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Introduction 

Articular cartilage is an unique and highly specialized connective tissue adapted to bear 

compressive loads and shear forces in synovial joints, which is a crucial function during body‟s 

motion. In adult joints, articular cartilage is composed by chondrocytes immersed in an intricate 

extracellular matrix, displaying a complex multi-zonal organization. Despite a relatively low 

metabolic activity within a harsh physical environment, chondrocytes are active in maintaining the 

matrix, thus allowing healthy tissue to sustain itself and carry out its functions.  

Damage to tissue high level of organization and molecular architecture is a major source of 

morbidity for articular cartilage, thus it is usually susceptible to malfunction following acute injury 

or chronic diseases such as osteoarthritis. Cartilage has poor intrinsic repair and regenerative 

capacity, although it has been demonstrated to contain a subset of progenitors even in adults. These 

cells have shown to react to injury, but do not seem to be able to mount an effective tissue 

reparative or regenerative action when needed.  

Hence, much effort has been devoted to finding ways by which articular cartilage repair could be 

induced and enhanced. Surgical techniques and bioengineered treatment options developed over 

recent decades have led to several clinical treatment modalities for acutely injured or osteoarthritic 

joints. To prevent progressive cartilage degeneration or to replace damaged tissue, the surgical 

treatment is often the only option, but it does not ensure full tissue function recovery. Therefore, 

regenerative medicine has emerged as an important field of research in the treatment of cartilage 

disorders. In this context, the medical community have shown great interest in therapeutic strategies 

based on the use of platelet-derived products, such as platelet rich plasma (PRP) and platelet lysate 

(PL). Since these derivatives are a mix of growth factors, cytokines and chemokines normally 

involved in tissue healing, the rationale behind their application is the re-activation of latent 

endogenous regenerative mechanisms. 

PRP therapeutic use in musculoskeletal disorders have led to promising outcomes, although 

mechanism of action and efficacy of platelet products in orthopaedics still need to be elucidate.  

The main objective of this PhD thesis is to study the effects of platelet derivatives on cartilage cell 

behaviour, including chondrocytes and chondro-progenitors, in order to highlight potentialities and 

even identify limits concerning their use, both useful in better direct biomedical applications in the 

field of articular cartilage therapy. Indeed, a better understanding of the events that could induce 

cartilage repair by PRP or PL may allow to clarify current experimental outcomes and offer the 
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opportunity to conceive innovative strategies or tools in cell therapy approach and in the latest 

tissue engineering technologies. 

In this regard, it will be beneficial to find alternative options to cell transplantation (based on 

mesenchymal stem cells or chondrocytes) aimed in achieving cartilage regeneration, planning 

interventions focused on in situ stimulation of resident cell population or local progenitor niche in 

the joint, that are developmentally endowed with greater chondrogenic potential than traditional cell 

sources.  

In parallel, the research in the field of tissue engineering continues to be active and innovative 

strategies for the fabrication of enhanced bioengineered grafts are recently emerging by the 

spreading of 3D-printing technology. 3D-bioprinting especially represents a developmental biology 

inspired alternative to classic scaffold-based approaches in the field, since it shows the ability to 

assemble biological components replicating complex native-like tissue architecture more faithfully 

than traditional methods of assembly as well as patient customization. In this context, bioprinted 

constructs may provide a solution for cartilage injuries and defects, despite 3D-bioprinting is still a 

technology in progress and consequently some challenges have to be overcome before its 

translation to clinical applications. 

The research tasks of this work and the main obtained results are:  

1) the in vitro characterization of human articular chondrocyte responses at PL treatment with focus 

on the recruitment/re-activation of a chondro-progenitor cell population from PL-treated cartilage 

explant cultures.  

Stem cell-based therapies to achieve articular cartilage regeneration attract great interest. Stem cell 

niches are located within the joint, where they could participate directly in tissue homeostasis and 

repair processes. It is reasonable that exploiting local chondro-progenitors for cartilage repair may 

be a better and more efficient cell-based therapeutic strategy compared to the use of mesenchymal 

stem cell from different sources, given that they are developmentally primed for differentiation into 

chondrocytes. Furthermore, in the field of regenerative medicine therapeutic strategies targeting 

stem cells in situ could be more attractive and more advantageous than stem cell transplantation. 

According to this approach, endogenous stem cells could be recruited to the injury site by 

administration of bioactive factors. Thus, in the last decades, among a wide range of products, PRP 

has spread as a clinical treatment tool for musculoskeletal diseases. Several studies have 

investigated PRP or PL roles both in vitro and in vivo, highlighting their capacity to exert anti-
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inflammatory and proliferating effects on cells, as well as to stimulate resident progenitors or to 

recruit circulating ones. 

Primary cultures of human articular chondrocytes and cartilage chips were set up from donor 

biopsies and were treated in vitro with PL. Proliferation, clonogenic potential and phenotype of 

chondrocytes and chondro-progenitor cells derived from explant cultures in PL were characterized. 

