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Abstract: Lyapunov functions enable analyzing the stability of dynamic systems described by
ordinary differential equations without finding the solution of such equations. For nonlinear systems,
devising a Lyapunov function is not an easy task to solve in general. In this paper, we present
an approach to the construction of Lyapunov funtions to prove stability in estimation problems.
To this end, we motivate the adoption of input-to-state stability (ISS) to deal with the estimation error
involved by state observers in performing state estimation for nonlinear continuous-time systems.
Such stability properties are ensured by means of ISS Lyapunov functions that satisfy Hamilton–Jacobi
inequalities. Based on this general framework, we focus on observers for polynomial nonlinear
systems and the sum-of-squares paradigm to find such Lyapunov functions.
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1. Introduction

The construction of state observers for nonlinear systems is difficult in general when it is required
to ensure the property of global stability for the estimation error. Such a proof is obtained by means
of the Lyapunov method. Here we address the stability analysis of the error dynamics by using
input-to-state stability (ISS) [1,2], where the disturbances are regarded as input, and the role of the
state is played by the estimation error incurred by the observer. Moreover, we will address the design
of state observers for polynomial nonlinear systems by using the SOS (sum-of-squares) approach [3,4].

The Lyapunov method has been applied in many research areas to analyze the stability of dynamic
systems [5,6]. To prove that a system is stable in the sense of Lyapunov, a positive definite function
of the state variables is shown to decrease along system trajectories. Recently, extensions of the
Lyapunov approach to deal with fractional and impulsive systems have been proposed [2,7,8]. Indeed,
the stability of the estimation error of observers for noise-free systems can be addressed by using
Lyapunov functions. However, the so-called ISS Lyapunov functions turn out to be more appropriate,
as the effects of both system and measurement noises are treated, while simultaneously dealing with
stability in a noise-free setting. An observer with input-to-state stable error dynamics (ISS observer,
for short) is prevented to suffer from the occurrence of phenomena of finite escape and hence the use
of ISS analysis is considered in various works on estimation for nonlinear systems. First results are
reported in [9,10]. The connection between ISS and passivity w.r.t measurement disturbances is dealt
with in [11]. ISS sampled-data observers are analyzed in [12]. The design of ISS estimators is addressed
in [13–16].

Generally speaking, the first results on the construction of observers for nonlinear continuous-time
systems are reported in [17–19]. Next, state-space transformations have been studied to obtain a
linear dynamics of the estimation in the new coordinates [20–23]. This entails the solution of partial
differential equations (see, e.g., [24]) to find the required transformation but makes the stability analysis
straightforward. Later, quadratic Lyapuonv functions have been massively adopted to prove global
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stability [25–27]. The literature on nonlinear observers reports various attempts of improvement
by relaxing system assumptions and devising less conservative design conditions (see, e.g., [28,29]).
Among others, the so-called high-gain observer has become quite popular [30], especially for the
purpose of output feedback control [31]. More recently, Lyapunov functionals have been proposed
in [32] to prove stability for time-varying high-gain observers in line with the idea of reducing the
peaking during the transient [33,34].

The contribution of this paper lies in highlighting the motivations to rely on ISS to both analyze
the stability and construct observers for nonlinear systems. Toward this end, we deal with the problem
in quite a general nonlinear setting, where the design of observers is reduced to the satisfaction of
a Hamilton–Jacobi inequality [35,36]. Specifically, ISS is regarded in terms of L2-gain to measure
the attenuation of the estimation error w.r.t. the disturbances. Based on the aforesaid, we focus on
the construction of observers for a class of polynomial nonlinear systems by relying on the practical
L2-gain proposed in [37] and using the sum-of-squares (SOS) approach, which has become widely used
in a number of applications involving polynomials [3,4] and is based on semidefinite programming
(SDP) [38,39]. Following this approach, we can design observers for such polynomial systems under
feasible conditions that can be easily treated.

