
  

 

Abstract—In this paper, a discrete event approach is proposed 

for the optimal charging of electrical vehicles in microgrids. In 

particular, the considered system is characterized by renewable 

energy sources (RES), non-renewable energy sources, electrical 

storage, a connection to the external grid and a charging station 

for electric vehicles (EVs). The decision variables are relevant to 

the schedule of production plants, storage systems and EVs’ 

charging. The objective function to be minimized is related to the 

cost of purchasing energy from the external grid, the use of non-

renewable energy sources and tardiness of customer’s service. 

The proposed approach is applied to a real case study and it is 

shown that it allows to considerably reduce the dimension of the 

problem (and thus the computational time required) as 

compared to a discrete-time approach.  

Index Terms—microgrids, scheduling, discrete event control, 

optimization. 

 

I. INTRODUCTION AND STATE OF THE ART 

Electric vehicles (EV) are more and more popular due to 

the fewer emissions and lower oil dependency [1]. World 

organizations are encouraging national authorities to support 

the spread of electric or hybrid vehicles. Mass deployment of 

EVs could be a good solution, but, unfortunately, may cause 

technical problems to the electrical grid due to intermittent 

and distributed loads [2]. In fact, the available energy might 

become insufficient to host the recharge processes of too 

many EVs. Moreover, the adoption of many renewable 

energy source increases the uncertainty and intermittency of 

the power production, leading to possible problems to the 

grid.  

A solution to avoid these problems is to integrate the 

charging station facilities within smart microgrids [3]. EVs 

tend to be treated as a new form of the mobile energy storage 

system with the potentiality to promote energy management 

in microgrids. In this framework, in [4] a day-ahead EV 

charging scheduling based on game theory is proposed. The 

impacts of the EVs demand on the electricity prices are 

formulated via a game model in the scheduling, considering 

possible actions of other EVs. In [5], a cooperative 

optimization method for capacity configuration and economic 

dispatch of EVs in microgrids considering time and space 

varying energy prices is presented. The charging of a large 

number of vehicles in the same node of the grid is a 

challenging problem: it is necessary to respect the maximum 

power of the specific node while serving in a reasonable time 

the customers, and to define new optimization problems and 
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new solution approaches to obtain results in a reasonable 

runtime. In [6], the authors develop a distributed algorithm 

based on alternating direction method of multipliers to 

decompose the problem. Scalability and effectiveness of this 

approach are tested in the IEEE 119-bus and IEEE 906-bus 

distribution networks. The literature also analyses the 

possibility of integrating the charging station of EVs in 

parking lots. In particular, in [7] the authors propose a new bi-

level framework for operational scheduling of a smart 

distribution company with EV parking lot and renewable 

energy sources. In the proposed bi-level model, maximization 

of the company’s profit is obtained in the upper-level problem 

by minimizing the cost of power purchased from the 

wholesale market. The lower-level problem aims to maximize 

the profit of the parking lot owner. This model is converted to 

a non-linear single-level problem by using Karush–Kuhn–

Tucker conditions. 

In the most recent literature even event driven scheduling 

approaches for EVs are discussed, just like in [8] and [9]. 

However, all event driven approaches are essentially on-line 

scheduling algorithms aiming to “correct” a pre-existing 

scheduling when some “event” like the arrival of a new 

customer (vehicle) occurs. The main difference with our 

approach is that the optimal scheduling of a given set of jobs 

(vehicles) is here considered. Other works based on discrete 

event approaches are present in the literature of energy 

management but only from a simulation point of view [10]. 

In a previous work [11], a discrete time approach is 

proposed for a similar optimization problem: however, the 

high number of variables required a high computational time. 

As can be seen in the following, the approach proposed in the 

present paper reduces significantly the computational burden 

with respect to a discrete time approach. However, the 

adoption of a discrete event approach requires the 

introduction of some hypotheses concerning the way the 

control strategy is developed and applied to the system. 

The considered problem falls within the class of scheduling 

problems [12], since the objective is to assign the optimal 

timing of EVs charging process. It is worth noting that for 

non-regular optimization objectives the timing decisions are 

not trivial. Non-regular optimization objectives are those 

objectives for which an advantage may be obtained by 

delaying the completion time of a job while letting the 

completion times of all other jobs unaltered [13]. In the 

following, it will be shown that the cost to be minimized in 
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this paper generally falls within the class of non-regular 

objectives. 