Tri-lineage differentiation potential were tested in vitro and scaffold-assisted chondrogenesis of 

these cells were studied in nude mice. Moreover, secretory profile of chondro-progenitors were 

analysed together with their migratory capabilities by mimic osteoarthritis in vitro. Finally, it was 

reported that ex vivo treatment of human articular cartilage with PL induced activation and 

outgrowth of cells showing features of stemness, such as clonogenicity and expression of nestin. 

The stimulation of nestin-positive progenitor cells induced by PL in articular cartilage is of 

particular interest for the future development of therapeutic strategies given the involvement of 

these cells in tissue regenerative processes. In addition, their high proliferation capacity with 

concurrent chondrogenic potential maintenance further sustain the potential of PL-mobilized 

chondro-progenitor cells as promising tool in the field of cartilage tissue engineering. Moreover, 

PL-induced effects on phenotype of mature articular chondrocytes were further characterized, 

showing that they can revert to an earlier stage similar to chondro-progenitor one. 

2) Embedding and re-differentiation of primary human articular chondrocytes in PRP-based 

hydrogel suitable for 3D-bioprinting.  

Although the implantation of cultured chondrocytes intended for injured cartilage therapy is 

performed worldwide, there are still unresolved challenges associated with the maintenance of their 

chondrogenic phenotype. The expansion of chondrocytes in vitro is associated with de-

differentiation, which is a reduction in the expression of cartilage-specific markers. Accordingly, 

such cells often produce fibrocartilage rather than native hyaline cartilage when used in clinical 

procedures. Several strategies to counteract this phenomenon have been adopted, such as 3D-culture 

of chondrocytes encapsulated in biomaterials. Adoption of hydrogels attracts particular interest in 

cartilage regeneration since they provide a highly hydrated environment similar to that of native 

tissue. In this context, progresses are expected thanks to the application of the 3D-bioprinting. 

However, the field of biofabrication often strongly focuses on the biomaterial rheology to allow 

controlled production, taking less care of its inherent impact on cellular phenotype. The 

combination of both aspects can be achieved by incorporation of biological components in printable 

hydrogels that often lack of bioactivity.  



4 

 

Primary human articular chondrocytes derived from previous monolayer culture expansion were 

bioprinted by embedding them in a commercial available alginate-based ink and their ability to 

regain the chondrogenic potential both in vitro and in vivo was evaluated. Interestingly, an 

improved ability to sustain cell viability, proliferation and a certain degree of chondrogenic 

phenotype rescue were found inside the bioprointed constructs by adding PRP as a source of 

biological agents in the ink formulation.  

This thesis is organized as follows:  

 the chapter 1 introduces functions and composition of articular cartilage. Given the peculiar 

nature of the tissue, injuries to articular cartilage could progress toward chronic diseases. Thus 

an overview of cartilage disorders, including tissue defects and the inflammatory pathology of 

osteoarthritis is reported. Finally, therapeutic strategies for injured or pathological cartilage are 

described from symptomatic treatments and surgical procedures to the approaches inspired by 

progresses in regenerative medicine (cell therapy) and tissue engineering (scaffold-assisted 

methods). 

 the chapter 2 delves into the emerging technology of 3D-bioprinting, which is the additive 

manufacturing method intended to generate 3D-living constructs through the layer-by-layer 

apposition of a special ink made of cells encapsulated in biomaterials. An overview of 3D-

bioprinting typologies is reported, each based on different available bioinks, process resolution 

and performances. The main biomaterial eligible for cell encapsulation is represented by 

hydrogels, but they need of some essential properties to be 3D-printed. The criteria for good 

printability are explained as well as a series of printable hydrogels are listed. Finally, the 

potential of 3D-bioprinting applied to the field of articular cartilage restoration are outlined. 

 the chapter 3 describes the finding of MSC-like progenitor cells within human articular cartilage 

explants after PL treatment in vitro, whose involvement in tissue regenerative applications is 

suggested.  

 the chapter 4 reports the 3D-bioprinting of human articular chondrocytes embedded in a PRP-

activated hydrogel promoting cell re-differentiation. Such bioprinted constructs can be exploited 

as in vitro model for cartilage-related studies or graft prototype for tissue engineering. 
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1 Cartilage biology, tissue damage and related therapeutic 

strategies 

1.1 Hints on cartilage as special connective tissue: subtypes and functions 

Cartilage is a special connective tissue with a mesodermal origin, composed of chondrocytes 

immersed within an abundant extracellular matrix (ECM) rich in polysaccharides, fibrous proteins 

and water. Depending on ECM composition, cartilage in humans is classified into three subtypes: 

hyaline, fibro- and elastic cartilage (Figure 1.1). During fetal development hyaline cartilage forms 

the template for the skeleton (endochondral ossification) and in adulthood it persists at level of 

articular surfaces, ribs, ears and the tracheobronchial tree. Hyaline cartilage is the predominant type 

in the human body and the best characterized of the cartilage subtypes. It forms all diarthrotic 

articular surfaces, the most peripheral part of the nucleus pulposus of the intervertebral disk, 

portions of the ribs and tracheobronchial tree. Fibrocartilage is present in the temporomandibular 

and sternoclavicular joints and the annulus fibrosus of the intervertebral disk as well as the 

meniscus at the knee and the labrum of the shoulder. Finally, elastic cartilage is largely restricted to 

the external ear and a few other sites [1,2]. 