The paper is organized as follows. The use of ISS to analyze the stability of the estimation error
provided by state observers is considered in Section 2. The special case of observers for polynomial
systems is discussed in Section 3. Numerical results concerning a case study are presented in Section 4.
The conclusions are drawn in Section 5.

The following notation and definitions will be used throughout the paper. R≥0 denotes the set
of the nonnegative real numbers. Mn×m(R) stands for the set of the real matrices with n rows and m
columns. Given a symmetric P ∈ Mn×n(R), P > 0 (P < 0) means that P is positive (negative) definite.
Given a continuously differentiable function f : Rn×Rm → R, let us define the gradients∇x f (x, y) :=(

∂ f (x,y)
∂x1

· · · ∂ f (x,y)
∂xn

)
and ∇y f (x, y) :=

(
∂ f (x,y)

∂y1
· · · ∂ f (x,y)

∂ym

)
as column vectors. The Euclidean norm

in Rn is denoted by | · |. Let us denote by Br(c) := {x ∈ Rn : |x− c| ≤ r} the closed ball centered
in c ∈ Rn with radius r > 0. A continuous function α : R≥0 → R≥0 is positive definite if it is null
only in zero and is said to belong to class K if it is strictly increasing. Moreover, it is said to belong to
class K∞ if it is of class K and also lim

r→+∞
α(r) = +∞. A continuous function β : R≥0 ×R≥0 → R≥0 is

said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K w.r.t. to r and,
for each fixed r, the mapping β(r, s) is decreasing with respect to s and lim

s→+∞
β(r, s) = 0. R[x] denotes

the ring of real polynomials of x = (x1, . . . , xn) ∈ Rn; Σ[x] denotes the set of the SOS polynomials of x,
i.e., of the polynomials written as p(x) = ∑n

i=1 fi(x)2 with f1(x), . . . , fn(x) ∈ R[x]. Let us denote by
R[x]p×q and Σ[x]m the ring of real matrix polynomials of size p× q and the set of the SOS polynomials
of degree equal or less than m, respectively.

2. Input-to-State Stability for State Observers

Estimation for nonlinear noise-free continuous-time systems is usually accomplished by using
observers, which are dynamic systems that aim at tracking the state variables by using only incomplete
information on the state. Let the dynamic equations be given by{

ẋ = f (x, u)
y = h(x)

, t ≥ 0 (1)

where f : Rn ×Rp → Rn and h : Rn → Rm are smooth functions; x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈
Rm are the state, input, and measurement vectors, respectively. A full-order state observer is in general
described by the dynamic equation

˙̂x = γ(x̂, y, u) t ≥ 0 (2)
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where x̂(t) ∈ Rn is the estimate of x(t) at time t and γ : Rn ×Rm ×Rp → Rn is a smooth function to
be chosen in such a way as to ensure that the estimation error e := x− x̂ with dynamics given by

ė = f (x, u)− γ(x− e, h(x)) =: Fγ(e, x, u) (3)

is asymptotically stable to zero. Moreover, usually m < n, i.e., roughly speaking, not all of the state
variables are accessible. Notice that the dynamics of the estimation error (3) depends in general on the
system trajectory and it would always be preferable to ensure the global asymptotic stability to zero
for the estimation error. In line with [11], the interest concerns observers for systems described by (1)
with globally asymptotically stable estimation error by finding a suitable mapping γ and a smooth
Lyapunov function (e, x) 7→ V(e, x) such that

α1(|e|) ≤ V(e, x) ≤ α2(|e|) (4)

∇eV · Fγ(e, x, u) +∇xV · f (x, u) ≤ −α3(|e|) (5)

for all t ≥ 0, e ∈ Rn, and x ∈ Rn, where α1, α2 of class K∞ and α3 is continuous positive definite.
If the system is affected by disturbances, the performances deteriorate in such a way as to make

the estimation error increase with the growth of the uncertainty. Anyway, it is expected to keep the
estimation error asymptotically stable to zero without noise. This combination can be given with
mathematical rigor by using the notion of ISS. Thus, we focus on{

