = 163214030

903490071
t a38 = 269951342362

1740797943687
t

a9 = 924
221
t3 a19 = 7207004

1185665
t3 a29 = 63402812

8442105
t3 a39 = 633017434068

72679207559
t3

a10 = 442
1463

t a20 = 182410
853461

t a30 = 163214030
935191477

t a40 = 1889659396534
12502094322843

t

and their degrees clearly show a periodic pattern.



3.5. PELL EQUATION IN POLYNOMIALS 69

— 3.34. As in the arithmetic situation, the solutions of the polynomial Pell equation form a
group. We can identify it with a subgroup of the multiplicative group of the field k(t)[u]/〈u2−D〉
by associating (x, y) 7→ x+ yu. It can be shown that the group of solutions of the Pell equation
is isomorphic to Z/2Z in the non-Pellian case, and to Z/2Z ⊕ Z in the Pellian case. To check
this, show that all solutions are generated by a solution of minimal degree.

— 3.35. Let D be a nonsquare polynomial of even degree 2d, and set
√
D = [a0; a1, a2, . . .]. It

can be shown that 1 ≤ deg an ≤ d holds for all n. The upper bound deg an = d holds for some
n > 0 if and only if D is Pellian; if this is the case, then such values of n form an arithmetic
progression. On the other hand, if D is squarefree and not Pellian then the tighter upper bound
deg an ≤ d/2 holds for all n big enough (see [Zan16], Theorem 1.3 and the paragraph above it
for details and a more precise statement).

— 3.36. Another interesting line of inquiry concerns the heights of an(t), pn(t), qn(t) over Q.
The height of a nonzero polynomial f ∈ Q[t], denoted h(f), is the usual projective absolute
(logarithmic) height of the vector of the coefficients. The affine height of f is the affine height
of the same vector; it is denoted by ha(f). It can be shown that when D is not Pellian then the
heights of the qn grow quadratically in terms of n: h(qn) ≫ n2; this follows from a more general
theorem of Bombieri-Cohen [BC97], but can also be proved directly. For the partial quotients
the following theorem ([Zan16, Theorem 1.5]) holds.

Theorem 3.37. Suppose that D(t) ∈ Q [t] is squarefree and non-Pellian. Then h(an) ≪ n2.
Also, there exists an integer M =MD such that

max{ha(an−s) | 0 ≤ s ≤M} ≫ n2

holds for large n.

We remark that this theorem cannot be recovered easily from the bounds on qn and the
recurrence relation satisfied by the qn and the an and requires and independent proof.

— 3.38. A question of McMullen [McM09] asks whether every real quadratic field Q(
√
d)

contains infinitely many periodic continued fractions x = [a0, a1, . . .] such that ai ∈ {1, 2} for
all i = 1, 2, . . .. In her PhD thesis [Mal16], Malagoli proved a function field analogue of this
question:

Theorem 3.39 (Theorem 7 [Mal16]). Let k be a number field; then, for every non-square
polynomial D ∈ k(t) of even degree, not a square in k[t] and with leading coefficient which is a
square in k, there exists a polynomial f ∈ k[t] such that the partial quotients of f

√
D (except

possibly for finitely many of them) have degree ≤ 1.

The proof of this theorem relies on the study of zeroes of the denominators qn(t) of the
partial quotients, which appear infinitely often. This is of interest if we want to specialise t to
an element of Q. In this context, Zannier proved the following result:
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Theorem 3.40 (Theorem 1.7 [Zan16]). Let k be a number field and let D ∈ k[t] be a polynomial
of even degree. Then, for each l ∈ R there are only finitely many θ ∈ Q of degree ≤ l over k
which are common zeros of infinitely many qn(t).

We point out that the proof of Malagoli’s theorem deals also with the case of non-squarefree
D(t) which complicates (also conceptually) the proofs.

— 3.41. Another question which can be investigated regards how prime factors arise in denom-
inators of polynomial continued fractions. This is strongly related to the problem of reducing
polynomial continued fractions modulo a prime. In his thesis [Mer16], Merkert studied this
problem for the continued fraction of

√
D ∈ Q[t], in the nontrivial case that the continued

fraction is not periodic (i.e. D(t) is not Pellian). More precisely, he proved the following result:

Theorem 3.42 (Theorem 1, [Mer16]). If D(t) is not Pellian, then for all primes p except finitely
many, p appears in infinitely many polynomials an in a denominator of the coefficients.

Notice that the primes excluded by the theorem are exactly the prime 2, any prime appearing
already in the denominators of the coefficients ofD and those such thatDp (the reduction modulo
p of D) is a square. The proof of this result is based on the comparison between the continued
fractions of

√
D and

√
Dp. This question was already studied in a series of papers [vdP98],

[vdP99], [vdP99] by van der Poorten, which analyzed whether the reduction of the convergents
of

√
D gives the convergents of

√
Dp giving a theorem whose proof seems incomplete. In his

thesis, Merkert completes the proof of van der Porten’s theorem to prove his result (see [Mer16,
Theorem 7.2]). We also point out that these questions are related to the problem of reducing
minimal solutions of the polynomial Pell equation, and has recently been used by Platonov
[Pla12] to construct hyperelliptic curves over Q of genus 2, where the Jacobian contains a torsion
point of a specific order. These examples are relevant for the uniform boundedness conjecture
for torsion points of abelian varieties.

— 3.43. We present here to the interested reader three exercises about Pellian polynomials.
The solutions are collected in Appendix 3.10.

Exercise 3.44. 1. Show that if D ∈ Z [t] is monic and irreducible over any quadratic exten-
sion of Q, then D is not Pellian.

2. Show that, if D ∈ Z [t] is a monic polynomial, irreducible over Q and, for every prime p,
not a square modulo p, then D is not Pellian.

3. Show that, if D ∈ Z[t] is monic, irreducible over Q2(
√
5) and not a square modulo 2, then

D is not Pellian.

3.6 Distribution of Pellian polynomials

In this section we give a criterion for the solvability of the Pell equation x(t)2 −Dy(t)2 = 1 in
terms of a special point on the Jacobian of the hyperelliptic curve u2 = D(t), in the case where
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D is squarefree. This will allow us to study the solvability of the Pell equation for families of
polynomials, and links the problem to the topic of Unlikely Intersections.

