
Ocean Engineering 202 (2020) 107155

Available online 27 February 2020
0029-8018/© 2020 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Detection and quantification of trends in time series of significant wave
heights: An application in the Mediterranean Sea
Francesco De Leo a,∗, Annalisa De Leo a, Giovanni Besio a, Riccardo Briganti b

a Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, 16145, Italy
b Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

A R T I C L E I N F O

Keywords:
Time series trends
Mann–Kendall test
Theil-Sen slope
Innovative trend analysis
Mediterranean Sea

A B S T R A C T

The analysis of long-term trends in time series of wave parameters has an high engineering relevance. These
trends may affect the estimates of parameters with high return period that are used for the design of several
engineering projects. This work analyses the use of linear regressions for detecting and quantifying long-term
trends in time series of data. In particular, the reliability of a linear trend slope, modified in order to minimize
the weight of possible outliers, is evaluated. To this end, this slope is compared against the outcomes of two
methods that do not imply the hypothesis of linear trend: the Mann–Kendall test and the Innovative Trend
Analysis. An application to significant wave height time series over the Mediterranean Sea is presented. Time
series of 40 years of numerical hindcast of sea states over the whole basin were analysed, and the methods
taken into account were applied to the annual maxima, the annual 98th percentile and the annual mean
significant wave height. The results show that the use of the investigated linear slope is meaningful, therefore
this was used to assess the spatial distribution of trends in the Mediterranean Sea. Results are presented and
discussed for all the statistics investigated.

1. Introduction

Climate change is expected to significantly affect the main met-
ocean parameters, at both global and the local scale (Weisse, 2010).
Relevant changes are taking place in the upper-sea physics, and in
particular in water temperature and salinity (Durack and Wijffels,
2010), large-scale circulation (Cai et al., 2005; Cai and Cowan, 2007),
mean sea level (Nicholls and Cazenave, 2010), and wave heights and
periods (Vanem, 2016; Morim et al., 2019; Young and Ribal, 2019).
In view of these considerations, the evaluation and prediction of the
upper-sea physics trends play a crucial role in a plethora of geophys-
ical studies and engineering applications, such as the erosion of the
coasts (Stive, 2004), changing design from hard to soft engineering
options (Hamm et al., 2002), flooding hazard and coastal vulnerability
assessment and management (Adger, 1999; Scavia et al., 2002; Dolan
and Walker, 2006; Wdowinski et al., 2016), marine ecosystems (Harley
et al., 2006; Richards et al., 2008; Doney et al., 2012). The present
study focuses on the variations in wave climate, in particular in trends
of significant wave height (henceforth 𝐻𝑠); this is an issue of primary
concern, because these may affect the fluxes of energy between the
ocean and the atmosphere and even storm surges (Young and Ribal,
2019). These variations would be also important for the coastal areas,
as they may in turn modify the equilibrium conditions of coastal beach
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profiles (Mori et al., 2010) and affect ports’ activity to a substantial
extent (Koetse and Rietveld, 2009). It is therefore crucial to identify
and quantify the trends in wave climate, to embed these information
in engineering design.

The simplest approach to quantify a trend in sea state datasets is
to perform a linear regression over the values of the time series. As
an instance, Gulev and Grigorieva (2004) applied a linear least square
regression to annual mean 𝐻𝑠 observed from ship routes over the last
century on a global scale. The same approach was used by Shanas and
Kumar (2015) to analyse both the annual mean and 90th percentile of
𝐻𝑠 in the Central Bay of Bengal, and by Musić and Nicković (2008)
in the Eastern Mediterranean, while Appendini et al. (2014) performed
linear interpolations of monthly wave height statistics in the Gulf of
Mexico. Linear slopes estimates were also employed to characterize
extremes 𝐻𝑠 selected with the Peak Over Threshold (POT) analysis in
the Italian seas (Piscopia et al., 2003), along the Catalan coast (Casas-
Prat and Sierra Pedrico, 2010a) and along the Chinese coast (Shi et al.,
2019). The hypothesis of linear trend is also adopted in the framework
of Non-stationary Extreme Value Analysis (NEVA). Indeed, a pragmatic
approach to embed the intra-period trend in the NEVA is that of mod-
elling the distribution parameters as functions of time, and in particular
by linearly varying the location parameter in the Generalized Extreme
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Value (GEV) and/or the Generalized Pareto distributions (Coles et al.,
2001). This approach was applied to several environmental data, such
as ocean waves (Méndez et al., 2006; Vanem, 2015; Mentaschi et al.,
2016), air temperature (Wang et al., 2013), residual water level and
river discharge (Mentaschi et al., 2016), droughts (Burke et al., 2010)
etc. However, these methods only allow to evaluate trends in extreme
states, since the milder and average ones are not considered in the
NEVA.

