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ABSTRACT 

The use of shunt of piezoelectric transducers to damp mechanical vibrations is an interesting approach thanks to its low 

cost and the light weight of the actuators used. Among the different ways to build the shunt impedance, the use of negative 

capacitances is very attractive because it allows for high damping performances with low power required by the control 

system. Negative capacitances do not exist in the actual world but they can be designed and built using circuits based on 

operational amplifiers. 

The use of shunt circuits based on a negative capacitance coupled to a resistance allows to have a broadband control. This 

paper explains how to increase the bandwidth of the controller by adding to such a shunt circuit an inductance. The 

dynamics of the controlled system is solved analytically and the reason why the introduction of the inductance is able to 

give the mentioned improvement is made clear also using numerical simulations. Furthermore, this improvement also 

allows to increase the attenuation performance. The conditions necessary to assure the stability of the electro-mechanical 

system are found and explained. 
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1 Introduction 

This paper deals with vibration reduction by means of piezoelectric benders shunted with an electric impedance. This 

approach is very attractive when dealing with light structures. Indeed, the control method requires no, or few, power and it 

is based on lightweight actuators so that no load effects occur. Furthermore, no feedback signals and digital controllers are 

needed. Hence, such a control method is very cheap if compared to traditional active damping. 



The piezoelectric actuator is linked to an electric impedance, as mentioned. This electric impedance can be realised with 

different layouts, depending on the kind of control required: mono-modal, multi-modal and broadband. This paper focuses 

on broadband control. The simplest way to build such a kind of controller is to connect the actuator to a resistance. Indeed, 

Hagood and von Flotow [1] proved that this control technique is effective and a proper choice of the resistance allows to 

focus the damping action on a given mode of the structure. Nonetheless, also the other modes of the structure are 

damped, even if the control action is less than that on the mode on which the resistance has been tuned. Moreover, the 

method is passive because the added element (i.e. the resistance) is passive and thus no power is fed to the system. The 

consequence is that this control is always stable, whatever resistance values is chosen. 

A big issue related to this control technique is that the total amount of control action is very limited and the attenuation 

provided by this shunt impedance is often poor and unsatisfactory, even if the mode on which the resistance has been 

tuned is taken into account [2]. 

A method to enhance the attenuation provided by this kind of shunt is the addition of a second element into the shunt 

Impedance: a negative capacitance. This element does not exist in nature but it can be realised by employing an operational 

amplifier (OP-AMP). The increase of the vibration attenuation allowed by this further element was already evidenced in 

different works in the state of the art [3,4,5]. This addition poses some problems related to the stability of the whole 

electro-mechanical system (EMS) (i.e. vibrating structure + piezoelectric bender + shunt impedance) because the OP-AMP 

introduces some energy into the system and thus stability must be checked. If a value of the negative capacitance is chosen 

so that the stability of the EMS is assured, a great benefit in terms of vibration reduction can be observed. 

This paper proposes a new shunt impedance constituted by the resistance, the negative capacitance and an inductance. The 

use of an inductance is already considered in literature but usually this element is used for mono-harmonic attenuation. 

Indeed, the circuit composed by the resistance, the inductance and the capacitance of the piezoelectric patch (here the 

piezoelectric patch is modelled as a capacitance in parallel to a charge source, see the Section 2), and eventually the added 

negative capacitance, is a resonant system, which is the electric equivalent of the tuned mass damper [6,7]. This paper will 

demonstrate that the addition of the inductance can be used even for broadband damping by choosing the values of the 

whole electric impedance with rules different from that used for mono-harmonic control. 

The structure of the paper is the following. Section 2 described the model employed to describe the EMS, while Section 3 

explains how to fix the values of the resistance and the inductance for broadband damping and explains the idea behind 

this paper. Furthermore, this section describes some numerical simulations to show the benefits provided by the addition 

of the inductance. Finally, Section 4 focuses on the stability of the EMS. 

 

2 Analytical model of the electro-mechanical system 

The model employed to describe the behaviour of the EMS is the one presented in the paper of Thomas et al. [2], which 

was used by its authors to find the optimal tuning of R and LR impedances shunted to a piezoelectric actuator and the 

associated vibration attenuation performances. 

