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ABSTRACT
Scaling mode shapes obtained by operational modal analysis (OMA) is sometimes desirable, for example
if the modal model is going to be used for model calibration, or for some structural health monitoring
applications. A new method for scaling mode shapes from OMA, utilizing harmonic excitation and
called OMAH, was recently proposed by the authors. In the present paper, we briefly describe this new
technique, and then investigate a particular method, the three-parameter sine fit technique, for estimating
the harmonic force and responses under different signal-to-noise (SNR) cases. This technique is shown
to provide good performance even in severe SNR cases, and the method also has the advantage that the
accuracy of the estimate of the harmonics can be estimated alongside the harmonic estimates, and can
be improved by adding more data to the measurement. This allows to develop an iterative technique,
allowing to estimate the harmonics iteratively, until a sufficient accuracy is obtained. The method is
demonstrated on simulated OMA measurement data.

Keywords: operational modal analysis, mode shape scaling, OMAH

1. INTRODUCTION

Obtaining a scaled modal model is essential in many applications, for example to be able to use it for
designing tuned absorbers, or for some structural health monitoring or model calibration applications.
Operational modal analysis (OMA), naturally results in unscaled modal models, as there is no knowledge
about the loads acting on the structure. Thus, different methods for scaling mode shapes obtained by
OMA have earned a lot of attention lately. These methods can essentially be divided into two subclasses

• methods based on making repeated OMA tests with different configurations (mass and/or stiff-
ness), [13, 3, 12, 6, 10], or



• methods based on applying broadband excitation to the structure in addition to the data acquisition
for the OMA analysis, so-called OMAX techniques [9, 8, 14, 15, 7].

Whereas the methods in the first group above are very interesting, as they do not require any artificial
excitation, they are also rather elaborate and slow to apply. Some of the methods in the second group, on
the other hand, require artificial excitation through an actuator capable of providing broadband excitation.
For large structures, this may be difficult to achieve. Some studies, however, such as [7], have utilized
human interaction on footbridges, with reasonable results, thus eliminating having to install an artificial
actuator.

A special application of the OMAX method, utilizing a shaker providing harmonic excitation rather than
broadband, was recently introduced by the authors [5]. It was shown that the method worked well by
demonstrating it on a staircase. The method, which was given the name OMAH for operational modal
analysis with harmonic scaling, has the advantage that it is readily applicable to structures of almost
any size, such as highrise buildings and bridges, since actuators able to produce harmonic excitation
are relatively inexpensive, even when producing relatively large forces. A harmonic force also has the
advantage that it can be estimated even at a very low level compared to the natural vibrations present.
This will be further investigated and discussed in the present paper.

2. OMAH THEORY

The OMAH technique is based on the expression of a general frequency response between two points,
p, and q, given by [4]

Hp,q(jω) =

Nm∑
r=1

ψp
rψ

q
r

mr(jω − sr)(jω − s∗r)
(1)

where ω is the circular frequency, j is the imaginary unit, Nm is the number of modes of the structure,
mr is the modal mass of mode r, sr the pole of mode r, and ∗ denotes complex conjugation. Finally, ψp

r

and ψq
r denote the mode shape coefficients of mode r in points p and q, respectively. The poles sr are

expressed by sr = −ζrωr + ωr

√
1− ζ2r , where ωr and ζr are the eigenfrequency and non-dimensional

damping ratio of mode r, respectively.

The modal mass,mr in Eq. (1) is unknown when the modal parameters are obtained by OMA. Scaling of
a particular mode shape, r, can (in the simplest way) thus be obtained by knowledge of the mode shape
coefficients ψp

r and ψq
r , the pole, sr, from an OMA test, and the frequency response Hp,q(jω), from an

extra measurement where the structure is excited by a harmonic force, by solving for the modal mass
mr in Eq. (1). Assuming the structure is excited by a harmonic force F (t) = Fq(jω) exp (jωt), and the
reponse in degree of freedom (DOF) p is up(t) = Up(jω) exp (jωt), then the task is to find the complex
constants Fq(jω) and UP (jω). A suitable method for this purpose is the so-called three-parameter sine
fit technique [1, 11]. It should be noted that [5] includes a more general discussion of how to solve for
the modal mass; to keep the present paper concise, we refer to that paper for details.