All subtypes of cartilage are structurally adapted to resist compressive forces. However, the 

presence of type I collagen in fibrocartilage and elastin in elastic cartilage also allows these tissue to 

resist tension. In general, cartilage functionally plays important roles in skeletal development, 

growth and repair, joint articulation, lubrication and patency of the respiratory tract.  

 

 

 

Figure 1.1: Different subtypes of cartilage. (A) Hyaline cartilage. (B) fibrocartilage. (C) elastic 

cartilage. Image taken from http://medcell.med.yale.edu. 
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1.2 Hyaline articular cartilage: composition and structure 

Glass-like in appearance (from the Greek hyalos meaning “glass or transparent stone”), hyaline 

articular cartilage lines the ends of articulating bones. Its principal function is to provide a smooth, 

lubricated surface for articulation and to facilitate the transmission of loads with a low frictional 

coefficient. Articular cartilage lacks blood vessels, lymphatics and nerves and is subjected to a hard 

biomechanical environment. Its ECM is rich in glycosaminoglycans (GAGs) and collagen fibers 

(mainly type II collagen), altogether known as ground substance. GAGs are covalently linked as 

lateral chains to a core protein to form proteoglycans, among which aggrecan represents the most 

abundant [3,4].  

In general, articular cartilage shows a zonal structure, which consists of superficial (tangential), 

middle (transitional), deep (radial) and calcified zones (Figure 1.2). The transition among the first 

three zones is gradual, but the deep and calcified zones are separated by a distinct front of 

mineralization known as tidemark. The organization of the ECM components as well as the shape, 

phenotype and orientation of the chondrocytes change depending on the zone. Thus, collagen fibers 

(primarily, type II and IX collagen) are oriented parallel to the surface in the superficial zone and 

the chondrocytes, present in relatively high number, are flattened and disposed in the same 

direction. This arrangement is responsible for resisting the shear forces of joint movement at the 

surface. The transitional zone contains thicker collagen fibers disposed obliquely, proteoglycans 

and a low density of spherical chondrocytes. The deep zone contains the largest diameter collagen 

fibers in a radial disposition, perpendicular to the joint line, along with chondrocytes typically 

arranged in parallel columnar orientation. The transitional and the deep zones provide resistance to 

compressive forces. The calcified zone ensures the anchorage of the cartilage to the subchondral 

bone and chondrocytes are enlarged but very sparse in this area. Proteoglycan concentration varies 

with depth in articular cartilage, being the lowest at the surface and the highest around chondrocytes 

in the deep zone. Conversely, the highest collagen content is in the superficial zone [1,2]. 
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Figure 1.2: Schematic representation of articular cartilage zonal organization. (a) Illustration of 

articular cartilage zones showing cell shape, morphology, orientation and pericellular matrix 

deposition. Micrographs of the (b) superficial zone, (c) middle (transitional) zone, (d) deep zone 

chondrocytes and (e) deep zone and calcified zone stained with safranin O. Image taken from [5]. 

 

1.2.1 Embryonic development of articular cartilage  

The musculoskeletal system originates during development from precursor cells of the mesenchyme 

that differentiate into osteogenic, myogenic and chondrogenic lineages, giving raise to bone, muscle 

and cartilage, respectively. In particular, migration and condensation of mesoderm cells, or 

chondro-progenitors, producing ECM rich in fibronectin, hyaluronan, tenascin and type I collagen, 

are involved in limb formation. Pre-cartilaginous condensation and differentiation of these cells into 

chondrocytes lead to a change in the local ECM composition, which becomes richer in cartilage 

specific proteins including type II collagen and aggrecan. Further differentiation events of these 

chondrocytes, such as hypertrophy with expression of type X collagen, lead to the process of 

endochondral ossification. Osteoblasts, carried by invading blood vessels during vascularization, 

replace these terminally differentiated chondrocytes and gradually cause mineralization that is 

necessary for proper long bone development [6]. Several recent studies, as described below, have 

demonstrated that a progenitor-like cell population still exists in adult hyaline cartilage tissue [7,8].  

 

1.2.2 Extracellular matrix composition in articular cartilage 

The ECM of mature articular cartilage is produced and maintained by chondrocytes, which control 

the homeostasis of the tissue and participate in its repair. The composition of articular cartilage 
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ECM varies spatiotemporally, from the more superficial layer, in contact with the synovial fluid in 

the joint cavity, to the deepest layer, in contact with the subchondral bone, and during tissue 

development. In addition to variations in structure of the ECM depending on the zone, it can be 

further distinguished into pericellular, territorial, and interterritorial regions based on proximity to 

chondrocytes and composition (see review [9]). 

