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This paper addresses monoharmonic vibration attenuation using piezoelectric transducers shunted with electric impedances
consisting of a resistance and an inductance in series. This type of vibration attenuation has several advantages but suffers from
problems related to possible mistuning. In fact, when either the mechanical system to be controlled or the shunt electric impedance
undergoes a change in their dynamical features, the attenuation performance decreases significantly. This paper describes the
influence of biases in the electric impedance parameters on the attenuation provided by the shunt and proposes an approximated
model for a rapid prediction of the vibration damping performance in mistuned situations. The analytical and numerical results
achieved within the paper are validated using experimental tests on two different test structures.

1. Introduction

Vibration attenuation in light structures is a widely studied
topic and often takes advantage of the use of smart materials,
which are characterised by useful properties. Indeed, these
materials are inexpensive when compared to other control
systems, and they are characterised by low weight. This last
feature is a fundamental aspect because it avoids introducing
high load effects on the controlled structure. Among smart
materials, piezoelectric elements (particularly piezoelectric
laminates, which are used in this paper) are among the
best materials to attenuate vibrations in bidimensional (e.g.,
plates) and monodimensional (e.g., beams) structures [1–
3]. There are several control techniques for light structures
that rely on this type of actuator, and one of the most
attractive is the shunt of the piezoelectric element. In this
case, a properly designed electrical network is shunted to the
piezoelectric bender bonded to the structure. The ability of
the piezoelectric element to convert mechanical energy into
electrical energy and vice versa [4, 5] is used, which allows a
passive attenuation of the structure’s vibration. This method
was initially proposed by Hagood and von Flotow [4]. This
technique is extremely attractive because it is cheap, it does

not introduce energy into the system, that is, it cannot lead to
instability, and it does not require any feedback signal.

When a monoharmonic control is required, the most
effective shunt electric impedance consists of a resistance 𝑅
and an inductance 𝐿 in series [2, 4, 6–8] (resonant shunt or
RL shunt).These two elements, along with the capacitance𝐶𝑝
of the piezoelectric actuator (i.e., the piezoelectric actuator is
modelled here as a capacitance and a strain-induced voltage
generator in series; see Section 2), constitute a resonant
circuit, which is the electric equivalent of the mechanical
tuned mass damper (TMD) [2]. Therefore, this circuit is able
to damp the structural vibration corresponding to a given
eigenmode as soon as its dynamic features are tuned to those
of the vibrating structure.

There are several methods in the literature that explain
how to select the values of 𝑅 and 𝐿 to optimise the vibration
attenuation. Hagood and von Flotow [4] proposed two dif-
ferent tuning strategies based on considerations on the shape
of the system transfer function and on the pole placement
techniques for an undamped structure. Both these tuning
methods are based on the classical TMD theory. Høgsberg
and Krenk [9, 10] developed another calibration method
based on the pole placement for RL circuits in series and
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parallel.The values of 𝑅 and 𝐿 are selected to guarantee equal
modal damping of the two modes of the electromechanical
structure and good separation of the complex poles. Thomas
et al. [11] proposed two different methods, even for damped
structures, that relied on the transfer function criteria and
pole placement and provided closed formulas to estimate the
attenuation performance.

Although all of the mentioned tuning strategies work
extremely well, one significant issue of shunt damping using
RL impedances is that this type of electrical circuit is not
adaptive. This in turn means that it is not possible to follow
possible changes in the dynamic behaviour of either the
vibrating structure (e.g., a temperature shift can change the
eigenfrequency of the mode to be controlled) or the impe-
dance itself (e.g., a temperature shift can cause a significant
change in the 𝑅 value [12]). Hence, this control technique
often works inmistuned conditions, even when starting from
a perfect tuning condition. This mistuning leads to severe
worsening of the attenuation performance.

A few techniques based on adaptive circuits were pro-
posed to overcome the limitations due to uncertainties in
the mechanical and electrical quantities. Based on the single-
mode control, Hollkamp and Starchville developed a self-
tuning RL circuit that was able to follow any change in the
frequency of the mode to be controlled [13]. This technique
is based on a synthetic circuit (which provides both the
resistance and the inductance) consisting of two operational
amplifiers and a motorised potentiometer. Despite its effec-
tiveness, this method only considers a mistuning due to a
change in the eigenfrequency to be controlled and does not
consider other types of changes or uncertainties, such as ones
related to electrical parameters. Furthermore, this method
is active, thus losing the advantage provided by the passive
shunt technique. Other recent studies by Zhou et al. [14, 15]
attempted to determine methods to limit the problem of
mistuning by using nonlinear elements when the disturbance
was harmonic and usingmore than one piezoelectric actuator
bonded to the vibrating structure. Although these techniques
can be effectively employed, their use implies the loss of
the two primary features of the resonant piezoelectric shunt:
linearity (and thus ease of use) and passivity. Therefore, the
analysis of the performances of traditional RL shunts in
mistuned conditions still has significant relevance.

Although the problems related to mistuning are evi-
denced in literature [16–18], there have been few analyses on
shunt robustness.These analyses are of significant interest for
numerous engineering applications where electrical power
is often limited or even avoided, thus preventing the use
of adaptation systems for the shunt impedance (e.g., space
applications). In situations where passivity is requested, it is
important to analyse the behaviour of the shunted system in
the presence of mistuning because it worsens the attenuation
performance. Recently, Berardengo et al. [19] studied the
robustness of different optimisation methods for RL circuits
and determined the most robust method. Based on the
outcomes of [19], this paper aims to further investigate the
robustness of RL shunt damping. The word robustness is
intended here as the capability of the shunt impedance to
attenuate the vibrations even when in mistuned conditions.

Therefore, this paper analyses the behaviour of mistuned
electromechanical systems, thus depicting the relationship
between the attenuation and the system parameters (e.g.,
coupling coefficient, mechanical nondimensional damping
ratio, and eigenfrequency) in tuned andmistuned conditions.
Furthermore, this paper demonstrates that the loss of atten-
uation primarily depends on only one bias (i.e., either the
bias on the damping or the eigenfrequency of the electric
resonant circuit) if the electrical damping is overestimated,
whereas the effects of the two bias types (on the electrical
eigenfrequency and damping) combinewith each other when
the electrical damping is underestimated. Based on these
results, an approximated analytical model is proposed to
estimate the attenuation performance with different amounts
of mistuning using a small number of numerical simulations.

To summarise, the goals of this paper are to investi-
gate how mistuned systems (which are often encountered
in real applications) behave and consequently propose an
approximated model that is able to predict the behaviour
of the mistuned system with the least amount of numerical
simulations. To reach the above goal, the authors highlight the
relationship between the attenuation and all of the problem
parameters and demonstrate that some of these relations can
be approximated linearly in a logarithmic scale. Moreover,
the authors bring to evidence the cases where the loss of
performance depends on just one mistuning type (i.e., either
the bias on the damping or the eigenfrequency of the electric
resonant circuit), even though mistuning occurs on both, as
well as the cases where both the mistuning types have an
influence. All of these observations allow for the development
of the mentioned approximated model for mistuned systems,
which enhances the knowledge of their behaviour. Moreover,
using this new simplifiedmodel, the authors demonstrate that
an initially overestimated value of 𝑅 is able to decrease the
loss in performance due to mistuning and explain why this
phenomenon occurs. Additionally, this allows for guidelines
to be provided on how to tune the shunt parameters when a
mistuning is expected.

This paper is structured as follows. Section 2 discusses
the model of the electromechanical system used in this
paper. Section 3 highlights the linear relationship between
the attenuation and the system parameters, which will be
employed in Section 4 to analyse the effects of mistuning and
propose an approximated model to describe the attenuation
performance in the presence of mistuning. Lastly, Section 5
validates the previous results using experiments.

2. Model of the Electromechanical System

As mentioned in the previous section, the goal of this
paper is to study the vibration attenuation of the controlled
system in mistuned conditions. Thus, the most intuitive and
used index to evaluate the attenuation performance is the
ratio between the maximum of the dynamic amplification
modulus in uncontrolled and controlled conditions [11, 19].
Therefore, for the performance analysis, it is necessary to
derive the expression of the frequency response function
of the electromechanical system and thus to introduce the
model used to describe its electrodynamic behaviour.
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Figure 1: Electric equivalent of a piezoelectric actuator in open circuit (a) and shunted with impedance Z (b).