Previous research made also use of linear regression modified ac-
cording to the model of Theil–Sen (Sen, 1968; Theil, 1992), resulting in
a sounder slope estimate (hereinafter TS slope), because it is insensitive
to possible outliers. The TS slope was used, among others, by Pomaro
et al. (2017) for the evaluation of monthly quantiles trends in the
northern Adriatic Sea, by Young and Ribal (2019) to assess 𝐻𝑠 global
trends for annual mean, mode and 90th percentile, and by Vanem
and Walker (2013), who compared the TS slopes with four different
models for detecting long-term trends of 𝐻𝑠 in the North Atlantic. In
particular, Vanem and Walker (2013) employed the seasonal ARIMA
(AutoRegressive Integrated Moving Average) modelling, multiple re-
gression modelling, and GAM (Generalized Additive Model) modelling,
and showed that the different approaches result in reasonable agree-
ment. Beside Vanem and Walker (2013), other works performed trend
analysis characterized by major complexity than the linear regression
over time series of 𝐻𝑠; among others, Castelle et al. (2018) used a
wavelet analysis for assessing the variation in time of the dominant
temporal modes of variability in the Atlantic coast of Europe; Muraleed-
haran et al. (2016) modelled historical trends of extreme 𝐻𝑠 in two
Portuguese locations through regression quantile models.

In most of the applications that aim to evaluate changes in geo-
physical time series, the identification of trends is usually carried out
using the non-parametric Mann–Kendall statistical test (Mann, 1945;
Kendall, 1955, hereinafter called MK), based on the samples rank
correlation within a dataset. The MK, as well as many other statistical
tests, allows to accept or reject the hypothesis it verifies (the so called
null hypothesis, in this case the absence of a climate trend) on the basis
of the variable 𝑝𝑣𝑎𝑙𝑢𝑒, defined as the observed significance level for
the test hypothesis. The 𝑝𝑣𝑎𝑙𝑢𝑒 is compared to a significance level 𝛼,
used as a threshold, to reject (if 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼) or accept (if 𝑝𝑣𝑎𝑙𝑢𝑒 ≥ 𝛼)
the null hypothesis. In its common use, the MK does not provide any
information on the trend magnitude. In the context of trends of 𝐻𝑠,
the MK was employed, for example, in the aforementioned studies
by Casas-Prat and Sierra Pedrico (2010a) and Pomaro et al. (2017),
who selected a threshold of 𝛼 = 0.1 to identify and subsequently
characterized locations showing trends off the Catalan coast and in the
Adriatic sea, respectively. Similarly, Appendini et al. (2014) and Shi
et al. (2019) performed linear interpolations on 𝐻𝑠 time series for
locations showing trends at a level of 𝛼 (i.e., threshold level) equal to
0.05.

Nevertheless, it should be mentioned that there is no theoretical
basis for the definition of the threshold value 𝛼, for that the binary
use of 𝑝𝑣𝑎𝑙𝑢𝑒 has been increasingly questioned over the last few years.
According to Wasserstein et al. (2016) and Greenland et al. (2016),
the 𝑝𝑣𝑎𝑙𝑢𝑒 should be considered as a continuous measure spanning the
0–1 range; 1 indicates that data behave consistently with the null
hypothesis, while values tending to zero indicate that data behave
progressively less consistently with the null hypothesis. In view of the
above, the 𝑝𝑣𝑎𝑙𝑢𝑒 of MK (referred to as 𝑝𝑀𝐾 ) can be used as a measure
of compatibility between the data and the hypothesis that they are
not characterized by a long-term trend. A similar use of 𝑝𝑣𝑎𝑙𝑢𝑒 is found
in Solari et al. (2017), where the 𝑝𝑣𝑎𝑙𝑢𝑒 of the Anderson–Darling statistic
was used as a goodness-of-fit measure, to check whether their data were
best represented by a Generalized Pareto Distribution. In case of trend
analysis, one further limitation of the traditional use of the MK is that
a value of 𝛼 is also required to evaluate the sign of a trend; in fact, the
MK statistics has to be evaluated against 𝛼 to check whether the trend is
positive or negative (see Eq. (7) in the present paper). On the contrary,

the slope of the best fitting line immediately reveals whether the data
of a series are most likely to increase (positive slopes) or decrease
(negative slopes) in time. Indeed, the main advantage of the use of
linear slope estimates, is that they provide easy-to-read and prompt
information of long-term trends over time series of data, with respect to
more complex models which may be difficult to read for many analysts.
However, the hypothesis of linear rate of change may represent a too
limiting assumption.

