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Abstract
Mode shapes from operational modal analysis are normally unscaled, since the forces acting on the structure
are not measured. Several methods for obtaining scaled mode shapes have been proposed in the past, some
of them rather elaborate. In this paper we present and investigate using harmonic excitation at (or close to)
the natural frequencies to obtain the mode shape scaling. The method is explored through simulated data,
and on data from a staircase. Results are validated by comparing the results of applying the harmonic force
in different points. The method is found to work very well.

1 Introduction

Modal analysis is a well-established tool for estimating modal parameters of structures and systems. The
knowledge of eigenfrequencies and mode shapes is crucial for several different purposes, for example re-
sponse estimation, model updating, and structural health monitoring. For most of these applications, the
mode shape components must be properly scaled. This is one of the most important issues related to opera-
tional modal analysis (OMA), which in itself only provides unscaled mode shapes, because the loads acting
on the structure are not measured with such an approach.

Different methods were proposed and investigated in the past, with the aim of scaling the mode shapes
provided by OMA tests. Most of the proposed methods rely on repeating OMA tests with different system
configurations, which in turn means to change, in a controlled way, the amount/distribution of the mass and
the stiffness of the structure [1–11]. Other approaches rely on the use of OMAX (operational modal analysis
with exogenous inputs) tests, which are tests where the excitation to the structure is partly provided by natural
environmental excitation (e.g. wind, traffic) and partly by actuators providing broad band excitation, which
is thus measured [12, 13]. Further approaches couple known dynamic systems (e.g. tuned mass dampers,
people) to the structure under investigation and this allows to estimate the modal mass and thus to scale the
mode shapes [14–16].

The referenced approaches all rely on relatively complicated experimental procedures (e.g. mass changes), or
require the perfect knowledge of the dynamics of additional systems, or again ask for using potentially large
actuators (on large structures) able to produce different kinds of excitation signals (e.g. chirp or multisine).
The aim of the present work is to present an alternative method for computing modal masses and thus scaling



mode shapes, using a fast and readily applicable experimental procedure which involves the use of relatively
inexpensive, general-purpose, actuators and simple signal processing.

The paper is structured as follows. Section 2 introduces the theory related to this work and the OMAX
method proposed. Then, Section 3 explains how we tested the method with some numerical simulations,
while Section 4 shows the experimental tests carried out to validate the method proposed herein. Finally,
Section 5 discusses the results of the numerical tests and experiments.

2 Theory

A scaled frequency response function of a structure can be formulated generally in receptance form (dis-
placement over force) as

H(jω) =
N∑
r=1

1

mr(jω − sr)(jω − s∗r)
(1)

where mr is the modal mass of mode r, sr the pole of mode r, and ∗ denotes complex conjugation. The
expression of sr is −ξrωr + ωr

√
1− ξ2r , where ωr and ξr are the eigenfrequency and non-dimensional

damping ratio of the mode r respectively. In OMA, the poles are obtained by the parameter extraction, and,
according to Equation (1), scaling the mode shape thus reduces to finding the modal mass mr of the modes
to be scaled.

The method proposed here is to obtain the modal scaling by applying a known harmonic force in one point,
at each natural frequency of the modes to be scaled. This single frequency measurement can then be used to
obtain the scaling of the mode by assuming that the single mode is dominating at the excitation frequency
considered, which will be equivalent to a single-degree-of-freedom (SDOF) approach. This will, in general,
require that the frequency of excitation is very close to the natural frequency of the mode.

Therefore, the first part of the method proposed herein is to carry out an OMA, finding the sr values and
the corresponding unscaled mode shape components ψr,i, where i indicates generic points of the structure
where its response has been measured during the OMA test. Then, the second part of the method consists in
providing a known mono-harmonic excitation (at a frequency as close as possible to ωr) to the structure in
point E. This part is explained underneath within this section. It is essential that E is a point where ψr,i has
been found by means of OMA (i.e. E is a point where the structural vibration was acquired during the OMA
test).