— 3.45. Let k be an algebraically closed field, and let us denote by (t : u : v) homogeneous
coordinates of the projective plane P2

k, and call line at infinity the line defined by v = 0. Let
D(t) ∈ k[t] be a squarefree polynomial of even degree degD = 2d > 0. As D is squarefree, the
affine curve given by the equation

u2 = D(t)

is smooth. We denote by C the corresponding smooth projective curve. We may cover C
by two affine charts, one given by the affine curve above, and the other by the affine curve
v2 = s2dD(s−1), the glueing map between charts given by (v, s) = (ut−d, t−1) whenever it is
defined. The genus of C is g = d − 1 > 0. Such a curve is called a hyperelliptic curve, the
elliptic curves being those where d = 2. We may view C as a 2 : 1 cover of P1 ramified at the
2d distinct zeroes of D. In particular C → P1 is unramified at infinity. The projective curve
C has thus two distinct points at infinity, corresponding to the two distinct roots of s2dD(s−1)
around s = 0. We denote4 these two points by ∞+ and ∞−. Let J be the Jacobian variety of
C. We embed C into J via

j : x 7→ class of the divisor (x)− (∞+) =: [(x)− (∞+)]

and write
δ := j(∞−) = [(∞−)− (∞+)].

Notice that if the ground field k is not algebraically closed, then the points ∞+ and ∞− might
not be defined over k. In this case they are conjugate points of degree two over k. With these
notations, the following holds:

Theorem 3.46. Let D(t) ∈ k[t] be a polynomial of even degree and nonzero discriminant. With
the notation from above, the polynomial D is Pellian if and only if δ ∈ J(k) is a torsion point.

Proof. Suppose first that D is Pellian, so there exist polynomials x(t) and y(t) 6= 0 satisfying
x2 −Dy2 = 1. The nonconstant rational functions

ϕ+ = x(t) + y(t)u and ϕ− = x(t)− y(t)u

on C are regular on the affine part of C, so their divisors of poles are supported on {+∞,−∞}.
Since ϕ+ · ϕ− = 1, also their divisors of zeroes are supported at {+∞,−∞}, so we have

div(ϕ+) = a(∞+) + b(∞−)

for integers a, b which are not both zero. The degree of div(ϕ+) is zero, hence b = −a and thus
aδ = div(ϕ+). This shows that δ is a torsion point of order dividing a. Conversely, suppose

4After fixing the equation u2 = D(t) = d0t
2d + d1t

2d−1 + · · · it is possible to identify the two points by

stipulating that u± d
1/2
0 td has a zero at ∞±.
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that δ is torsion, so aδ is a principal divisor for some a 6= 0. Set aδ = div(ψ). We may write
ψ as x(t) + y(t)u on the affine part of C, where x and y are polynomials in t. The function
(x + yu)(x − yu) = x2 − Dy2 is then a rational function on P1 whose divisor is supported at
infinity, hence must be constant. Scaling x and y by a square root of this constant yields a
solution of the Pell equation.

— 3.47. Let k be an algebraically closed field. A polynomial D(t) ∈ k[t] is Pellian if and only
if the polynomial cD(at+ b) is Pellian for some a, c ∈ k∗ and b ∈ k. A suitable substitution will
bring a general polynomial D(t) of even degree 2d into the form

D(t) = t2d + tm + a1t
m−1 + · · ·+ am

for some m ≤ 2d − 2. We may consider the affine spaces Am
k for 0 ≤ m ≤ 2d − 2 as moduli

for polynomials of degree 2d up to substitutions D(t) ❀ cD(at + b). As such, Am
k contains a

nonempty open subvariety U ⊆ Am
k where the discriminant

disc(t2d + tm + a1t
m−1 + · · ·+ am)

as a polynomial in (a1, . . . , am) is nonzero. Over this open subvariety, the curves u2 = D(t) are
smooth, and their Jacobians define a principally polarised abelian scheme J over U . On the
boundary of U , the abelian scheme J degenerates. The abelian scheme J comes equipped with
a section σ : U → J given by the divisor of points at infinity (∞−)− (∞+). We may regard σ
as a group homomorphism Z → J , hence as a peculiar 1-motive M = [Z → J ] over U . We want
to understand the set

{λ ∈ U | σλ is torsion in Jλ} (3.8)

that is, the set of those λ ∈ U for which the 1-motive Mλ splits up to isogeny.

— 3.48. Let us take an analytic viewpoint on the exceptional set (3.8). Let U be a simply
connected complex manifold, and let A→ U be a holomorphic family of complex tori of dimen-
sion g on U . We obtain a vector bundle Lie(A) of rank g over U . The kernel of the exponential
map Lie(A) → A is a local system of free Z-modules of rank 2g, which we may identify with the
homology H1(A/U). Let ω1, . . . , ω2g be a basis of sections of this local system. We now may
describe sections σ : U → A as functions β : U → R2g via the following correspondence.

β : U → R2g σ(u) = exp

2g∑

i=1

βi(u)ωi(u)

We refer to β as Betti map. Notice that σ(u0) is a torsion point in the fibre Au0
if and only if

all coordinates of β(u0) are rational.

Let us consider the situation of 3.47, taking for simplicity as U a simply connected open
subset of Cm where the discriminant disc(t2d + a1t

m−1 + · · · + am) is nonzero. In this case,
2g = 2d− 2 so the scheme J over U (given by the Jacobians) has relative dimension d− 1. The
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rank of the Betti map is defined as the rank of the jacobian matrix of these Betti coordinates,
at a certain point of U , with respect to any choice of real-coordinates xj, yj, where we can
assume for example zj = xj + iyj on U are holomorphic coordinates on U and xj and yj are the
corresponding real and imaginary parts. For a general U the Betti map may be defined passing
to the universal cover (as done in [ACZ18]). We call generic rank the maximal rank of this
differential on S. The set where the rank decreases is a (proper) closed real-analytic subvariety;
hence the set where the rank is the generic one is open and dense (since U is simply connected).
Let u0 be a point of U where the rank r is maximal (i.e. = d − 1). By the implicit function
theorem, the fiber β−1(β(u)) is, in a neighbourhood of u0, a real analytic variety of dimension
2d− r.

The rank of the Betti map has been intensively studied in [ACZ18] (see also [CMZ16, Section
1.2] for some general proofs in the case d ≤ 2). In this case, the expectation is that the Betti
map β : U → R2d−2 has full rank almost everywhere, so we expect the fibres of β to be of
complex dimension d − 1. In particular, β−1(Q2d−2) is a countable union of subvarieties of
complex dimension m−d−1 (empty if m < d−1) in the ambient space U which has dimension
m.

Suppose now that we are given a one parameter family Dλ(t) describing a curve L in U .
Solely for dimension reasons, we expect L ∩ β−1(x) = ∅ for general x ∈ R2d−2. According to
the philosophy of unlikely intersections, it is reasonable to expect that

L ∩ β−1(Q2d−2) = {λ ∈ L | Dλ(t) is Pellian}

is a finite set, unless L has a very special shape. Indeed this has been proven in full generality
by Masser and Zannier (see [MZ15] for the special family Dλ(t) = t6 + t+ λ).