In this paper, we evaluate whether the TS slope can be efficiently
employed to quantify the sign and the magnitude of a trend, even if
the underlying trend is not linear. To this end, we take advantage of
hindcast data defined over the Mediterranean Sea (MS), computing the
annual maxima, the annual mean and the annual 98th percentile of
𝐻𝑠 over the whole basin. First, we investigate how the TS slopes of
the reference time series relate to their respective 𝑝𝑀𝐾 ; indeed, MK
does not postulate the linearity of the underlying trend. Subsequently,
we compare the TS estimates with the outcomes of another method
that is not bounded by the hypothesis of linear trend (the so called
Innovative Trend Analysis, hereinafter referred to as ITA, Şen, 2011,
2013). Finally, once the suitability of the TS slope for detecting long-
term trends is shown, the values of 𝑏 associated to the hindcast time
series are used to evaluate the spatial distribution of long-term trends
of the extremes and the mean 𝐻𝑠 over the MS.

The paper is structured as follows: in Section 2 we present the
hindcast data used for the study, along with the methodologies adopted
to detect climate trends throughout the MS and the correlations analysis
employed for linking the TS slopes with the methodologies against
which they are evaluated. Section 3 shows and discusses the results
of the correlation analysis and a regional overview of the trends dis-
tributions over the MS. Finally, results are further summarized in
Section 4.

2. Data and methods

2.1. Wave hindcast and selection of data

Wave data used here were computed by the hindcast service of
the Department of Civil, Chemical and Environmental Engineering of
the University of Genoa (Mentaschi et al., 2013, 2015). The service
provides the main wave features on a hourly basis over a 40 years long
period (from January 1979 to December 2018), with a 0.1273◦ × 0.09◦
lon/lat spatial resolution (side of the cells of the computational grid
is of the order of 10 km at the latitude of 45◦N) over the whole
MS. Generation and propagation of sea waves are modelled using
WavewatchIII® version 3.14 (Tolman, 2009), forced by means of the
non-hydrostatic model Weather Research and Forecasting − Advanced
Research 3.3.1 (WRF−ARW, Skamarock et al., 2008), based on the
Climate Forecast System Reanalysis database (CFSR, Saha et al., 2010).
This dataset has been already used for a number of studies on storms
and wave climate over the Mediterranean Sea (Besio et al., 2017;
De Leo et al., 2019, among others).

In order to detect trends in extreme sea state time series, the events
considered to be extremes were extracted from the whole time series
of 𝐻𝑠 under study. In the extreme value analysis framework, the POT
has become a well-established methodology, often preferred to the
Annual Maxima (AM) approach, above all for relatively short time
series. However, the POT requires to select a 𝐻𝑠 threshold that may
significantly affect the subsequent trend analysis, either in terms of
magnitude and number of resultant peaks (Laface et al., 2016; Liang
et al., 2019). The value of the threshold may also be affected by climatic
trends, e.g. if the 𝐻𝑠 corresponding to the 98th percentile is taken
as threshold for the POT, this value will vary in time in presence of
a trend. Additionally, the number of events above a given threshold
varies every year and different nodes in the grid considered might
have different number of events per year, posing additional problems
of homogeneity of the reference population, with respect to AM values.
On the basis of these considerations, the AM 𝐻𝑠, annual 98th percentile
of 𝐻𝑠 and annual mean 𝐻𝑠 were chosen for the analysis, assuring that
one sample per year is used across the grid in all cases.
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2.2. Trend detection and quantification

2.2.1. TS method
The simplest trend is a linear one, hence, in order to quantify it, it is

possible to use the slope of the linear fit of a series of data. The value of
this slope can be computed following the TS method that is insensitive
to outliers, and it is therefore preferred to other common tools, such as
the least squares regression, for the problem under study (Sen, 1968;
Theil, 1992). Considering a series of values 𝑥𝑖 (𝑖 = 1… 𝑛, 𝑛 being the
number of samples) the estimate of the TS slope (𝑏) is computed as:

𝑏 = Median
(𝑥𝑗 − 𝑥𝑙

𝑗 − 𝑙

)

∀𝑙 < 𝑗 , 𝑙, 𝑗 = 1… 𝑛, (1)

where 𝑥𝑗 and 𝑥𝑙 are the 𝑗th and 𝑙th data of the series, respectively.

2.2.2. The Mann–Kendall test
The MK is aimed at evaluating whether an either upward or down-

ward monotonic trend is present within a dataset (Mann, 1945; Kendall,
1955). The null hypothesis of the test is that there is no monotonic trend
in the time series. The test statistic 𝑍𝑀𝐾 , considering a time series of
𝑛 elements 𝑥𝑖, 𝑖 = 1… 𝑛, is computed as:

𝑍𝑀𝐾 = num
√

𝜎2(𝑆)
, (2)

where num is equal to:

num =

⎧

⎪

⎨

⎪

⎩

𝑆 − 1, if 𝑆 > 0
0, if 𝑆 = 0
𝑆 + 1, if 𝑆 < 0,

(3)

and 𝑆 and 𝜎2(𝑆) are computed as:

𝑆 =
𝑛−1
∑

𝑘−1

𝑛
∑

𝑗−𝑘+1
𝛿𝑗−𝑘 (4)