If we consider a SDOF approximation, the frequency response function (FRF) of Equation (1), can be ap-
proximated as:

H(jω) ' 1

mr(jω − sr)(jω − s∗r)
(2)

If the system FRF is measured with a co-located configuration (input and output measured in the same point)
in point E at a frequency ωex as close as possible to ωr (we call this FRF value Hest), the value of mr can
be estimated as:

mr =
1

Hest(jωex − sr)(jωex − s∗r)
(3)

It is noticed that the value of mr calculated by means of Equation (3) corresponds to an eigenvector compo-
nent (in the point of excitation E and for mode r) equal to 1. Then, the eigenvector component in the point
of excitation E and for mode r scaled to the unit modal mass (named φexpr,i=E) can be calculated as:

φexpr,i=E =
1
√
mr

(4)



Finally, the eigenvector component scaled to the unit modal mass in a point i 6= E for mode r (named
φr,i 6=E) can be computed as:

φr,i6=E =
φexpr,i=Eψr,i 6=E

ψr,i=E
(5)

Therefore, the knowledge of φexpr,i=E allows to scale the mode shapes coming from the OMA to unit modal
mass.

Of course, if higher accuracy is required, or if there are coupled modes so that several modes are contributing
to the frequency response at frequency ωex, thenH(jωn) evaluated at several different frequencies ωn can be
used; at least as many frequencies as the number of modes to be scaled. In fact, to obtain the best accuracy,
at least two more frequencies than number of modes in the frequency range of interest should be excited,
to allow for residual terms, accounting for the out-of-band modes, to be computed. The requested modal
masses can then be computed by using a standard least squares frequency domain method [17, 18].

2.1 Advantages with the proposed technique

The proposed technique has several important advantages over previously proposed techniques. The main
advantages are that (i) a device for applying harmonic force can be realized relatively easily and inexpen-
sively for force levels ranging from small to very large, and (ii) a harmonic force and the response due to this
force can readily be extracted even in the case of existing natural loads of random character, from, e.g., traffic
loads or wind loads, by common signal processing techniques. The technique proposed here, can therefore
be implemented for structures such as bridges and highrise buildings without any large hardware cost. The
benefits proposed by the present approach are evident if we compare it to the works referenced in Section 1.

If we consider the methods relying on repetitions of modal tests by changing the original structure through
changes of mass (or stiffness), it is easy to notice that the presently proposed approach has several advantages:
it is much simpler and consequently cheaper since it does not require both changes of the structure and OMA
test repetitions. As for the other referenced OMA methods, there are a couple of key points to be taken into
account:

• some of the methods mentioned require to provide the structure with a broadband excitation. This in
turn means that the actuator must provide high force levels because the structural response must be
measured even out of resonances. Conversely, the present approach only requires a mono-harmonic
excitation at resonance. This simplifies the test because the maximum force needed from the actuator
is lower because we work just at resonance (or predominantly at resonance, in the case of repeated
poles, or in the case one wants to take the residual terms into account);

• other methods require to couple the structure with known dynamic systems. This requires to have
an accurate knowledge of these additional systems if a high accuracy is needed. Anyway, the addi-
tional systems can easily undergo changes of their modal behaviour (e.g. due to thermal shifts) and
uncertainty affects the knowledge of their modal parameters. These factors contribute to increase the
uncertainty on the final result. Furthermore, the additional systems must be designed on purpose to
work in the frequency range of interest while a simple actuator able to work at almost any frequency
is used in the present method.

2.2 Signal processing

This section explains the procedure used to finally scale the unscaled mode shapes estimated by means of an
OMA test. Indeed, there are a number of ways to apply this approach.



The first task is to perform an OMA test from which it is possible to extract the eigenvalues of the system,
as well as the unscaled mode shapes. Then, a mono-harmonic force is applied to the structure and both the
input force and the structural response are measured; the response is measured in the same point where the
input is exerted. Although not necessary per se, we suggest to excite at resonance, which is easily achieved
by tuning the frequency of the signal provided to the actuator and monitoring at the same time the phase
(between force and response), for example by an oscilloscope, until its value is as close as possible to −90◦

if the response transducer is displacement. If velocity or acceleration are measured in place of displacement,
the phase must be as close as possible to 0◦ or 90◦ respectively.