The piezoelectric actuator is modelled here as a capac-
itance 𝐶𝑝 and a strain-induced voltage generator in series
(Figure 1(a)). The induced voltage is 𝑉𝑝, whereas the voltage
between the electrodes of the piezoelectric bender is 𝑉.
𝑉 is equal to 𝑉𝑝 when the piezoelectric actuator is open-
circuited and null when the actuator is short-circuited. 𝑉
takes different values when an impedance 𝑍 is shunted to
the electrodes of the actuator (Figure 1(b)) because a current
𝑖𝑠 flows in the circuit. Moheimani et al. [20, 21] proved that
systems controlled by piezoelectric actuators shunted with
electric impedances can be modelled as a double feedback
loop (Figure 2(a)). The inner loop of Figure 2(a) can be
observed as a controller 𝐾, which can be expressed in the
Laplace domain as follows:

𝐾 (𝑠) =
𝑉

𝑉𝑝

=

𝑠𝐶𝑝𝑍 (𝑠)

1 + 𝑠𝐶𝑝𝑍 (𝑠)
, (1)

where 𝑠 is the Laplace variable.
Because the shunt impedance 𝑍 considered in this study

is a resistance 𝑅 and an inductance L (see Section 1) in series,
Z can be expressed in the Laplace domain as follows:

𝑍 (𝑠) = 𝐿𝑠 + 𝑅. (2)

The two terms 𝐺VV and 𝐺V𝑤 in Figure 2(a) are frequency
response functions (FRFs). The former is the FRF between
𝑉 and 𝑉𝑝, whereas the latter is between a disturbance𝑊 and
𝑉𝑝. These two FRFs can be expressed by the formulations in
the Laplace domain [20] as follows:

𝐺VV (𝑠) =
𝑉𝑝

𝑉
= 𝛾

∞

∑

𝑛=1

𝜓𝑛𝜓𝑛

𝑠2 + 2𝜉𝑛𝜔𝑛𝑠 + 𝜔2
𝑛

𝐺V𝑤 (𝑠) =
𝑉𝑝

𝑊
=

𝛾

𝐾

∞

∑

𝑛=1

Φ𝑛 (𝑥𝐹) 𝜓𝑛

𝑠2 + 2𝜉𝑛𝜔𝑛𝑠 + 𝜔2
𝑛

,

(3)

where 𝜔𝑛 is the 𝑛th eigenfrequency of the structure with
the piezoelectric bender short-circuited; 𝜉𝑛 is the associated
nondimensional damping ratio; Φ𝑛 is the 𝑛th eigenmode
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Figure 2: Feedback representation of the shunt control (a) and a
structure subject to disturbance𝑊 and damped using a piezoactua-
tor shunted to an electric impedance Z (b).

of the structure (scaled to the unit modal mass); Φ𝑛(𝑥𝐹)
represents the value of the 𝑛th mode at the forcing point
𝑥𝐹; 𝜓𝑛 is a term depending on the curvature of the 𝑛th
mode in the area of the piezoelectric patch [20, 21], which
assumes different formulations for mono- and bidimensional
structures; and 𝛾 and 𝐾 are two parameters based on the
geometric,mechanical, and electrical features of the structure
and the piezoelectric actuator. The method for calculating
𝜓𝑛, 𝛾, and 𝐾 for different possible configurations (e.g.,
monodimensional and bidimensional structures, symmetric
and antisymmetric configuration of the piezoelectric actua-
tor) can be found in [19].
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The closed-loop FRF between disturbance W (Fig-
ure 2(a)) and 𝑉𝑝 can be expressed as follows:

𝑇V𝑤 (𝑠) =
𝑉𝑝

𝑊
=

𝐺V𝑤 (𝑠)

1 + 𝐾 (𝑠) 𝐺VV (𝑠)
. (4)

Then, the closed-loop FRF between 𝑊 and the transverse
displacement 𝑧 of the structure (Figure 2(b)) in a given point
𝑥𝑀, which describes the behaviour of the system damped by
the shunt, can be expressed as follows:

𝑇𝑧𝑤 (𝑠)
󵄨󵄨󵄨󵄨𝑥=𝑥𝑀

=
𝑧 (𝑥𝑀)

𝑊
= 𝐺 (𝑠)|𝑥=𝑥𝑀

𝑇V𝑤 (𝑠)

𝐺VV (𝑠)

= 𝐺 (𝑠)|𝑥=𝑥𝑀

𝐺V𝑤 (𝑠)

1 + 𝐾 (𝑠) 𝐺VV (𝑠)
⋅

1

𝐺VV (𝑠)
,

(5)

where 𝐺(𝑠) is the FRF between 𝑉 and 𝑧 [19], which can be
given as follows:

𝐺 (𝑠, 𝑥𝑀) =
𝑧 (𝑥𝑀)

𝑉
= 𝐾

∞

∑

𝑛=1

Φ𝑛 (𝑥𝑀) 𝜓𝑛

𝑠2 + 2𝜉𝑛𝜔𝑛𝑠 + 𝜔2
𝑛

. (6)

Based on the aforementioned theoretical approach (see (5)),
the formulation of 𝑇𝑧𝑤 can be rearranged to achieve a
compact expression. Thus, the eigenfrequency 𝜔𝑝 and the
nondimensional damping ratio 𝑑𝑖 of the electric network
(composed by the series of 𝐶𝑝, L, and R) [19] can be
conveniently defined as follows:

𝜔𝑝 =
1

√𝐿𝐶𝑝
(7)

𝑑𝑖 =
𝑅

2

√
𝐶𝑝

𝐿
. (8)

By substituting (2), (7), and (8) into (1), the controller 𝐾 can
be expressed as a function of these two quantities as follows:

𝐾 =

𝑠 (𝑠 + 2𝑑𝑖𝜔𝑝)

𝑠2 + 2𝑑𝑖𝜔𝑝𝑠 + 𝜔2
𝑝

. (9)

For single degree of freedom systems, the FRF 𝑇𝑧𝑤 as a
function of the electrical eigenfrequency and damping can be
derived by substituting (9), (6), and (3) into (5) as follows:

𝑇𝑧𝑤 (𝑠, 𝑥𝑀) = Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

⋅

𝑠
2
+ 2𝑑𝑖𝜔𝑝𝑠 + 𝜔

2

𝑝

(𝑠2 + 2𝑑𝑖𝜔𝑝𝑠 + 𝜔2
𝑝
) (𝑠2 + 2𝜉𝑛𝜔𝑛𝑠 + 𝜔2

𝑛
) + 𝛾𝜓2

𝑛
𝑠 (𝑠 + 2𝑑𝑖𝜔𝑝)

.
(10)

This formulation is valid for both beams and plates as well
as for any layout of the piezoelectric actuator (e.g., single
actuator, two colocated actuators) [19]. It should be noted
that if the poles of this FRF are calculated considering the
piezoelectric actuator in open-circuit condition (𝑖𝑠 = 0, 𝑍 =

+∞), then the expression of the open-circuit eigenfrequency
𝜔
oc
𝑛
can be written as follows:

𝜔
oc
𝑛

= √𝜔2
𝑛
+ 𝛾𝜓2
𝑛
. (11)

Hence, it is possible to calculate the 𝑛th effective coupling

factor 𝑘𝑛 (defined as√((𝜔
oc
𝑛
)
2
− 𝜔2
𝑛
)/𝜔2
𝑛
, e.g., [4, 11, 22]) using

(11) as follows:

𝑘𝑛 =
√
(𝜔

oc
𝑛
)
2
− 𝜔
2

𝑛

𝜔2
𝑛

=

√𝛾𝜓2
𝑛

𝜔𝑛

. (12)

It should be noted that 𝑘𝑛 does not depend on the type
of shunt used but is a property of the system composed
of the vibrating structure and the piezoelectric actuator; 𝑘𝑛
indicates the capability of the piezoelectric actuator, coupled
to a given structure, to transform mechanical energy into
electrical energy.

The performance of the controlled system in optimal
conditions will depend on the tuning strategy selected to fix
the values of 𝑅 and 𝐿. The one considered here is found as
the most robust to possible mistuning in [19]. It is based on
considerations on the shape of the FRF of (10). Nevertheless,
it will be shown that the results and the procedure presented
in this paper are valid for all tuning strategies that lead to a
nearly flat shape of the FRF around the resonance frequency
(see Section 3).The tuning criterion considered here fixes the
values of 𝑅 and 𝐿 based on the procedure briefly summarised
here below:

(i) The trend of |𝑇𝑧𝑤| is independent of the damping
factor of the electrical circuit 𝑑𝑖 at two frequency
values 𝜔𝐴 and 𝜔𝐵 (see the corresponding points A
and B in Figure 3(a)) (𝜔 is the circular frequency)
for undamped systems [23]. The optimal value of 𝜔𝑝
(𝜔opt
𝑝

) can be found by imposing the same dynamic
amplificationmodulus at these two frequencies.Thus,
the expression for the electrical eigenfrequency can be
achieved [19] as follows:

𝜔
opt
𝑝

= √𝜔2
𝑛
+ 𝛾𝜓2
𝑛
= 𝜔

oc
𝑛
. (13)

Then, the value of 𝐿 can be found by combining (7)
and (13).

(ii) The optimal value of the damping 𝑑𝑖 (and thus of R)
is found by imposing an equal dynamic amplification
|𝑇𝑧𝑤| at two different frequencies: 𝜔𝐴 and a second
frequency given by the square root of the arithmetic
mean of 𝜔2

𝐴
and 𝜔

2

𝐵
. This frequency is found to be

equal to the electrical frequency 𝜔𝑝 [19]. Thus, the
condition used to fix the value of 𝑑𝑖 can be given as
follows:

󵄨󵄨󵄨󵄨𝑇𝑧𝑤
󵄨󵄨󵄨󵄨𝜔𝐴

=
󵄨󵄨󵄨󵄨𝑇𝑧𝑤

󵄨󵄨󵄨󵄨𝜔𝑝
. (14)

This condition is convenient to tune the shunt
impedance because it allows a flat trend of |𝑇𝑧𝑤| to
occur in the frequency band around the resonance
(Figure 3(b)). The value of the optimal electrical
damping (𝑑opt

𝑖
), which results from (14) (considering

𝜉𝑛 = 0), can be given as follows:

𝑑
opt
𝑖,𝜉𝑛=0

= √

𝛾𝜓
2

𝑛

2 (𝜔
opt
𝑝 )
2
. (15)

Then, the value of 𝑅 can be found using (8).
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Figure 3: |𝑇𝑧𝑤| for an undamped elastic structure (a) and trend of |𝑇𝑧𝑤| for a generic system with the optimal value of 𝑑𝑖 (b).