𝜎2(𝑆) = 1
18

[

𝑛 (𝑛 − 1) (2𝑛 + 5) −
𝑔
∑

𝑝−1
𝑡𝑝
(

𝑡𝑝 − 1
) (

2𝑡𝑝 + 5
)

]

, (5)

with 𝛿𝑗−𝑘 being an indicator function that takes 1, 0 or −1 value
according to the sign of 𝑥𝑗−𝑥𝑘 (positive, null or negative, respectively);
𝑔 is the number of tied groups in the time series, with 𝑡𝑝 being the
number of elements in each 𝑝th group (𝑝 = 1, 2, ..𝑔). The value of 𝑍𝑀𝐾
is then compared to the percentile of the standard normal distribution,
leading to the corresponding 𝑝𝑀𝐾 of the statistic:

𝑝𝑀𝐾 = 2𝛷
(

−|𝑍𝑀𝐾 |
)

, (6)

where 𝛷 stands for the cumulative distribution function of the standard
normal distribution.

In most of the applications that take advantage of the MK, the 𝑝𝑀𝐾
is successively compared to 𝛼. In such a case, the use of 𝛼 also allows
to detect the sign of the trend (whether it is upward or downward
oriented) using the following relationships:

⎧

⎪

⎨

⎪

⎩

𝑍𝑀𝐾 > 𝛷−1 (1 − 𝛼∕2) → positive trend
𝑍𝑀𝐾 < −𝛷−1 (1 − 𝛼∕2) → negative trend
𝑍𝑀𝐾 < |𝛷−1 (1 − 𝛼∕2) | → no trend.

(7)

Nevertheless, in this research the 𝑝𝑀𝐾 of each annual statistic was
evaluated in the whole 0–1 range. In this way, 𝑝𝑀𝐾 was used to assess
to what extent the data behave consistently to the hypothesis that they
are characterized by the absence of long-term trends.

2.2.3. Innovative trend analysis
The method known as ITA (Şen, 2011, 2013) requires to split a

series in two halves, each with elements sorted in ascending order,
and plotted versus each other in a square plot. This allows to evaluate
how the scatters diverge from the bisecting line, which represents the
no-trend condition. Therefore, the ITA allows to quickly check for

Fig. 1. ITA plot for datasets characterized by positive (black crosses), negative (black
x) and no trend (black circles).

increasing or decreasing trends (whether the scatter lies above or below
the bisector respectively). An example can be seen in Fig. 1, in which
three realizations of generic time series (𝑥1 and 𝑥2) are first ordered
according to the ITA procedure and then plotted against each other; in
Fig. 1 𝛿𝑖 is the distance between the 𝑖th (1… 𝑛∕2) element of the series
and the no-trend line.

Consequently, for each wave height dataset treated using the ITA,
a series of 𝑛∕2 𝛿𝑖 can be built (where 𝑛, in the present analysis, is the
number of years over which the hindcast data are defined). Note that
the sign of 𝛿𝑖 indicates that the 𝑖th value lays below (𝛿𝑖 < 0) or above
(𝛿𝑖 > 0) the no-trend line. If 𝛿𝑖 > 0 the trend is positive, and it is
negative for 𝛿𝑖 < 0, while change in sign of 𝛿𝑖 indicates that not all
data behave consistently with the presence of a trend.

2.3. Analysis of the correlation between the variables employed

This study first requires to combine 𝑏 and 𝑝𝑀𝐾 without restriction
for the rejection of the null hypothesis. Subsequently, 𝑏 is shown to
be correlated with the parameters of the population of 𝛿𝑖 in the ITA
method.

2.3.1. Analysis of the rank correlation between 𝑏 and 𝑝𝑀𝐾
The correlation between 𝑝𝑀𝐾 and 𝑏 was analysed for all the hindcast

locations following Genest and Favre (2007). Correlations were graph-
ically evaluated in the unit-square space, spanning the 0–1 range and
populated by the scaled ranks (𝑆𝑅𝑖) of the investigated variables,

𝑆𝑅𝑖 =
𝑚𝑖

𝑛 + 1
(8)

where 𝑚𝑖 is the position of the ith data within the sorted series it belongs
to, whereas 𝑛 in our case equals the number of years covered by the
hindcast. The scatter plot of ranks of 𝑝𝑀𝐾 versus ranks of 𝑏 is a visual
tool that indicates the presence of correlation, anti-correlation, or no
correlation at all. In the case of correlation, high (low) ranks of 𝑝𝑀𝐾
occur frequently together with high (low) ranks of 𝑏. In the case of
anti-correlation, high (low) ranks of either variables tend to occur with
low (high) ranks of the other. No correlation is characterized by the
absence of either of the previous patterns (Genest and Favre, 2007).