The formalization of the problem presented in this paper 

aims at optimizing the timing of the execution of jobs (the 

charging of the various vehicles) on a single resource (the 

charging station), assuming that the service sequence is given 

and coincident with the arrival sequence of the vehicles. In 

this way, the dynamics of the considered system may be 

represented within a discrete event setting. 

The paper is organized as follows. In the next section, the 

discrete event approach is presented. In the third section, the 

optimization problem is formalized, in connection with a 

specific system model. In the fourth, the results of the 

application to a real case study is presented. Some concluding 

remarks are finally provided in the last section. 

 

II. THE SYSTEM MODEL 

In this paper, a discrete event approach is applied to the 

optimal scheduling of the plants of a microgrid. The choice of 

a discrete event representation is highly recommended in 

order to limit the number of decision variables and thus to 

reduce the runtime for the solution of the optimization 

problem [10]. In fact, in order to keep the problem tractable, 

it is necessary, in discrete time modelling,  to limit the number 

of the time intervals. This can be obtained either by reducing 

the length of the optimization horizon or increasing the length 

of the time discretization intervals. Of course, both these 

choices are in general not satisfying. For these reasons, it is 

highly preferable to adopt a discrete event approach, that 

tracks events when they take place, without adopting any type 

of approximation.  

The system is described by a sequence of state transitions 

induced by the events that affect the system behaviour (an 

iteration of the state equation takes place only in coincidence 

with the occurring of an event).  

The system taken into account for this paper is composed 

of the following elements (see Figure 1):  

 A traditional (non-renewable) energy source;  

 A renewable resource that is intermittent and not 

controllable. It is assumed that a forecast of the energy 

coming from the renewable source is available for the 

whole horizon of interest; 

 A point of common coupling (PCC) with the main grid, 

that guarantees a bidirectional power flow from/to the 

microgrid; 

 An electrical storage element; 

 A single charging station for electric vehicles; that can 

serve a single vehicle at a time (pre-emption is excluded); 

 A traditional electric load characterized by a known daily 

pattern. 

 

 

 

Figure 1. The considered microgrid. 

For each vehicle Vi it is assumed that the following 

information is known a priori: 

 Release time (rti): the time when the vehicle becomes 

available for service; 

 Dead line (dli): the time at which the service must be 

completed (hard requirement); 

 Due date (ddi): the time at which the service for the 

vehicle should be completed (soft requirement); ; 

 Energy request (Eri): the energy required to charge vehicle 

Vi;  

 Penalty coefficient αi for unitary tardiness: the cost paid 

for a unit delay, for vehicle Vi. It is expressed in [€/(h 

kWh)].  

It is assumed that the service cannot be refused to any 

customer and that deadline constraints must be fulfilled. 

The power flows, expressed as functions of time instant t, 

are: 

 ( )Lf t : the power flow from the charging station to the 

vehicle (no vehicle to grid is allowed); 

 ( )NLf t : the net load defined as the  difference 
* *( ) ( )NL Rf t f t , where * ( )NLf t  is the non-deferrable load, 

and * ( )Rf t  is the power coming from renewables;  

 ( )Gf t : the power flow from/to the main grid (active sign 

convention is used) ; 

 ( )NRf t : the power generated by the traditional source;  

 ( )Sf t : the power flow from/to the storage unit (active 

sign convention is used).  

In addition, the value of the energy level of the storage at 

time instant t will be denoted by  x t . It has been already 

pointed out that the service sequence is assumed to be given, 

and that the vehicles are charged following the order of their 

arrivals. Thus, only timing decisions have to be taken. Since 

in this model the energy request ERi by each vehicle has to be 

completely satisfied, the possible customer's dissatisfaction is 

quantified only by a tardiness cost. 



  

Figure 2 represents the time intervals between the 

completion of two services of the (i-1)-th vehicle, namely Ci-

1, and the completion time of the i-th vehicle, Ci
,, can be 

partitioned in two different time intervals: 

 CHi, the charging time (interval) for the i-th vehicle; 

 IDLEi, the idle time interval before the charging of 

the i-th vehicle. 