Example 3.49. In the case d = 1, the set U is a single point corresponding to the polynomial
t2 − 1, which is Pellian. The case d = 1 becomes interesting if we add an arithmetic constraint
and ask for the integers n 6= 0 such that the Pell equation

x(t)2 − (t2 + n)y(t)2 = 1

has a nontrivial solution with x(t), y(t) ∈ Z[t]. The answer was given by Nathanson in [Nat76]:
there is a nontrivial solution if and only if n ∈ {−2,−1, 1, 2}, and we can moreover describe all
solutions.

Example 3.50. Consider the family of polynomials Dλ(t) = t4 + t + λ. With the notation of
3.47, we are in the case d = 2 and m = 1. The discriminant of Dλ(t) is 2

8λ3−33, so we will take
for U the complex plane minus the three points 3

8
3
√
2e2πip/3 for p = 0, 1, 2. One can show that

in this example, the Betti map C ⊇ U → R2 is locally surjective, so we expect countably many
λ ∈ U for which Dλ(t) is Pellian. As a consequence of a theorem of Silverman-Tate, algebraic
points λ ∈ U for which Dλ(t) is Pellian have bounded height. In particular, given any number
field k, there are only finitely many λ ∈ k for which t4 + t+ λ is Pellian.

Example 3.51. Consider the family of polynomials Dλ(t) = t6 + t + λ. With the notation
of 3.47, we are in the case d = 3 and m = 1. The discriminant is 55 − 66λ5. In this case
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the Betti map C ⊇ U → R4 cannot be surjective, so it is unlikely that β(u) has only rational
coordinates. Let us compute a few terms of the continued fraction expansion of the square root
of the polynomial Dλ(t). We may think for the moment that the field of coefficients is Q(λ).
The Laurent series expansion of

√
D at infinity reads

√
D(s) = t3+

t−2

2
+
λt−1

2
− t−7

8
− λt−8

4
− λ2t−9

8
+
t−12

16
+
3λt−13

16
+
3λ2t−14

16
+
λ3t−15

16
− 5t−17

128
+ · · ·

and has polynomial part t3. We find

a0 = t3

a1 = 2t2 − 2λt+ 2λ2

a2 = − t

2λ3
− 1

2λ2

a3 = −8λ6t+ 16λ7

a4 = − t

24λ8 − 2λ3
− 16λ5 − 1

288λ12 − 48λ7 + 2λ2

a5 = −(1− 12λ5)3t

8λ9
− 18432λ25 + 15360λ20 − 6400λ15 + 848λ10 − 48λ5 + 1

128λ18

and the expressions keep growing. According to Abel’s Theorem, Dλ0
(t) is Pellian if and only

if the specialized sequence of the ai is periodic. Already from these few terms this periodicity
seems unlikely. Indeed, it has been shown by Masser and Zannier that there are only finitely
many λ0 ∈ U for which Dλ0

(t) is Pellian (see [MZ15]).

3.7 The Pell equation in the non-squarefree case

In this section, we analyze some examples of polynomial Pell equations with non-squarefree D.
These can be interesting for certain applications, and involve the study of so-called generalised
Jacobians. Consider, for example the, family

Dλ(t) = t2(t4 + t2 + λt)

where λ varies over complex numbers such that disc(t4+ t2+λt) 6= 0. The corresponding curves

u2 = Dλ(t)

have a cusp at (u, t) = (0, 0). The criterion in Theorem 3.46 is still valid when instead of the
Jacobian of a smooth curve we consider the generalised Jacobian of a possibly singular projective
curve (see Theorem 3.54 below). The theory of generalised Jacobians goes back to Rosenlicht
[Ros54], a standard reference is Chapter V in Serre’s Groupes algébriques et corps de classes,
[Ser75]. For the curves above, the generalised Jacobian is an algebraic group Gλ for which the
short exact sequence

0 → Ga → Gλ → Eλ → 0
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holds. It turns out that the extension is non-split (for a proof, see [Ser88, p. 188] or [CMZ13,
p.249]) We can then recover a finiteness result analogously to the case of squarefree D; this has
been done by H. Schmidt, a student of Masser, in his PhD thesis [Sch15], using again the Betti
maps and involving in this case the Weierstrass ℘ and ζ functions.

— 3.52. Let us give a short résumé on generalised Jacobians. Let C be a smooth projective
curve of genus g ≥ 0 over a field k, and let

m =
d∑

i=1

niPi (3.9)

be an effective divisor on C. We suppose that in (3.9) the Pi are distinct, so that d is the degree
of the reduced divisor underlying m. We call m a modulus. For a given rational function f on
C, write f ≡ 1 mod m if ordPi

(1 − f) ≥ ni holds for each i. Given two divisors D and D′ on
C whose support is disjoint from the support of m, we say that D and D′ are m-equivalent and
write

D ∼m D
′

if there exists a rational function f such that D −D′ = div(f) and f ≡ 1 mod m. The zealous
reader may check that ∼m is indeed an equivalence relation. Set

Pic0
m
(C) :=

Divisors on C of degree 0 and support disjoint from m

Divisors div(f) with f ≡ 1 mod m

.

A first theorem of Rosenlicht ([Ser88], Chap.V, Prop. 2 and Thm 1(b)) states that the functor
k′ 7→ Pic0

m
(C×k k

′) is representable by a commutative connected algebraic group Gm over k. We
call Gm the generalised Jacobian of the pair (C,m). Its dimension is g if m = 0 and g+deg(m)−1
if m 6= 0. If m = 0, we recover the usual Jacobian of C. If m′ divides m, there is a canonical
surjective morphism Gm → Gm

′ . In particular, there is a canonical short exact sequence

0 → Lm → Gm → A→ 0

where A = G0 is the Jacobian of C. A second theorem of Rosenlicht ([Ser88], V.13-V.17)
concerns the structure of Lm. It states that Lm is an affine algebraic group, isomorphic to the
product of a torus T of dimension d− 1 (and gives its precise structure), and an additive group
of dimension deg(m)− d. As in (3.9), d is the degree of the reduced divisor underlying m, hence
if m is already reduced, Gm is a semiabelian variety.

Definition 3.53. Let C be a proper, but not necessarily smooth curve over a field k. We call
generalised Jacobian of C the generalised Jacobian Gm of the pair (C̃,m) as introduced in 3.52,

where C̃ is the normalisation of C and m the exceptional divisor on C̃.

Theorem 3.54. Let D(t) ∈ C[t] be a polynomial of even degree, and denote by C ⊆ P2 the
projective curve given by the equation u2 = D(t). Let G be the generalised Jacobian of C, and
let δ := [(∞−)− (∞+)] be the divisor of points at infinity on C. The polynomial D is Pellian if
and only if δ ∈ G(C) is a torsion point.
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Proof. The proof is essentially the same as that of Theorem 3.46, and left as an exercise.