In general, mature articular cartilage ECM consists predominantly of water (66-78%) with the 

remaining dry weight composed of proteoglycans, collagen and additional specialized proteins [10].  

The highest concentration of water is present at the articular surface [11]. Proteoglycans, thanks to 

their hydrophylic nature, are directly responsible for the high water content of cartilage. 

Proteoglycans account for ~40% of the dry weight of cartilage and demonstrate a remarkable 

hierarchy (Figure 1.3). At the highest level of organization, multiple proteoglycans are no-

covalently attached to a central hyaluronic acid moiety, stabilized by a small protein known as link 

protein. A proteoglycan is composed of a protein backbone to which long, sulphated, carbohydrate 

side chains are covalently attached. A single proteoglycan may be glycosylated with 100-150 such 

side chains, resulting in an organization similar to a bottle brush. The predominant proteoglycan in 

cartilage is aggrecan and the most common carbohydrate side chains are chondroitin sulphate and 

keratan sulphate [12]. These sulphated carbohydrate side chains confer charge to the proteoglycans, 

thus they attract water, expand in volume and act as a shock-absorber. Since proteoglycans are able 

to extrude and re-imbibe water in response to load, they are fundamental in cartilage‟s ability to 

resist compression [13]. Moreover, this movement of water in and out of the cartilage matrix with 

joint compression and the phenomenon of diffusion ensure nutrition to chondrocytes, which are not 

supplied from blood circulation.  

In addition to the above mentioned structural components, cartilage contains numerous other minor 

proteins that have both structural and regulatory roles. Structural proteins include other 

proteoglycans, fibronectin, thrombospondin-1, -3 and -5, cartilage intermediate layer protein, 

matrilin-1 and -3, and tenascin-C. Regulatory proteins, which influence cell metabolism, include 

galectin, chondromodulin-I and -II, cartilage-derived retinoic acid-sensitive protein, chitinase-3-

Like Protein 1, matrix Gla protein as well as catabolic and growth promoting factors such as bone 

morphogenic proteins and transforming growth factor-β (TGF-β) [10,14].  
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Figure 1.3: Hierarchical structure of proteoglycans in articular cartilage. (a) Schematic illustration 

of the brushed organization and (b) chemical structure of the most relevant polysaccharides in 

cartilage proteoglycans [hyaluronic acid (HA), keratan sulphate (KS) and chondroitin sulfate (CS)]. 

Image taken from [15]. 

 

Collagens represent ~50% of the dry weight of the cartilage ECM. They are comprised of repeating 

amino acid sequences (e.g., glycine, proline, hydroxyproline) and exhibit a characteristic triple helix 

structure (Figure 1.4). In articular cartilage, type II collagen predominates and confers tensile 

stiffness and strength to the matrix [16]. Apart from type II collagen, less abundant collagens, 

including type IV, VI, IX, X, XI, XII, XIII, and XIV are present in the ECM, being essential for the 

mechanical properties, organization and shape of articular cartilage as well as fulfilling specific 

biological functions [17]. Thus, type VI collagen is present in the pericellular matrix and lesser 

amount of type IX and XI collagen are deposited in the interterritorial matrix. In particular, type IX 

collagen interacting with type II collagen functions as a fitting molecule contributing to the 

biomechanical properties of the tissue. Type XI collagen is present within the fibres of type II 

collagen, regulating their thickness. The collagen fibres display differential organisation in the 

different layers of cartilage, as already mentioned, that depends on the direction of the mechanical 

stimulation and confers cartilage with tensile properties [13]. Finally, collagen X is present only in 

the hypertrophic cartilage, in the calcified layer [16]. 
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Figure 1.4: Illustration showing collagen structure. From left to right: the single amino acids that 

constitute each three polypeptide chains in the right-handed triple helix with a (Gly-X-Y) repeat 

structure characteristic of all collagen types. The X and Y position is often occupied by proline and 

hydroxyproline. The three chains are supercoiled around a central axis in a right-handed manner to 

form the triple helix. Multiple helices are associated to forming fibrils. Image taken from [15]. 

 

1.2.3 Cells in articular cartilage 

Chondrocytes have been traditionally considered the only cell type within articular cartilage, until 

the presence of cells with stemness features in this tissue started to be reported by several research 

groups as already mentioned [7,8]. 

 

1.2.3.1 Chondrocytes 

Chondrocytes are considered the terminally differentiated cell unit in cartilage present at different 

densities throughout the depth of the tissue. When compared to other tissues in the body, articular 

cartilage is sparsely populated by cells (chondrocytes represent only 1% of the total tissue volume 

[2]), but chondrocytes are pivotal for its homeostasis since they are responsible for the synthesis and 

maintenance of the matrix components and regulatory molecules including growth factors, enzymes 

and inflammatory mediators.  
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As reported above, the precursor cells of chondrocytes during development synthesise abundant 

ECM. With the increasing amount of matrix produced, the cells become separated from each other 

and embedded within cavities known as lacunae. In mature cartilage, chondrocytes within the 

lacunae organise themselves in isogenous groups derived from the division of the same progenitor. 