It is assumed that IDLEi must be greater than or equal to a 

minimum value , that is  the set-up time of the charging 

station. 

The values of interest of the state variable  x t  (it is 

assumed that (0)x is known)  are those corresponding to the 

completion of each service.  

 

Figure 2. The time intervals between two successive completion 

time instants. 

The following restrictive assumptions (but not too unrealistic) 

are introduced in order to obtain a finite-dimensional 

optimization problem (that is a parameter optimization 

problem instead of a functional optimization problem): 

 the power flow ( ),Gf t  and the power injected by the non-

renewable source ( )NRf t  are kept constant within each 

idle time interval (Ci-1 ,Ci-CHi) and at another constant 

value within each charging time interval  

(Ci-1+IDLEi, Ci), for 1,...,i N , being C0 the initial time 

instant (C0 = 0); 

 the power flow to the charging station ( )Lf t  is kept 

constant within each time interval. This constant value 

will be denoted as 
L,if 1,...,i N .  

 The forecasts of the renewable power * ( )Rf t , the non-

deferrable load * ( )NLf t  and the selling/buying prices (SP(t) 

and BP(t)) to/from the main grid are not affected by 

uncertainties.  

The system state equation can be written by means of a  

discrete event recursion as 

1 1, 2,( ) ( )i i S i i S i ix C x C f IDLE f CH              1,...,i N     (1) 

where 1,S if is the average value of ( )Sf t  within time interval 

(Ci-1,Ci-1+IDLEi), 2,S if is the average value of ( )Sf t  within 

time interval (Ci-1+IDLEi, Ci). Namely, 
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For the sake of brevity, in the following ( )ix C will be denoted 

simply as ix .  

In this work, the power network is considered as a single 

busbar, i.e. no grid topology is taken into account. This 

assumption is widely used in the literature regarding small 

microgrids [12]. Thus, the power balance equation is given by 

( ) ( ) ( ) ( ) ( )L G S NL NRf t f t f t f t f t                                       (4) 

that is a necessary condition for each time instant. As we are 

considering a discrete event formalization, (4) can be imposed 

only on the average values of the variables over time intervals. 

Thus, basing on the previous restrictive assumptions, we can 

write 

1, 1, 1, 1,0 G i S i NL i NR if f f f                    i=1,…, N                         (5) 

, 1, 2, 2, 2,L i G i S i NL i NR if f f f f               i=1,…, N                      (6) 
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Observe that, as the function ( )NLf t  is assumed to be known 

by forecasted data, the terms 1,NL if , 2,NL if  can be expressed 

as a function of Ci-1,Ci,IDLEi, which are included within the 

set of the decision variables of the problem. 

In the solution of the optimization problem that we are 

defining, only the values of 1,S if  and 2,S if  will be 

determined.  These values will be given as set points to the 

internal control loop of the storage system, that takes into 

account also the continuous time constraints of the system.  

 

III. THE OPTIMIZATION PROBLEM  

The objective function considers multiple cost functions: 

the cost due to the energy production from non-renewable 

sources, the energy bought/sold from/to the main grid, and a 

penalty cost for tardiness. Note that costs related to energy 

have to be considered separately for idle and charging time 

intervals. Thus, the following minimization is sought  
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           1,...,i N      (11) 

being CNR the unit cost [€/kWh] for generation of non-

renewable energy, and i [€/kWh*h] the penalty per unit of 

tardiness and unit of energy request. Moreover, the following 

notation is used 

 1, 1,max ,0G i G if f                                      1,...,i N            (12) 

 1, 1,max ,0G i G if f                               1,...,i N              (13) 

  2, 2,max ,0G i G if f                              1,...,i N               (14) 

 2, 2,max ,0G i G if f                              1,...,i N               (15) 

so that 

1, 1, 1,G i G i G if f f                                            1,...,i N           (16) 

2, 2, 2,G i G i G if f f                                         1,...,i N             (17) 

In the cost function (9), the first and second term in the 

summation, expressed by (10) and (11), represent the net cost 

for buying/selling energy from/to the main grid during the i-

th idle and in the i-th charging time, respectively. The third 

and the fourth terms represent the energy cost from the non-

renewable source in the i-th idle time, and in the i-th charging 

time, respectively. Finally, the last term represents the 

charging process tardiness cost of the i-th vehicle.  