2.1. Three-parameter sine fit

The three-parameter sine fit method assumes that the frequency is known, and that we thus have three
parameters to fit for a sine, namely amplitude, phase, and mean value. Without loss of generality, we
will assume that the mean is zero, as we are dealing with vibration signals. This is easily established by
removing any offset prior to estimating the sines (of force and response). We therefore assume that we
have an unknown signal of the general form

y(t) = a cos (ωt) + b sin (ωt) + e(t) (2)



where ω is the frequency of the sine, a and b are the unknown Fourier series coefficients we wish to esti-
mate, and e(t) contains the natural response of the structure, and possibly higher harmonic components,
if there is harmonic distortion in the excitation. If we want the complex amplitude/phase values, they are
readily obtained by

√
a2 + b2 · exp(j arctan(b/a)). If we measure N samples of the signal y(n · ∆t)

with a sampling frequency of fs = 1/∆t, then we can define

A =



cos(ω · 0∆t) sin(ω · 0∆t)

cos(ω · 1∆t) sin(ω · 1∆t)

cos(ω · 2∆t) sin(ω · 2∆t)

...

cos(ω · (N − 1)∆t) sin(ω · (N − 1)∆t)


(3)

and the unknown coefficient vector x = [a b]T , and the measurement vector

y =


y(0)
y(1)
y(2)

...
y(N − 1)

 . (4)

The model in Eq. (2), can now be written as:

Ax = y + e (5)

which we can solve Eq. (5) for the estimates x̂ by a least squares solution. In addition, the result of the
least squares solution can be used to estimate the remaining noise, by:

ê = y −Ax̂ (6)

and the variance of ê, which we denote σ2ê , can then be readily estimated by:

σ2ê =
êT ê

N
. (7)

This, and the power of the ideal sine which is (â2+ b̂2)/2, can now be used to estimate the signal-to-noise
ratio, SNR, as

SNR =
â2 + b̂2

2σ2ê
(8)

The coefficients â and b̂ can be shown to be Gaussian with mean a and b, respectively, that is, they are
unbiased estimates [11]. Furthermore, the variance of each estimate is:

σ2â = σ2
b̂

=
2σ2ê
N

(9)

Let us assume that we want to estimate the coefficients a and b with a certain maximum normalized
uncertainty, ε. Using 95 % confidence level, thus (â + 2σâ)/â ≤ 1 + ε, which means the normalized
uncertainty is:

εa =
2σâ
â

=
4σe
Nâ

(10)

by using Eq. (9), and similarly for εb.



SNR σe E [â] σ̂a E
[
b̂
]

σ̂b Eq. (9).

0 1.000 1.000 0.032 1.000 0.032 0.032
-20 1.000 0.101 0.031 0.101 0.033 0.032
-40 1.000 0.009 0.031 0.011 0.031 0.032

Table 1: Means and standard deviations of the estimates of â and b̂, and compared to the theoretical standard
deviation of those estimates, Eq. (9). Note that the true values of the amplitude estimates are 1.0, 0.1, and 0.01,
respectively for the three SNR cases. The simulation was based on N = 2000 samples and 1000 realizations were
computed

It may in some cases be more interesting to look at the amplitude estimate of the sine we apply, which is
given by

Â =

√
â+ b̂ (11)

This equation is nonlinear, which means that the estimate Â will be biased. Therefore it may make more
sense to look at the mean square error (MSE) of this estimate, rather than only the variance. In [11] it is
shown that the MSE is given approximately by

MSE
[
Â
]
≈ 2σ2e

N
(12)

that is, the mean square error is approximately equal to the variance of the amplitude estimates given
by Eq. (9). The approximation in Eq. (12) is furthermore a conservative error, so for bad SNR cases the
error is smaller than this value.