Isogenous groups are more abundant in the middle and transitional zones compared to the 

superficial and deep zones of the articular cartilage. In the deep zone, chondrocytes are hypertrophic 

and synthesise type X collagen supporting the mineralisation of cartilage in this region [13,16]. 

Importantly, chondrocytes may also differentiate from adult mesenchymal stem cells (MSCs), at 

least in vitro [18], a finding that has received much attention as possible treatment for degenerative 

joint disease. At the molecular levels, several key regulatory proteins play roles in chondrocyte 

differentiation, including the transcription factor SOX9 considered as the master regulator of this 

process from precursor cells [19]. 

Articular chondrocytes from the superficial, middle and deep zones have specific morphologies and 

expression profiles. Cell diameters range from 10-13 µm, with superficial zone cells being smaller 

than middle/deep zone cells [20]. In general, middle/deep zone cells possess greater synthetic 

activity for the major molecular constituents of cartilage than superficial zone cells when cultured in 

vitro [21]. Chondrocytes from these two zonal populations also have different mechanical, elastic 

and viscoelastic properties [22]. These variations are likely caused by the different strain levels that 

cells experience within the zones of cartilage. Tissue near the surface is compressed more than that 

in the bulk of the cartilage [23], and hence those cells might need to be stiffer to survive the high 

strains. 

Chondrocytes are known to lose their phenotypic markers in vitro as evidenced by loss of 

morphologic characteristics and changes in metabolic activities of cells when cultured in monolayer 

[24]. In this condition, chondrocytes flatten over the course of days and begin to proliferate, rapidly 

losing their typical expressions. However, chondrocytes cultured in agarose retain morphological 

characteristics and the ability to synthesize proteoglycans [21]. This is likely due to the three-

dimensional environment, which forces a rounded cell morphology and facilitate the synthesis of 

cartilage-specific molecules. Additionally, the application of mechanical stimuli such as stress, 

strain, and pressurization can affect their phenotypic expression and ECM production through a 

phenomenon termed mechanotrasduction [25,26]. 

Chondrocytes control the turnover and remodeling of the articular cartilage not only by secreting 

ECM but also by producing proteinases that degrade ECM constituents. The main proteinases are 

the metalloproteinases (collagenase, gelatinase, and stromelysin), which degrade collagens, 
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fibronectin, elastin, and aggrecan, and the disintegrin-metalloproteinases with thrombospondin 

motifs (ADAMTS), which cleavage proteoglycans. The cathepsins (cathepsin B and D), which 

degrade aggrecan, and the elastases, which hydrolyse elastin, fibronectin, laminin and other 

molecules, are also involved in the cleavage of the ECM but to a lesser extent [27,28]. 

 

1.2.3.2 Cartilage stem/progenitor cells (CSPCs) 

Stem cells are defined functionally as characterized by the ability to self-renew as well as the 

potency to differentiate in multiple lineages [29]. Embryonic stem cells, derived from the inner cell 

mass of blastocysts, are considered pluripotent because of their ability to progress along the 

endodermal, mesodermal and ectodermal lineages [30]. During development, the potency of stem 

cells becomes gradually more restricted, and some of them remain in certain adult tissues as 

progenitor cells, where they contribute to tissue renewal and homeostasis [31].  

In the case of articular cartilage, chondro-progenitor cells have been shown to exist not only in 

developing tissue, but also in fully developed adult cartilage. 

The developmental origin of human cartilage stem/progenitor cells (CSPCs) has not been well-

defined because of the lack of stable markers for tracing their lineage, nevertheless some indications 

are available. Two coexisting cell sub-populations of cartilage-forming cells were detected in 

human developing cartilage: one composed of multipotent cartilage stem cells (CSCs) with the 

capacity to undergo multilineage differentiation, including chondrogenesis; and other population 

composed of oligopotent chondrogenic cartilage progenitor cells (CPCs) which are able to undergo 

only chondrogenesis [32]. 

The existence of such a stem/progenitor cell population within adult articular cartilage tissue 

suggests that it may have the biological repertoire to be used for the cell-based therapy of cartilage 

defects and perhaps even degenerative joint diseases. This endogenous stem/progenitor population 

in articular cartilage has shown to respond to tissue damage [33], although repair is not ensured as 

confirmed by the distinctive inability of hyaline cartilage to heal after injury. 

Many studies have shown that CSPCs are present in both human and animal cartilage, with the 

articular hyaline cartilage being the earliest and most well-studied source of CSPCs to date [34]. 