It should be noted that the use of (13) and (15) (which
are yielded considering 𝜉𝑛 = 0) in the case of damped
systems introduces certain approximations. Nevertheless,
these approximations can be assumed as negligible. In fact,
according to [19], themaximumdifference between the atten-
uation provided by (13) and (15) and the actual attenuation is
less than 0.5 dB for most practical applications.

Therefore, the use of (13) and (15) can be considered
reliable even with damped systems.

The behaviour of mistuned systems will be studied in the
following sections. Because there are no closed formulas to
describe the vibration attenuation in mistuned conditions,
the maximum of |𝑇𝑧𝑤| must be found numerically using
(10). The number of variables in this equation is high: five
variables, that is, 𝜔𝑛, 𝜔𝑝, 𝜉𝑛, 𝑑𝑖, and 𝛾𝜓

2

𝑛
. Hence, several

simulations must be performed if a detailed description
of the behaviour of different possible mistuned systems is
desired (several values of 𝜔𝑝, 𝑑𝑖, and 𝛾𝜓

2

𝑛
for each mode

considered, defined by 𝜔𝑛 and 𝜉𝑛). Therefore, it is essential
to decrease the number of variables to be considered in
the simulations to reduce the effort of this numerical study.

Therefore, Section 2.1 presents a normalisation of the system
model to reduce the number of variables involved in the
problem.

2.1. Normalisation of the Model. First, all of the possible
values of𝜔𝑝 and 𝑑𝑖 can be defined as a function of the optimal
ones 𝜔opt

𝑝
and 𝑑

opt
𝑖

as follows:

𝑑𝑖 = 𝑙𝑑
opt
𝑖

𝜔𝑝 = V𝜔opt
𝑝

,

(16)

where 𝑙 and V are the amount of mistuning on the electrical
damping and eigenfrequency, respectively (𝑙 = 1 and V = 1 in
the case of no mistuning).

Then, (10) is considered: both the numerator and the
denominator are divided by 𝜔

4

𝑛
, and 𝑠 is expressed as 𝑗𝜔 (j

is the imaginary unit). After a few mathematical rearrange-
ments (see Appendix A), a new expression of 𝑇𝑧𝑤 in the
frequency domain can be obtained.This new expression uses
(13), (15), and (16) to express the electrical parameters as a
function of their optimal values as follows:

𝑇𝑧𝑤 (𝑥𝑀) =
Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

𝜔2
𝑛

−𝜑
2
+ √2𝑗𝜑𝑘𝑛𝑙V + V2 (1 + 𝑘

2

𝑛
)

(−𝜑2 + √2𝑗𝜑𝑘𝑛𝑙V + V2 (1 + 𝑘2
𝑛
)) (−𝜑2 + 2𝑗𝜉𝑛𝜑 + 1) + 𝑗𝜑𝑘

2

𝑛
(𝑗𝜑 + √2𝑘𝑛𝑙V)

, (17)

where 𝜑 = 𝜔/𝜔𝑛 is the nondimensional frequency.
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The advantages provided by the use of (17) will be
underlined in Section 3.

3. Attenuation Performance of
the Optimally Tuned Shunt

As previously mentioned, the performance of the shunt in
terms of vibration attenuation can be expressed as the ratio
between the maximum amplitude of the uncontrolled system
FRF and the maximum amplitude of the controlled system
FRF (i.e., max(|𝑇𝑧𝑤|); see (17)).

The FRF of the uncontrolled structure (i.e., with the
piezoelectric patch in short-circuit) can be defined as follows
[24]:

𝐺𝑧𝑤 =
Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

(𝑠2 + 2𝜉𝑛𝜔𝑛𝑠 + 𝜔2
𝑛
)
. (18)

Therefore, the attenuation performance, denoted here as att,
can be expressed as follows:

att =
max (󵄨󵄨󵄨󵄨𝐺𝑧𝑤

󵄨󵄨󵄨󵄨)

max (󵄨󵄨󵄨󵄨𝑇𝑧𝑤
󵄨󵄨󵄨󵄨)

=

󵄨󵄨󵄨󵄨Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)
󵄨󵄨󵄨󵄨 / (2𝜉𝑛𝜔

2

𝑛
√1 − 𝜉2

𝑛
)

max (󵄨󵄨󵄨󵄨𝑇𝑧𝑤
󵄨󵄨󵄨󵄨)

,

(19)

where, according to [11], max(|𝐺𝑧𝑤|) = |Φ𝑛(𝑥𝑀)Φ𝑛(𝑥𝐹)|/

(2𝜉𝑛𝜔
2

𝑛
√1 − 𝜉2

𝑛
).

The analytical expression ofmax(|𝑇𝑧𝑤|) is rather complex;
thus, it is convenient to define the index attk instead of att for
the case of perfect tuning (𝜔𝑝 = 𝜔

opt
𝑝

) as follows:

att𝑘 =
max (󵄨󵄨󵄨󵄨𝐺𝑧𝑤

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑇𝑧𝑤
󵄨󵄨󵄨󵄨𝜔𝑝

= √(
max (󵄨󵄨󵄨󵄨𝐺𝑧𝑤

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑇𝑧𝑤
󵄨󵄨󵄨󵄨𝜔𝑝

)

2

. (20)

The difference between att and attk is that, in the former
case, themaximum amplitude of the controlled system FRF is
considered (max(|𝑇𝑧𝑤|)), whereas, in the latter case, the value
of the system response |𝑇𝑧𝑤| at 𝜔𝑝 is considered (|𝑇𝑧𝑤|𝜔𝑝). As
previously mentioned, the use of attk simplifies the notation
and can be used to accurately approximate the value of att.
In fact, in the case of perfect tuning, max (|𝑇𝑧𝑤|) ≃ |𝑇𝑧𝑤|𝜔𝑝

because of the flat shape of |𝑇𝑧𝑤| around 𝜔𝑛 (𝜔𝑝 = 𝜔
opt
𝑝

= 𝜔
𝑜𝑐

𝑛

is in the frequency range where the controlled FRF has a flat
shape; see Figure 3(b)) [19]. Hence, att𝑘 ≃ att.

Based on (17), attk can be expressed as follows (see
Appendix B):

att𝑘 = (𝑘𝑛 + 2√2𝜉𝑛)
√

(1 + 𝑘
2

𝑛
)

8𝜉2
𝑛
(1 − 𝜉2

𝑛
)
. (21)

Thus, the attenuation in decibels (𝐴dB) can be expressed as
follows:

𝐴dB = 20 log
10
att𝑘

= 20 log
10

[
[

[

(𝑘𝑛 + 2√2𝜉𝑛)
√

(1 + 𝑘
2

𝑛
)

8𝜉2
𝑛
(1 − 𝜉2

𝑛
)

]
]

]

.

(22)

Equation (22) only depends on two systemparameters, 𝜉𝑛 and
𝑘𝑛. Therefore, the properties of tuned systems can be studied
considering only these two parameters. A similar approach is
used for mistuned shunt systems (see Section 4). Hence, the
normalisation proposed in Section 2.1 allows the model to be
simplified, thus avoiding one of the variables (i.e., now only 𝜉𝑛
and 𝑘𝑛 are considered, whereas it would have been necessary
to consider the three parameters 𝜉𝑛, 𝜔𝑛, and 𝛾𝜓

2

𝑛
without the

normalisation).
It is easy to see that (22) links the achievable attenuation

to the problem parameters (i.e., 𝑘𝑛 and 𝜉𝑛). Since 𝜉𝑛 is fixed,
(22) allows the attenuation to be predicted as a function of
the value of 𝑘𝑛, thus suggesting which value should be used to
obtain the desired attenuation performance. In fact, it can be
recalled that 𝑘𝑛 is a function of 𝛾𝜓2

𝑛
(see (12)), and it can thus

be modified by changing the geometrical, mechanical, and
electrical characteristics of the actuator as well as its position
[19]. Furthermore, 𝑘𝑛 can be also modified by connecting
several piezoelectric actuators in series/parallel [25, 26] and
by using a negative capacitance [22, 27].Therefore, the model
used here is of general validity.

Equation (22) can be rearranged as follows:

𝐴dB = 20 log
10
(𝑘𝑛 + 2√2𝜉𝑛) + 10 log

10
(1 + 𝑘

2

𝑛
)

− 10 log
10
(8𝜉
2

𝑛
(1 − 𝜉

2

𝑛
)) .

(23)

Now, three different situations in terms of the 𝑘𝑛 value can be
considered:

(1) 𝑘𝑛 of the same order of magnitude of 𝜉𝑛 (the maxi-
mum value of 𝜉𝑛 considered here is 1%): this is the
case of extremely stiff and damped structures and/or
badly positioned actuators. In this case, (23) can be
approximated as follows:

𝐴dB = 20 log
10
(𝑘𝑛 + 2√2𝜉𝑛)

− 10 log
10
(8𝜉
2

𝑛
(1 − 𝜉

2

𝑛
)) .

(24)

In fact, 𝑘𝑛 is so low that 10 log
10
(1 + 𝑘

2

𝑛
) can be

approximated as 10 log
10
(1) = 0.