Example 3.55. Consider the polynomial Pell equation x(t)2 −Dλ(t)y(t)
2 = 1, where Dλ is the

following pencil of non-squarefree polynomials

Dλ(t) = t2(t4 + t2 + λt)

where λ varies over the complex numbers such that disc(t4+ t2+λt) 6= 0. As already mentioned,
the affine curve given by the equation u2 = Dλ(t) is singular at ∞ and at 0, and its generalised
Jacobian is a nonsplit extension

0 → Ga → G→ Eλ → 0

where Eλ is the elliptic curve given by u2 = D̃λ := t4 + t2 + λt. If (x, y) is a solution of the

Pell equation x2 − Dλy
2 = 1, then (x, ty) is a solution of x2 − D̃λy

2 = 1. This way, solutions
of the Pell equation x2 −Dλy

2 = 1 are in one-to-one correspondence with those solutions (x̃, ỹ)

of x̃2 + D̃λỹ
2 = 1 where t|ỹ. From the viewpoint of Theorem 3.54, this reflects the evident fact

that any torsion point of G maps to a torsion point on Eλ. A point g ∈ G(C) is torsion if and
only if it maps to a torsion point in Eλ(C) and moreover satisfies a “linear” condition.

Example 3.56. Consider the family of polynomials Dλ(t) = (t − λ)2(t2 − 1) for λ varying in
C\{0}. In this case, the solvability of the associated Pell equation is related to the study of some
special torsion points on Gm. Let us consider the projective curve H defined by the equation
u2 = t2 − 1: its normalisation has genus zero, so its Jacobian is trivial. Consider the two points
ξ±λ = (λ,±

√
λ2 − 1) of H with first coordinate equal to λ. A divisor A of degree 0 on H is

always principal, so A = div(f) for some function f on H; hence, we have an homomorphism

from divisors on H to Gm sending A 7→ f(ξ+
λ
)

f(ξ−
λ
)
. This yields indeed an isomorphism from the

generalised Jacobian of H to Gm. The divisor ∞− − ∞+ is equal to div(z), where z = t + u.
Here, as before, we denote by ∞+ the pole of the function t + u and by ∞− the pole of t − u.

The image of div(z) under the described isomorphism is equal to
z(ξ+

λ
)

z(ξ−
λ
)
= (λ+

√
λ2 − 1)2. This

means that the polynomial Dλ(t) is Pellian if and only if λ+
√
λ2 − 1 is a root of unity in Gm.

Hence there are countably infinitely many λ ∈ C such that the polynomial Dλ is Pellian.

Example 3.57. Consider the family of polynomials Dλ(t) = (t − λ)2(t − λ − 1)2(t2 − 1). We
can generalise the construction of the previous example. This time, we consider the two pairs
of points ξ±λ = (λ,±

√
λ2 − 1) and ξ±λ+1 = (λ+ 1,±

√
λ2 + 2λ), and obtain an isomorphism from

the generalized Jacobian to G2
m by sending div(f) to

(
f(ξ+

λ
)

f(ξ−
λ
)
,
f(ξ+

λ+1
)

f(ξ−
λ+1

)

)
. Arguing as in the previous

case, we conclude that Dλ(t) is Pellian if and only if λ +
√
λ2 − 1 and λ + 1 +

√
λ2 + 2λ are

both roots of unity. This is equivalent to study the torsion points on a curve in G2
m, that in our

case is the curve of equation x + x−1 = 2 + y + y−1. In general, these questions are related to
Manin-Mumford type questions for Gm, already asked by Lang, and proved by Ihara, Serre, Tate
in the case of curves (see [Lan65]) and then generalised by Laurent [Lau94] and independently
by Sarnak-Adams [SA94] to higher dimension. For a survey on this questions, see also Zannier’s
book [Zan12].
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Example 3.58. Consider the family of polynomials Dλ(t) = (t − 1)2(t4 + t + λ). In this case,
the generalized Jacobian G is an extension by Gm of an elliptic curve E. This elliptic curve E
is the Jacobian of the relative quartic with equation u2 = t4 + t2 + λ, and the extension is non
split in general. Also in this case we can apply Pellian criterion to the section s of G defined
by the class of the relative divisor (∞−)− (∞+) on the quartic, for the strict linear equivalence
attached to the node of the sextic u2 = Dλ(t) at t = 1 (see [Ser88]). This case was studied in
[BMPZ11]: applying the Main Theorem to the generalized Jacobian, we have again a result of
finiteness.

Exercise 3.59. Prove that there are countably infinitely many λ ∈ C such that the Pell equation
x2 − (t4 + t2 + λt)y2 = 1 has a nontrivial solution, but that there are only finitely many λ for
which there is a solution (x, y) where x is monic.

3.8 A Skolem-Mahler-Lech theorem for algebraic groups

The key ingredient in the proof of Theorem 3.30 is a theorem on algebraic groups reminiscent of
the classical Skolem-Mahler-Lech theorem. This theorem states that for a sequence of elements
in a field of characteristic zero u1, u2, . . . which is generated by a linear recurrence relation, there
exist an integer N and a subset R ⊆ Z/NZ such that

un = 0 ⇐⇒ (n mod N) ∈ R

holds, with finitely many exceptions. For sequences of rational numbers, this theorem is due
to Skolem (1933). Subsequent generalisations are due to Mahler for the case of number fields
(1935), and to Lech for general fields of characteristic zero (1953).

— 3.60. A subset A ⊆ Z is called a full arithmetic progression if there exist integers a, b 6= 0
such that A = {a + bn | n ∈ Z} holds. Subsets of Z which are the union of a finite set and
finitely many full arithmetic progressions form the closed sets of a topology on Z.

Theorem 3.61 (Skolem-Mahler-Lech). Let k be a field of characteristic zero. Let c1, . . . , cr and
u1, . . . , ur be elements of k with cr 6= 0, and recursively define un ∈ k by

un = c1un−1 + · · ·+ crun−r

for all n ∈ Z. The set {n ∈ Z | un = 0} is the union of a finite set and finitely many full
arithmetic progressions.

We shall deduce this theorem as a corollary of Theorem 3.63 below.

Classical proofs of this theorem use p-adic methods in one way or another. The corresponding
statement in characteristic p > 0 is wrong. The question was studied by Derksen (2005), but
there are already counterexamples by Lech (1953).
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Example 3.62. The sequence u1, u2, . . . in Fp(t) defined by u1 = 0, u2 = 2t, u3 = 3t3 +3t2 and

un = (2t+ 2)un−1 − (t2 + 3t+ 1)un−2 + (t2 + t)un−3

has the closed expression un = (t+1)n− tn−1. The set {n | un = 0} is the set of all powers of p,
which cannot be written as the union of a finite set and finitely many arithmetic progressions.