Increasing evidences suggest the existence of CSPCs in other types of cartilages, including the 

intervertebral disk [35], auricular [36], nasoseptal [37], tracheal [38] and costal [39] tissues in the 

order of decreasing frequency and across a variety of species.  
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Since articular cartilage develops in an appositional fashion [40], it has been suggested that the 

articular surface may contain a progenitor population capable of proliferating and expanding the 

cartilage tissue. Several studies have reported that these progenitors represent approximately 0.1% 

of all cells that can be extracted from the superficial zone of articular cartilage tissue [41,42].  

However, a recent study has demonstrated the existence of progenitors within the deep zone of 

human [43] and bovine articular cartilage [44]. Like the articular surface, the joint synovium is 

known to be an abundant source of progenitors capable of successfully differentiating along the 

chondrogenic lineage [45]. While these synovium-derived progenitor cells technically do not reside 

within cartilage tissue, their presence in the joint may facilitate their migration toward the 

superficial zone of cartilage in response to articular surface injury.  

Various CSPCs isolation methods have been adopted, from differential adhesion to fibronectin 

[7,8], to selection based on set of surface markers [46,47], as well as identifying migratory 

subpopulations [33,48,49]. These cells were then characterized according to properties of adult stem 

cells, such as self-renewal capacity, multilineage differentiation potential [50], the presence of a 

repertoire of bone-marrow-derived MSCs-related surface markers [46], and migratory activity [33] 

(Figure 1.5). 
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Figure 1.5: Stem cell-like properties of CSPCs. (a) Expression of stem cell-related surface markers 

(individually or in combination); (b) properties such as clonogenicity, multipotency and migratory 

activity of CSPCs in response to injury or osteoarthritis (OA). Image taken from [34]. 

 

Interestingly, the colony forming efficiency of chondro-progenitors has no correlation with the age 

of the patient from which they were isolated [8], suggesting that these cells exhibit a self-renewal 

capacity that is unrestricted by the patient‟s age. 

Phenotypic analysis detects the expression of various stem cell-related surface markers, individually 

and in combination, including CD9 [47], CD29 (integrin β-1) [49], CD44 [49], CD49e (integrin α-

5) [8], CD54 (intercellular adhesion molecule 1) [47], CD73 (5‟-nucleotidase) [49], CD90 (Thy-1 

membrane glycoprotein) [49], CD105 (type I membrane glycoprotein endoglin) [46,49], CD166 

(activated leukocyte cell adhesion molecule) [43,46], Notch-1 (neurogenic locus notch homologue 

protein 1) [51] and STRO-1 [41], among others.  

Although CSPCs in human cartilage are studied by different research groups, no single cell-specific 

surface marker is available yet to directly identify CSCs/CPCs either in vitro or in vivo [52]. This 

difficulty could be not only due to the lack of a well-defined marker to enable specific purification 

of these cells, but also to changes in the cellular phenotype upon isolation and monolayer expansion 

of chondrocytes [53]. Indeed, during in vitro monolayer culture, stem cell surface markers such as 
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Notch-1 and STRO-1 are not well maintained [54,55]. Furthermore, many of the MSCs markers 

(e.g. CD73 and CD49e) have also been found to be positive in mature chondrocytes, indicating lack 

of specificity [53]. It has also been reported that the distribution of some stem cell markers within 

the cartilage tissue, including Notch-1, STRO-1 and vascular cell adhesion protein 1 (VCAM-1) is 

not consistent with the stem cell content detected, concluding that these surface molecules may not 

be useful for specifically identifying CSPCs [41]. Thus, if CSPCs become crucial for future 

cartilage therapeutic strategies, more efficient and specific isolation techniques will be necessary for 

their isolation and purification. 

However, an intrinsic feature of chondro-progenitors may consist in the expression of the 

transcription factor SOX9, a well-known marker of cells committed to the chondrogenic lineage 

[56]. SOX9 is not highly expressed in MSCs, which are the precursors of chondro-progenitors since 

they are not yet fully committed to the chondrogenic lineage. Conversely, clonal population of 

chondro-progenitors isolated from bovine and human articular cartilage has been shown to 

continually express SOX9 during expansion and retain the capacity for re-differentiation [56]. 

Moreover, articular chondro-progenitors, unlike bone marrow-derived mesenchymal stem cells 

(BM-MSCs), do not generate a type X collagen-rich matrix or express RUNX2 transcription factor 

protein upon chondrogenic differentiation, but produce an extracellular matrix that is predominantly 

hyaline in nature [8]. 

Chondrocytes traditionally secrete cartilage ECM when cultured in a 3D environment, but their de-

differentiation following expansion limits their use for cartilage regeneration [57]. In contrast, 

CSPCs are considered as a promising renewable cell source for this purpose thanks to their niche-

specific lineage preference for chondrogenesis [58] and since they show to be implicated in 

migration and tissue reparative activities in response to native articular cartilage injury [33,49]. 

However, it is still not clear whether CSPCs maintain themselves within their niche in native 

cartilage to promote repair through extracellular signalling factors or differentiate to maintain the 

cartilage tissue itself. 

