
J. reine angew. Math. 761 (2020), 123–140 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2018-0012 © De Gruyter 2020

A Zariski–Nagata theorem
for smooth Z-algebras

By Alessandro De Stefani at Lincoln, Eloísa Grifo at Charlottesville and
Jack Jeffries at Ann Arbor

Abstract. In a polynomial ring over a perfect field, the symbolic powers of a prime
ideal can be described via differential operators: a classical result by Zariski and Nagata says
that the n-th symbolic power of a given prime ideal consists of the elements that vanish up to
order n on the corresponding variety. However, this description fails in mixed characteristic.
In this paper, we use p-derivations, a notion due to Buium and Joyal, to define a new kind of
differential powers in mixed characteristic, and prove that this new object does coincide with
the symbolic powers of prime ideals. This seems to be the first application of p-derivations to
commutative algebra.

1. Introduction

The subject of symbolic powers is both a classical commutative algebra topic and an
active area of current research. While there are many open problems in the setting of alge-
bras containing a field, even the results that are well understood for algebras over fields are
mostly open for Z-algebras and local rings of mixed characteristic. Thanks to the perfectoid
spaces techniques of Schölze [19] as applied to commutative algebra by André and Bhatt,
a major advance has happened recently [1, 2]. Ma and Schwede have shown that a theorem of
Ein–Lazersfeld–Smith [10] and Hochster–Huneke [14] on the uniform containment of sym-
bolic and ordinary powers of ideals holds for regular rings of mixed characteristic [16].

In this paper, we are interested in generalizing another classical result on symbolic powers
to the case of mixed characteristic and smooth Z-algebras: the Zariski–Nagata theorem, which
establishes that symbolic powers of prime ideals can be described using differential operators.

Zariski’s main lemma on holomorphic functions [20], together with work by Nagata in
[18, p. 143], states that if P is a prime ideal in a polynomial ring over a field, then

P .n/ D
\

m�P
m maximal

mn:
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This result was later refined by Eisenbud and Hochster [11], and can be rephrased using differ-
ential powers of ideals, a fact which was well known in characteristic 0 and extended to perfect
fields; see [8]. More precisely, if R is a smooth algebra over a perfect fieldK, andQ is a prime
ideal in R, the Zariski–Nagata theorem states that the n-th symbolic power Q.n/ of Q consists
of the elements in R that are taken inside Q by every K-linear differential operator of order at
most n � 1.

Rather than using perfectoid techniques, our generalization of Zariski–Nagata makes use
of a different arithmetic notion of derivative, the notion of a p-derivation, defined by Joyal [15]
and Buium [5] independently. From a commutative algebra point of view, p-derivations are
rather exotic maps from a ring to itself – in particular, they are not even additive – but they do
have many applications to arithmetic geometry, such as in [3,6,7]. To the best of our knowledge,
this is the first application of p-derivations to commutative algebra.

While our results cover a more general setting, let us now describe the case where
R D AŒx1; : : : ; xn�, where A denotes the integers Z or the p-adic integers Zp. Given a prime
ideal Q in R, we study two different types of differential powers associated to Q. The first
one is defined just in terms of differential operators, as in the statement of the Zariski–Nagata
theorem. More precisely, given an integer n > 1, the n-th (A-linear) differential power of Q is
defined as

QhniA D ¹f 2 R W à.f / 2 Q for all à 2 Dn�1RjA º;

where Dn�1
RjA

is the set of A-linear differential operators on R of order at most n � 1 (see
Definition 2.3). If Q does not contain any prime integer, then QhniA coincides with the n-th
symbolic power of Q.

Theorem A (see Theorem 3.9). Let R D AŒx1; : : : ; xn�, where A D Z or A D Zp, and
let Q be a prime ideal of R such that Q \ A D .0/. Then Q.n/ D QhniA for all n > 1.

More generally, the previous result holds if R is an essentially smooth algebra over A,
where A is either Z or a DVR of mixed characteristic.

If the prime idealQ contains a prime integer p, then differential powers are not sufficient
to characterize symbolic powers, as one can see in Remark 3.11. To overcome this issue, we
combine differential operators and p-derivations to define the mixed differential powers of an
ideal. Given a fixed p-derivation ı, the n-th mixed differential power ofQ is the ideal given by

Qhnimix D ¹f 2 R W .ıa ı à/.f / 2 Q for all à 2 DbRjA with aC b 6 n � 1º:

In principle, the mixed differential powers of an ideal depend on the choice of a p-derivation ı.
However, in our setting Qhnimix is independent of the choice of the p-derivation (see Corol-
lary 3.25). This new notion of mixed differential powers allows us to characterize symbolic
powers of prime ideals that contain a given integer p.

Theorem B (see Theorem 3.23). Let R D AŒx1; : : : ; xn�, where A D Z or A D Zp,
and let Q be a prime ideal of R such that Q \ A D .p/, for a prime p. Then Q.n/ D Qhnimix

for all n > 1.

More generally, we show this holds for R an essentially smooth algebra over A, where A
is either Z or a DVR with uniformizer p, as long as R has a p-derivation and A=pA satisfies
some additional assumptions (e.g., A=pA is perfect).
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2. Background

2.1. Essentially smooth algebras. Throughout, we say that a ring S is smooth over
a subring B if the inclusion map B ! S is formally smooth and S is a finitely generated
B-algebra. We say that S is essentially smooth over B if the inclusion map B ! S is formally
smooth and S is a localization of a finitely generated B-algebra (i.e., S is essentially of finite
type over B).

Lemma 2.2. Let either

(1) A D k be a field, or

(2) A be Z or a DVR with uniformizer p 2 Z, and k D A=pA.

Let .R;m; K/ be a local ring that is essentially smooth over A, and suppose that p 2 m.
Assume that the field extension k ! K is separable. If y1; : : : ; ys is a minimal generating set
of m in Case (1) or p; y1; : : : ; ys is a minimal generating set of m in Case (2), then there is
a free basis for �RjA that contains dy1; : : : ; dys .

Proof. By [17, Theorem 25.2], there is a well-defined map % W m=m2 ! �RjA ˝R K

given by Œx� 7! dx ˝ 1. Since, by the essential smoothness hypothesis, the R-module �RjA is
free, it suffices to show that %.y1/; : : : ; %.ys/ are K-linearly independent in �RjA ˝R K.