If we wish to have a certain maximum uncertainty in Â, then we can use the formula for the normalized
relative error which is

εA =
E
[
Â
]
−A

A
≈ 1

2N · SNR
. (13)

Finally it should be noted that the three-parameter sine fit method is very sensitive to the frequency, which
must thus be accurately known. In most cases this will not be a limitation, as long as the measurement
system is capable of generating the sine excitation signal. In other cases the iterative four-parameter sine
fit method can be alternatively used [2]

3. DISCUSSION

To validate the equations for the performance of the estimates â and b̂, we define a Gaussian signal,
assuming a sampling frequency of fs = 20Hz. We then add a harmonic with frequency 1 Hz, so that the
Nyquist frequency is 10 times the frequency of the sine, and with a (power) SNR of 0, -20 dB, and -40
dB, meaning that the RMS level of the sine is equal to, 1/10, and 1/100 of the RMS level of the random
response, respectively. This is equivalent to amplitudes a = b = 1, a = b = 0.1, and a = b = 0.01,
respectively. We collect 100 periods of the harmonic, which in our example means that N = 2000.
The whole process is repeated in a Monte Carlo simulation, repeating each simulation 1000 times, so
that values of the mean and standard deviation of the estimates of the unknown coefficients â and b̂ can
be computed. In Table 1 the results of this simulation are presented. It can be seen that the standard
deviations of the estimates â and b̂ follow Eq. (9).

Eq (10) means that by using a sufficient amount of samples, N , to estimate the amplitude vector x̂, the
relative error in the estimates â and b̂ can be made arbitrarily small, regardless of the size of the noise
e(t). The procedure is to first make a measurement, then computing the estimates â and b̂ by solving



SNR σe E
[
Â
]

σA Eq. (12) εA [%]

0 1.000 1.414 0.032 0.0316 2.24
-20 1.000 0.146 0.032 0.0316 22.42
-40 1.000 0.041 0.021 0.0316 224.20

Table 2: Means and standard deviations of the estimates of Â, compared to the theoretical standard deviation of
those estimates, Eq. (12). The rightmost column gives the computed normalized relative error, which should be
compared to Eq. (13) which in this case should be 2.5, 25, and 250 %, respectively. Note that the true values of the
amplitude estimates are

√
2, 0.1 ·

√
2, and, 0.01 ·

√
2, respectively for the three SNR cases. The simulation was

based on N = 2000 samples and 1000 realizations were computed

Eq. (5), and then finding the variance of the random signal e(t) by Eqs. (6) and (7). A sufficient number
of samples, Nmin, for an arbitrary relative error εa is then easily computed by Eq. (10). If this number
turns out to be greater than the computed minimum number of samples, a new measurement has to be
made.

In Table 2, results are presented from the simulation mentioned above, but looking at the amplitude
estimate instead of the individual amplitudes of the cosine and sine components. In the rightmost column
we have also added the obtained normalized error in percent. It can be seen that this error is close to the
error according to Eq. (13).

In applications of OMAH for scaling mode shapes from OMA, usually it is only necessary to apply a
force in one (or very few) DOF(s) for each mode shape to be scaled. Such DOFs should, furthermore,
of course be selected from DOFs with large mode shape coefficients in the mode shape to be scaled.
It may in some cases, however, not be appropriate to force the structure with excessive force levels,
significantly adding to the response levels of the structure. This may be either for safety reasons, or
because the actuator used is not large enough to produce a high enough force. It is therefore reasonable
to assume that cases with relatively low SNR should be expected. If we, furthermore, as an example
assume that a normalized error of, say, 5 % are acceptable for both the force and response amplitudes,
then the number of samples needed are given by N = 1/(2εA · SNR), which, for power SNR ratios of
0.01 and 10−4, results in 1000 and 100 000 samples, respectively. If we assume we sample with, say
50 times the lowest natural frequency, then this corresponds to 20 and 2000 cycles of the lowest natural
frequency. It is obvious that the SNR ratio should be kept as high as possible, but that, if that is not
possible, arbitrary accuracy can be obtained anyway, at the expense of measurement time.

4. CONCLUSIONS

In the present paper we have outlined a recently proposed method for scaling mode shapes using har-
monic excitation, and using the three-parameter sine fit method for estimating the harmonic excitation
and response signals. It has been shown that the method works even with very poor signal-to-noise ratios
SNRs, with arbitrary accuracy. Formulas have been given which allow to calculate suitable measurement
time (or, number of samples needed for the amplitude estimation), given different SNR cases.
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