(2) 2√2𝜉𝑛 ≪ 𝑘
𝑛
≪ 1: this is the typical case [19]. It is

possible to make the following simplifications: (𝑘𝑛 +
2√2𝜉𝑛) ≃ 𝑘𝑛 and 1 + 𝑘

2

𝑛
≃ 1. Thus, for most

engineering applications, (23) can be approximated as
follows:

𝐴dB = 20 log
10
(𝑘𝑛) − 10 log

10
(8𝜉
2

𝑛
(1 − 𝜉

2

𝑛
))

= 𝑚0 log10 (𝑘𝑛) + 𝑞0,

(25)
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Figure 4: Relationship between 𝐴dB and log
10
𝑘𝑛 for different

systems (i.e., different 𝜉𝑛 values).

where 𝑚0 = 20 and 𝑞0 = −10 log
10
(8𝜉
2

𝑛
(1 − 𝜉

2

𝑛
)).

Equation (25) demonstrates a linear relationship
between 𝐴dB and log

10
(𝑘𝑛).

(3) 𝑘𝑛 close to 1: this is the case where extremely flex-
ible structures and/or the addition of a negative
capacitance are considered. Equation (23) can be
approximated as follows:

𝐴dB = 20 log
10
(𝑘𝑛) + 10 log

10
(1 + 𝑘

2

𝑛
)

− 10 log
10
(8𝜉
2

𝑛
(1 − 𝜉

2

𝑛
)) .

(26)

Equation (26) demonstrates that, in this case, the
relationship between 𝐴dB and log

10
(𝑘𝑛) is no longer

linear. Nevertheless, in most practical applications,
a linear relation can still be used. In fact, the term
10 log

10
(1 + 𝑘

2

𝑛
) has a negligible contribution up to

approximately 𝑘𝑛 = 0.6. Its contribution becomes
more evident, albeit small, only for higher 𝑘𝑛 values
(at 𝑘𝑛 = 0.8, its contribution is approximately 2 dB).
Hence, the term 10 log

10
(1+𝑘
2

𝑛
) can be neglected, and

the attenuation 𝐴dB as a function of log
10
(𝑘𝑛) can be

approximated by the linear relation as follows:

𝐴dB ≃ 𝑚0 log10 (𝑘𝑛) + 𝑞0, (27)

where𝑚0 = 20 and 𝑞0 = −10 log
10
(8𝜉
2

𝑛
(1 − 𝜉

2

𝑛
)).

Figure 4 shows the linear relationship between 𝐴dB and
log
10
(𝑘𝑛) for different systems selected as an example. Addi-

tionally, the figure indicates that the area in which linearity
is lost (corresponding to the case in which 𝑘𝑛 is of the
same order of magnitude of 𝜉𝑛, point 1 of the previous
numbered list; see the left part of the green dashed line in
the figure) corresponds to cases where 𝐴dB is extremely low
(approximately 5 dB or lower).

The linear relationship demonstrated thus far (see (25)
and (27)) can lead to the following notations:

log
10
att𝑘 ≃ log

10
(𝑘𝑛) + 𝑞0/20 󳨐⇒

att𝑘 ≃ 𝑘𝑛 (10)
𝑞0/20 󳨐⇒

𝑘𝑛 ≃
att𝑘
20
√(10)

𝑞0
.

(28)

The central expression of (28) indicates that if 𝑘𝑛 is incre-
mented from value 𝑓1 to value 𝑓2 where 𝑓2/𝑓1 = 𝑔, then
the value of att𝑘 increases by a factor 𝑔, which signifies that
consistent increases in att𝑘 can be achieved with moderate
increases (in terms of absolute value) of 𝑘𝑛 when 𝑘𝑛 is low.
Conversely, high increases in 𝑘𝑛 (in terms of absolute value)
produce a low increment of att𝑘 when 𝑘𝑛 is high. Hence,
an asymptotic behaviour of the attenuation performance is
demonstrated.

The next section considers mistuned shunt systems.

4. Robustness of the Shunt Damping:
Performance in Mistuned Conditions

Section 1 explained that, in most cases, the shunted system
operates in mistuned conditions because of the uncertainty
in the estimated values of the system parameters (especially
electrical quantities) or changes in either the mechanical
system or the electrical network. This often leads to a control
performance considerably lower than that expected; thus,
a robustness analysis would be useful for understanding
the behaviour of the controlled system and determining a
method to limit this performance reduction. Therefore, the
analysis of robustness attempts to investigate the worsening
of performance due to mistuning and provides formulations
for its prediction.

Based on (10), (13), and (15), the mistuning can be due
to errors in the estimated values of 𝜉𝑛, 𝜔𝑛, and 𝛾𝜓

2

𝑛
as well

as the values of 𝑅 and 𝐿. It is easy to see that all of the
different reasons for mistuning can be expressed as errors
in the optimal values of 𝜔𝑝 and 𝑑𝑖. Therefore, in this study,
the actual values of 𝜔𝑝 and 𝑑𝑖 are expressed as changes
from their optimal values. Therefore, the mistuning can be
easily considered in (17) by fixing 𝑙 and V at values other
than 1 (values lower than 1 indicate underestimation, whereas
those higher than 1 indicate overestimation; see (16)). The
FRF of the mistuned shunt system can thus be described
by (17), and the related vibration attenuation performance is
measured by the index att of (19). The attenuation in these
mistuned conditions can be expressed in decibels as𝐴∗dB (see
Appendix C for certain clarifications for the symbols used) as
follows:

𝐴
∗

dB = 20 log
10
att󵄨󵄨󵄨󵄨𝑙 ̸=1,V ̸=1 . (29)

The value of 𝐴∗dB can be found numerically to study the
attenuation in differentmistuned conditions.Thus, the values
of |𝑇𝑧𝑤| as a function of frequency must be calculated for a
given situation (i.e., fixing the values of 𝑘𝑛, 𝜉𝑛, 𝑙, and V in (17));
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Figure 5: Relationship between 𝐴dB or 𝐴
∗

dB and log
10
𝑘𝑛 for different 𝜉𝑛 values: 0.1% (a) and 1% (b).

and then the maximum of |𝑇𝑧𝑤| can be found numerically.
Lastly, att can be calculated using (19).

Nevertheless, the number of simulations needed is often
high. In fact, several different values of 𝑙 and V need to be
tested to consider various different possible mistuning situ-
ations. Furthermore, numerous values of 𝑘𝑛 must be consid-
ered; in fact, it is useful to understand if an increased 𝑘𝑛 value
allows the desired attenuation performance to be achieved,
even in mistuned conditions. Furthermore, according to [19]
and as it will be shown in Sections 4.1 and 4.3, it is often
good practice to increase the initial value of the resistance
with respect to its optimal value to improve the attenuation
in mistuned conditions; hence, 𝑙 values significantly higher
than 1 need to be tested, thus leading to a large number of
𝑙 values to be taken into account. Therefore, the number of
required simulations can increase substantially. For example,
when 𝑁𝑘 values of 𝑘𝑛, 𝑁V biased values of 𝜔𝑝, and 𝑁𝑙 biased
values of 𝑑𝑖 have to be considered to fully study the given
problem, the entire number of simulations 𝑁𝑠 that must be
performed to evaluate the attenuation in all of the possible
cases results in𝑁𝑝𝑁V𝑁𝑙 (e.g., if𝑁𝑠 is equal to 10

6, the amount
of computational time to performall the simulations becomes
longer than 10 hours on a normal laptop).

Therefore, the goal of the next sections is to propose a
model to describe the attenuation in mistuned conditions
𝐴
∗

dB. Sections 4.1 and 4.2 analyse the effects of errors on 𝑑𝑖

and 𝜔𝑝, respectively. Then, Section 4.3 addresses situations
where both errors (i.e., on 𝑑𝑖 and 𝜔𝑝) occur together.

4.1. Mistuning on the Electrical Damping. This section only
considersmistuning on𝑑𝑖. Figure 5 depicts the curves relating
log
10
𝑘𝑛 and 𝐴

∗

dB for different systems and different errors
on 𝑑𝑖 (i.e., different 𝑙 values and V = 1). These curves were
found numerically using (29), (19), and (17) (see Section 4).
In fact, a general analytical solution is not possible because
the equations are of a high order, and thus the solution cannot
be expressed through closed analytical formulas and must be
calculated numerically case by case. It should be noted that
the use of the normalised model of (17) still allows a decrease
in the number of variables to be considered: four variables in
the normalisedmodel (i.e., 𝜉𝑛, 𝑘𝑛, 𝑙, and V; see (17)) versus five
variables in the nonnormalised model (i.e., 𝜉𝑛, 𝜔𝑛, 𝛾𝜓

2

𝑛
, 𝑙, and

V; see (10)).
The primary property of the plots in Figure 5 is that the

main effect of mistuning is to shift the curves with respect
to the case of 𝑙 = 1; however, all of these curves can still be
approximated as straight lines. In fact, the lines associated
with 𝜉𝑛 = 1% lose their linear trend in correspondence
of low values of 𝐴∗dB (i.e., for approximately 𝐴

∗

dB < 4 dB);
nevertheless, these curves can still be considered piecewise
linear. In fact, if an interval for 𝑘𝑛 equal to one order of
magnitude is considered (it is hard to change 𝑘𝑛 for one order
of magnitude [25] or more, even using negative capacitances
[27]), the curves can be well approximated as lines.

The lines in Figure 5 prove that the effects of the change
in the intercept are significantly higher than the effects of the
change in the angular coefficient (i.e., the lines primarily shift
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due to a nonunitary value of 𝑙, parallel lines). In other words,
the sensitivity of the attenuation performance on the value of
the coupling coefficient tends to be independent of the level of
mistuning. Hence, for a given system, the improvement in the
attenuation achieved by increasing the value of the coupling
coefficient is the same whether the shunt is tuned or not.