ẋ = f (x, u) + g(x)w
y = h(x) + k(x)w

t ≥ 0 (6)

where w(t) ∈ Rp is the disturbance; g : Rn → Mn×p(R) and k : Rn → Mm×p(R) are smooth.
Therefore, the dynamics of the estimation error is given by

ė = f (x, u) + g(x)w− γ(x− e, h(x) + k(x)w) =: Fγ(e, x, u, w) (7)

where Fγ(e, x, u, w) is used instead of Fγ(e, x, u) as in equation (3) with a little abuse of notation. Based
on the aforesaid, we say that the observer (2) is ISS if there exists a function β of class KL and a
function χ of class K∞ such that

|e(t)| ≤ β (|e(0)|, t) + χ
(
|w|∞(0,t)

)
t ≥ 0 (8)

where |w|∞(0,t) := ess sup
0≤τ≤t

|w(τ)|. The above ISS statement can be equivalently expressed by means of

an ISS Lyapunov function [1]: inequality (8) holds if and only if there exist functions α1, α2 of class
K∞ and α3, η of class K such that

α1(|e|) ≤ V(e, x) ≤ α2(|e|) (9)

∇eV · Fγ(e, x, u, w) +∇xV · f (x, u) ≤ −α3(|e|) if |e| ≥ η(|w|) (10)

for all t ≥ 0, e ∈ Rn, w ∈ Rq, x ∈ Rn, and u ∈ Rp. The observer problem needs to be more reliably
formulated in an ISS framework since a system may admit a Lyapuonv function in a noise-free case,
while being not input-to-state stable. By contrast, an input-to-state stable system is asymptotically
stable to zero if the external input is null. As pointed out in [11], small noises can cause the instability
of the estimation error and thus an observer with a globally asymptotically stable error may exist in the
absence of disturbances, whereas the error dynamics turns out to be not input-to-state stable, as shown
the following example presented in [15].
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Example 1. Considering for the system (Example 3, p. 50, [15])

ẋ1 = −x1 + 2
ẋ2 = x1x3

ẋ2 = −x1x2 + u
y1 = x1 + w1

y2 = x2 + w2

(11)

with u(t) = sin(t), the observer 
˙̂x1 = −x̂1 + 2 + y1 − x̂1
˙̂x2 = x̂1 x̂3 + y1(y2 − x̂2)
˙̂x3 = −x̂1 x̂2 + u + y1(y2 − x̂2)

(12)

provides an estimation error that is asymptotically stable to zero if w1(t) = w2(t) = 0 for all t ≥ 0. If, instead,
we chose x1(0) = 1, w1(t) = −x1(t), and w2(t) = 0 for all t ≥ 0, it follows that

lim
t→+∞

w1(t) = −2 lim
t→+∞

w2(t) = 0

and the state is bounded, but the dynamics of the observer turns out to be with x̂1(t) = 1 for all t ≥ 0 and{
˙̂x2 = x̂3
˙̂x3 = −x̂2 + sin(t)

and hence the second and third observer state variables are divergent, thus showing that ISS for the estimation
error does not hold since the estimation error is unbounded with a bounded disturbance.

The above example suggests constructing observers together with an ISS Lyapunov function for
the dynamics of the associated estimation error. Toward this end, instead of the condition (10), let us
consider the equivalent inequality

∇eV · Fγ(e, x, u, w) +∇xV · f (x, u) ≤ −α3(|e|) + α4(|w|) (13)

where α3, α4 are of class K∞. Once the ISS Lyapunov functions are chosen, one may analyze the effect
of attenuation and the disturbances on the estimation error. Thus, using (13), let us consider

V(e(t), x(t))−V(e(t0), x(t0)) ≤ −
∫ t

t0

α3(|e(s)|)ds +
∫ t

t0

α4(|w(s)|)ds (14)

for all t ≥ t0 ≥ 0, which provides an upper bound on V(e(t), x(t)) based on the initial conditions and
a measure of the “energy” of the noises. If V is a continuously differentiable function, (14) holds if
(13) is satisfied. The function V is thus a storage function, while α3 and α4 have to be regarded as
dissipation and supply rates, respectively. If w(·) and e(·) belong to the L2 space of functions of time,
the link between ISS and the H∞ approach is easily found [40]. Let us now focus on the case with the
dynamics of the estimation error affine in the noises.