Correlation levels were then quantified through the Spearman rank
correlation (𝜌𝑠). Said 𝑅𝑝.𝑖 and 𝑅𝑏,𝑖 the ith tied ranks of 𝑝𝑀𝐾 and 𝑏
respectively, the following expression generally applies:

𝜌𝑠 =
12

𝑛 (𝑛 + 1) (𝑛 − 1)

𝑛
∑

𝑖=1
𝑅𝑝,𝑖𝑅𝑏,𝑖 − 3 𝑛 + 1

𝑛 − 1
. (9)

Tied ranks are defined as the mean of the ranks of the positions
they occupy in the respective sorted dataset. When many ties are
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Fig. 2. Correlations between 𝑏 and 𝑝𝑀𝐾 due to different values of 𝛼. Panel (a): 𝛼 = 0.05; panel (b): 𝛼 = 0.1; panel (c): 𝛼 = 0.9; panel (d): 𝛼 = 0.95.

present in the series to be correlated, a modified formulation of Eq. (9)
is available (Zar, 2005). However, in this case the two formulations
provided extremely close results, thus only Eq. (9) was used. 𝜌𝑠 was
selected because it has the advantage of being always defined, unlike
other commonly employed correlation coefficients, such as the classical
Pearson coefficient that directly depends on the second-order moments
of the variables of interest, that is not always guaranteed (De Michele
et al., 2007). The values of 𝜌𝑠 span from −1 (for series perfectly anti-
correlated) to 1 (series perfectly correlated); 𝜌𝑠 equal to 0 indicates that
no correlation exists between the investigated series. Correlations were
iteratively evaluated by varying the significance level 𝛼 within the 0–1
range with a 0.01 incremental step. For every iteration, only the series
with 𝑝𝑀𝐾 < 𝛼 were retained for the analysis, i.e. just the series allowing
to reject the MK null hypothesis according to the binary use of 𝑝𝑀𝐾 .
When 𝛼 equals 1, no data are excluded and all the hindcast locations
are taken into account; indeed, the maximum value that 𝑝𝑀𝐾 can attain
is exactly 1, therefore in the latter case no filtering of the series due to
the value of 𝛼 is applied.

2.3.2. Analysis of the correlation between 𝑏 and the distribution of 𝛿𝑖
The second step of the developed study, requires to check whether

the values of 𝑏 are consistent with the 𝛿𝑖 obtained by the ITA, with
reference to the respective series (i.e. the 𝐻𝑠 annual statistics of the
hindcast locations).

The reliability of the linear trend hypothesis was first evaluated
by analysing the empirical cumulative distribution function (ecdf) of
𝛿𝑖 series for four hindcast locations characterized by different values
of 𝑏. This allows to check rapidly if the 𝛿𝑖 series increase or decrease

according to the values of 𝑏 the ecdf is linked to, meaning that the larger
is 𝑏, the larger are the 𝛿𝑖.

However, a graphical comparison for all the hindcast locations was
not feasible due to the high number of available datasets. Therefore, the
sum of the 𝛿𝑖 for each 𝐻𝑠 time series was computed using this sum as
a single parameter for the analysis instead of 𝑛/2 data. This allowed to
perform a direct comparison between datasets of equal length (e.g. the
number of hindcast locations): one containing the values of 𝑏 and the
other with the sum of 𝛿𝑖 (for each of the annual statistics taken into
account).

3. Results

3.1. Trend analysis: comparison of the different methods

First, the scatter plots between 𝑏 and 𝑝𝑀𝐾 for the AM 𝐻𝑠 are shown
in Fig. 2, indicating their correlation. For the sake of clarity, only results
for four levels of 𝛼 are here reported (0.01, 0.05, 0.90, and 0.95). The
panels show as well the values of 𝜌𝑠 computed for the AM 𝐻𝑠 series
showing 𝑝𝑀𝐾 ≤ 𝛼.

The series with 𝑝𝑀𝐾 < 𝛼 , 𝛼 = 0.05|0.1 (Fig. 2, panels (𝑎) and (𝑏)),
show moderate correlation between 𝑝𝑀𝐾 and 𝑏. In fact, the scatters
of 𝑅𝑏 and 𝑅𝑝 are almost randomly distributed over the square-unit
space, and the values of the respective 𝜌𝑠 are far from −1, which would
indicate a perfect anti-correlation. On the other hand, analysing the
correlation for 𝑝𝑀𝐾 retained considering higher values of 𝛼 (0.9|0.95,
Fig. 2 panels (𝑐) and (𝑑)), shows a very strong anti-correlation between
the two investigated parameters. As shown by the distributions of 𝑅𝑝
and 𝑅𝑏 in panels (𝑐) and (𝑑) of Fig. 2, low values of 𝑝𝑀𝐾 are most
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Fig. 3. 𝜌𝑠 for the correlation between 𝑏 and 𝑝𝑀𝐾 for different values of 𝛼. Panel (a): AM
data; panel (b): annual 98th percentile of 𝐻𝑠; panel (c): annual mean 𝐻𝑠. Confidence
bounds were computed according to Bonett and Wright (2000) (dashed curves).