It is  noteworthy that in the cost function there is no term 

referring to the revenue for the charging services. That is 

justified by the assumption that all customers must be 

completely serviced. Note that, as ( )BP t  and ( )SP t  are 

assumed known, terms (10) and (11) can be expressed as 

functions of the decision variables Ci-1, Ci, IDLEi. 

Now, the proposed optimization problem can be formalized 

as the minimization in (9), subject to constraints (1), (5)-(8), 

(10), (11), (16), (17), along with the following further 

constraints have to be considered 

i iC dl                                          1,...,i N                             (18) 

i i iC CH rt                              1,...,i N                            (19) 

iIDLE                                 1,...,i N                          (20) 

1i i i iIDLE C CH C               1,...,i N                           (21) 

,L i i if CH ER                           1,...,i N                         (22) 

i i itard C dd                           1,...,i N                        (23) 

1,

MAX MAX

g G i gF f F                   1,...,i N                          (24) 

2,

MAX MAX

g G i gF f F                 1,...,i N                         (25) 

Min i Maxx x x                           1,...,i N                         (26) 

,MAX 1, ,MAXS S i SF f F               1,...,i N                         (27) 

,MAX 2, ,MAXS S i SF f F               1,...,i N                        (28) 

L,MIN L, L,MAXif f f                       1,...,i N                              (29) 

NR, NR 2, NR,MAXMin if f f               1,...,i N                              (30) 

NR, NR 2, NR,MAXMin if f f                1,...,i N                              (31) 

All the considered variables are non-negative, except 

1, 2,,G i G if f  and 1, 2,,S i S if f . 

. Constraints (18) imply the respect of the deadlines, 

whereas constraints (19) impose that the service cannot start 

before the release time. Constraints (20) impose a minimum 

duration of the idle time before a service , and constraints (21) 

are equivalent to the definition of idle times as functions of 

charging and completion times. Constraints (22) impose the 

satisfaction of the entire energy request for each vehicle.  

Constraints (23) define the tardiness of the services. Note 

that itard is defined as 

 max  ,0i i itard C dd    

However, since the tardiness variables are constrained to be 

non-negative, and one of the terms in the minimization in (9) 

has the objective of minimizing the overall tardiness cost, the 

max in the definition may well be substituted by the inequality 

in constraints (23). Finally, technical constraints in (24)-(31) 

represent physical upper and lower bounds on the power 

flows and the energy contents in the system. 

Some comments are needed about the structure of the 

optimization problem above defined. First, it is important to 

note that the problem is, in general, a nonlinear mathematical 

programming problem, since the definite integrals present in 

the cost function (9), as well as those in constraints (10) and 

(11), are nonlinear functions of the decision variables of the 

problem. Besides, there is also a product of decision variables 

in constraints (22). Second, the presence of a time-varying net 

non-deferrable load makes the considered problem non-

regular, using the terminology of scheduling theory. In fact, 

it may be advantageous to delay the execution of a job by 

shifting it to a period with lower net non-deferrable energy 

demand. In a similar way, the presence of time-varying 

buying/selling prices, may make convenient the shifting of 

services to time periods with lower energy buying prices. 

Thus, even though the service sequence is assumed fixed, the 



  

timing problem is not trivial and requires the solution of a 

mathematical programming problem. Finally, observe that the 

statement of the problem has been provided in the assumption 

that the forecasts of the net non-deferrable load for the whole 

horizon of interest. These forecasts are retained as completely 

reliable, and thus, although in a discrete event setting, this 

gives rise to a sort of predictive control scheme. Then, as in 

any predictive control scheme, one can imagine the repeated 

application of the proposed approach at different time 

instants, conditioned by the most recent available information 

about the current system state and predictions about the future 

pattern of the net non-deferrable load. It can be reasonable, 

for instance, to think of solving a new problem at any service 

completion time instants. 

IV. APPLICATION TO A CASE STUDY 

The case study chosen to test the proposed approach refers 

to a set of facilities in the Savona municipality (Italy). Six EVs 

(N=6) are supposed to be charged in a grid-connected 

microgrid. 