Theorem 1. Consider observer (2) for systems described by (6) such that

Fγ(e, x, u, w) = Hγ(e, x, u) + Gγ(e, x)w (15)
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where Hγ : R2n → Rn and Gγ : R2n× → Mn×p(R). If there exists a continuously differentiable function
(e, x) 7→ V(e, x) such that the inequalities (4) are satisfied for some functions α1, α2 of class K∞ and the
Hamilton–Jacobi inequality

∇eV · Hγ(e, x) +
|∇eV · Gγ(e, x) +∇xV · g(x)|2

2µ2 +∇xV · f (x, u) +
|e|2
2
≤ 0 (16)

holds for some µ > 0 and all t ≥ 0, x ∈ Rn, u ∈ Rp, and e ∈ Rn. Then, V(e, x) is an ISS Lyapunov function

and the L2–to–L2 dissipative inequality (14) is satisfied with α3(r) = 1
2 r2, α4(r) =

µ2

2 r2, i.e.,

V(e(t), x(t))−V(e(t0), x(t0)) ≤ −
1
2

∫ t

t0

|e(s)|2ds +
µ2

2

∫ t

t0

|w(s)|2ds (17)

for all t ≥ t0 ≥ 0 and thus observer (2) is input-to-state stable.

Proof. From Equations (7) and (15), we obtain

d
dt

V(e, x) = ∇eV · Hγ + (∇eV · Gγ +∇xV · g)w +∇xV · f

= ∇eV · Hγ +
µ2

2

(
2 (∇eV · Gγ +∇xV · g)w

µ2

)
+∇xV · f

= ∇eV · Hγ +
µ2

2

(
− |w|2 +

2 (∇eV · Gγ +∇xV · g)w
µ2 −

∣∣∇eV · Gγ +∇xV · g
∣∣2

µ4

+

∣∣∇eV · Gγ +∇xV · g
∣∣2

µ4 + |w|2
)
+∇xV · f

= ∇eV · Hγ −
µ2

2

∣∣∣∣w− ∇eV · Gγ +∇xV · g
µ2

∣∣∣∣2 +
∣∣∇eV · Gγ +∇xV · g

∣∣2
2µ2 +∇xV · f +

µ2

2
|w|2

≤ ∇eV · Hγ +

∣∣∇eV · Gγ +∇xV · g
∣∣2

2µ2 +∇xV · f +
µ2

2
|w|2 .

Using the assumption (16), the previous inequality yields

d
dt

V(e, x) ≤ −1
2
|e|2 + µ2

2
|w|2 (18)

and hence we can conclude about ISS with inequality (17) as a final result. �

We say that the observer admits an L2-gain µ w.r.t. w if (17) holds. Clearly, a small gain is
preferable since it entails a stronger noise attenuation. In the following, we will analyze how to take
care of the Hamilton–Jacobi inequality (16), starting with the following example.

Example 2. Let us consider 
ẋ1 = x1 + sin(x2)w
ẋ2 = x1 − 2 x2 + exp(−x2)

y = x1 + x2

(19)

and let {
˙̂x1 = x̂1 + 2 (y− x̂1 − x̂2)
˙̂x2 = x̂1 − 2 x̂2 + exp(−x̂2)− (y− x̂1 − x̂2)

(20)

be a candidate observer for system (19). It is straightforward to obtain

ė = H(e, x) + G(e, x)w



Mathematics 2020, 8, 202 6 of 14

where

H(e, x) =

(
−e1 − 2e2

2e1 − e2 + exp(−x2) (1− exp(e2))

)

G(e, x) =

(
sin(x2)

0

)
.