likely to occur when 𝑏 attains high values and vice-versa: the scaled
ranks are less scattered around the −1 bisector (even though a lack of
symmetry between the lower left and the upper right corners can be
still appreciated), and 𝜌𝑠 reaches values close to −1. As explained in
Section 2.3.1, the full range of 𝛼 was explored; Fig. 3 shows the results
of 𝜌𝑠 as a function of 𝛼. For the sake of clarity, hereinafter values of
𝑏 related to the AM, annual 98th percentile and annual mean 𝐻𝑠 are
referred to as 𝑏𝐴𝑀 , 𝑏98 and 𝑏𝑀𝐸𝐴𝑁 , respectively. In panel (𝑎) of Fig. 3 it
can be noticed how the anti-correlation between 𝑝𝑀𝐾 and 𝑏𝐴𝑀 becomes
stronger (i.e. 𝜌𝑠 tends to −1) proportionally to the level of 𝛼 taken
into account. Similar outcomes were found for 𝑏98 and 𝑏𝑀𝐸𝐴𝑁 ; in these

Fig. 4. Locations of the hindcast points employed for the graphical comparison
between 𝑏 and 𝛿𝑖.

Table 1
Values of 𝜌𝑠 for the correlation between the series of sums of 𝛿𝑖 and 𝑏 for the annual
𝐻𝑠 statistics analysed.

∑

𝛿𝑖𝐴𝑀 − 𝑏𝐴𝑀
∑

𝛿𝑖98 − 𝑏98
∑

𝛿𝑖𝑀𝐸𝐴𝑁
− 𝑏𝑀𝐸𝐴𝑁

𝜌𝑠 0.79 0.67 0.85

Table 2
Number of location characterized by trends at the 5% level and, in brack-
ets, percentage referred to the total number of hindcast points (22 373, see
Mentaschi et al., 2013, 2015).

AM Annual 98th percentile Annual mean

276 (1.23%) 545 (2.44%) 146 (0.65%)
763 (3.41%) 20 (0.09%) 1078 (4.82%)

cases, only the results of the 𝜌𝑠 series are shown (Fig. 3 panel (𝑏) and
panel (𝑐)).

As explained in Section 2.3.2, the series of 𝑏 were further compared
to the ITA results. To this end, four AM 𝐻𝑠 series were analysed;
they are characterized by either very intense trends (Point_001337
and Point_005995, upward and downward trend respectively), and by
almost flat trends (Point_013330 and Point_021272), according to the
values of the respective 𝑏𝐴𝑀 . Then, the ecdf of the respective 𝛿𝑖 were
computed.

The locations of the hindcast points taken into account are shown
in Fig. 4, while the AM 𝐻𝑠 series of the selected locations are shown
in Fig. 5 . As Fig. 6 shows, the series with almost flat trends (e.g. 𝑏
close to zero, panels (𝑐)-(𝑑) of Fig. 5) show 𝛿𝑖 with an approximately
vertical profile in the ecdf space; on the other hand, series related to
steeper trends (panels (𝑎)-(𝑏) of Fig. 5) are characterized by 𝛿𝑖 more
shifted from the 0 line (which indicates the no-trend condition). This
analysis reveals how the slope of the linear trend 𝑏 is proportional to the
magnitude of 𝛿𝑖, i.e. the trend intensity according to the ITA approach.
This applies to both upward (positive slopes, panel (𝑎) of Fig. 6) and
downward (negative slopes, panel (𝑏) of Fig. 6) trends.

At a second time, 𝜌𝑠 was computed using the sum of 𝛿𝑖 and 𝑏 for
all the populations considered (the subscripts 𝐴𝑀 , 98 and 𝑀𝐸𝐴𝑁 are
used for 𝛿𝑖 and for 𝑏). Results are shown in Table 1, from which it
appears that 𝑏𝐴𝑀 and 𝑏𝑀𝐸𝐴𝑁 have similar 𝜌𝑠, while the correlation is
slightly lower between 𝑏98 and the respective 𝛿𝑖.

3.2. Wave climate trends in the Mediterranean sea

First, it is interesting to analyse the spatial distribution of 𝐻𝑠 trends
when the most common usage of the MK, relying on the threshold 𝛼 =
0.05, is applied. Fig. 7 shows only the locations characterized by trends
according to the aforementioned method for the AM data, annual 98th
percentile, and annual mean 𝐻𝑠 (panels (𝑎), (𝑏) and (𝑐) of Fig. 7). The
sign of the trends is computed using Eq. (7). The AM 𝐻𝑠 results show
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Fig. 5. Panels (a) and (c): AM 𝐻𝑠 series with respective TS slopes for upward trends. Panels (b) and (d): downward trends. Red markers: AM 𝐻𝑠 characterized by positive trends;
blue markers: AM 𝐻𝑠 characterized by negative trends; grey markers: original time series. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. 𝛿𝑖 ecdf for the locations characterized by different trend intensities for AM 𝐻𝑠 series shown in Fig. 5. Panel (a): positive trends; panel (b): negative trends.