In Case (1), this follows from [17, Theorem 25.2], applied to the maps k ! R! R=m.
In Case (2), consider the commutative diagram given by

m=m2 %
//

�
��

�RjA ˝R K

Š
��

m=m2 %
// �RjA ˝R K,

where the vertical maps are given by reduction modulop, and .R;m;K/D .R=pR;m=pR;K/.
By [17, Theorem 25.2], the map % in the second row is injective. The kernel of the vertical map
� is generated by the class of p modulo m2, and the vertical map on the right side is an
isomorphism, since p D 0 in K. It follows that the kernel of the map % in the first row is
generated by the class of p modulo m2, and the result follows.

[Correction added after online publication 11 December 2018: Lemma 2.1 of a previous
version of the article was not correct (and was removed). The only place where this statement
was used was Lemma 2.2. The proof of Lemma 2.2 is now fixed.]

2.2. Differential operators. We now review some results regarding differential opera-
tors that we use in the rest of the paper. A general reference for differential operators
is [12, Chapter 16]; specific references to the facts we need are given below.

Definition 2.3 ([12, Section 16.8]). Let B ! S be a map of rings. The B-linear differ-
ential operators on S of order n are defined inductively as follows:

� D0
S jB
D HomS .S; S/ � HomB.S; S/,

� Dn
S jB
D ¹ı 2 HomB.S; S/ W Œı; f � 2 Dn�1S jB

for all f 2 D0
S jB
º.
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Lemma 2.4. Let B ! S be a formally smooth map of rings. Suppose that�S jB is free,
e.g., S is local, and let ¹dz1; : : : ; dzƒº be a free basis for �S jB . Then there exists a family of
differential operators ¹D˛º˛2Nƒ such that

� D˛.z
ˇ / D

�
ˇ
˛

�
zˇ�˛ for all ˇ 2 Nƒ with ˇi > ˛i for all i ,

� D˛.z
ˇ / D 0 for all ˇ 2 Nƒ with ˇi < ˛i for some i .

The S -module Dn
S jB

is a free S -module generated by ¹D˛ W j˛j 6 nº for each n.

Proof. By [12, Theorem 16.10.2], S is differentially smooth over B . Then the statement
above is the content of [12, Theorem 16.11.2].

2.3. p-derivations. Fix a prime p 2 Z, and let S be a ring on which p is a nonzero-
divisor. The following operators were introduced independently in [15] and [5].

Definition 2.5. We say that a set-theoretic map ı W S ! S is a p-derivation if

�.x/ WD xp C pı.x/

is a ring homomorphism. Equivalently, ı is a p-derivation if ı.1/ D 0 and ı satisfies the fol-
lowing identities for all x; y 2 S :

ı.xy/ D xpı.y/C ypı.x/C pı.x/ı.y/

and

(2.3.1) ı.x C y/ D ı.x/C ı.y/C Cp.x; y/;

where

Cp.X; Y / D
Xp C Y p � .X C Y /p

p
2 ZŒX; Y �:

If ı is a p-derivation, we set ıa to be the a-fold self-composition of ı; in particular, ı0 is the
identity. We set Derp.S/ to be the set of p-derivations on S . For all positive integers n, we let

Dernp.S/ D ¹ı1 ı � � � ı ıt W ıi 2 Derp.S/ for all i , and t 6 nº:

For a thorough development of the theory of p-derivations, see [6].
Note that having a p-derivation on S is equivalent to having a lift � W S ! S of the

Frobenius map S=pS ! S=pS . Indeed, it follows from the definition that if � W S ! S is
a map such that the induced map N� W S=pS ! S=pS is the Frobenius map, then

ı.x/ D
�.x/ � xp

p

is a p-derivation. For example, if R D ZŒx1; : : : ; xn�, then the map that sends a polynomial
f .x1; : : : ; xn/ to 1

p
.f .x

p
1 ; : : : ; x

p
n / � f .x1; : : : ; xn/

p/ is a p-derivation.
However, not every ring admits ap-derivation. See [9] or consider the following example:

Example 2.6. Let S D ZpŒx1; : : : ; xn�, andR D S=.p�f /, where f 2 .x1; : : : ; xn/2.
Suppose that there is some p-derivation ı on R. Then considering p D f as elements of R,
by Proposition 3.13 (2), ı.f / 2 .p; x1; : : : ; xn/R. However, by Remark 2.8, ı.p/ 2 .Z X pZ/,
which yields a contradiction.
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However, we do have the following:

Proposition 2.7. A ring S admits a p-derivation in each of the following cases:

(1) S D Z,

(2) S D W.C/ is the Witt vectors over C for some perfect ring of positive characteristic,

(3) S is a polynomial ring over a ring B that admits a p-derivation, or

(4) S is p-adically complete and formally smooth over a ring B that admits a p-derivation.

Suppose also that ı is a p-derivation on S and Q is a prime of S containing p. Then there
exists a p-derivationeı on S 0 � S such thateı.s/ D ı.s/ for all s 2 S when:

(a) S 0 D SQ, or

(b) S 0 D cSQ.

In Case (a), we writeeı D ıQ and in Case (b), we writeeı D cıQ.

Proof. As we have noted before, showing that a p-derivation exists is equivalent to
proving that there exists a lift of Frobenius. Moreover, to verify that a p-derivationeı extends ı,
it suffices to check that the associated lift of Frobenius extends the other. We verify for (1)–(4)
that there is a lift of Frobenius.