Let us consider V(e) = 1
2 e2

1 +
1
2 e2

2 as a candidate ISS Lyapunov function. We have

∇eV · H +
(∇eV · G)2

2µ2 +
|e|2
2

= −1
2

e2
1 −

1
2

e2
2 + exp(−x2) (1− exp(e2)) e2 +

sin(x2)
2

2µ2 e2
1 . (21)

Since exp(−x2) (1− exp(e2)) e2 ≤ 0, ∀e2, x2 ∈ R, and sin(x2)
2 ≤ 1, ∀x2 ∈ R, Equation (21) yields

∇eV · H +
(∇eV · G)2

2µ2 +
|e|2
2

= −1
2

(
1− 1

µ2

)
e2

1 −
1
2

e2
2 < 0

for e 6= 0 if µ > 1. Thus, observer (20) is ISS with an L2-gain larger than 1.

The next section regards the application of what has been presented so far to observers for a class
of polynomial systems.

3. State Observers for Polynomial Systems

After choosing a given observer structure, the problem reduces to find an ISS Lyapunov function
that the condition (16) holds. Unfortunately, conditions like (16) are not easy to be satisfied, which
has motivated the investigation on the weaker notion of practical L2-gain proposed in [37]. We will
address the problem of constructing observers with practical L2-gain for a class of polynomial systems.

Let us focus on {
ẋ = A x + f (x) + g(x)w
y = C x + k(x)w

, t ≥ 0 (22)

where A ∈ Rn×n, C ∈ Rm×n, f (x) ∈ R[x]n×n, g(x) ∈ R[x]n×p, k(x) ∈ R[x]m×p, and the pair (A, C) is
detectable. To estimate the state, we rely on observers given by

˙̂x = A x̂ + f (x̂) + L(y− C x̂), t ≥ 0 (23)

with the gain L ∈ Rn×m chosen such that A− LC has eigenvalues with a strictly negative real part.
This condition can be satisfied owing to the detectability assumption and ensures that the estimation
error dynamics

ė = (A− LC) e + f (x)− f (x̂) + (g(x)− L k(x))w (24)

is locally asymptotically stable to zero in the absence of noise, i.e., with w(t) ≡ 0 for all t ≥ 0. More
specifically, in such a case we have

ė = (A− LC) e + f (x)− f (x− e) .

In the noisy setting, for the sake of brevity, let us rewrite Equation (24) as

ė = H(e, x, L) + G(x, L)w

with

H(e, x, L) := (A− LC) e + f (x)− f (x− e) ∈ R[x, e]n×1 G(x, L) := g(x)− L k(x) ∈ R[x]n×p .
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Though a polynomial system may be asymptotically stable without admitting a polynomial
Lyapunov function [41], it is convenient to search for polynomial ISS Lyapunov functions V(e, x) and
especially such that inequality (17) holds for some µ > 0. Given a candidate Lyapunov function,
we may apply the SOS decomposition of such a function and of the opposite of its time derivative by
using a positivity certification, which does not depend on the characteristics of the chosen polynomial
since the following holds [39,42] .

Theorem 2. A polynomial p(e) ∈ R[e]2d in e = (e1, . . . , en) ∈ Rn has sum-of-squares decomposition (or is
said to be SOS) if and only if there exists a real symmetric and positive semidefinite matrix P ∈ Rs(d)×s(d) such
that p(e) = vd(e)>P vd(e) ∈ Σ[e], where vd(e) is the vector of all the monomials in the components of e ∈ Rn

of degree equal to or less than d ∈ N, i.e.,

vd(e) := (1, e1, . . . , en, e1e2, . . . , en−1en, e2
n, . . . , ed

1, . . . , ed
n)

of dimension
s(d) :=

(
n+d

d

)
.