Then, after having estimated the eigenvalues sr with OMA tests and after having acquired the excitation
at resonance and the consequent structural response for a given amount of time, some easy-to-apply signal
processing tasks are carried out:

• the excitation frequency ωex is estimated with higher accuracy by applying auto-correlation to the
force signal. We use the estimated value of ωex also to cut the input and output signals in order to have
an integer number of periods for both the signals;

• then, we need to measure the amplitude of the response at the excitation frequency. There are several
ways to do this. In this case we windowed the whole output signal by means of a Flattop window and
then performed a digital Fourier transform (DFT) on such a windowed signal, finding the correspond-
ing spectrum Gout(jω). The use of the Flattop window allows for an accurate estimation of the height
of the spectral lines [19, 20], avoiding the effects of leakage-induced errors (we assume that the output
signal produced by the active excitation is much higher than the noise floor and the response due to
environmental excitation). Then, the same procedure is applied to the input signal, finally achieving
the the estimation of Gin(jω) and thus Hest as the ratio of Gout(jωex) and Gin(jωex);

• Equations (3), (4) and (5) are applied to scale the modes.

3 Numerical tests

We tested this method at first by carrying out some numerical simulations on three different SDOF systems.
To this purpose, we normalized the model presented in Equation (2) as follows:

H(jω) ' 1

mr(jω − sr)(jω − s∗r)
=

1

ω2
r

1

−ϕ2 + 2jξrϕ+ 1
(6)

where ϕ = ω/ωr and mr is fixed equal to 1. In Equation (6), ωr is just a multiplicative constant so that it
can be neglected (or fixed to 1) in order to test the method, without loss of generality. It is noticed that the
resonance is at ϕ = 1.

We fixed three different values of ξr (i.e. 10−4, 10−3 and 10−2), which means that we tested three different
systems, as already mentioned.

For each of these systems, we simulated a mono-harmonic input at ϕex close to 1 with amplitude equal to 1 N
and we derived the corresponding output. Then, we added noise on the output and we estimated the scaled
mode shape component (i.e. φexpr,i=E) with the procedure described in Section 2.2. In this case we assumed
to perfectly know the values of the eigenvalue sr coming from the OMA. Indeed, we were interested in
understanding which errors are introduced by the noise in the computation of the scaled mode shapes when
the active exciter is used. This is an important outcome from which the user can understand if it is possible
to apply the procedure proposed herein in practical applications.

The value of the normalized excitation frequency ϕex = ωex/ωr has been fixed as a shift sh from ϕ = 1:
ϕex = 1 + sh. This allows to simulate situations where the excitation is not provided exactly at resonance,



Table 1: Modal data of the staircase identified by means of OMA
Mode ωr/(2π) [Hz] ξr [%]

1 7.836 0.222
2 8.880 0.391

which is quite usual in real applications. This causes a decrease of the amplitude of the structural output and
thus a worsening of the signal-to-noise ratio.

The noise added to the output was extracted by a Gaussian distribution with null mean value and a variance
V = pVs, where Vs is the variance of the output for an input of 1 N at resonance, and p is a positive
number. In other words, we compute the amplitude of the response when excited by a mono-harmonic force
at resonance with amplitude of 1 N and we calculate the variance of the noise as a percentage of the variance
of this signal. Then, this kind of noise is added to all the responses, whatever value of ϕex is used.

Finally, we used different sampling frequencies fs and different time-length values Ts for the signals. It
is expected that all the parameters p, fs and Ts have influence because their effect is to change the power-
spectrum of the noise.