(1) The identity on Z is a lift of Frobenius.
(2) The Witt vectors admit a functorially induced Frobenius.
(3) Extend a lift of Frobenius on A by sending each variable to its p-th power.
(4) Let ˛1 W S ! S=pS be the composition of the quotient map with the Frobenius map

on S=pS . Since S is formally smooth, there is a map ˛2 W S ! S=p2S such that ˛1 D �2ı˛2,
where �2 is the natural surjection of S=p2S ! S=pS . Inductively, by formal smoothness one
obtains a family of maps ˛i W S ! S=piS such that �i ı ˛i D ˛i�1. This compatible system
of maps induces a map

lim
 �

˛i W S ! lim
 �

S=piS Š S

that is a lift of the Frobenius.
(a) Let ˆ W S ! S be a lift of the Frobenius. We note that if ˆ.t/ 2 Q, then, since

ˆ.t/ � tp 2 pS and p 2 Q, we also have tp 2 Q, and hence t 2 Q. It follows that ˆ induces
a map ˆQ W SQ ! SQ. Now, we claim that ˆQ is a lift of the Frobenius as well. In fact, if
s=t 2 SQ, observe that ˆQ. st / �

sp

tp
2 pSQ. To see this, note that

ˆQ

�
s

t

�
�
sp

tp
D
ˆ.s/tp �ˆ.t/sp

tpˆ.t/
D
tp.ˆ.s/ � sp/ � sp.ˆ.t/ � tp/

tpˆ.t/
;

where the numerator is a multiple of p, and the denominator is not.
(b) Given a lift ˆ of the Frobenius on S , to see that it extends to cSQ it suffices to check

that ˆ.Q/ � Q. In fact, in this case, we have ˆ.Qn/ � ˆ.Q/n � Qn for all positive inte-
gers n, sinceˆ is a ring homomorphism, and it follows thatˆ isQ-adically continuous. To see
that ˆ.Q/ � Q, observe that, for s 2 Q, ˆ.s/ � sp modpS , so ˆ.s/ 2 Q, because p 2 Q
by assumption.

Remark 2.8. Repeated application of equation (2.3.1) shows that a p-derivation sends
the prime ring ofR (i.e., the canonical image of Z) to itself. IfR has characteristic zero, so that
its prime ring is Z, any p-derivation on R restricts to a p-derivation on Z. On the other hand,
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there is a unique p-derivation on Z given by the Fermat difference operator:

ı.n/ D
n � np

p
:

In particular, when R has characteristic zero, every p-derivation satisfies

ı.pn/ D pn�1 � ppn�1 2 .p/n�1 X .p/n

for all n > 1.

Remark 2.9. Let R be a ring, and I; J � R be ideals. Let ı be a p-derivation. If a 2 I
and b 2 J , then ı.aC b/ � ı.a/C ı.b/ modulo IJ . In fact, we have that

Cp.a; b/ D
ap C bp � .aC b/p

p
D

p�1X
iD1

�
p
i

�
p
aibp�i 2 IJ;

because p j
�
p
i

�
for all 1 6 i 6 p � 1. In particular, we have that Cp.a; b/ 2 .a/ \ .b/. With

similar considerations, one can show that if a; b 2 I , then ı.aC b/ � ı.a/C ı.b/modulo Ip.

3. Results

3.1. Primes not containing p. In this subsection, we focus on differential and sym-
bolic powers of prime ideals that do not contain any prime integer. To study symbolic powers
of such ideals, we use differential operators.

Definition 3.1 ([8]). Let S be a ring, B a subring of S , and I an ideal of S . The n-th
(B-linear) differential power of I is

I hniB WD ¹f 2 S W à.f / 2 I for all à 2 Dn�1S jB º:

The following proposition is a generalization of [8, Proposition 2.4].

Proposition 3.2. Let S be a ring,B be a subring of S , and a an ideal of S . The following
properties hold:

(1) ahniB is an ideal, and ahniB � a.

(2) ahnC1iB � ahniB for all n.

(3) For any 0 6 t 6 n, and any à 2 Dt
S jB

, we have à.an/ � an�t . In particular, an � ahniB .

(4) If Q is a prime ideal of S , and a is Q-primary, then ahniB is Q-primary.

(5) If Q is a prime ideal of S , and a is Q-primary, then a.n/ � ahniB .

Proof. The proof of (1) and (2) is analogous to that of [8, Proposition 2.4], where the
same claim is made for the case when B is a field.

For part (3), we first proceed by induction on t > 0. If t D 0, then à 2 D0
S jB

is just mul-
tiplication by an element of S , and the statement is clear. If t > 1, we proceed by induction
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on n � t > 0. If n D t , then the inclusion à.an/ � a0 D S is trivial. By induction, assume
that à.an�1/ � an�1�t . To conclude the proof that à.an/ � an�t , it suffices to show that
à.xy/ 2 an�t for all x 2 a and y 2 an�1. To see this, observe that à.xy/ D Œà; x�.y/C xà.y/,
with Œà; x� 2 Dt�1

S jB
. By the inductive hypothesis on t , we have Œà; x�.y/ 2 an�1�.t�1/ D an�t .

Since x 2 a and y 2 an�1, we also have xà.y/ 2 aan�1�t D an�t , and the claim follows. In
particular, this shows that à.an/ � a for all à of order up to n � 1, so that an � ahniB .

Part (5) follows from (4), given that an � ahniB , and that a.n/ is the smallest Q-primary
ideal that contains an.

To show (4), we first observe that an � ahniB � a by parts (1) and (3), so thatp
ahniB D Q:

To prove that ahniB isQ-primary, we proceed by induction on n > 1. The case n D 1 is true by
assumption, since ah1iB D a. Let xy 2 ahniB , with x … Q. Observe that xy 2 ahniB � ahn�1iB

by part (2), and by the inductive hypothesis the latter ideal is Q-primary. Since x … Q, it
follows that y 2 ahn�1iB . Let à 2 Dn�1

S jB
, so that Œà; x� 2 Dn�2

S jB
. It follows that Œà; x�.y/ 2 a,

by definition of ahn�1iB . On the other hand, we also have à.xy/ 2 a, and thus

xà.y/ D à.xy/ � Œà; x�.y/ 2 a:

By using again that x … Q, and that a is Q-primary, it follows that à.y/ 2 a. Since à 2 Dn�1
S jB

was arbitrary, we conclude that y 2 ahniB , and thus ahniB is Q-primary.

Corollary 3.3. In the context of Lemma 2.4, fix ˛ such that ˛tC1 D � � � D ˛ƒ D 0, for
some t 6 ƒ. Consider the ideal I D .z1; : : : ; zt /, and let u … I . Then:

(1) D˛.uz˛/ … I .

(2) For all ˇ ¤ ˛ with jˇj D j˛j, D˛.uzˇ / 2 I .