Proof. See (Proposition 2.1, p. 17, [43]). �

Thus, from now on, we will refer to well-established definitions as follows [44]. A polynomial
p(e) ∈ R[e]2d is ε-SOS polynomial if p(e)− ε ∑n

i=1 e2
i ∈ Σ[e]2d with d ∈ N, d ≥ 1 is SOS for some “small”

tolerance ε > 0. In addition, a polynomial, square matrix M(x) with Mij(x) ∈ R[x] for i, j = 1, . . . , s(d)
is said to be an ε-SOS matrix if the bipartite polynomial p(e, x) := vd(e)>M(x)vd(e) is ε-SOS for all
x ∈ Rn. In this respect, p(e, x) is said to be a bipartite ε-SOS polynomial.

Theorem 3. Consider observer (23) for system (22). If there exist a bipartite ε-SOS V(e, x) and µ > 0 such that

η(e, x)>Π>e H(e, x, L) + η(e, x)>Π>x (Ax + f (x)) + |η(e, x)|2 + |e|
2

2
≤ 0 (25)(

2I Π>e G(x, L) + Π>x g(x)
G(x, L)>Πe + g(x)>Πx µ2 I

)
> 0 (26)

for all x ∈ Rn and e ∈ Rn, where η(e, x) ∈ Rq is the column vector of all the monomials in e and x appearing
in ∇eV(e, x) and ∇xV(e, x) with Πe, Πx ∈ Rn×q such that

∇eV(e, x) = Πe η(e, x) ∇xV(e, x) = Πx η(e, x) . (27)

Then, observer (23) is ISS with L2-gain equal to µ.

Proof. The proof is line with [14]. The time derivative of V(e, x) is given by

d
dt

V(e, x) = ∇eV(e, x) · H(e, x, L) +∇eV(e, x) · (G(x, L)w) +∇xV(e, x) · (Ax + f (x))

+∇xV(e, x) · (g(x)w)

and, using (27), we obtain

d
dt

V(e, x) = η(e, x)>Π>e H(e, x, L) + η(e, x)>Π>x (Ax + f (x)) + η(e, x)>
(

Π>e G(x, L) + Π>x g(x)
)

w (28)

Using (Lemma 4.2, p. 861 in [14]), from (26), it follows that

η(e, x)>
(

Π>e G(x, L) + Π>x g(x)
)

w ≤ η(e, x)>η(e, x) +
µ2

2
w>w .
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and, after replacing this upper bound in Equation (28), it follows that (18) (see the proof of Theorem 1)
holds if (25) is satisfied, which allows for concluding. �

Based on the aforesaid, one can proceed with the observer design. Let be d ∈ N with d ≥ 1 and
ε > 0, and the problem to solve is the following.

Problem 1. Find a bipartite ε-SOS V(e, x), L ∈ Rn×m, and µ ≥ 0 such that the conditions (25) and (26) hold
and µ is minimized.

Indeed, the available SOS tools do not allow for solving Problem 1. Thus, we will address the observer
design by relying on the so-called practical L2-gain proposed in [37]. However, first of all consider the
pure linear case by dealing with a system like in (22) without f (x) and with g(x) and k(x) being real
matrices, as follows: {

ẋ = A x + D w
y = C x + E w

t ≥ 0

where the pair (A, C) is detectable, D ∈ Rn×p, and E ∈ Rm×p. The observer equation is as follows:

˙̂x = A x̂ + L(y− C x̂) t ≥ 0 .