The relationship between log
10
𝑘𝑛 and 𝐴

∗

dB for a given
system can be expressed as follows:

𝐴
∗

dB ≃ 𝑞
∗

𝑙
(𝑙) + 𝑚

∗

𝑙
(𝑙) log

10
(𝑘𝑛) = 𝐴̃

∗

dB, (30)

where 𝐴̃
∗

dB is the estimate of 𝐴∗dB and 𝑞
∗

𝑙
and 𝑚

∗

𝑙
are the

intercept and the angular coefficient of the line, respectively,
which are both a function of 𝑙, as evidenced in (30) (see also
Appendix C for certain clarifications of the symbols used).
It should be noted that 𝑚∗

𝑙
is indicated as dependent on 𝑙,

even if this dependency is slight (see above), for the sake of
completeness.

If the trend of 𝐴∗dB as a function of 𝑙 is depicted for
different values of 𝑘𝑛, a few further interesting facts can be
noted (see Figure 6). All of the curves of this new figure
demonstrate nearly the same features: the attenuation loss is
limited for 𝑙 > 1; furthermore, in this range of 𝑙, the rate of
the loss is nearly constant. Conversely, for 𝑙 < 1, the rate
becomes increasingly larger by decreasing the value 𝑙. It is
possible to approximatively state that, for 𝑙 < 0.5, the rate
of the attenuation loss increases. This result is a first sign of
the benefits provided by the use of overestimated electrical
damping 𝑑𝑖 values (and thus overestimated 𝑅 values). In fact,
even if an overestimated 𝑑𝑖 value causes a worsening in the
attenuation performance if compared to the tuned situation,
this worsening is not that high (see Figure 6); overall, if a
mistuning occurs in situations where the starting 𝑑𝑖 value
is overestimated deliberately, the attenuation loss due to the
mistuning is low. The use of initially overestimated 𝑑𝑖 values
will be considered again in Section 4.3.

A further interesting point is that the trend of 𝐴∗dB as
a function of 𝑙 can be modelled as the combination of two
fourth-order polynomials, one for 𝑙 < 1 and another for 𝑙 > 1,
regardless of the system considered (see Figure 6).

The calculation for each of these fourth-order polyno-
mials requires the knowledge of 𝐴∗dB for five values of 𝑙.
Therefore, for the given values of 𝜉𝑛 and 𝑘𝑛, it is sufficient to
calculate ten points (𝑙, 𝐴∗dB) using (29), (19), and (17) (i.e., five
for 𝑙 < 1 and five for 𝑙 > 1) to determine the trend of 𝐴∗dB for
an extended range of 𝑙 values (e.g., 𝑙 = 0.01 ÷ 2, as indicated
in Figure 6).

Based on (30) and Figure 6, the following procedure can
be applied when the behaviour of a mistuned shunt system in
a range of 𝑘𝑛 values between 𝑘𝐴 and 𝑘𝐵 is studied.

(i) Calculate five pairs (𝑙, 𝐴∗dB) using (29), (19), and (17)
for 𝑙 < 1 and 𝑘𝑛 = 𝑘𝐴 and determine the interpolating
polynomial. Then, repeat the same procedure for 𝑙 >
1. It is now possible to know the value of 𝐴∗dB for any
value of 𝑙 at 𝑘𝑛 = 𝑘𝐴.

(ii) Calculate five pairs (𝑙, 𝐴∗dB) using (29), (19), and (17)
for 𝑙 < 1 and 𝑘𝑛 = 𝑘𝐵 and determine the interpolating
polynomial. Then, repeat the same procedure for

Table 1: Bounds for theMonte Carlo simulations for 𝑙 ̸= 1 and V = 1.

𝜉𝑛 𝑘𝐴 𝑘𝑛 𝑙𝑥

Min 0.05% 0.001 𝑘𝐴 0.5
Max 1% 0.35 𝑘𝐵 1.5

𝑙 > 1. It is now possible to know the value of 𝐴∗dB for
any value of 𝑙 at 𝑘𝑛 = 𝑘𝐵.

(iii) The value of 𝐴̃∗dB for a generic value 𝑘𝑛 between 𝑘𝐴 and
𝑘𝐵 and a generic value 𝑙 = 𝑙𝑥 can be computed using
(30), where

𝑚
∗

𝑙
=

𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=𝑙𝑥,𝑘𝑛=𝑘𝐵

− 𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=𝑙𝑥,𝑘𝑛=𝑘𝐴

log
10
𝑘𝐵 − log

10
𝑘𝐴

𝑞
∗

𝑙
= 𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=𝑙𝑥,𝑘𝑛=𝑘𝐵

− 𝑚
∗

𝑙
log
10
𝑘𝐵.

(31)

Therefore, it is possible to estimate the attenuation for any
value of 𝑙 and 𝑘𝑛 (between 𝑘𝐴 and 𝑘𝐵) with only twenty
simulations.

The accuracy of this procedurewas verified using aMonte
Carlo test with more than 105 simulations comparing the
attenuation values 𝐴̃∗dB achieved using this procedure and the
𝐴
∗

dB values obtained using (29), (19), and (17). The difference
Δ is defined as 𝐴̃∗dB − 𝐴

∗

dB. For each simulation, the values of
𝜉𝑛, 𝑘𝐴, 𝑘𝑛, and 𝑙𝑥 were extracted from uniform distributions.
The bounds of the distributions are presented in Table 1 and
were chosen in order to take into account themost part of the
practical applications. Table 2 lists the results, hence proving
the reliability of the proposed procedure. It should be noted
that 𝑘𝐵 = √3𝑘𝐴was used in the simulations.This corresponds
to a change of 𝛾𝜓2

𝑛
within an interval equal to three times

the starting value, which is quite a broad interval. If a wider
interval of 𝑘𝑛 must be considered and the same accuracy is
desired, it is possible to analyse the system in two different
ranges. For example, if 𝑘𝐵 = 3𝑘𝐴, the entire range can be
split as follows: 𝑘𝐴 ÷ 𝑘ℎ and 𝑘ℎ ÷ 𝑘𝐵 with 𝑘ℎ =

√3𝑘𝐴. This
requires using thirty simulations instead of twenty to describe
the behaviour of the mistuned shunt system.

4.2. Mistuning on the Electrical Eigenfrequency. Figure 7
illustrates the same information as Figure 5 but for mistuning
on 𝜔𝑝 (i.e., V ̸= 1 and 𝑙 = 1). It should be noted
that the resulting curves tend to increase their curvature.
Nevertheless, the linearity is lost only when 𝐴

∗

dB becomes
lower than approximately 4 or 5 dB. However, the curves can
be still piecewise approximated as lines with enough accuracy
for wide ranges of log

10
(𝑘𝑛). The effect of a nonunitary value

of V is to highly increase the angular coefficient of the lines.
Consequently, increasing the value of 𝑘𝑛 is evenmore effective
in enhancing the attenuation in the case of mistuning on 𝜔𝑝

than in the case of tuned systems.
The curves of Figure 7 can be expressed as follows:

𝐴
∗

dB ≃ 𝑞
∗

V (V) + 𝑚
∗

V (V) log10 (𝑘𝑛) = 𝐴̃
∗

dB, (32)

where 𝐴̃∗dB is again the estimate of𝐴∗dB and 𝑞
∗

V and𝑚
∗

V are the
intercept and the angular coefficient of the lines, respectively,
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Figure 6: Relationship between 𝐴
∗

dB and 𝑙 for different 𝑘𝑛 values and different 𝜉𝑛 values: 0.05% (a), 0.1% (b), 0.5% (c), and 1% (d). The + are
the points related to the case of 𝑙 > 1 calculated using (29), (19), and (17), which are then interpolated by fourth-order polynomials (solid
curves). The ∗ are the points related to the case of 𝑙 < 1 calculated using (29), (19), and (17), which are then interpolated by fourth-order
polynomials (solid curves).
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Table 2: Results of the Monte Carlo simulations for the case 𝑙 ̸= 1 and V = 1.

Mean value of Δ [dB] Standard deviation of Δ [dB] Minimum value of Δ [dB] Maximum value of Δ [dB]
−0.05 0.03 −0.21 0.02

Table 3: Bounds for theMonteCarlo simulations for V ̸= 1 and 𝑙 = 1.

𝜉𝑛 𝑘𝐴 𝑘𝑛 V𝑥
Min 0.05% 0.001 𝑘𝐴 0.9
Max 1% 0.35 𝑘𝐵 1.1

which are both functions of V (see Appendix C for certain
clarifications of the symbols used).

If the trend of𝐴∗dB is shown as a function of V for different
values of 𝑘𝑛, a few further interesting facts can be noted (see
Figure 8). The same percentage value of mistuning leads to
a different decrease in the performance if it is related to an
overestimation or underestimation of the optimal value of
the electrical eigenfrequency. In fact, values of V lower than
1 cause higher losses in the attenuation than values greater
than 1 (e.g., compare the curves at V = 0.75 and V = 1.25).