For the proof of Theorem 3.30 we will need the following result:

Theorem 3.63 (Corollary 3.3 [Zan16]). Let k be a field of characteristic zero and let G be an
algebraic group over k. Let X ⊆ G be a closed subvariety of G, and let g ∈ G(k) be a rational
point. The set

{n ∈ Z | gn ∈ X(k)}
is the union of a finite set and finitely many full arithmetic progressions.

Proof of Theorem 3.63. The proof of the main statement consists of a series of reductions to
particular cases, until we are in the situation where G is commutative, defined over a p-adic
field, and g is sufficiently close to the identity so that g lies in the image of the p-adic exponential
map. The final argument is then an application of elementary of p-adic analysis.

By replacing G by the Zariski closure of {gn | n ≥ 1} we may without loss of generality
assume that G is commutative and that {gn | n ≥ 1} is Zariski dense in G. Let G0, . . . , Gn

be the connected components of G, where Gm is the component of gm. The group G/G0 is
isomorphic to Z/nZ, generated by the class of g ∈ G1(k). If the statement of the theorem holds
for the closed subvarieties g−m(X ∩ Gm) of G0 and the element gn ∈ G0(k), then it holds for
X ⊆ G and g ∈ G(k), hence we also may suppose that G is connected.

We are now in the situation where G is commutative and connected, and {gn | n ≥ 1} is
dense in G. If X = G, then the set {n ∈ N | gn ∈ X} is all of Z and we are done. Suppose
then that X 6= G, and let us show that the set {n ∈ N | gn ∈ X} is indeed finite. In other
words, we show that for any infinite subset A ⊆ N the set of points {ga | a ∈ A} is dense in
G. Fix an infinite subset A ⊆ N and a rational function f on G such that f(ga) = 0 for all
a ∈ A. We must show that f is zero, and we will do so by using properties of p-adic analytic
maps. In order to move to a p-adic setting, let us choose and still denote by G a model of G
over spec(R) for some finitely generated integral ring R, such that the point g ∈ G(k) extends
to a point g ∈ G(R). For some sufficiently big prime number p, there exists a finite extension
K of Qp and an embedding R into the ring OK of integers of K. We may also assume that f
has good reduction modulo p. It suffices to show that the set of points {ga | a ∈ A} ⊆ G(K) is
dense in G viewed as an algebraic group over K.

We are now in the situation where G is defined over finite extension K of Qp with a model
over OK , and g is an integral point of G, that is, g ∈ G(OK) ⊆ G(K). With its p-adic topology
the group G(K) is a topological group, and G(OK) ⊆ G(K) is a compact open subgroup. There
exists a p-adic analytic group homomorphism e : Od

K → G(OK) which is a homeomorphism of
Od

K onto its image (the map e is the p-adic exponential map, see [Hoo42] for an elementary
treatment). The integer d is the dimension of G as an algebraic group. Since G(OK) is compact
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we have gn ∈ e(OK) for some sufficiently big n ≥ 1. Let us write ξ = e−1(gn). By partitioning
A into congruence classes modulo n and passing to one of these subsets, we may assume that
all elements of A are pairwise congruent modulo n, and so we write a = a′n + r with a fixed r
for all elements a ∈ A.

Let us now consider the map φ : OK → OK given by φ(zξ) = f(gnz+r). For every a ∈ A
we have that a′ is a zero of the locally analytic function z 7→ φ(zξ), but this is only possible
if the function is identically zero, which implies that also f is identically zero as we wished to
show.

We show now how the classical Skolem-Mahler-Lech theorem can be derived from the more
general Theorem 3.63.

Proof of Theorem 3.61. Let u1, u2, . . . be a sequence of elements of k defined by its initial terms
u1, . . . , ur ∈ k and a linear recurrence relation, say

un = c1un−1 + · · ·+ crun−r

for all n > r. In order to study the nature of the set {n ∈ N | un = 0} we may assume that k
is algebraically closed, hence we may suppose that there exist α1, . . . , αr ∈ k and polynomials
P1, . . . Pr ∈ k[t] such that

un =
r∑

i=1

Pi(n)α
n
i

holds for all n ≥ 0. We can consider the closed algebraic group G := Ga × Gr
m over k, the

subvariety X ⊆ G defined by

X = {(y, z1, . . . , zr) | P1(y)z1 + · · ·+ Pr(y)zr = 0}

and the point g = (1, α1, . . . , αr) ∈ G(k). We have gn ∈ X(k) ⇐⇒ un = 0, hence Theorem
3.61 is indeed a consequence of Theorem 3.63.

3.9 Periodicity of the degrees of the partial quotients

In this section we prove Theorem 3.30, stating that given a polynomial D(t) ∈ K[t] where k is an
algebraically closed field of characteristic zero, the sequence of degrees of the partial quotients
in the continued fraction expansion of

√
D(t) is periodic. If D(t) is a square, the assertion holds

trivially, so we will assume not to be in this case. Moreover, for simplicity of exposition we will
only consider the case where D is squarefree, even if the reduction to this case is not immediate.
The general case, which involves the use of generalized Jacobians, is treated in [Zan16].

— 3.64. We call a sequence (xn)n≥0 eventually periodic if there exist integers N ≥ 1 and L ≥ 1
such that xn+L = xn holds for all n > N . We call a subset X ⊆ N eventually periodic if its
characteristic function, viewed as a sequence, is eventually periodic. In other words, a subset
X ⊆ N is eventually periodic if, up to a finite set, it is a finite union of arithmetic progressions.



80 CHAPTER 3. HYPERELLIPTIC CONTINUED FRACTIONS

— 3.65. We fix once and for all a squarefree complex polynomial D(t) ∈ K[t] of even degree
2d > 2, and denote by √

D(t) = [a0; a1, a2, a3, . . .]

the continued fraction expansion of
√
D. We denote by pn/qn the convergents, where pn and qn

are the polynomials obtained from the recurrence relations (3.3). We set

ln := deg an

to ease notations. Let us denote by C the non-singular model of the curve given by the equation
u2 = D(t) as introduced in Section 3.6, and let J be the Jacobian variety of C. The curve C has
genus g = d− 1, so J is an abelian variety of dimension g. As done before, let us call ∞+ and
∞− the two points at infinity of C. The canonical embedding j : C → J sends y ∈ C to the class
of (y)− (∞+). Define

δ := j(∞−) = [(∞−)− (∞+)].

and, for 0 ≤ m ≤ g the closed, irreducible subvariety Wm ⊆ J given by

Wm = {j(y1) + j(y2) + · · ·+ j(ym) | y1, . . . , ym ∈ C},

which has dimension m. In particular Wg = J .