A generic elastic structure is considered, with one piezoelectric patch bonded on it (see Figure 1). U is the displacement of 

any point x of the structure at time t. A shunt impedance Z is connected to the piezoelectric actuator and V is the voltage 

between the electrodes of the piezoelectric patch, which is also the shunt terminal voltage. Q is the electric charge in one of 

the electrodes and, considering the convention of sign for V in Figure 1, Q is the charge in the upper electrode. 



 

Figure 1: A piezoelectric patch bonded on a structure and shunted with an impedance Z. F is a force exciting the 
structure. 

 

A reduced order model is obtained by expressing the displacement U in modal coordinates and considering N eigenmodes: 

𝑈(𝒙, 𝑡) = ∑ 𝜙𝑖(𝒙)𝑞𝑖

𝑁

𝑖=1

                                                                                                    [1] 

where 𝑞𝑖  is the ith modal coordinate and 𝜙𝑖  is the ith eigenmode of the structure. The modal coordinates 𝑞𝑖  are solutions of 

the problem [2]: 

𝑞̈𝑖 + 2𝜉𝑖𝜔𝑖𝑞̇𝑖 + 𝜔𝑖
2𝑞𝑖 = 𝐹𝑖           ∀𝑖 ∈ 1, … , 𝑁                                                                           [2𝑎] 

𝐶𝑝𝑉 − 𝑄 + ∑ 𝜒𝑗𝑞𝑗

𝑁

𝑗=1

= 0                                                                                               [2𝑏] 

Therefore, the motion of the EMS is described by N modal equations, corresponding to the balance law of mechanical 

forces. Since the model describes the whole electro-mechanical behaviour of the system, the dynamics of the structure is 

linked to the electric behaviour (described by Equation 2b) of the piezoelectric actuator and the shunt impedance by the 

term 𝜒𝑗 . Particularly, Equation 2b describes the balance of electric charges on the piezoelectric electrodes. 𝜔𝑖  is the ith 

eigenfrequency of the mechanical structure and 𝜉𝑖  is the associated non-dimensional damping ratio. Here, 𝜙𝑖, 𝜉𝑖  and 𝜔𝑖  are 

related to the situation with the piezoelectric patch short circuited (i.e. 𝑉 = 0). 𝜒𝑗  is a modal coupling coefficient, which is 

related to the energy  transfer between the ith mode shape and the piezoelectric actuator. The 𝜒𝑗  coefficients can be 

computed by either a finite element model of the structure [8] or by an analytical approach [9]. Finally, 𝐶𝑝 is the blocked 

(i.e. with 𝑈(𝑥, 𝑡) = 0    ∀ 𝑥 ⇒ 𝑞𝑖 = 0   ∀𝑖) electric capacitance of the patch. 

It is possible to demonstrate [5] that if one considers just one mode (under the hypothesis of low modal density), the 

Frequency Response Function (FRF) of the controlled system between a force and the response of the system around the 

ith mode considered can be expressed in the Laplace domain as: 

𝐻𝑖 = 𝜙𝑖(𝑥𝑓)𝜙𝑖(𝑥𝑚)
𝑍𝐶𝑝,𝑖𝑠 + 1

𝑍𝐶𝑝,𝑖𝑠
3 + (1 + 2𝜉𝑖𝜔𝑖𝑍𝐶𝑝,𝑖)𝑠2 + (2𝜉𝑖𝜔𝑖 + 𝜔𝑖

2𝑍𝐶𝑝,𝑖 + 𝜔𝑖
2𝐶𝑝,𝑖𝑘𝑖

2𝑍)𝑠 + 𝜔𝑖
2                       [3] 



Where 𝐶𝑝,𝑖 is the capacitance of the piezoelectric patch between the ith and the (i+1)th modes, and 𝑍 is the shunt 

impedance. 𝑥𝑚  is the point where the response of the structure is measured and 𝑥𝑓  is the point where the disturbance 

forcing is applied. 𝑘𝑖  is the modal electro-mechanical coupling factor, which is expressed as 𝑘𝑖 = 𝜒𝑖/(𝜔𝑖√𝐶𝑝,𝑖) and it is a 

very good approximation of the electro-mechanical coupling factor [2] 𝑘𝑒𝑓𝑓,𝑖 = √(𝜔𝑂𝐶,𝑖
2 − 𝜔𝑖

2)/𝜔𝑖
2 (where 𝜔𝑂𝐶,𝑖  is the ith 

eigenfrequency of the EMS when the piezoelectric patch is open-circuited).  