A further interesting point is that the trend of 𝐴∗dB as a
function of V can be modelled as a fourth-order polynomial
for both V < 1 and V > 1, regardless of the system considered
(see Figure 8). Therefore, if the study of the behaviour of a

mistuned shunt system in a range of 𝑘𝑛 values between 𝑘𝐴 and
𝑘𝐵 is considered, the same procedure discussed in Section 4.1
(see the list in Section 4.1) can be applied, and it is possible to
estimate the attenuation for any value of V and 𝑘𝑛 (between 𝑘𝐴
and 𝑘𝐵) with only twenty simulations. Indeed, it is possible to
write

𝑚
∗

V =

𝐴
∗

dB
󵄨󵄨󵄨󵄨V=V𝑥 ,𝑘𝑛=𝑘𝐵

− 𝐴
∗

dB
󵄨󵄨󵄨󵄨V=V𝑥 ,𝑘𝑛=𝑘𝐴

log
10
𝑘𝐵 − log

10
𝑘𝐴

𝑞
∗

V = 𝐴
∗

dB
󵄨󵄨󵄨󵄨V=V𝑥 ,𝑘𝑛=𝑘𝐵

− 𝑚
∗

V log10𝑘𝐵.

(33)

Again, a Monte Carlo test was performed with more than 105

simulations comparing the attenuation values 𝐴̃∗dB achieved
using this procedure and the 𝐴∗dB values obtained using (29),
(19), and (17). For each simulation, the values of 𝜉𝑛, 𝑘𝐴, 𝑘𝑛, and
V𝑥 were extracted from uniform distributions (see Table 3 for
the bounds of the distributions, whichwere chosen in order to
take into account the most part of the practical applications),
and 𝑘𝐵 was fixed to√3𝑘𝐴, as performed in Section 4.1. Table 4
lists the results, thus proving the reliability of the proposed



12 Shock and Vibration

Table 4: Results of the Monte Carlo simulations for V ̸= 1 and 𝑙 = 1.

Mean value of Δ [dB] Standard deviation of Δ [dB] Minimum value of Δ [dB] Maximum value of Δ [dB]
−0.02 0.07 −0.50 0.19

procedure. It should be noted that the range of V𝑥 is narrower
than that used in Section 4.1 for 𝑙𝑥. The reason is that the
optimal value of 𝑑𝑖 depends on more variables than the
optimal value of 𝜔𝑝, thus leading to more uncertainty (see
(15) and (13)).

4.3. Mistuning on Both the Electrical Eigenfrequency and the
Damping Ratio. Sections 4.1 and 4.2 have treated cases in
which themistuning is related to either𝑑𝑖 or𝜔𝑝. Nevertheless,
in actual applications, both of the mistuning effects are
expected to appear together.

In these general mistuned situations (i.e., 𝑙 ̸= 1 and
V ̸= 1), the performance of the shunt system demonstrates a
different behaviour for values of 𝑙 higher or lower than 1.This
result can be clearly evidenced using the double-logarithmic
representation already utilised in Figures 5 and 7. In fact,
Figure 9 depicts the different behaviour for certain systems
selected as examples:

(i) For systems where 𝑙 > 1, the loss of attenuation is
essentially due to the mistuning causing the highest
loss (see the subplots on the right side).

(ii) For systems where 𝑙 < 1, the loss of attenuation can
be derived as the sum of the losses caused by both the
mistuning types (see the subplots on the left side).

Now, for a given system (i.e., fixed values of 𝜉𝑛 and 𝑘𝑛) and
fixed values of 𝑙 and V (named 𝑙𝑥 and V𝑥), the following indexes
can be defined:

𝑦𝑡 = 𝐴dB − 𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=𝑙𝑥,V=V𝑥

𝑦𝑜 = 𝐴dB − 𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=1,V=V𝑥

𝑦𝑑 = 𝐴dB − 𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=𝑙𝑥,V=1

,

(34)

where 𝑦𝑡 expresses the loss of attenuation when a mistuning
occurs on the values of both 𝜔𝑝 and 𝑑𝑖; 𝑦𝑜 expresses the loss
of attenuation when a mistuning occurs only on the value of
𝜔𝑝; and 𝑦𝑑 expresses the loss of attenuationwhen amistuning
occurs only on the value of 𝑑𝑖.

Based on the abovementioned considerations related to
Figure 9 (see the list above in this section), 𝑦̃

𝑡
(the estimate of

𝑦𝑡) can be calculated as follows:

𝑦̃
𝑡
=
{

{

{

max (𝑦𝑜, 𝑦𝑑) , ∀𝑙𝑥 > 1

𝑦𝑜+𝑦𝑑, ∀𝑙𝑥 < 1.

(35)

According to (35), 𝐴̃∗dB (i.e., the estimate of 𝐴∗dB) can be
defined as follows:

𝐴̃
∗

dB
󵄨󵄨󵄨󵄨󵄨𝑙=𝑙𝑥 ,V=V𝑥

=
{

{

{

min (𝐴∗dB
󵄨󵄨󵄨󵄨𝑙=1,V=V𝑥

, 𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=𝑙𝑥,V=1

) , ∀𝑙𝑥 > 1

𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=1,V=V𝑥

+ 𝐴
∗

dB
󵄨󵄨󵄨󵄨𝑙=𝑙𝑥 ,V=1

− 𝐴dB, ∀𝑙𝑥 < 1.

(36)

𝐴
∗

dB|𝑙=1,V=V𝑥 and 𝐴
∗

dB|𝑙=𝑙𝑥,V=1 can be estimated using (32) and
(30), respectively. 𝐴dB is given in (22). Hence, (36) allows
the attenuation to be estimated for any values of 𝑙, V, and 𝑘𝑛

(between 𝑘𝐴 and 𝑘𝐵) using only forty-two simulations based
on (17), (19), and (29). In fact, (36) allows the behaviour of the
mistuned shunt systems to be analysed with a bias on both𝜔𝑝
and 𝑑𝑖 by considering the mistuning on 𝜔𝑝 and 𝑑𝑖 separately.
Twenty simulations are needed to study the behaviour of the
system with 𝑙 ̸= 1 and V = 1 (see Section 4.1), twenty for
the case 𝑙 = 1 and V ̸= 1 (see Section 4.2), and two for
the case 𝑙 = 1 and V = 1 (i.e., one with 𝑘𝑛 = 𝑘𝐴 and the
other with 𝑘𝑛 = 𝑘𝐵); furthermore, the 𝐴dB (i.e., the case with
𝑙 = 1 and V = 1) values for 𝑘𝑛 = 𝑘𝐴 and 𝑘𝑛 = 𝑘𝐵 can
also be calculated using (22). In the case of𝑁𝑠 (total number
of cases to be considered) equal to 106, the amount of time
required to perform all the simulations decreases from more
than 10 hours (see the end of Section 4) to a few minutes or
less (approximately 30 s). Hence, the study of the behaviour
of the system in mistuned conditions becomes very fast, thus
allowing to quickly analyse the effects of different 𝑅 values on
the attenuation performance and to choose the best one for
the given application.

Therefore, by rearranging (36) using (30) and (32), the
final form of the approximated model able to describe the
behaviour of the mistuned shunt systems can be achieved as
follows:

𝐴̃
∗

dB
󵄨󵄨󵄨󵄨󵄨𝑙=𝑙𝑥 ,V=V𝑥 ,𝑘𝑛

=
{

{

{

min (𝑞∗V (V𝑥) + 𝑚
∗

V (V𝑥) log10 (𝑘𝑛) , 𝑞
∗

𝑙
(𝑙𝑥) + 𝑚

∗

𝑙
(𝑙𝑥) log10 (𝑘𝑛)) , ∀𝑙𝑥 > 1

𝑞
∗

V (V𝑥) + 𝑚
∗

V (V𝑥) log10 (𝑘𝑛) + 𝑞
∗

𝑙
(𝑙𝑥) + 𝑚

∗

𝑙
(𝑙𝑥) log10 (𝑘𝑛) − 𝐴dB

󵄨󵄨󵄨󵄨𝑘𝑛
, ∀𝑙𝑥 < 1,

(37)

where𝑚∗
𝑙
, 𝑞∗
𝑙
,𝑚∗V , and 𝑞

∗

V are defined in (31) and (33).
The accuracy of thismodelwas tested again using aMonte

Carlo simulation with more than 106 cases, thus comparing

the attenuation values 𝐴̃∗dB achieved using this procedure and
the 𝐴∗dB values obtained using (29), (19), and (17). For each
simulation, the values of 𝜉𝑛, 𝑘𝐴, 𝑘𝑛, V𝑥, and 𝑙𝑥 were extracted
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Figure 9: Relationship between 𝐴dB or 𝐴
∗

dB and log
10
𝑘𝑛 for different 𝜉𝑛 values, 𝑙, and V: 𝜉𝑛 = 1%, 𝑙 = 0.5, and V = 1.01 (a), 𝜉𝑛 = 1%, 𝑙 = 1.5, and

V = 1.01 (b), 𝜉𝑛 = 0.1%, 𝑙 = 0.5, and V = 1.01 (c), and 𝜉𝑛 = 0.1%, 𝑙 = 1.5, and V = 1.01 (d).

from uniform distributions (see Table 5; 𝑘𝐵 = √3𝑘𝐴). Table 6
presents the results (which have a Gaussian distribution),
thus proving the reliability of the proposed procedure.