Proof. First, note that zˇ 2 I jˇ j. By Proposition 3.2 (3), à.zˇ / 2 I for all à 2 Djˇ j�1
S jB

.
Therefore, every differential operator ŒD˛; u� with j˛j D jˇj, takes zˇ into I . It follows that

(1) D˛.uz˛/ D ŒD˛; u�.z˛/C uD˛.z˛/ D ŒD˛; u�.z˛/C u … I , and

(2) D˛.uzˇ / D ŒD˛; u�.zˇ /C uD˛.zˇ / D ŒD˛; u�.zˇ / 2 I .

We will need the following lemma on the behavior of differential powers under local-
ization. The following is from forthcoming work by Brenner, Núñez-Betancourt, and the third
author [4]. We include a proof here for completeness, while we refer the reader to [4] for
a thorough treatment and other applications of differential powers. We thank Holger Brenner
and Luis Núñez-Betancourt for allowing us to share this result here.

Lemma 3.4 ([4]). Let S be a ring, let B be a subring of S , let W be a multiplicatively
closed subset of S , let V D W \ B , and let I be an ideal of S such that W �1I \ S D I .
Suppose that S is essentially of finite type over B . Then:

(1) .W �1I /hniB D .W �1I /hniV�1B ,

(2) I hniB D .W �1I /hniB \ S ,

(3) W �1I hniB D .W �1I /hniB .
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We first record the following lemma, which is well known in the case B is a field.

Lemma 3.5 ([4]). With notation as above, there are isomorphisms

W �1DnS jB Š D
n
W �1S jB

Š Dn
W �1S jV �1B

:

In particular, every ı 2 Dn
S jB

extends to an elementeı 2 Dn
W �1S jV �1B

.

Proof. By [12, 16.8.1 and 16.8.8], there are isomorphisms

DnT jC Š HomT .P nT jC ; T /

for all algebras C ! T , where P n
T jC

denotes the module of principal parts. By [12, 16.4.22],
each P n

S jB
is a finitely generated S -module. In view of [12, 16.4.15.1], there are isomorphisms

W �1P nS jB Š P
n
W �1S jV �1B

;

and by [12, 16.4.14.1] these modules are isomorphic to P n
W �1S jB

. We caution the reader that
the proof of [12, 16.4.14] contains an error, but the statements are correct. The stated isomor-
phisms now follow.

Proof of Lemma 3.4. Part (1) is immediate from the previous lemma.
We prove part (2). In order to show that I hniB � .W �1I /hniB \ S , it suffices to prove

that if Dn�1
S jB

.s/ � I for some s 2 S , then

Dn�1
W �1S jB

�
s

1

�
� W �1I :

For any à 2 Dn�1
W �1S jB

, by Lemma 3.5 there exist w 2 W and � 2 Dn�1
S jB

such that

à
�
s

1

�
D
�.s/

w

for all s 2 S . The claim is then clear. For the other containment, suppose that s 2 S , and
Dn�1
W �1S jB

. s
1
/ � W �1I . If à 2 Dn�1

S jB
, then it extends to a differential operatoreà 2 Dn�1

W �1S jB
such that eà� s

1

�
D
à.s/
1
:

By hypothesis, this element is in W �1I \ S D I . Thus, s lies in I hniB .
We now prove part (3). To show that W �1I hniB � .W �1I /hniB , we proceed by induc-

tion on n. The case n D 1 is trivial. Let s 2 I hniB , w 2 W , and à 2 Dn�1
W �1S jB

. Then

à
�
s

w

�
D
1

w

�
à.s/ � Œà; w�

�
s

w

��
:

By induction hypothesis, Œà; t �. s
t
/ 2 W �1I . By Lemma 3.5, there exist t 2 W and � 2 Dn�1

S jB

such that à. s
1
/ D �.s/

t
. Since �.s/ 2 I by hypothesis, we also have that à.s/ 2 W �1I . We now

prove the containmentW �1I hniB � .W �1I /hniB . Since elements ofDn�1
S jB

extend to elements
of Dn�1

W �1S jB
, we know that Dn�1

S jB
.s/ � Dn�1

W �1S jB
.s/ for all s 2 S . But then

Dn�1S jB .s/ � D
n�1
W �1S jB

.s/ D Dn�1
W �1S jB

�
st

t

�
D .Dn�1

W �1S jB
� t /

�
s

t

�
� Dn�1

W �1S jB

�
s

t

�
;

since multiplication by an element does not increase the order of a differential operator. By
hypothesis, Dn�1

W �1S jB
. s
t
/ � W �1I , so Dn�1

S jB
.s/ � W �1I \ S D I , as required.
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As noted in the introduction, the Zariski–Nagata theorem can be stated in terms of differ-
ential powers of ideals [8]. Namely, if S D KŒx1; : : : ; xd �,K is a perfect field, andQ is a prime
ideal of S , then QhniK D Q.n/ for all n. We can give a concise proof of the Zariski–Nagata
theorem for algebras over fields by combining the previous two results.

Theorem 3.6 (Zariski–Nagata). Let K be a field, let R be essentially smooth over K,
and letQ be a prime ideal ofR. IfK ,! RQ=QRQ is separable, thenQhniK D Q.n/ for all n.
In particular, if K is perfect, then QhniK D Q.n/ for every prime Q and all n.

Proof. It suffices to check the equality Q.n/RQ D QhniKRQ. By Lemma 3.4,

.QRQ/
hniKRQ D Q

hniKRQ;

and since Q is maximal in RQ, we have Q.n/RQ D QnRQ. Thus, it suffices to show

.QRQ/
hniKRQ D Q

nRQ:

Let y1; : : : ; yt be a minimal generating set forQRQ. Suppose that there exists an element
f 2 .QRQ/

hniK of order s < n, meaning that f 2 QsRQ, f … QsC1RQ. Then we can write
f D

P
i uiy

˛i C g for some units ui 2 RQ, some ˛i with j˛i j D s, and some g 2 QsC1RQ.
Fix some multi-index ˛ 2 Nd with j˛j D s and some unit u such that uy˛ appears in the
expression of f as above. By Lemma 2.2, dy1; : : : ; dyt form part of a free basis for �RjK .
Thus, by Theorem 2.4 and Corollary 3.3, there exists a differential operatorD˛ 2 DsRQjK

such
that D˛.uy˛/ … QRQ and D˛.uiy˛i / 2 QRQ for each other term uiy

˛i in the expression
for f . Additionally, since g 2 QsC1RQ and D˛ 2 DsRQjK

, we have D˛.g/ 2 Q by Proposi-
tion 3.2 (3). It follows thatD˛.f / … QRQ, contradicting the assumption f 2 .QRQ/hniK .