Since the dynamics of the estimation error is

ė = (A− LC)e + (D− LE)w

and, after a little algebra and using the Schur complement (p. 39, [45]), inequality (16) becomes(
AP− C>Y> + PA−YC + I

2 PD−Y E

(PD−YE)> − µ2

2 I

)
< 0

with P = P> ∈ Rn×n, P > 0 and Y = PL ∈ Rn×m. Since the pair (A, C) is detectable, the above linear
matrix inequality (LMI) admits a solution in P and Y, and it follows L = P−1Y. Moreover, using
popular LMI-based tools [45], it is straightforward to minimize µ2 exactly since the problem is convex.
Thus, one may search for approximate solutions to Problem 1 for Equations (22) and (23) by relying on
the solution obtained after neglecting the nonlinearities. Thus, instead of Problem 1, let us consider the
much simpler LMI problem

min δ w.r.t. Y, P > 0, δ > 0 (29a)(
AP− C>Y> + PA−YC + I

2 PD−YE
(PD−YE)> − δ

2 I

)
< 0 . (29b)

After finding the solution denoted by Y∗, P∗, δ∗, the gain is given by L∗ = (P∗)−1Y∗, which provides a
local L2-gain µ =

√
δ∗ with the Lyapunov function V(e) = e>P∗e for Equations (22) and (23). Since

it is difficult to ensure a constant L2-gain over all the operating points, we will rely on the notion of
practical L2-gain proposed in [37]. Based on the practical L2-gain, one can overcome the problem of
finding a globally fixed L2-gain. More specifically, assume that there exists a bipartite ε-SOS function
V(e, x) such that

∇eV · H(e, x, L∗) +∇xV · (Ax + f (x)) +
|e|2
2

< 0 (30)

for e 6= 0, then

∇eV · H(e, x, L∗) +
|∇eV · G(x, L∗) +∇xV · g(x)|2

2µ(e, x)2 +∇xV · (Ax + f (x)) +
|e|2
2
≤ 0 (31)
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holds if (e, x) 7→ µ(e, x) : Rn ×Rn → R≥0 is chosen such that

µ(e, x) ≥ µ(e, x)∗ :=
|∇eV · G(x, L∗) +∇xV · g(x)|√

−2∇eV · H(e, x, L∗)− 2∇xV · (Ax + f (x))− |e|2
(32)

and thus µ(e, x)∗ is referred to as practical L2-gain. Based on the aforesaid, the problem to solve
reduces to the following.

Problem 2. Given L∗ ∈ Rn×m as a solution of (29), find a bipartite ε-SOS V(e, x) such that inequality (30)
holds.

The solution of Problem 2 allows for adopting a more flexible notion of attenuation w.r.t. the
noises by using an L2-gain that may depend on both e and x. Following the same reasoning of the
proof of Theorem 1, instead of inequality (18), we obtain

d
dt

V(e, x) ≤ −1
2
|e|2 + µ(e, x)2

2
|w|2 (33)

from (31) if inequality (30) holds with µ(e, x) subject to (32). Thus, the condition (33) may be used
whenever the L2-gain cannot be bounded from above in the usual sense such as in Example 2, for which
the lower bound (given by 1) holds globally, i.e., for all e, x ∈ Rn. In practice, the attenuation w.r.t. the
disturbances are left to vary in the state space. Moreover, the condition (31) is easier to be satisfied as
compared with (30). Indeed, additional constraints can be introduced by constraining the estimation
error to belong to suitable compact sets and/or taking into account the boundedness of the state
trajectories [14]. This allows for facilitating feasibility when solving Problem 2.

In the next section, we will show numerical results obtained in a simulation case study.

4. Numerical Results

In this section, we will show how to apply the proposed approach by exploiting the polynomial
structure of the system and observer equations. Thanks to the use of SOS toolbox [44], we will find an
ISS polynomial Lyapunov function, which guarantees stability, as illustrated so far. The numerical
results are obtained by dealing with the Van der Pol oscillator, which is an interesting example of a
polynomial system with a stable limit cycle (p. 57, [5]) and is thus well-suited for the purpose of testing.

Let us consider a system with two coupled Van der Pol oscillators with the first and third state
variable as outputs, i.e., {

ẋ = A x + f (x) + D w
y = C x + Ew

where x ∈ R4, w ∈ R4, y ∈ R2,

A =


0 1 0 0
−1 1 1 0

0 0 0 1
1 0 −1 1

 f (x) =


0

−x2
1x2

0
−x2

3x4

 D =


0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0


C =

(
1 0 0 0
0 0 1 0

)
E =

(
0 0 1 0
0 0 0 1

)
.