Certain benefits provided by the use of initially overes-
timated 𝑑𝑖 values have already been discussed for the cases
of bias just on 𝑑𝑖 in Section 4.1. Here, the discussion can be
extended to the more general case of mistuning on both 𝑑𝑖

and 𝜔𝑝 (which is the typical situation). Also in this case the
use of an initially overestimated 𝑑𝑖 value allows the loss of
attenuation to decrease. In fact, when 𝑑𝑖 is overestimated,
only one bias has significant effects, whereas the other does
not have much influence (see above in this section and
Figure 9). Conversely, when the 𝑑𝑖 value is lower than its
optimal value, the attenuation loss due to mistuning is more
severe.Therefore, this property of themistuned systems along
with those already shown in Section 4.1 highlights that the
use of initially overestimated 𝑑𝑖 values (and thus initially
overestimated 𝑅 values) allows the robustness to increase,
thus lowering the loss of attenuation due tomistuning, which
is typically experienced starting from the optimal 𝑑𝑖 value.
Furthermore, this can allow the analysis of the mistuned
system to become faster because the study of its behaviour
can focus on values of 𝑙 higher than 1 (because an initially

overestimated 𝑑𝑖 value is used on purpose) and possibly
slightly lower than 1 (e.g., greater than 0.5). Clearly, these
are just guidelines because each practical case could require
a different solution. Nevertheless, the points demonstrated
thus far clearly indicate how robustness can be typically
increased and how the proposedmodel can help in the tuning
process.

The model presented so far has been validated by experi-
mental tests shown in the next section.

5. Experimental Tests

This section describes the experimental tests performed to
validate the results shown in the previous sections. Two test
structures have been used to investigate different values of
the 𝜉𝑛 and 𝑘𝑛 parameters and different values of vibration
attenuation.The first structure is an aluminium plate (in free-
free condition by suspension) with the shunted piezobender
bonded at about its centre (see Figure 10(a)). A bidimensional
structure was used because it is a more complex test case
when compared to monodimensional structures often used
in other studies. The plate length is 600mm, the width is
400mm, and the thickness is 8mm (this set-up is the same
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(a) (b)

Figure 10: Experimental set-ups: plate (a) and beam (b).

Table 5: Bounds for theMonteCarlo simulations for V ̸= 1 and 𝑙 ̸= 1.

𝜉𝑛 𝑘𝐴 𝑘𝑛 𝑙𝑥 V𝑥
Min 0.05% 0.001 𝑘𝐴 0.5 0.9
Max 1% 0.35 𝑘𝐵 1.5 1.1

as that used in the experiments of [19]). The capacitance
𝐶𝑝 is 0.02 𝜇F. Several modes were taken into account in the
tests. The one (among others tested) considered here as an
example has the following modal parameters (identified by
experimental modal analysis [28]): 𝜔𝑛 = 530.67 ⋅ 2𝜋 rad/s,
𝜉𝑛 = 0.22%, 𝑘𝑛= 0.0081, and 𝛾𝜓

2

𝑛
= 725 rad2/s2. Actually, the

value of 𝑘𝑛 was estimated by testing the system in both short-
and open-circuit conditions (see (12)).

These values of 𝛾𝜓2
𝑛
and 𝑘𝑛 were achieved using a negative

capacitance [27], which allowed their initial low values to
increase. Furthermore, another value of 𝑘𝑛 (i.e., 0.0240)
was tested by further boosting the negative capacitance
performance. The disturbance to the structure was provided
by a dynamometric impact hammer, and the response was
measured using a piezoelectric accelerometer.

The second structure is an aluminium cantilever beam
(159mm length, 25mm width, and 1mm thickness) with a
piezoelectric patch bonded corresponding to the clamped
end (see Figure 10(b)). Its capacitance 𝐶𝑝 is 31 nF. Again,
several modes were considered during the tests; here, the
results related to the first mode are presented for the sake
of conciseness. It has the following modal parameters, again
identified using an experimental modal analysis: 𝜔𝑛 = 32.61 ⋅

2𝜋 rad/s, 𝜉𝑛 = 0.40%, 𝑘𝑛 = 0.2002, and 𝛾𝜓
2

𝑛
= 944.6 rad2/s2.

Furthermore, other tests were performed by increasing the
values of 𝑘𝑛 up to 0.5108 using a negative capacitance.

Because this second test structure was extremely light,
noncontact methods were used to provide excitation and
to measure the response. Indeed, an electromagnetic device
was used to excite the structure [29], and the response was
measured using a laser velocimeter focused on the beam tip.
The tests were performed by exciting the beamwith a random
signal [30] up to 1.6 kHz.

The tests were performed using synthetic impedance
based on operational amplifiers [11, 31, 32] to build the
inductor. Actually, certain tests on the plate were performed

using an additional method: the entire shunt impedance
was simulated using a high-speed Field Programmable Gate
Array (FPGA) device (in this second case, a colocated
piezoelectric patch was used to provide the input voltage
to the simulated shunt impedance). The use of the FPGA
device allowed for the full control of the parameters of the
electric shunt impedance. Nevertheless, the two techniques
led to similar results; therefore, those achieved using the
synthetic impedance are presented here, since this technique
introduces the highest level of uncertainty between the two.
Therefore, the authors believed it to be the most representa-
tive to demonstrate the model effectiveness.

First, the reliability of the model, represented by (10)
and (17), was verified. Figure 11 depicts the FRFs for the
mode at approximately 530Hz of the plate, achieved with
different configurations of the shunt (i.e., using different 𝑙
and V values). The numerical FRFs match the experimental
curves, thus confirming the accuracy of the numericalmodel.
The curves are not plotted on the same graph for the sake
of clarity in the figure. Nonetheless, Figure 12 depicts a few
of the experimental and numerical FRFs of Figure 11 on the
same plot for an easy comparison. Then, the reliability of
the proposed approximated model (see (37)) for predicting
the attenuation in mistuned conditions was tested. Tables 7
and 8 list the comparisons between experimental attenua-
tions, numerical attenuations calculated using the theoretical
model of (17), (19), and (29), and attenuations estimated using
the proposed approximatedmodel of (37) for the plate and the
beam. To build the approximated model of (37), the values
of 𝑘𝐴 and 𝑘𝐵 must be fixed. Three different situations were
tested: one where 𝑘𝐴 was close to 𝑘𝑛 (𝑘𝑛 = 1.1𝑘𝐴, named case
1), one where 𝑘𝐵 was close to 𝑘𝑛 (𝑘𝑛 = 1.63𝑘𝐴, named case 2),
and a further one where 𝑘𝑛 was nearly halfway (𝑘𝑛 = 1.37𝑘𝐴,
named case 3). In all of the three cases, 𝑘𝐵 was fixed to√3𝑘𝐴.
The experimental attenuations are defined in the tables as
EA, whereas the numerical ones (see (17), (19), and (29))
are defined as NA for the sake of conciseness. Moreover, the
attenuation provided by the model of (37) in cases 1, 2, and
3 is named MA1, MA2, and MA3, respectively. The match
among all of the results is good.The results related to theMA1,
MA2, and MA3 cases are always close to each other, and the
maximum difference if compared to the NA results is on the
order of 0.5 dB. Because the EA results differ from the NA
results at a maximum of 1.2 dB, the proposed model of (37) is
considered to be validated.

6. Conclusion

This paper addressesmonomodal vibration attenuation using
piezoelectric transducers shunted to impedances consisting
of an inductance and a resistance in series. Although this
method works well when the tuning between the mechanical
system and the electrical network is properly realised, this
control technique is not adaptive, and its performances thus
decrease as soon as a mistuning occurs.

The paper analyses the behaviour of mistuned electrome-
chanical systems, demonstrating that a linear relationship
between the attenuation and the logarithm of the effective
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Figure 11: Experimental (a) and numerical (b) FRFs for the plate (𝑘𝑛 = 0.0081).

Table 6: Results of the Monte Carlo simulations for V ̸= 1 and 𝑙 ̸= 1.

Mean value of Δ [dB] Standard deviation of Δ [dB] Minimum value of Δ [dB] Maximum value of Δ [dB]
−0.20 0.46 −2.55 2.36
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Figure 12: Experimental and numerical FRFs for the plate (𝑘𝑛 =

0.0081).

coupling coefficient exists when a perfect tuning is reached.
The same linear behaviour exists when there is mistuning on
either the electrical eigenfrequency or damping. Moreover,

the paper indicates how the loss of attenuation essentially
depends on only one bias if the electrical damping is
overestimated and describes how the effects of the two
bias types (on the electrical eigenfrequency and damping)
combine with each other when the damping is underesti-
mated.

This allows an approximated model to be achieved for
describing the behaviour of mistuned shunt systems, which
was initially validated numerically using Monte Carlo simu-
lations and then experimentally through the use of two test
structures. Furthermore, the use of overestimated resistance
values is demonstrated to limit the loss of attenuation due to
mistuning.

Appendix

A. 𝑇𝑧𝑤 Normalised Analytical Expression

This appendix provides the mathematical process that allows
(17) to be derived from (10).

Based on (10) and passing from the Laplace domain to the
frequency domain (i.e., 𝑠 = 𝑗𝜔), the expression of 𝑇𝑧𝑤 can be
written as follows:
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Table 7: Attenuations for the mode of the plate.