We note that the essential smoothness hypothesis is necessary.

Example 3.7. Let K be a field, let R D KŒx; y; z�=.y2 � xz/, let Q D .x; y/, and let
m D .x; y; z/. Then x 2 Q.2/ Xm2. However, it is evident from Definition 3.1 that

Qh2iK � mh2iK :

Thus, the conclusion of Theorem 3.6 cannot hold.

The following example shows that the conclusion of the Zariski–Nagata theorem may
fail if the field extension K ! RQ=QRQ is not separable.

Example 3.8. Let K D Fp.t/, let R D KŒx�, and let Q D .xp � t /. We claim that
Qh2iK D Q. By Lemma 2.4,

D1RjK D R˚R
d

dx

(where d
dx
D D1 in the notation of Lemma 2.4), so it suffices to show that d

dx
.xp � t / 2 Q.

Indeed, we have d
dx
.xp � t / D 0, so the claim is verified. SinceQ is a principal ideal, it follows

that Q.2/ D Q2. In particular, Q.2/ ¤ Qh2iK .

We are now ready to state our first main result: a version of the Zariski–Nagata theorem
for prime ideals that do not contain any prime integer.
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Theorem 3.9. Let A be either Z or a DVR of mixed characteristic. Let R be an essen-
tially smooth A-algebra. If Q 2 Spec.R/ is such that Q \ A D .0/, then Q.n/ D QhniA .

Proof. Let A0 D A˝Z Q and R0 D R˝A A0 D R˝Z Q. We note that A0 is a field of
characteristic zero, and R0 is formally smooth and essentially of finite type over A0. Observe
that QR0 is a prime ideal in R0. We claim that .QR0/.n/ \R D Q.n/. Indeed, A \Q D .0/,
so RQ Š R0QR0 , and thus

Q.n/ D QnRQ \R D ..QR
0/nR0QR0 \R

0/ \R D .QR0/.n/ \R:

We note next that .QR0/.n/ D .QR0/hniA0 ; indeed, Theorem 3.6 applies. Finally, applying
parts (1) and (2) of Lemma 3.4, we conclude that

Q.n/ D .QR0/.n/ \R D .QR0/hniA0 \R D QhniA ;

as desired.

As an application of Theorem 3.9, we obtain a generalization of Zariski’s main lemma
on holomorphic functions [11, 20].

Corollary 3.10. Let A be as in Theorem 3.9, and assume that R is smooth over A.
Let A0 D A˝Z Q, and R0 D R˝A A0. For a prime Q � R not containing any prime integer,
set B D ¹n \R W n 2 Max Spec.R0/ \ V.QR0/º. We have Q.n/ D

T
q2B q.n/.

Proof. By Theorem 3.9, it suffices to show thatQhniA D
T

q2B qhniA . SinceQ � q for
all q 2 B, it follows thatQhniA �

T
q2B qhniA . For the converse, we claim thatQ D

T
q2B q.

Let J D
T

q2B q, and let p be a prime integer. Note that

J �
\

q2B

.qC .p// D QC .p/;

where the equality follows from the fact that R=pR is a Hilbert–Jacobson ring, and that

¹qC .p/ W q 2 Bº D Max Spec.R/ \ V.QC .p//:

Observe that p is a nonzerodivisor onR=J , because p … q for all q 2 B. Let a 2 J . It follows
from the containments proved above that we can write a D x C py, where x 2 Q and y 2 R.
Since Q � J , we conclude that py D a � x 2 J , which implies that y 2 J . Therefore, we
have J � QC pJ � QCmJ � J for every maximal ideal m of R that contains p. Since
the prime integer p was arbitrary, this argument shows that J D QCmJ for every maximal
ideal m of R. Nakayama’s lemma applied to the localization at each such ideal allows us to
conclude that J D Q, as desired. Now let f 2

T
q2B qhniA , and ı 2 Dn�1

RjA
be arbitrary. By

assumption, we have that ı.f / 2
T

q2B q. Finally, our previous claim shows that ı.f / 2 Q,
and we conclude that f 2 QhniA .

3.2. Primes containing p. Throughout this subsection, p is a prime integer, and we
assume that all rings involved are p-torsion free; we note that this condition is implied by
the hypotheses of Setting 3.21 below. We now move our attention to prime ideals that contain



De Stefani, Grifo and Jeffries, A Zariski–Nagata theorem for smooth Z-algebras 133

a given prime integer p. The following remark shows that, in order to characterize symbolic
powers of such ideals, it is not sufficient to rely just on differential operators.

Remark 3.11. Let S be a ring of characteristic zero, let B � S be a subring, and let
Q be a prime ideal of S such that Q \ Z D .p/ ¤ .0/. Then, since every B-linear differential
operator à on S satisfies à.p/ D pà.1/ 2 .p/ � Q, we have p 2 QhniB for all n. BecauseT
n2N Q

.n/ D 0, QhniB ¤ Q.n/ for all but finitely many n.
For a simple concrete example, let S D Z and Q D .2/. Then Qn D .2n/ for all n,

whereas QhniZ D .2/ for all n.

Remark 3.11 shows that differential powers are too large for our purpose. The issue with
this approach is that differential operators cannot decrease the p-adic order of an element. On
the other hand, p-derivations have this feature, and this motivates the following definition.

Definition 3.12. Let p 2 Z be a prime, let S be a ring with a p-derivation ı, and let I
be an ideal of S . The n-th p-differential power of I with respect to ı is

I hnip WD ¹f 2 S W ıa.f / 2 I for all a 6 n � 1º:

We note that this definition depends on the choice of ı, although this is suppressed to avoid
conflicting notation with other notions.

It immediately follows from Definition 3.12 that I hnC1ip � I hnip for all n. In what fol-
lows, we will be mainly concerned with p-differential powers I hnip with respect to a fixed
p-derivation ı. However, it is convenient to define a similar object, where we take into account
all p-derivations on S at the same time:

I hniDerp WD ¹f 2 S W Derap.f / � I for all a 6 n � 1º:

Proposition 3.13. Let p 2 Z be a prime, let S be a ring with a p-derivation ı, and
let I be an ideal of S . If I is an ideal, then I hnip and I hniDerp are ideals for all n. Moreover,
if Q 2 Spec.S/ is a prime ideal, and a is a Q-primary ideal that contains p, we have the
following properties:

(1) For any s; t 2 N we have ahsip ahtip � ahsCtip and ahsiDerp ahtiDerp � ahsCtiDerp .