The observer is thus given by

˙̂x = A x̂ + f (x̂) + L(y− C x̂)



Mathematics 2020, 8, 202 10 of 14

with the gain

L =


3.0189 0.2703
3.9558 0.6106
0.2703 3.0189
0.6106 3.9558


obtained by solving problem (29) with Yalmip [46]. The solution provides a value of µ equal to 4.6575.
Using the SOS toolbox [44], we solved Problem 2 with ε = 10−9 and additional constraints e ∈ Br(

√
10)

and x ∈ Br(10), thus obtaining the Lyapunov function

V(e, x) = −1.0962e−10 e1e2x2
1 + 2.0092e−11 e1e4x2

3 + 2.6663e−10 e2
2x2

1 + 2.6452e−12 e2e3x2
1

− 4.5329e−11 e2e4x2
1 + 2.2772e−11 e2e4x2

3 + 7.7374e−11 e3e4x2
3 − 2.8571e−10 e2

4x2
3 + 4.3459e−6 e2

1

− 2.0934e−6 e1e2 − 1.3632e−7 e1e3 − 1.6176e−7 e1 e4 + 8.6434e−7 e2
2 − 1.6176e−7 e2e3 + 3.9843e−8 e2e4

+ 4.3459e−6 e2
3 − 2.0934e−6 e3e4 + 8.6435e−7 e2

4

which certifies that this observer is ISS.
Figures 1–4 illustrate the simulation results. Figures 1 and 2 showcase the transient behavior of

the state variables and corresponding estimates in two different simulation runs, i.e., in a noise-free
case and under the presence of random noises. Such simulation runs show that the time response of
the observer is less than the oscillation period of the oscillators, namely it converges quite quickly
in such a way as to feed the possible close-loop controllers with the estimates for the purpose of
syncronization (see [47] and the references therein). The behaviors at the regime can be analyzed by
looking at Figures 3 and 4. In Figure 3, it is shown that the estimation error is kept to zero when the
initial state and estimated state coincide and neither system nor measurement disturbances affect the
plant. In the presence of noises, the estimation error stays bounded since the estimated state is close to
the true state over time, as depicted in Figure 4.
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Figure 1. Simulation run without noises and with x(0) = (1, 1,−1,−1) and x̂(0) = (−1,−1, 1, 1),
where the state variables are in blue and their estimates are in dashed red.
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Figure 2. Simulation run with uniformly distributed noises wi, i = 1, 2, 3, 4, in [−1, 1], x(0) =

(1, 1,−1,−1), and x̂(0) = (−1,−1, 1, 1), where the state variables are in blue and their estimates
are in dashed red.
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Figure 3. Simulation run at regime without noises and with x(0) = x̂(0) =

(1.7809,−0.9185,−1.7809, 1.7809), where the state variables are in blue and their estimates are in
dashed red.
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Figure 4. Simulation run at regime with uniformly distributed noises wi, i = 1, 2, 3, 4, in [−1, 1],
x(0) = x̂(0) = (1.7809,−0.9185,−1.7809, 1.7809), where the state variables are in blue and their
estimates are in dashed red.

5. Conclusions

In the paper, we have considered the stability issues concerning the estimation error given by
state observers, usually employed to estimate the state variables of dynamic systems asymptotically.
While the problem is pretty well-studied, only recently research efforts have been devoted to apply ISS,
which is shown to be more appropriate as compared with standard Lyapunov stability. In addition,
we have addressed the problem of constructing observers with desired performances in terms of
L2-gain, as shown in more detail with the case study on observers for a class of polynomial systems.
Future work will regard the investigation of the proposed approach based on ISS for other kinds of
observers such as those considered in [16,48]. Another direction of research will be focused on the
study of ISS in a discrete-time setting for moving horizon estimation [49].
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ISS input-to-state stability
SDP semidefinite programming
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