— 3.66. We will work with rational functions on the hyperelliptic curve C of the form f = p−qu,
where p and q are polynomials in the variable t. Such a function is regular on the affine part
of C, i.e. on the affine curve given by the equation u2 = D(t). An affine neighbourhood of the
points ∞+ and ∞− is given by the curve with equation

v2 = s2dD(s−1) (3.10)

as we have already seen in 3.45. Using the substitution rule (u, t) = (vs−d, s−1), the rational
function f(u, t) = p(t)−q(t)u transforms to g(v, s) = p(s−1)−q(s−1)vs−d. Denoting by c ∈ C the
leading coefficient of D(t), the points ∞+ and ∞− correspond to the solutions (v, s) = (±√

c, 0)
of (3.10). We can understand the behaviour of f at the two points at infinity as follows: write
v = s−d

√
D(s−1) around s = 0 as a Laurent series:

v = s−d
√
D(s−1) = ±

∑

n≥−d

cns
n

The behaviour of f at the two points at infinity is then the one of the series

p(s)± q(s)v = p(s)± q(s)
∑

n≥−d

cns
n

around s = 0, the sign depending on the choice of the signs for ∞+ and which ∞−. In particular,
if pn/qn is a convergent in the continued fraction expansion of

√
D, then pn − qnu has a pole of

order deg pn + d at one point, and a zero of order deg qn + deg an at the other point at infinity.
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— 3.67. Our goal is to prove that the sequence (deg an)n is eventually periodic. By (3.3), we
have deg(pn+1) = deg(pn)+deg(an), hence to show that (deg an)n is eventually periodic amounts
to show that the set

B := {deg pn | n ≥ 1}
is, up to a finite set, a union of finitely many arithmetic progressions. Let us introduce for l ≥ 1
the following three sets

A(l) := {k ≥ 1 | k · δ ∈ Wd−l};
B(l) := {k ≥ 1 | ∃n ≥ 1 with deg(pn) = k, deg(an) = l};
C(l) := {k ≥ 1 | ∃n ≥ 1, h ≥ 1 with deg(pn) = k − h, deg(an) = l + h}.

Notice that A(d) = ∅, A(1) = N\{0} and, for every i = 1, . . . , d−1 we have that A(i+1) ⊆ A(i).
Furthermore, as the sequence of the degrees of the pn is strictly increasing, the sets B(l) are all
disjoint.

Theorem 3.63 states that for any integer l ≥ 0, the set A(l) is eventually periodic. We have

B =
d⋃

l=1

B(l),

so it suffices to show for each l individually that B(l) is eventually periodic. We will do this
essentially by a “downward” induction on l, noting that B(l) is empty for l > d. The bulk of the
work consists of relating the sets A(l), B(l) and C(l), which we will do in the following lemmas.

Lemma 3.68. The inclusion B(l) ⊆ A(l) holds for all l ≥ 1.

Proof. To show this, we consider the rational functions ϕn := pn − uqn on the curve C. After
choosing signs suitably, ϕn has a zero at ∞+ of order deg qn + ln, and a pole at ∞− of order
deg qn + d, which is in fact the only pole. We then have

div(ϕn) = (deg qn + ln)(∞+)− (deg qn + d)(∞−) + σn

= −(deg pn)((∞−)− (∞+))− (d− ln)(∞+) + σn,

where σn is an effective divisor of degree d− ln of the form

σ =
d−ln∑

i=1

(xi)

with xi 6= ∞±, and we have used that deg pn = deg qn+d. Considering the corresponding linear
equivalence classes, we have that

(deg pn)δ = [σ − (d− ln)(∞+)] =
d−ln∑

i=1

[(xi)− (∞+)] =
d−ln∑

i=1

j(xi),

hence (deg pn)δ ∈ Wd−ln as wanted.
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On a side note, using the fact that Wd−ln = Wg−ln−1, we can observe that in some sense we
“usually” have ln = deg an = 1, since otherwise we would have (deg pn)δ ∈ Wg−1, and Wg−1 ⊆ J
is a subvariety of codimension 1.

We also remark that a similar argument combined with a more general version of Theorem
3.63 implies for instance that if the Jacobian is simple, then either deg an = 1 for all large n or
δ is a torsion point, i.e. we are in the Pellian case. Since a generic curve has a simple Jacobian,
this justifies the assertion that “usually, almost all the an have degree 1”.

Lemma 3.69. Let us consider the set C :=
⋃

i≥1C(i). Then, for every l ≥ 1, the sets B(l) and
C are disjoint.

Proof. We argue by contradiction. Let k ≥ 1 be an element of C and also of B(l). As C is the
union of the C(i) for all i ≥ 0 (and C(i) = ∅ for all i ≥ d), then there exists 1 ≤ r ≤ d− 1 such
that k ∈ C(r). hence, there exist by definition integers n,m, h ≥ 1 such that

deg pm = k − h deg am = r + h deg pn = k deg an = l

holds. Moreover, notice that deg qn − deg qm = deg pn − deg pm = h. Consider now the rational
function

qnpm − pnqm = qn(pm − uqm)− qm(pn − uqn);

then, on C it has a zero at ∞+ of order at least the minimum of deg qm + deg am − deg qn = r
and deg qn + deg an − deg qm = l + h. We conclude that qnpm − pnqm has a zero of order at
least 1 at ∞+, hence is identically zero since it is a polynomial in t which we just considered
as a rational function on C via the 2 : 1 covering C → P1. Therefore as pn/qn and pm/qm are
convergents of the continued fraction of

√
D, the equality qnpm = pnqm implies m = n and

k − h = deg(pm) = deg(pn) = k, contradicting the assumption that h is positive.

Lemma 3.70. For every l ≥ 1, the intersection of B(l) and A(l + 1) is at most finite; more
precisely, if k ∈ B(l) ∩ A(l + 1) then k ≤ d−l−1

2
.

Proof. We argue by contradiction. Let k ≥ 1 be an element of A(l + 1) and also of B(l). Since
kδ ∈ Wd−(l+1), there exists an effective divisor σ of degree d− (l + 1) such that

kδ = [σ − (d− l − 1)(∞+)].

This implies that there exists a rational function ϕ over C such that

div(ϕ) = −k((∞−)− (∞+)) + σ − (d− l − 1)(∞+). (3.11)

Since the divisor of poles of ϕ is supported only on {∞+,∞−}, then there exists two polynomials
p and q in K[t] such that ϕ = p − qu. Moreover, since k ∈ B(l), there exists an integer n ≥ 1
such that deg pn = k and deg an = l. Now, the function ϕn = pn − qnu vanishes at ∞+ with
order deg qn + l = k − d+ l. If we consider the rational function pqn − qpn = qnϕ− qϕn, it has
an order at ∞+ at least

min{− deg qn + ord(ϕ),− deg q + ordϕn} ≥ min{l + 1,− deg q + k − d+ l}. (3.12)
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We want now to estimate the degree of q. If we consider the function ϕ′ = p + qu, it will have
order ≥ −k at ∞+ and order ≥ k− d+ l+1 at ∞−, since it is the composition of the standard
involution (t, u) 7→ (t,−u) of K(C) with ϕ. Writing uq = 1

2
(ϕ+ ϕ′), we have that

ord∞+
(uq) ≥ min{k − d+ l + 1,−k}.