(2) ı.an/ � an�1 for all n. In particular, an � ahnip and an � ahniDerp .

(3) ahnip and ahniDerp are Q-primary ideals.

(4) a.n/ � ahnip and a.n/ � ahniDerp .

Proof. We only prove the statements for p-differential powers with respect to the given
p-derivation ı, since the proofs for I hniDerp and ahniDerp are completely analogous.

We first show by induction on n that I hnip is an ideal. For n D 1 we have I h1ip D I , and
the statement is trivial. Assume that I hn�1ip is an ideal, and let x; y 2 I hnip . By induction, we
have ı.x/C ı.y/ 2 I hn�1ip , since ı.x/; ı.y/ 2 I hn�1ip . It follows that

ı.x C y/ D ı.x/C ı.y/C Cp.x; y/ 2 I
hn�1ip ;

because Cp.x; y/ 2 .x/� I
hnip � I hn�1ip by Remark 2.9. This shows that xCy 2 I hnip . Now

let x 2 I hnip and b 2 S . By induction, we may assume that yc 2 I hn�1ip for all y 2 I hn�1ip
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and all c 2 S . Since ı.x/ 2 I hn�1ip , it follows that

ı.xb/ D xpı.b/C bpı.x/C pı.b/ı.x/ 2 I hn�1ip ;

because x 2 I hnip � I hn�1ip . This finishes the proof that I hnip is an ideal.
Now we let a be a Q-primary ideal of S that contains p.
(1) We proceed by induction on s C t > 0. If either s D 0, or t D 0, then the claim is

trivial. This takes care of the base case for the induction, and allows us to assume henceforth
that s > 1 and t > 1. Let x 2 ahsip and y 2 ahtip . We observe that

ı.xy/ D xpı.y/C ypı.x/C pı.x/ı.y/ 2 ahsip aht�1ip C ahtip ahs�1ip C a � ahs�1ip aht�1ip ;

and by induction we obtain that ı.xy/ 2 ahsCt�1ip . This shows that xy 2 ahsCtip , as claimed.
(2) We proceed by induction on n > 1. For n D 1 the statements are clear. Assume that

ı.an/ � an�1 holds true; we want to show that anC1 is mapped inside an by ı. We first show
that any element of the form xy, with x 2 a and y 2 an satisfies ı.xy/ 2 an. Using the induc-
tive hypothesis, we get

ı.xy/ D xpı.y/C ypı.x/C pı.x/ı.y/ 2 apan�1 C apn C p � an�1:

Given that p 2 a, we conclude that ı.xy/ 2 an, as desired. Because every element of anC1

can be written as a sum of elements xy, with x 2 a and y 2 an, it suffices to show that the
sum of any two such elements is mapped by ı inside an. Let z; w 2 anC1 be elements of
this form, and recall that ı.z C w/ D ı.z/C ı.w/C Cp.z; w/. Since Cp.z; w/ 2 .z/ � anC1,
and ı.z/; ı.w/ 2 an by what we have shown above, we conclude that ı.z C w/ 2 an. The
final claim now follows immediately, since we have the inclusions ı.anC1/ � an � ahnip by
induction, so that anC1 � ahnC1ip .

(3) Since an � ahnip � a, it follows immediately that
p

ahnip D Q for all n. To show
that ahnip is indeed primary, we proceed by induction on n, the base case ah1ip D a being
trivial. Let n > 2, and assume that xy 2 ahnip , but x … Q. Since ahnip � ahn�1ip , and ahn�1ip

isQ-primary by induction, we necessarily have that y 2 ahn�1ip . By assumption, we have that
ı.xy/ 2 ahn�1ip , therefore

.xp C pı.x//ı.y/ D ı.xy/ � ypı.x/ 2 ahn�1ip :

Because p 2 Q, we have xp C pı.x/ … Q, otherwise x 2 Q. Since ahn�1ip isQ-primary, we
conclude that ı.y/ 2 ahn�1ip , that is, y 2 ahnip .

Part (4) follows from (2) and (3), since a.n/ is the smallest Q-primary ideal that con-
tains an.

Remark 3.14. Let a be a Q-primary ideal, with p 2 Q. Note that an � ahnip is not
true, in general, if we do not assume that a itself contains p.

Example 3.15. Consider the ideal a D .4; x C 2; y C 2/ inside the polynomial ring
R D ZŒx; y�, and let p D 2. Then a is Q-primary, with Q D .2; x; y/. However, we claim
that there is a p-derivation ı for which a2 6� ah2ip . Set f D x C 2 and g D y C 2, and let �
be the ring homomorphism

� W ZŒx; y�! ZŒx; y�; h.x; y/ 7! h.x2; y2/:
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Consider the associated p-derivation ı 2 Derp.R/, defined as

ı.h/ D
�.h/ � h2

2
:

Note that ı.2/ D �1, while ı.x/ D ı.y/ D 0. Then we have

ı.fg/ D f 2ı.g/C g2ı.f /C 2ı.f /ı.g/:

Since f 2; g2 2 a, we have ı.fg/ 2 a if and only if ı.f /ı.g/ 2 a WR .2/ D Q. We have

ı.f / D ı.x C 2/ D ı.x/C ı.2/C
x2 C 22 � .x C 2/2

2
D �1C

�4x

2
D �1 � 2x

and similarly ı.g/ D ı.y C 2/ D �1 � 2y. If follows that ı.f /ı.g/ … Q. This shows that
ı.fg/ … a, and hence fg 2 a2 X ah2ip .

Lemma 3.16. Let p 2 Z be a prime, let S be a ring with a p-derivation ı, and let
Q 2 Spec.S/ be a prime ideal containing p. Let ıQ be the extension of ı to RQ. Then

QhnipSQ D .QSQ/
hnip ;

where the left-hand side is the p-differential power with respect to ı and the right-hand side is
the p-differential power with respect to ıQ.