𝑙 = 0.6, V = 1 𝑙 = 0.6, V = 0.9925 𝑙 = 0.8, V = 1.01 𝑙 = 1.2, V = 0.998

EA [dB] 𝑘𝑛 = 0.0081 6.5 1.7 1.4 5.8
𝑘𝑛 = 0.0240 12.9 9.3 10.0 11.5

NA [dB] 𝑘𝑛 = 0.0081 6.2 2.0 1.8 5.4
𝑘𝑛 = 0.0240 12.7 9.6 9.6 12.2

MA1 [dB] 𝑘𝑛 = 0.0081 6.3 2.4 2.2 5.5
𝑘𝑛 = 0.0240 12.7 10.1 10.1 12.5

MA2 [dB] 𝑘𝑛 = 0.0081 6.3 2.3 2.1 5.5
𝑘𝑛 = 0.0240 12.7 10.1 10.1 12.5

MA3 [dB] 𝑘𝑛 = 0.0081 6.4 2.5 2.3 5.6
𝑘𝑛 = 0.0240 12.8 10.1 10.1 12.6

𝑇𝑧𝑤 (𝑥𝑀) = Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

−𝜔
2
+ 2𝑗𝜔𝑑𝑖𝜔𝑝 + 𝜔

2

𝑝

(−𝜔2 + 2𝑗𝜔𝑑
𝑖
𝜔𝑝 + 𝜔2

𝑝
) (−𝜔2 + 2𝑗𝜔𝜉𝑛𝜔𝑛 + 𝜔2

𝑛
) + 𝛾𝜓2

𝑛
𝑗𝜔 (𝑗𝜔 + 2𝑑𝑖𝜔𝑝)

. (A.1)

Substituting (16) into (A.1) and using (13) and (15), the
expression of 𝑇𝑧𝑤 can be further modified as follows:

𝑇𝑧𝑤 (𝑥𝑀) = Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

−𝜔
2
+ 2𝑗𝜔𝑙𝑑

opt
𝑖
V𝜔opt
𝑝

+ (V𝜔opt
𝑝
)
2

(−𝜔2 + 2𝑗𝜔𝑙𝑑
opt
𝑖
V𝜔opt
𝑝 + (V𝜔opt

𝑝 )
2

) (−𝜔2 + 2𝑗𝜔𝜉𝑛𝜔𝑛 + 𝜔2
𝑛
) + 𝛾𝜓2

𝑛
𝑗𝜔 (𝑗𝜔 + 2𝑙𝑑

opt
𝑖
V𝜔opt
𝑝 )

=

Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹) [−𝜔
2
+ 2𝑗𝜔𝑙V√𝛾𝜓2

𝑛
/2 + V2 (𝜔2

𝑛
+ 𝛾𝜓
2

𝑛
)]

(−𝜔2 + 2𝑗𝜔𝑙V√𝛾𝜓2
𝑛
/2 + V2 (𝜔2

𝑛
+ 𝛾𝜓2
𝑛
)) (−𝜔2 + 2𝑗𝜔𝜉𝑛𝜔𝑛 + 𝜔2

𝑛
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𝑛
𝑗𝜔 (𝑗𝜔 + 2𝑙V√𝛾𝜓2

𝑛
/2)

.

(A.2)

By dividing both the numerator and the denominator of
(A.2) by a factor 𝜔4

𝑛
, defining the nondimensional frequency

𝜑 = 𝜔/𝜔𝑛, and using (12), the final expression of 𝑇𝑧𝑤 can be
obtained as follows (see (17)):

𝑇𝑧𝑤 (𝑥𝑀) =
𝜔
4

𝑛

𝜔4
𝑛

⋅

Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹) [−𝜔
2
+ 2𝑗𝜔𝑙V√𝛾𝜓2

𝑛
/2 + V2 (𝜔2

𝑛
+ 𝛾𝜓
2

𝑛
)]

(−𝜔2 + 2𝑗𝜔𝑙V√𝛾𝜓2
𝑛
/2 + V2 (𝜔2

𝑛
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𝑛
)) (−𝜔2 + 2𝑗𝜔𝜉𝑛𝜔𝑛 + 𝜔2

𝑛
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𝑛
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=
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2

𝑛
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2
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2

𝑛
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2

𝑛
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𝑛
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𝑛
+ √2𝑗 (𝜔𝑙V√𝛾𝜓2
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Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)
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2
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(A.3)
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Table 8: Attenuations for the mode of the beam.

𝑙 = 0.6, V = 1.1 𝑙 = 1.5, V = 1 𝑙 = 0.6, V = 0.8 𝑙 = 1.2, V = 0.8

EA [dB] 𝑘𝑛 = 0.2002 19.3 23.1 3.1 13.9
𝑘𝑛 = 0.5108 29.0 29.4 16.4 25.7

NA [dB] 𝑘𝑛 = 0.2002 18.6 22.3 3.9 13.5
𝑘𝑛 = 0.5108 29.8 30.8 17.1 26.9

MA1 [dB] 𝑘𝑛 = 0.2002 19.8 22.3 4.9 12.9
𝑘𝑛 = 0.5108 30.5 30.9 17.9 26.9

MA2 [dB] 𝑘𝑛 = 0.2002 19.8 22.3 4.8 12.9
𝑘𝑛 = 0.5108 30.5 30.8 17.9 26.9

MA3 [dB] 𝑘𝑛 = 0.2002 19.8 22.3 5.2 13.0
𝑘𝑛 = 0.5108 30.5 30.9 17.9 26.8

B. att𝑘 Analytical Expression

The mathematical process used to express att𝑘 (see (21)) is
explained here.

The expression of 𝑇𝑧𝑤 in (17) can be rearranged by
separating the real and imaginary parts at the numerator and
denominator as follows:

𝑇𝑧𝑤 (𝑥𝑀) =
Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

𝜔2
𝑛

⋅
𝐴𝑧𝑤 + 𝑗𝐵𝑧𝑤

𝐶𝑧𝑤 + 𝑗𝐷𝑧𝑤

, (B.1)

where

𝐴𝑧𝑤 = −𝜑
2
+ V2 (1 + 𝑘

2

𝑛
) ,

𝐵𝑧𝑤 =
√2𝜑𝑘𝑛𝑙V,

𝐶𝑧𝑤 = (−𝜑
2
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2
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√2𝜑𝑘𝑛𝑙V (−𝜑

2
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2
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𝑛
)) + √2𝜑𝑘

3

𝑛
𝑙V.

(B.2)

According to [23], |𝑇𝑧𝑤| can be expressed as follows:

󵄨󵄨󵄨󵄨𝑇𝑧𝑤 (𝑥𝑀)
󵄨󵄨󵄨󵄨

2
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Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

𝜔2
𝑛

)

2

⋅
𝐴
2

𝑧𝑤
𝐶
2

𝑧𝑤
+ 𝐵
2

𝑧𝑤
𝐷
2

𝑧𝑤
+ 𝐵
2
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𝐶
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2
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𝐷
2

𝑧𝑤

(𝐶2
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+ 𝐷2
𝑧𝑤
)
2

.

(B.3)

The expression of (B.3) can be evaluated in 𝜔 = 𝜔𝑝 = 𝜔
opt
𝑝

(the case of perfect tuning is considered here), which in turn
corresponds to 𝜑 = 𝜔

opt
𝑝

/𝜔𝑛 = 𝜔
oc
𝑛
/𝜔𝑛 = √1 + 𝑘2

𝑛
:

󵄨󵄨󵄨󵄨𝑇𝑧𝑤 (𝑥𝑀)
󵄨󵄨󵄨󵄨𝜔𝑝

=
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Φ𝑛 (𝑥𝑀)Φ𝑛 (𝑥𝐹)

𝜔2
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅
√2

(𝑘𝑛 + 2√2𝜉𝑛)√1 + 𝑘2
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(B.4)

According to [11], max(|𝐺𝑧𝑤|) = |Φ𝑛(𝑥𝑀)Φ𝑛(𝑥𝐹)|/

(2𝜉𝑛𝜔
2

𝑛
√1 − 𝜉2

𝑛
). Therefore

att𝑘 =
max (󵄨󵄨󵄨󵄨𝐺𝑧𝑤

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑇𝑧𝑤
󵄨󵄨󵄨󵄨𝜔𝑝

= (𝑘𝑛 + 2√2𝜉𝑛)
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2

𝑛
)

8𝜉2
𝑛
(1 − 𝜉2

𝑛
)
. (B.5)

C. List of the Symbols

This appendix clarifies the meaning of the symbols used.
The symbol ∗ represents a generic mistuned condition.
The symbol ∼ represents an estimate of the considered

quantity.
𝐴dB expresses the attenuation in decibels achieved in case

of perfect tuning (i.e., 𝑙 = 1, V = 1).
𝐴
∗

dB expresses the attenuation in decibels achieved in case
of mistuning (this is evidenced by the asterisk).

When 𝐴dB and 𝐴
∗

dB are evaluated at specific points (i.e.,
given values of 𝑙, V, or 𝑘𝑛), the following expressions are used:
𝐴dB|𝑘𝑛 and 𝐴

∗

dB|𝑙=1,V=V𝑥 , as examples. The former expression
indicates that 𝐴dB is computed in correspondence with a
given value 𝑘𝑛 of the effective coupling factor, whereas the
latter indicates that 𝐴∗dB is computed for 𝑙 = 1 and V = V𝑥.

𝐴̃
∗

dB and 𝐴̃dB represent the values of 𝐴
∗

dB and 𝐴dB,
respectively, which are estimated using the model proposed
in the paper, that is, by (30), (32), and (37).

As for the angular coefficient𝑚 and the intercept 𝑞 of the
linear relations presented in the paper (e.g., (25), (27), (30),
and (32)), when they have a subscript 0, they are calculated
for a perfectly tuned shunt impedance. Conversely, when they
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are calculated for a mistuned system, they have an ∗ as a
superscript and a subscript equal to 𝑙 (for a mistuning on 𝑑𝑖

and with 𝜔𝑝 perfectly tuned) or V (for a mistuning on 𝜔𝑝 and
with 𝑑𝑖 perfectly tuned).
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