If k > d−l−1
2

, then the previous minimum is exactly −k, and we obtain that − deg q ≥ −k + d.
Using (3.12), we have that

ord∞+
(ϕ) ≥ min{l + 1, l} ≥ 1.

This means that qpn − pqn vanishes at infinity, so as before it has to be identically zero. Since
we have deg q ≤ k − d and pn and qn are coprime, this implies that, after replacing p and q by
suitable scalar multiples, p = pn and q = qn. But then the divisorial relation (3.11) shows that
deg an ≥ l + 1, which contradicts our assumption. Hence we proved that if k ∈ B(l) ∩A(l + 1),
then k ≤ d−l−1

2
as wanted.

To ease the notation, for every l ≥ 1 we will denote by D(l) := B(l) ∩ A(l + 1) and by
C>l :=

⋃
i>l C(i).

Lemma 3.71. For every l ≥ 1, we have that B(l) = D(l) ∪
(
A(l) \

(
A(l + 1) ∪ C>l

))
.

Proof. The inclusion ⊆ was shown in Lemmas 3.68, 3.69 and 3.70, so it enough to prove that
the inclusion ⊇ holds as well. By definition, D(l) ⊆ B(l), so we have only to care about the
second set. Take k ∈ A(l)\

(
A(l+1)∪C>l

)
; then, we have kδ ∈ Wd−l; moreover, we can assume

that k 6∈ D(l). As in the proof of Lemma 3.70, there exist two polynomials p and q in K[t] such
that the divisorial relation

div(p− qu) = −k((∞−)− (∞+)) + σ − (d− l)(∞+) (3.13)

holds, where σ is an effective divisor of degree d − l. Moreover, as in the previous Lemma, we
have that if k 6∈ D(l), then deg q ≤ k − d.

A priori p and q need not be coprime, but we can prove the quotient p/q is a convergent in
the continued fraction expansion of

√
D. Indeed, if r is the greatest common divisor between p

and q, we can set p = rp′ and q = rq′. It is now easy to see that the rational function p′ − uq′

has a zero at ∞+ of order at least k − d+ l ≥ deg(q′) + 1, hence p′/q′ = p/q is a convergent by
Proposition 3.20. Eventually replacing r by a suitable scalar multiple, this implies that there
exists n ≥ 1 such that p = rpn and q = rqn.

Before showing that p and q are actually coprime, let us prove that the support of σ does
not contain (∞+). Indeed if this is not the case, then we can write σ = σ′ + (∞+). Then we
find

div(p− qu) = −k(∞−)− (∞+) + σ′ − (d− l − 1)(∞+),

which in turn implies that k ∈ A(l + 1) contrary to our assumption.
Let us finally show that p and q are coprime. As σ is not supported at ∞+, we have that the

order of p− uq at ∞+ is exactly k− d+ l. On the other hand, the order of p− uq at ∞+ is also
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equal to ord∞+
(r(pn−qnu)) = − deg r+deg qn+deg an. Using that deg qn = deg pn−d, we have

that deg an + deg pn = k + l + deg r. Furthermore, deg pn ≤ k − deg r, hence k ∈ C(l + deg r)
contradicting the hypothesis that k 6∈ C>l if deg r ≥ 1.

This implies that, eventually taking suitable scalar multiples, p = pn and q = qn, hence
k = deg pn and l = deg an, proving that k ∈ B(l) as wanted.

We will finally prove Theorem 3.30 for squarefree D using an inductive argument on l.

Proof of Theorem 3.30 for squarefree D. As we have noticed in 3.67, to prove that the sequence
of (deg an)n is eventually periodic it suffices to prove that for every l ≥ 1 the set B(l) is eventually
periodic. This is certainly true for l ≥ d+ 1, because in this case B(l) is empty.

We proceed by downward induction on l. Fix l ≥ 1, and suppose that B(l′) is eventually
periodic for all l′ > l. For every i > l, we can write C(i) as

C(i) =
⋃

h≥1

{B(i+ h) + h} ;

hence, using the inductive hypothesis, any of these C(i) for i > l is eventually periodic. This
implies that C>l =

⋃
i>l C(i) is also eventually periodic. Finally, applying Theorem 3.63, we

have that the sets A(l) and A(l + 1) are eventually periodic. From the equality in Lemma 3.71
and the fact that D(l) is at most finite, we deduce that B(l) is eventually periodic as well,
proving the Theorem.

3.10 Solutions to the exercises

Proposition 3.72. Let D(t) ∈ Z[t] be a monic polynomial with the property that D is irreducible
over any quadratic extension of Q. Then D(t) is not Pellian.

Proof. Assume that D is Pellian, i.e. that there exist polynomials A,B ∈ Q[t] with B 6= 0 and

A2 − B2D = 1.

Suppose moreover that this solution is minimal in terms of the degree of the polynomial A.
Rearranging this equality and factorising we obtain

(A+ 1)(A− 1) = B2D.

The two polynomials on the left-hand side are coprime in Q[t], and D is irreducible, therefore
we can write (up to changing the sign of A)

{
A+ 1 = E2/α

A− 1 = αC2D
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where α ∈ Q∗ and C,E ∈ Q[t] are two polynomials such that B = CE. By taking the difference
of these two equations and multiplying by α we obtain

2α = E2 − α2C2D

which leads to

D =
E2 − 2α

α2C2
.

Let now β =
√
2α. Then we have the factorisation over Q(β).

D =
(E + β)(E − β)

α2C2
.

Notice that β 6∈ Q, otherwise (E/β, αC/β) would be a solution to the original Pell equation
with degE < degA. Hence we see that on the right-hand side, after cancelling the denominator,
there must be an even number of irreducible factors in Q(β)[t], against the hypothesis on D.

Proposition 3.73. Let D ∈ Z[t] be a monic polynomial irreducible over Q, and assume that,
for every prime p, D is not a square modulo p. Then, D(t) is not Pellian.

Proof. Assume that D is Pellian, i.e. there exist polynomials A,B ∈ Q[t], with B 6= 0, such
that

A2 − B2D = 1. (3.14)

Suppose moreover that this solution is minimal in terms of the degree of the polynomial A. If
we get rid of denominators, we obtain

a2A2 − b2B2D = u2,

with A,B ∈ Z[t] primitive polynomials and a, b, u ∈ Z with a, b, u pairwise coprime.