Proof. It suffices to verify that r
1
2 QhnipRQ if and only if r

1
2 .QRQ/

hnip , which is
immediate from the fact that

.ıQ/
a

�
r

1

�
D
ıa.r/

1

for all a > 0.

We now make a key definition of this article. We combine the action of differential opera-
tors and p-derivations in order to control symbolic powers of prime ideals that contain a given
prime integer. The definition we write is very general, but we will later focus on a more restric-
tive setting.

Definition 3.17. Let ı be a p-derivation on S . Let I be an ideal of S . The n-th mixed
differential power of I with respect to ı is

I hnimix WD

\
aCb6nC1

.I haip /hbiB

D ¹f 2 S W .ıs ı à/.f / 2 I for all à 2 DtS jB with s C t 6 n � 1º:

Note that given aC b 6 nC 1, computing I haip involves applying ıs with s 6 a � 1,
while taking J hbiB requires taking differential operators à 2 Db�1

S jB
, so that overall, to com-

pute I hnimix we need to use combinations of differentials and p-derivations of order up to
.a � 1/C .b � 1/ 6 n � 1.

A word of caution about the order of operations: an element f 2 .I haip /hbiB is one such
that à.f / 2 I haip for all à 2 Db�1

S jB
, so that ıs ı à.f / 2 I for all s 6 a � 1.
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Remark 3.18. Note that the definition of I hnimix depends, in principle, on both ı and B .
However, we will show in Corollary 3.25 that this definition is actually independent of the
choice of ı for prime ideals in our main setting.

Proposition 3.19. If I is an ideal, then I hnimix is an ideal. Moreover, if Q 2 Spec.S/ is
a prime ideal that contains p, we have the following properties:

(1) Qhnimix � Qhmimix if n > m.

(2) Qn � Qhnimix for all n.

(3) Qhnimix is a Q-primary ideal.

(4) Q.n/ � Qhnimix .

Proof. First of all, we show that I hnimix is an ideal. Let a; b be integers such that
aC b 6 nC 1. Then I haip is an ideal by Proposition 3.13. As a consequence, .I haip /hbiB
is an ideal by Proposition 3.2 (1). Since I hnimix is then defined as an intersection of ideals, the
claim follows.

Part (1) is immediate from the definition.
For part (2), note that we have à.Qn/ � Qn�t for all t 6 n � 1, and à 2 Dt

S jB
, by Propo-

sition 3.2 (3). Since Qn�t � Qhn�tip by Proposition 3.13 (2), it follows that

Qn � .Qhn�tip /htC1iB :

Because this holds for all t 6 n � 1, we conclude that Qn � Qhnimix .
Finally, parts (3) and (4) follow from the corresponding properties for differential pow-

ers and p-derivation powers. In fact, if a and b 2 N are integers such that aC b 6 nC 1,
then observe that Qhaip is a Q-primary ideal by Proposition 3.13 (3). Therefore, the ideal
.Qhaip /hbiB is Q-primary by Proposition 3.2 (4). It then follows that

Qhnimix D

\
aCb6nC1

.Qhaip /hbiB

is Q-primary, since it is a finite intersection of Q-primary ideals. Because the n-th symbolic
power Q.n/ is the smallest Q-primary ideal that contains Qn, this concludes the proof.

Lemma 3.20. Let ı be a p-derivation onR. LetQ 2 Spec.R/ be a prime containing p.
Then

QhnimixRQ D .QRQ/
hnimix ;

where .QRQ/hnimix is the mixed differential power with respect to ıQ.

Proof. This is a direct consequence of Lemmas 3.4 and 3.16.

Setting 3.21. Let p be a prime. Let A D Z or a DVR with uniformizer p. Let R be
an essentially smooth A-algebra that has a p-derivation ı. Let Q be a prime ideal of R that
contains p, and assume that the field extension A=pA ,! RQ=QRQ is separable.

We note that polynomial rings over Z, over Witt vectors of perfect fields, or over complete
unramified DVRs of mixed characteristic and with perfect residue field satisfy Setting 3.21, by
Proposition 2.7.
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Proposition 3.22. In the context of Setting 3.21, suppose further that .R;m/ is local.
Then mhnimix D mn.

Proof. If p; y1; : : : ; yd is a minimal generating set for the maximal ideal m, then, by
Lemma 2.2, dy1; : : : ; dyd is part of a free basis for �RjA. It follows from Theorem 2.4 that,
for every ˛ D .˛1; : : : ; ˛d / 2 Nd , there exists a differential operator D˛ 2 D

j˛j

RjA
such that

D˛.y
ˇ / D

 
ˇ

˛

!
yˇ�˛

for all ˇ D .ˇ1; : : : ; ˇd / 2 Nd such that ˇi > ˛i for all i . Furthermore, we haveD˛.yˇ / D 0
for all ˇ for which ˇi < ˛i for some i .

The containment mn � mhnimix always holds. For the converse, assume that there exists
f 2 mhnimix of order s < n, meaning that f 2 ms , f … msC1. Then we can write

f D
X
i

uip
s�j˛i jy˛i C g

for some units ui 2 R, some ˛i with j˛i j 6 s, and some g 2 msC1. Fix some multi-index
˛ 2 Nd and a unit u such that ups�j˛jy˛ appears in the expression of f as above, with j˛j
maximal as such. Observe that multiplying by a unit does not affect whether or not f belongs to
the ideals mhnimix and mn. Therefore, after multiplying by u�1, we may assume that ps�j˛jy˛

appears in the support of f , with j˛j maximal. Consider the corresponding differential opera-
tor D˛ 2 DsRjA. Let t D s � j˛j and observe that D˛.pty˛/ D ptD˛.y˛/ D pt . Recall that
pt … mhtC1ip by Remark 2.8. For the remaining ˛i ¤ ˛ with j˛i j D j˛j, we have

D˛.uip
ty˛i / D ptD˛.uiy

˛i / 2 pt .y1; : : : ; yd / � mtC1
� mhtC1ip ;

by Corollary 3.3 and Proposition 3.13 (2). For ˛i such that j˛i j < j˛j, we must have

s � j˛i j > t C 1;

so that

D˛.uip
s�j˛i jy˛i / D ps�j˛i jD˛.uiy

˛i / 2 .ptC1/ � mhtC1ip ;

again using Proposition 3.2 (2). Finally, note that D˛.g/ 2 mtC1 by Proposition 3.2 (3), and
thus D˛.g/ 2 mhtC1ip as well. Combining these facts together, and using that mhtC1ip is an
ideal, we obtain

D˛.f / D p
t
CD˛

� X
˛i¤˛
j˛i jDj˛j

uip
ty˛i

�
CD˛

� X
j˛i j<j˛j

uip
s�j˛i jy˛i

�
CD˛.g/ … mhtC1ip :

Thus, f … .mhtC1ip /hj˛jC1iA , so that f … mhsC1imix . This contradicts the assumption that
f 2 mhnimix � mhsC1imix , where the last containment follows from Proposition 3.13 (1).