The values used for fs were 5, 10 and 20 times the resonance frequency of the SDOF system. As for Ts,
we used 100, 200, 500, 1000 and 2000 s. The values of p employed here were 0.01, 0.05, 0.1, 0.5, 1 and
2. Finally, the values used for sh were: 0,±0.05,±0.02,±0.01,±0.005,±0.001. Each configuration (i.e.
fixed values of ξr, fs, Ts, p and sh) was tested 200 times in order to have a good statistical reliability of the
results and check their dispersion.

The results of these numerical tests are provided and discussed in Section 5, after having presented the
experiments carried out to test the method in practice in Section 4.

4 Measurements

We applied the method presented herein to a steel staircase (12.03 m length, 1.80 m width and 5.22 m height).
This structure was used because its modal behaviour was already analysed by the authors [21, 22].

The structure was instrumented with fifteen (numbered from 0 to 14) seismic piezoelectric accelerometers
with a full scale of 4.9 ms−2 and a sensitivity of 1.02 V/(ms−2). Thus, such sensors are able to properly
collect OMA data (usually vibration levels in OMA applications are low) as well as to have low electrical
noise on the signals. The devices where placed as depicted in Fig. 1.

First an OMA test was carried out by measuring the structural response while the structure was in ambient
vibration. This allowed to estimate the eigenfrequencies, non-dimensional damping ratios and unscaled
mode shape components for the first two modes (see Table 1). The algorithm used to extract the modal data
was a multi-reference Ibrahim time domain method, which is essentially identical to the covariance driven
stochastic subspace method (SSI), see [23].

A small electro-dynamic shaker was then applied co-located with accelerometer 0 (see Fig. 1), or 10, or
11 (these points are among those showing the highest mode shape components for both mode 1 and 2, as
evidenced by the OMA tests), and it was used to provide a mono-harmonic excitation to the structure. Indeed,
the shaker was able to provide a force to the structure by moving a steel block (with a cubic shape and a side
of approximatively 7 cm). The motion of the mass was measured by a further accelerometer placed on top of
it (see Fig. 2). The total mass moved by the shaker (i.e. steel cube + accelerometer) was measured and found
to be 3.237 kg. Hence, the force applied by the shaker to the structure can be computed by multiplying this
mass by its measured acceleration.

The values of Ts and fs were 100 s and 256 Hz respectively in all the tests. The mono-harmonic excitation
was provided at different frequencies and with different amplitudes, in correspondence of both mode 1 and



Figure 1: Positions of accelerometers on the staircase

Figure 2: Source of external load: shaker moving a mass

2. Table 2 gathers the data related to the different tests carried out. It is noticed that in many cases the
actual value of ωex resulted slightly different from the value of ωr because it was hard to detect exactly the
frequency at which excitation and response acceleration are 90◦ shifted (see Table 2). This was, however,
entirely due to the fact that we did not use any sophisticated equipment to measure the phase; it could
easily be implemented in practice. Furthermore, a slight non-linear behaviour of the structure was noticed,
mainly resulting in slight shifts of the eigenfrequency values when changing the amplitude of the excitation;
conversely the damping was almost not affected by such a non-linear behaviour, as found during the tests
carried out on the same staircase for other works [21, 22].

Furthermore, it is remarked that the shaker was not able to provide a pure sine below 10 Hz and the excitation
force was basically composed by three harmonic components (one at ωex and the others at 2ωex and 3ωex)
due to the distortion caused by the actuator. This, however, does not affect the method proposed here, since
we only look at the fundamental frequency in the excitation force.



Table 2: Description of the experimental tests

Test #
shaker

position
Nominal value of
ωex/(2π) [Hz]

Nominal value of
the input force [N]

phase shift between
input and output [deg]

mode
excited

1 0 7.725 9.53 93.86 1
2 0 7.724 9.53 93.97 1
3 10 7.685 7.94 92.04 1
4 10 7.748 0.79 87.94 1
5 11 7.743 9.53 95.18 1
6 0 8.701 12.70 94.22 2
7 0 8.700 12.70 93.90 2
8 0 8.770 1.27 84.42 2
9 10 8.770 15.88 95.41 2
10 11 8.755 14.29 94.04 2

5 Results and Discussion

In this section we discuss the results from the numerical (see Section 3) and experimental (see Section 4)
tests described previously.