 

3 Electric impedance structure 

The impedance 𝑍 used to shunt the piezoelectric patch is in this case the series of a resistance, an inductance and a 

negative capacitance. The additional element in respect to other papers in literature is the inductance (see Section 1). We 

start analysing the behaviour of an impedance made up by the series of just the resistance and the negative capacitance. An 

optimal value of the resistance 𝑅𝑖,𝑜𝑝𝑡  exists for each mode. This value is that able to maximise the attenuation for the ith 

mode. When this value is chosen, the other modes are damped but their attenuation is lower than that achievable with 

their own optimal values of the resistance. The value of 𝑅𝑖,𝑜𝑝𝑡 for each mode can be found minimising 𝐻𝑖
𝑚𝑎𝑥 , which is the 

maximum of the amplitude of 𝐻𝑖  (see Equation 3). 

The value of the resistance R must be fixed to the optimal value of the mode on which the damping action must be focused. 

Figure 2 shows the FRF between V and the charge 𝑄𝑐  (see Figure 3). This FRF is named 𝐻𝑐  and can be seen as the FRF of the 

controller [7,10] able to damp the system and constituted physically by the shunt. Figure 2 clearly shows that the FRF of the 

controller is dependent on the value chosen for the resistance R. 

 

Figure 2: FRF 𝑽/𝑸𝒄 (see Figure 3) for different values of 𝑹. Here 𝑪𝒑,𝒊 = 𝟒𝟎 nF and 𝑪𝒏 = 𝟓𝟎 nF. 

 



 

Figure 3: Electrical scheme of the shunt system; the piezoelectric patch is composed by the capacitance and the strain-
induced charge source. 

 

 

As for the value of the negative capacitance −𝐶𝑛, the value assumed by 𝐶𝑛 must be as close as possible to 𝐶𝑝,𝑖  in order to 

maximise the effect of the negative capacitance and thus the attenuation provided by the shunt [5]. Section 4 will show 

that there is a threshold on the value of 𝐶𝑛 which must be taken into account to assure EMS stability. 

Now, it is important to explain why the addition of the inductance L allows to improve the attenuation performances. Let us 

suppose to be interested in damping the first three modes of a system. As soon as the value of 𝐶𝑛 has been fixed, the value 

of R can be fixed as well. Particularly, R will be fixed to 𝑅𝑖,𝑜𝑝𝑡, where i is fixed to the mode on which the vibration 

attenuation must be focused. Then, the value of the inductance can be fixed. The circuit made up by R, L, −𝐶𝑛 and 𝐶𝑝 is a 

resonant system and thus has a single eigenfrequency (here named 𝜔𝑒). Therefore, the FRF of the controller 𝐻𝑐  shows an 

additional eigenfrequency at 𝜔𝑒. Figure 4 shows 𝐻𝑐  for 𝜔𝑒 tuned on the value of the first, second and third mode of a 

system chosen as an example. The eigenfrequencies on which 𝜔𝑒 must be tuned are not 𝜔𝑖. Indeed, the negative 

capacitance with the current circuit layout (i.e. series layout) is able to shift the short-circuit eigenfrequencies towards the 

null frequency [3]. The new value of the short-circuit eigenfrequency 𝜔𝑖
𝑛 is: 

𝜔𝑖
𝑛 = √𝜔𝑖

2 −
𝜒𝑖

2

𝐶𝑛 − 𝐶𝑝,𝑖

                                                                                             [4] 

Hence, 𝜔𝑒 must be tuned on 𝜔𝑖
𝑛. 



 

Figure 4: FRF 𝑽/𝑸𝒄 (see Figure 3) for different values of 𝑳. Here 𝑪𝒑,𝒊 = 𝟒𝟎 nF and 𝑪𝒏 = 𝟒𝟓 nF, 𝑹= 1.8 k𝛀. 