Theorem 3.23. In the context of Setting 3.21, one has the equality Q.n/ D Qhnimix .

Proof. Since bothQ.n/ andQhnimix areQ-primary, it is enough to show equality locally
at Q. After localizing, we have that Q.n/RQ Š QnRQ. Moreover, Lemma 3.20 implies that

QhnimixRQ Š .QRQ/
hnimix D .QRQ/

n

by Proposition 3.22 applied to the local ring .RQ;QRQ/.
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Corollary 3.24. In the context of Setting 3.21, suppose further that R is smooth over A.
Then

Q.n/ D
\

m2B

mn;

for all n > 1, where B D Max Spec.R/ \ V.Q/.

Proof. By Theorem 3.23, it is sufficient to show that Qhnimix D
T

m2B mn. Since R
is smooth over A by assumption, we have that R=pR is an algebra of finite type over the
field A=pA. In particular,R=pR is a Hilbert–Jacobson ring, and thusQ D

T
m2B m. Observe

that the inclusion Qhnimix � mhnimix for all m 2 B is clear, since Q � m. To prove the con-
verse, let f 2

T
m2B mn, so that f 2 mhnimix for all m 2 B, by Proposition 3.22. There-

fore .ıa ı à/.f / 2
T

m2B m D Q for any given p-derivation ı and any differential operator
à 2 Dn�1�a

RjA
. It follows that f 2 Qhnimix , as desired.

Recall that the definition of mixed differential powers depends, a priori, on the chosen
p-derivation. However, Theorem 3.23 immediately gives that this is not the case in the context
of Setting 3.21. We record this fact in the following corollary.

Corollary 3.25. In the context of Setting 3.21, the ideal Qhnimix is independent of the
choice of p-derivation ı. Moreover,

Q.n/ D Qhnimix

D ¹f 2 R W .ı ı à/.f / 2 I for all ı 2 Derap.R/; à 2 D
b
RjA with aC b 6 n � 1º:

Proof. WriteQhni? for the set on the right-hand side, and recall the following definition:

QhniDerp D ¹f 2 R W Derap.f / � Q for all a 6 n � 1º:

Observe that
Qhni? D

\
aCb6nC1

.QhaiDerp /hbiA I

in particular, Qhni? is an ideal by Proposition 3.2 (1) and Proposition 3.13. It follows from
Proposition 3.13 (4) thatQ.a/ � QhaiDerp for all a. Moreover,QhaiDerp isQ-primary by Propo-
sition 3.13 (3), and it follows from Proposition 3.2 (5) that

Q.n/ � .QhaiDerp /hbiA

for all aC b 6 nC 1. Therefore, we have

Q.n/ � Qhni? :

It is clear from the definitions thatQhni? � Qhnimix and, by Theorem 3.23, we finally conclude
that Qhni? D Qhnimix D Q.n/.

We point out that, in Definition 3.17 of mixed differential powers, the order in which
p-derivations and differential operators are performed is crucial, as the following example
illustrates.
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Example 3.26. LetR D ZpŒx� andQ D .p; x/. Let � W R! R be the lift of Frobenius
that satisfies �.x/ D xp. This induces a p-derivation ı on R such that ı.x/ D 0. Also, note
that

D1RjZp
D R˚R

d

dx

by Lemma 2.4. One can check by direct computation that d2

dx2 .px/, .
d
dx
ı ı/.px/, and ı2.px/

all belong to Q. However, px … Q.3/ D Q3, where the last equality holds because Q is
a maximal ideal. Note that, consistently with Theorem 3.23, we have px … Qh3imix , since
.ı ı d

dx
/.px/ … Q.

As in the equicharacteristic case, the essential smoothness hypothesis is important. Many
nonsmooth algebras do not admit p-derivations, in which case the mixed differential powers
are not defined. However, even in nonsmooth algebras with p-derivations, the hypothesis is
necessary.

Example 3.27. Let R D ZpŒx; y; z�=.y2 � xz/. The lift of the Frobenius

ˆ.f .u; v// D f .up; vp/

on ZpŒu; v� restricts to a lift of the Frobenius on ZpŒu2; uv; v2� Š R, so the ring R admits
a p-derivation. In particular, mixed differential powers are defined. Take Q D .p; x; y/ and
m D .p; x; y; z/. Then x 2 Q.2/ Xm2. However, it is evident from Definition 3.17 that

Qh2imix � mh2imix :

Thus, the conclusion of Theorem 3.23 cannot hold.

The following example shows that the separability hypothesis in Theorem 3.23 is neces-
sary. Given that a similar hypothesis is required for the Zariski–Nagata theorem in equicharac-
teristic p > 0, this is to be expected.

Example 3.28. Let A D ZŒt �.p/ and R D ZŒt; x�Q, where Q D .p; xp � t /. We note
that these satisfy all of the conditions of Setting 3.21, except the separability assumption on
A=pA ,! RQ=QRQ. In this example, Q.2/ D Q2. However, we will show that there exists
a p-derivation onR such thatQh2imix ¤ Q.2/. Setw D xp�t . We can write ZŒt; x� D ZŒw; x�.
Then the map

 .f .w; x// D
f .wp; xp/ � f .w; x/p

p

is a p-derivation such that  .w/ D 0. Since R is a localization of ZŒt; x�, we have by Propo-
sition 2.7 (a) that there is a p-derivation ı on R that extends  . In particular, ı.w/ D 0 2 Q.
Also, d

dx
.w/ D pxp�1 2 Q. Thus, w 2 Qh2imix XQ.2/.
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