Suppose that u2 6= 1; then, if p is a prime dividing u and we reduce mod p, we have
b2B2D ≡ a2A2 mod p, hence D is a square modulo p, contradicting the hypothesis. Moreover,
if a2 6= 1 and we reduce modulo a prime p dividing a, then we have B2D ≡ (b2)−1 mod p that
is impossible as D is monic by hypothesis.
So we reduced to an equation of the form

A2 − b2B2D = 1,

with A,B ∈ Z[t] primitive polynomials and b ∈ Z.

Notice that b must be even, otherwise we would have that D is a square modulo 2 contra-
dicting the hypothesis. Let us then write b = 2kb′ with k ≥ 1 and (b′, 2) = 1.
Let us rewrite our equation as A2 − 1 = b2B2D, i.e.

(A+ 1)(A− 1) = b2B2D.
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Since D is irreducible, D will divide one of the two factors.

As (A+ 1, A− 1) = 2, then we can write (up to changing the sign of A)

{
A+ ǫ = 2αe2E2

A− ǫ = 22k−αc2C2D

where B = CE with C,E ∈ Z[t] and (C,E) = 1, b2 = 22kc2e2 with (c, e) = 1, ǫ = ±1 and α = 1
or α = 2k − 1.

Taking the difference between these two equations we have

±2 = 2αe2E2 − 22k−αc2C2D

hence, dividing by 2, we have

±1 = 2α−1e2E2 − 22k−α−1c2C2D.

Notice that we can exclude that α = 2k − 1, because otherwise D would be a square modulo 2,
contradicting the hypothesis. So α = 1 and the equation reduces to

e2E2 − 22k−2c2C2D = ±1.

As done before, we have that e2 = 1, otherwise if p is a prime dividing e (p 6= 2) and we reduce
modulo p, we have 22k−2c2C2D ≡ ±1 mod p which is impossible as D is monic.
So, we reduced to an equation of the form

E2 − 22k−2c2C2D = ±1.

If the sign on the right-hand side is a plus, then (E, 2k−1cC) is again a solution of the Pell
equation (3.14) for D, with degE < degA. But A was chosen to have minimal degree, which
gives a contradiction.

Therefore we can assume that

E2 − 22k−2c2C2D = −1. (3.15)

If 2k − 2 = 0 then D is a square modulo 2, which contradicts our hypothesis.
On the other hand, if 2k − 2 ≥ 2, we have that E2 ≡ 1 mod 2, hence E = 2F + 1 with

F ∈ Z[t]. If we substitute in (3.15), we have

22k−2c2C2D − (1 + 2F )2 = 1,

hence
22k−2c2C2D − 4F 2 − 4F = 2,

which gives a contradiction reducing modulo 4, thus concluding the proof.
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Remark 3.74. Notice that, in the previous proposition, the hypothesis “for every prime p, D is
not a square modulo p” cannot be improved. Take for example

D(t) = t2 + t+ 1.

Then, D is Pellian, in fact:
(
8

3
t2 +

8

3
t+

5

3

)2

−
(
8

3
t+

4

3

)2

(t2 + t+ 1) = 1.

Moreover, D is monic and irreducible over Q and D is not a square modulo p for every prime
p 6= 3 (we have instead that t2 + t+ 1 ≡ (t+ 2)2 mod 3). Furthermore, notice that 3 is exactly
the prime which appears in the denominators of the solution of the Pell’s equation, as also shown
in the proof of the proposition.

Proposition 3.75. Let D ∈ Z[t] be a monic polynomial. Assume D is irreducible over Q2(
√
5)

and not a square modulo 2; then D is not Pellian.

Proof. Assume that D is Pellian, i.e. there exist polynomials A,B ∈ Q[t], with B 6= 0, such
that

A2 − B2D = 1. (3.16)

Suppose moreover that this solution is minimal in terms of the degree of the polynomial A. If
we get rid of denominators, we obtain

a2A2 − b2B2D = u2,

with A,B ∈ Z[t] primitive polynomials and a, b, u ∈ Z with a, b, u pairwise coprime.

Suppose a2 6= 1; if we reduce modulo a prime p dividing a, then we have B2D ≡ (b2)−1

mod p that is impossible as D is monic by hypothesis.
So we reduced to an equation of the form

A2 − b2B2D = u2,

with A,B ∈ Z[t] primitive polynomials and b, u ∈ Z.

Notice that b must be even, otherwise we would have that D is a square modulo 2 contra-
dicting the hypothesis. Let us then write b = 2kb′ with k ≥ 1 and (b′, 2) = 1.
Let us rewrite our equation as A2 − u2 = b2B2D, i.e.

(A+ u)(A− u) = b2B2D.

Since D is irreducible, D will divide one of the two factors. As (A+ u,A− u) = 2, we can write
(up to changing the sign of A and u)

{
A+ u = 2αe2E2

A− u = 22k−αc2C2D
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where B = CE with C,E ∈ Z[t] and (C,E) = 1, b2 = 22kc2e2 with (c, e) = 1, and α = 1 or
α = 2k − 1.

Taking the difference between these two equations we have

2u = 2αe2E2 − 22k−αc2C2D,

hence, dividing by 2, we have

2α−1e2E2 − 22k−α−1c2C2D = u.

Notice that we can exclude that α = 2k − 1, because otherwise D would be a square modulo 2,
contradicting the hypothesis. So α = 1 and the equation reduces to

e2E2 − 22k−2c2C2D = u. (3.17)

Notice that, if u is a square in Q, then (eE/
√
u, 2k−1cC/

√
u) is again a solution of the Pell

equation (3.16) for D, with degE < degA. But A was chosen to have minimal degree, which
gives a contradiction.

Therefore we can assume that u is not a square in Q. We can also assume that 2k − 2 ≥ 2,
otherwise D would be a square modulo 2, contradicting the hypothesis.

We can then rewrite D as

D =
e2E2 − u

22k−2c2C2
. (3.18)

As u is odd and D ∈ Z[t], we have that 4 | (e2E2 + u); In particular, this means that all
coefficients of monomials of positive degree in E are even and, as u is odd, the constant term of
e2E2 is congruent to 1 modulo 4. This means that u ≡ 1 mod 4. If we factorize D, we obtain

D =
(eE +

√
u)(eE −√

u)

22k−2c2C2
,

which gives a non trivial factorization in Q(
√
u) as u is not a square in Q. Notice that this also

gives a non trivial factorization in Q2(
√
5) because, if u is congruent to 1 modulo 8, then u is a

square in Q2 while, if u is congruent to 5 modulo 8, then it is a square in Q2(
√
5), contradicting

the hypothesis that D is irreducible over Q2(
√
5). This proves the proposition.
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