Although chondro-progenitors are highly capable of chondrogenic differentiation, it has been 

demonstrated that they can undergo osteogenesis and, to a certain extent, adipogenesis [8]. As such, 

the potential for chondrogenic, osteogenic and adipogenic differentiation has become a defining 

feature of chondro-progenitors that distinguish them from mature chondrocytes. 

Finally, it has been observed that CSPCs exhibit detectable telomerase activity and undergo delayed 

telomeric erosion during in vitro monolayer culture compared to chondrocytes [8,56].  
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1.3. Cartilage injuries and degeneration towards OA development  

In 1743 William Hunter affirmed “If we consult the standard Chirurgical Writers from Hippocrates 

down to the present age, we shall find, that an ulcerated cartilage is universally allowed to be a very 

troublesome disease; that it admits of a cure with more difficulty than carious bone; and that, when 

destroyed, it is not recovered” [59]. Articular cartilage has very limited healing potential and poor 

regenerative capacity: once articular cartilage is damaged, full recovery of its structure, function 

and biomechanical properties is unlikely and it is usually a step towards progression of 

osteoarthritis (OA).  

A hallmark of cartilage defects, injuries and degeneration is the loss of cartilage matrix as a 

consequence of an imbalance between catabolic and anabolic processes, that usually influence the 

normal cartilage turnover [13]. 

In general, injurious impact and repeated loading, torsional loading and joint malalignment lead to 

cartilage injuries, that are classified according to the depth of the lesion as cartilage microfractures, 

chondral and osteochondral (full thickness) defects. Cartilage physiology, size, depth and location 

of the defect together with aging directly affect the efficacy of the self-repair mechanisms and 

therefore the outcomes for cartilage injuries as well as the progression towards OA. Furthermore, 

the lack of vasculature and the nature of the tissue result in few cells available to mount an adequate 

healing response.  

In cartilage microfractures, the damage to the collagen network induces superficial GAGs loss [60] 

and alters load distribution, resulting in local stress increase that can cause further damage or a 

greater proportion of forces borne by the bone. These loading alterations, as well as fractures to the 

calcified layer can occur leading to eventual thickening of the subchondral bone [61]. Since 

cartilage is aneural, repeated loading of microfractured cartilage can continue without pain, leading 

to further degeneration [62].  

Chondral fissures are defects that do not extend to the subchondral bone. Chondral defects can 

proceed from cartilage microfractures or from trauma, improper loading or foreign bodies. Without 

blood supply, the intrinsic metabolic activity after such an injury is insufficient to result in an 

adequate repair, leading to the eventual development of osteochondral fissures [62]. Osteochondral 

fissures are lesions that cross the tidemark and penetrate the underlying bone. Although large 

number of progenitor cells are recruited from the bone vasculature to mount a repair process, there 

is an impaired functionality of the repaired tissue, with a mix of fibrocartilage and hyaline 

cartilages, resulting in eventual tissue degeneration towards OA [63]. With age, both chondrocytes 
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and progenitor cells decrease in number and metabolic activity, thus contributing to the cartilage 

healing problem. 

OA in western countries is a leading cause of pain and disability especially in elderly persons. It 

compromises overall health and quality of life of affected patients, representing a huge economic 

burden to the public health system [64]. Since OA is characterized by degeneration of articular 

cartilage, synovial inflammation and changes in periarticular and subchondral bone, it is considered 

a disease of the entire joint (Figure 1.6) [65]. Initially, changes associated with joint capsule such as 

thickening and frequent adherence to the underlying bone are seen, with increased vascularization 

[66]. Destruction of the cartilage surface in OA occurs with fibrillation, surface erosion and fissures 

at the beginning of the disease. From this point on, proteoglycan content decreases and the tidemark 

begins to appear irregular and punctuated with blood vessels. At a later time, articular cartilage 

undergoes to surface wear and irregularity with vertical and horizontal fissures. These patterns of 

increased tissue fragmentation and decreased content in ECM components continues until the 

cartilage, completely devoid of its abilities to withstand load, is worn away to expose the 

subchondral bone [67]. The subchondral bone remodels with thickening as it becomes unprotected 

from the load borne by cartilage [68]. Along with the thickening, new bone formation (osteophytes) 

is observed. 

 

 

 

Figure 1.6: Comparison between normal and osteoarthritic joints. Image taken from [69]. 
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At molecular and cellular levels, the processes involved in cartilage destruction during OA include 

cell death, degradation of the extracellular matrix, calcification, and production of inflammatory 

mediators. In particular, OA is characterized by an increase in serum and synovial fluid of pro-

inflammatory cytokines, such as IL-6, IL-1β and TNF-α, which working in concert reduce in 

chondrocytes the synthesis of ECM proteins, including aggrecan and type II collagen, enhance the 

gene expression of proteinases MMPs (MMP-3 and MMP-13) and ADAMTS (ADAMTS5), inhibit 

the production of natural protease inhibitors (TIMPs), up-regulate the synthesis of eicosanoids (E2 

prostaglandins), and promote apoptosis to further degrade joint tissues [70,71]. 