large areas characterized by negative trends in the south Tyrrhenian
Sea and in the Ionian Sea, while smaller areas and isolated spots
showing positive trends are present, for instance, in south-east of the
Aegean Sea and in the northernmost areas of the MS. The results for the
annual 98th percentile of 𝐻𝑠 show positive trends in the south of the
MS between Sicily and Libya, while negative trends are limited to very
few locations. Results for the annual mean 𝐻𝑠 show negative trends
limited to the south-east basin of the MS and positive trends limited

to small spots in front of the Libyan coast and along the coastlines of
Italy and Greece. The number of locations (grid points) characterized
by trends for each annual statistic and 𝛼 = 0.05 is reported in Table 2.

On the other hand, Fig. 8 shows the values of 𝑏 computed for the
annual statistics of 𝐻𝑠 over the MS, for both downward and upward
trends. It can be seen that the most significant 𝑏 for the AM 𝐻𝑠 are
between −5 cm/year and 3 cm/year. The areas subjected to the most
intense negative trends are the south of the Tyrrhenian Sea (in front of
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Fig. 7. Locations characterized by MK trends for 𝛼 equal 0.05. Panel (a): AM 𝐻𝑠;
panel (b): annual 98th percentile of 𝐻𝑠; panel (c): annual mean 𝐻𝑠. Red dots indicate
positive trends, blue dots indicate negative trends. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

the northern coasts of Calabria and Sicily) and the Ionian Sea, opposite
the Greek coasts. On the other hand, the Aegean Sea and the Tyrrhenian
Sea (on east Corsica and Sardinia), together with areas spread within
the Balearic Sea, show wide areas subject to positive trends of the
AM 𝐻𝑠. Results for the mean and the 98th percentile of 𝐻𝑠 change
dramatically with respect to those of AM 𝐻𝑠, especially for the trend
intensities; indeed, in this case the trends show magnitude of mm/year.
Both 𝑏𝑀𝐸𝐴𝑁 and 𝑏98 show areas with negative trends in the south-east
of the MS and in the north Tyrrhenian Sea, while positive trends are
found especially in the west of Sardinia and in the area between Libya
and the Ionian Sea.

To the best of our knowledge, it is the first time that an analysis
of wave climate trends is performed on the whole MS with such a
resolution. Therefore, comparison to previous results can be carried
out only considering of local trends analysis in the literature. Casas-
Prat and Sierra Pedrico (2010a) and Casas Prat and Sierra Pedrico
(2010b) evaluated trends for different directional sectors along the
Catalan coast; Piscopia et al. (2003) carried out a study on the Italian
seas. However, in the aforementioned works trends were computed
considering sea storms extracted by de-clustering threshold exceedance
within the POT approach, thus a direct comparison with the present
analysis would be not significant. Pomaro et al. (2017) evaluated trends
on several monthly percentiles of 𝐻𝑠 in the northern Adriatic Sea,
showing a reduction in extremes and an increase in storminess that

Fig. 8. Spatial distribution of 𝑏 in the MS. From top to bottom: Panel (a): 𝑏𝐴𝑀 ; panel
(b): 𝑏98; panel (c): 𝑏𝑀𝐸𝐴𝑁 .

is not fully consistent with the results of Fig. 8, where 𝑏98 is positive
but no trend in AM 𝐻𝑠 is found. Statistics based on annual intervals in
eastern Mediterranean were carried out by Musić and Nicković (2008),
further employing a simple linear regression for computing trends; their
analysis of annual mean 𝐻𝑠 returned negative trends of order of mag-
nitude consistent with the present work, however, in their research, no
positive trend is identified. As for their AM 𝐻𝑠 analysis, local analysis
within the Aegean Sea agrees qualitatively well with the outcomes
of the present work. On the other hand, Musić and Nicković (2008)
showed a slightly negative trend in front of the coast of Lebanon, while
the present analysis suggests an area subject to homogeneous positive
trends. On the contrary, the trend for 90th percentile in the same area
is positive and apparently more consistent with the outcomes of the
present work for the annual 98th percentile of 𝐻𝑠.