The nonlinear optimization problem defined by (1)-(31) 

has been solved through the use of Lingo optimization tool 

(www.lindo.com). Table 1 provides data of the elements of 

the microgrid. 

TABLE I. SYSTEM PARAMETERS 

Parameter Value Parameter Value 

MAXx  125 [kWh] L,MINf  10[kW] 

Minx  40 [kWh] NR,MAXf  65 [kW] 

MAX

gF  451[kW] NR,Minf  6.5[kW] 

,MAXSF  36[kW] (0)x  60[kWh] 

L,MAXf  50[kW]   0.08[h] 

 In order to express the functions 11, i,( , )i iNL if IC DLEC and 

12, i,( , )i iNL if IC DLEC , a forecast of the net load ( )NLf t  is 

available for a complete day with a time discretization step of 

15 minutes. To compute both functions, in order to calculate 

the integral functions (10) and (11), the forecasts has been 

interpolated via a seventh order polynomial function (Figure 

3). In the considered case study, the electrical demand is much 

greater than renewables and thus the pattern follows the one 

of load but lowered by photovoltaics contribution. 

 

Figure 3: Net load function and its polynomial approximation.  

Table 2 reports data for each vehicle. Numbers represent 

time instants expressed in hours, starting from an initial time 

instant put equal to 0 (corresponding to 8:00 a.m.).  

TABLE II. THE PARAMETERS OF THE 6 VEHICLES 

Vehicle 1 2 3 4 5 6 

𝒓𝒆𝒍𝒊 0 4 7.5 9.5 11 13 

𝒅𝒅𝒊 3 5.6 10.5 11.5 13 15 

dli 7 7 12 12 16 16 

Eri [kWh] 28 30 25 20 18 25 

αi [€/(h kWh)] 0.1 0.1 0.1 0.1 0.1 0.1 

For this test case it is assumed that the prices for purchasing 

or selling energy from/to the main grid are constant (BP=0.15 

[€/kWh] and SP=0.12[€/kWh]). All the vehicles considered 

have the same penalty coefficient for the tardiness, so no 

vehicle has any preference. Owing to the time-invariance of 

the prices, terms in (10) and (11) can be simply expressed as 

 1, 1,iIDLE G i G i iFG BPf SPf IDLE       1,...,i N        (10 bis) 

 2, 2,iCH G i G i iFG BPf SPf CH          1,...,i N          (11 bis) 

The results obtained are reported in Table 3 and represented 

in the following Figures 4-6.  

TABLE III. OPTIMAL SERVICES SCHEDULING 

Vehicle 1 2 3 4 5 6 

iC  [h] 5.26 6.34 10.5 11.24 12.92 13.83 

iCH  [h] 0.93 1 2.52 0.66 0.79 0.83 

iIDLE  [h] 3.33 0.08 1.62 0.08 0.87 0.08 

tardi 2.26 0.74 0 0 0 0 

 

 



  

 

Figure 4. Gantt diagram of the sequence of the 6 services.  

 

Figure 5. The power bought from the external grid 

 

Figure 6. The (average) power flow from/to the storage 

 

Remark 1 

In order to appreciate the difference between the discrete-

event approach proposed in this paper and the discrete-time 

approach proposed by the same authors in [11], let us consider 

two problem instances: a) a discrete-time instance [11], with 

4 vehicles to be charged over 24 hours, b) a discrete-event 

instance with 6 vehicles over the same time horizon of 24 

hours. In [11] it is reported that the problem instance gives 

rise to a mathematical programming problem with 945 integer 

variables and 240 continuous variables, whose solution by the 

commercial software LINGO requires a computational time 

approximately equal to 6 hours. Instead, problem instance b) 

gives rise to a mathematical programming with 120 

continuous variables, whose solution, by the same 

commercial software as above and on the same platform, 

requires less than one second. 

 

V. CONCLUSIONS AND FUTURE DEVELOPMENTS 

 The paper presents a discrete event approach to the optimal 

scheduling of charging operations of electric vehicles. The 

effectiveness of the proposed approach has been tested by a 

real case study, considering a daily time horizon. Future 

developments will regard the definition of strategies that 

involve also the sequencing of services and not only their 

timing. Finally, the case of allocation of services to multiple 

charging stations, will be investigated. 
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