5.1 Numerical tests

The accuracy of the method to estimate the scaled mode shapes was checked following the procedure de-
scribed below. After having estimated the excitation frequency ϕex, the amplitude of the force Ain (whose
actual value was 1 N, see Section 3) and the modal mass through the procedure described in Section 2.2,
Equation (6) was used to compute the estimated amplitude Aest of the response of the structure excited by
the sine force at ϕex with an amplitude equal to Ain. The value of ξr employed in Equation (6) was equal to
that used to generate the signals (see Section 2.2); indeed, we assumed to perfectly know the eigenvalues, as
mentioned in Section 2.2.

Then, the value of Aest was compared with the actual amplitude of the response of the structure Aref .
Therefore, the error E can be defined as:

E = Aest −Aref (7)

Since each numerical test (i.e. fixed values of ξr, fs, Ts, p and sh) was repeated 200 times, we have a statis-
tical population describing E for each configuration. Therefore, we computed for each statistical population
its mean value Ē and its standard deviation σE . Then, Ē and σE were normalized on the reference value
Aref and expressed as a percentage:

Ēn = 100
Ē

Aref
, σn = 100

σE
Aref

(8)

The results show that the values of Ēn and σn are mainly influenced by the ratio R between the variance
of the mono-harmonic signal of the structural output and the power associated to each spectral line of the
random noise. Therefore, R can be intended as a sort of signal-to-noise ratio.

Although there are some oscillations of Ēn and σn as function of fs, Ts, p and sh for the same value of R,
these are not significant and most likely related to the unavoidable statistical variability. If the target is to
stay in the area where σn is lower than 5%, R must be higher than about 1000. R must instead be higher
than about 400 if σn must be lower than 10%. In both the cases |Ēn| is lower than 2%.



5.2 Experimental tests
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Figure 3: Trend of Ep
i as function of the various accelerometer positions for tests on mode 1 (see Table 2):
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Figure 4: Trend of Ep
i as function of the various accelerometer positions for tests on mode 2 (see Table 2):

4 for test 6,5 for test 7, ◦ for test 8, ∗ for test 9 and � for test 10

In this case we cannot define an estimation error as in Equation (7) because we do not know the value
of Aref . Therefore we employed the following approach for each test performed. After having estimated
the modal mass and the scaled mode component in the position of the shaker (see Table 2), we calculated
the scaled mode shape components in the other points of the staircase where we placed accelerometers.
These data were used to compute the expected amplitude of response in these points (named Aexp

i , where
the subscript i indicates the point considered, i = 0, 1, ..., 14) produced by the force provided through the
shaker. Then, eachAexp

i was compared to the actual amplitude Ameas
i measured by the accelerometer placed

in the corresponding point. Hence, the error is defined as:



Eexp
i = Aexp

i −Ameas
i (9)

Figures 3 and 4 show the results in terms of percentage normalized errors Ep
i (i.e. Ep

i = 100Eexp
i /Ameas

i )
for the tests of Table 2. It should be noticed that the points where the shaker was placed in each test present
a null error because of the procedure used.

The accuracy provided by the method is good, even in points where the mode component is very low (e.g.
points 1 and 2). Therefore, the accuracy of the estimation is found to be satisfactory, particularly considering
the advantages provided by this kind of testing approach.

6 Conclusions

This paper has proposed and investigated a new method for scaling mode shapes estimated by means of
operational modal analysis, using harmonic excitation at (or close to) the natural frequencies of the tested
structure. First, the method is studied numerically in order to understand the effect of different parameters on
the accuracy of the final result. Then, experimental tests have been carried out in order to validate the method.
The experiments showed that the method provides very satisfactory results. In addition, it is emphasized that
applying a harmonic force can relatively easily and inexpensively be done to structures of all sizes, from
small scale to large bridges or highrise buildings.
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