4. Discussion and conclusions

In most of the studies that use the MK, 𝑝𝑀𝐾 is evaluated against
a threshold value of 𝛼 to check for the presence of a trend. In the
present work, by using the Spearman index as measure of correlation it
was found that for the typical values of 𝛼 used, the values of 𝑏 do not
appear to be strongly related to the 𝑝𝑀𝐾 they refer to. Therefore, in
this case no useful considerations can be inferred for 𝑏, regardless the
assumptions made about the use of 𝑝𝑀𝐾 . When 𝑝𝑀𝐾 is considered in its
whole range, a clear anti-correlation with 𝑏 can be instead appreciated.
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In this case, it follows that the magnitude of 𝑏 can be reasonably
retained to evaluate how strong is the increasing/decreasing trend of
the dataset under study. Indeed, the MK null hypothesis is the absence
of a trend in a dataset. Close-to −0 values of 𝑝𝑀𝐾 mean that the data
behave consistently with the presence of a marked trend (i.e. the null
hypothesis is rejected), and this is more likely to occur for high values
of 𝑏, as shown in Fig. 2 for the AM 𝐻𝑠 (similar considerations hold for
annual 98th percentile of 𝐻𝑠 and annual mean 𝐻𝑠). On the contrary,
close-to −1 values of 𝑝𝑀𝐾 are in turn related to low values of 𝑏; in
this case, trends on the data seem not to be relevant. When very mild
values of 𝑏 are observed (i.e. order of mm/year), a further check on
the significance of such parameter could be suggested, as an instance
computing its confidence interval (Wilcox, 2010) and evaluating if the
limits indicate trends of different signs. A similar approach was used
by Vanem (2015), who evaluated the reliability of non-stationary EVA
on the basis of the location parameter fitted to the non-stationary
GEV. At a second time, 𝑏 was shown to be correlated with the ITA
outcomes. In fact, both the graphical analysis of the 𝛿𝑖 ecdf for the
selected locations, and the correlation analysis of the sum of 𝛿𝑖 for all
the hindcast locations, reveal a strong correlation of 𝛿𝑖 itself and 𝑏, in
particular for the annual mean and maxima 𝐻𝑠 (as shown in Table 1).
It follows that, in this case, the use of 𝑏 for the quantification of trends
is sound and reliable, because of the correlation with two methods that
do not rely on the linear trend hypothesis. In the case of the MK, the
application here considered takes advantage of the general use of 𝑝𝑀𝐾 ,
as recommended in Greenland et al. (2016), and allows to attach to
each value of 𝑏 a measure of the consistency with the null hypothesis,
without any a priori selection based on a threshold level.

In view of the above, the values of 𝑏 were used to gain an insight
into the spatial distribution of wave climate trends over the MS. In
particular, the statistics employed in this work were selected as they
can be of great importance in maritime and ocean engineering. The
AM 𝐻𝑠 are indicative of the most severe sea states, which are retained
to compute the high return period distribution of 𝐻𝑠, to be further used
in marine and coastal structural design. In the framework of Extreme
Value Analysis, the 98th percentile of the initial 𝐻𝑠 distribution of
a sample is often used as a threshold to select the exceeding peaks
in the POT approach. Finally, mean sea states can be relevant for
fatigue analysis of maritime structures. The analysis revealed similar
patterns among the spatial distributions of trends for the annual 98th
percentile of 𝐻𝑠 and annual mean 𝐻𝑠, with variations in order of
mm/year. Nevertheless, it should be pointed out that such trends are
not much relevant from a practical point of view, e.g. the design of
maritime structures would not be significantly affected by 𝐻𝑠 variations
of centimetres in time frames of decades. Moreover, uncertainties may
arise due to the resolution of the numerical model used to build the
hindcast. On the other hand, trends of AM 𝐻𝑠 are characterized by
more intense values of 𝑏 (order of cm/year). In the latter case, some
analogies can be appreciated with the spatial distribution of trends in
the 98th percentile of 𝐻𝑠, in particular in the North Adriatic Sea, in
the Aegean Sea and in the Balearic area. On the contrary, the main
divergences interest the Southern part of the Ionian and Adriatic Seas,
the Levantine basin and in the Tyrrhenian Sea. These differences can
be explained considering how the different dataset are selected: annual
percentiles average on huge amount of data, therefore are lowered by
mild sea states that, being more frequent, matter the most. This reflects
on the distribution of the dataset considered for the wave heights trend
evaluation, which in case of the AM 𝐻𝑠 happen to be more dispersed.

These outcomes were then compared to previous researches aimed
at detecting and computing trends over isolated spots in the MS. The
order of magnitude of the annual rate of changes show good consistency
with the values of 𝑏 computed in this work, while there are slight
deviations in the sign of trends for some locations, as discussed in
Section 3.2. However, it has to be reminded that the exhaustively
characterization of the wave climate trends in the MS is beyond the
scope of this research, though interesting analogies with previous works

can be pointed out and leave room for further investigation. In par-
ticular, the results in this study show some analogy with the results
presented in Young and Ribal (2019). In both cases there is evidence
that trends in 𝐻𝑠 are stronger for high percentiles compared to an-
nual averages; Young and Ribal (2019) explains this with trends in
the wind speed distribution, that are matched by the trends in the
distribution of 𝐻𝑠 globally. Also, regional variations are significant
in the present study and stronger trends appear in more energetic
parts of the basin (e.g. in the West Mediterranean). Finally, it is worth
mentioning that, although the paper focuses on sea waves, the analysis
here introduced can be extended to other parameters without loss of
generality, and its application to different geophysical time series is
therefore straightforward.
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