It is noticed that the effect of the controller tends to be null after 𝜔𝑒. In our example we are interested in controlling the 

first three modes so that 𝜔𝑒 must be tuned on the eigenfrequency of the third mode. It is noticed that the value of L can be 

then calculated by using the expression linking 𝜔𝑒 to L: 

𝜔𝑒 =
1

√𝐿𝐶𝑒𝑞,𝑖

                                                                                                          [5] 

Where 𝐶𝑒𝑞,𝑖 = 𝐶𝑛𝐶𝑝,𝑖/(𝐶𝑛 − 𝐶𝑝,𝑖). 

One could see the shunt as a mono-modal control. Actually, the value of R is much higher than the optimal value which 

should be used for a mono-modal resonant control [11] (indeed the value of R has been chosen with a criterion different 

from that used for classical LR impedances). This high value of R allows to have a broad peak in correspondence of 𝜔𝑒 for 

the FRF 𝐻𝑐  (see Figure 4) and thus the control action is increased in the frequency range around 𝜔𝑒. Therefore, the damping 

on all the modes at frequencies much lower than 𝜔𝑒 is not changed by the addition of L, while the modes ate frequencies 

not too far from 𝜔𝑒 becomes more damped by the addition of L. Figure 5 shows the attenuation improvements (in terms of 

𝐴𝑟) with and without L for the modes of the system in Table 1 for a value of  R chosen as 𝑅4,𝑜𝑝𝑡 and 𝜔𝑒 fixed equal to the 

eigenfrequency of the fourth mode. 

The attenuation improvement 𝐴𝑟,𝑖 is defined as: 

𝐴𝑟,𝑖 = 𝐴𝑖(𝐿 = 0 and 𝑅 = 𝑅4,𝑜𝑝𝑡)-𝐴𝑖  (𝐿 ≠ 0 and 𝑅 = 𝑅4,𝑜𝑝𝑡)                                                     [6] 

Where 𝐴𝑖  is the attenuation of the ith mode in decibel. 

The figure indicates that the addition of the inductance is able to increase the attenuation on all the modes for about 

𝐿 <2 H. Obviously, the closer an eigenfrequency is to 𝜔𝑒,  the higher is the attenuation improvement provided by the 

addition of the inductance.  



 

Mode 𝜔𝑖  [rad/s] 𝜉𝑖  [%] 𝑘𝑖  

1 2𝜋40 0.2 0.20 

2 2𝜋100 0.2 0.10 

3 2𝜋150 0.1 0.08 

4 2𝜋200 0.2 0.10 

Table 1: Modal data of a four degree-of-freedom system. 

 

Figure 5: 𝑨𝒓 as a function of 𝑳 for the modes of the system in Table 1. Here 𝑪𝒑,𝟒 = 𝑪𝒑 = 𝟒𝟎 nF and 𝑪𝒏 = 𝟒𝟓 nF, 𝑹= 1.8 

k𝛀 (very close to 𝑹𝟒,𝒐𝒑𝒕). 

 

4 Stability of the electro-mechanical system 

The use of a negative capacitance poses some issues related to EMS stability. We checked the stability conditions by 

applying the Routh-Hurwitz criterion on the denominator of 𝐻𝑖  (see Equation 3). The result assuring stability is: 

𝐶𝑛 > 𝐶𝑝,𝑖(1 + 𝑘𝑖
2)                                                                                                     [7] 

If this condition is fulfilled for each of the modes of the EMS, the strictest condition is given by the first mode [5] and the 

stability condition for the whole EMS becomes: 

𝐶𝑛 > 𝐶0 = 𝐶𝑝,1(1 + 𝑘1
2)                                                                                               [8] 

Where 𝐶0 is the capacitance of the piezoelectric patch at the null frequency. Therefore, the value of 𝐶𝑛 cannot be made as 

close as desired to 𝐶𝑝,𝑖 (as already mentioned in Section 3) but the threshold of Equation 8 must be always fulfilled. 

 

 



5 Conclusion 

This paper has dealt with vibration attenuation by means of piezoelectric patches shunted with electric impedances based 

on negative capacitances. A negative capacitance is able to increase a lot the attenuation performance of a pure resistive 

shunt. Thus paper explains how to increase its performance by adding an inductance into the shunt impedance layout. This 

added element is able to increase the broad-band attenuation. The condition for the stability of the electro-mechanical 

system is provided as well. The next step is the experimental validation of the strategy proposed. 
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