In addition, it has been hypothesized that also senescence of cells within joint tissues may 

contribute to the pathology OA. Indeed, the profile of catabolic and inflammatory mediators found 

during the pathogenesis of OA resembles very closely the one observed in „classical‟ senescent 

cells. During OA, chondrocytes display an up-regulation of several senescence markers, including 

senescence-associated beta-galactosidase (SA-βgal) activity, accumulation of MMPs induced by 

pro-inflammatory cytokines, ROS secretion, activated DNA damage response, telomere attrition, 

and accumulation of p16
Ink4a

 [72]. Thus, senescence of chondrocytes leads to a further shift of the 

balance between ECM synthesis and degradation, while the senescence of stem or progenitor cells 

could compromise tissue repair as described in the next section. 

 

1.3.1 CSPCs in articular cartilage injuries and OA 

Similar to other tissue-specific stem cell populations that exhibit a remarkably ability to migrate to 

sites of injury, chondro-progenitors can migrate across the articular surface to sites that have 

suffered trauma. Migratory chondrogenic progenitor cells have been detected in degenerated 

cartilage sites in late-stage OA [49] or emerged and migrated to the site of injury following blunt 

impact in healthy cartilage explants [33]. In the latter case, soluble factors released after injury are 

thought to initiate such migration, since CSPCs showed a similar behaviour in presence of dead-cell 

debris and medium conditioned by injured cartilage. Other soluble factors could also enhance the 

chemotactic activity of CSPCs, such as insulin-like growth factor 1 (IGF-1) in serum, platelet-

derived growth factor (PDGF) in synovial fluid [48] or post-traumatic bleeding [73]. Thus 

migration of CPCs is likely to be regulated by multiple tissue-injury-related signals.  

The functional role of the migratory cells is not clearly understood. Interestingly, the cells described 

above also showed a high level of lubricin (proteoglycan 4) compared with BM-MSCs from the 

same donor [33]. Since lubricin is an important superficial zone protein responsible for lubrication 
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and protection of the articular cartilage surface in the joint cavity, migratory CSPCs probably 

contribute to the biological resurfacing of this tissue after injury. In some clinical cases, a very thin, 

protective, cartilage-like layer can be found on the surface of the abnormal subchondral bone, 

probably as a result of chondrocyte aggregation with lubricin production [74]. Although the 

mechanisms responsible for this joint-resurfacing activity in such late-stage OA are unknown, the 

involvement of CSPCs is highly probable and it could represent a target for OA therapy. 

Available evidences strongly suggest that the phenotype of CSPCs in OA correlates with the degree 

of ECM degeneration in the articular cartilage, but the function of these cells remains unclear and is 

likely to be different at different stages of the pathology. In early OA, which is characterized by loss 

of the superficial zone and structural changes in the internal matrix, despite an increase in cell 

number and the formation of cell clusters, the cells remain embedded within the ECM [75]. In later 

OA, the matrix undergoes further loss of organization and the cells seem to be able to migrate freely 

[49]. Thus any therapeutic strategies that target CSPCs must take into consideration the stage-

specific nature of cells. 

Cell proliferation and stem cell surface markers increase in OA tissue, evidenced by the finding that 

the proportion of CD105
+
/CD166

+
 cells in OA cartilage was ~8% compared with ~4% in normal 

cartilage [46]. A possible explanation is that CSPCs residing within adult articular cartilage start to 

replicate in response to cartilage injury and give rise to daughter cells. Thus, one of the daughter 

cells may remain a progenitor while the other one undergoes further replication and differentiation 

along the chondrogenic lineage. All these events are subject to regulation and, therefore, defects in 

any of these events may affect cartilage repair [76]. 

Other data indicate that CSPCs are involved in all stages of OA. In early OA, cell clusters were 

found in and near the fissures of the articular cartilage; within these clusters, both anabolic and 

catabolic markers were detected and most cells expressed Notch-1, STRO-1 and VCAM-1. In 

proximity to the cell clusters, positive staining for these three stem cell markers was also found in 

the middle zone of OA cartilage [5,75]. These findings suggest that CSPCs might be involved in 

ECM remodelling in early OA, but more studies are needed to confirm this. 

In a recent study, it has been reported that CSPCs in cellular clusters, hallmark of the OA disease, 

may even contribute to its pathogenesis, being a novel cell target for OA therapy [77]. 

In late OA, Koelling et al. [49] reported a migratory population of chondrogenic progenitor cells in 

degenerated cartilage sites. These cells were located in areas of tissue repair and could have been 

local cells or cells that had migrated from neighbouring bone tissue, or both, as the cartilage 

tidemark was broken and neovascularization underneath the cartilage tissue was evident. This 



20 

 

disruption of the cartilage ECM in late OA probably alters the mode and extent of communication 

between the articular cartilage and the subchondral bone, synovium and other neighbouring tissues; 

perhaps these migratory cells could act as a messenger-cell population that shuttles between tissues.  

CSPCs from diseased states have shown to regenerate cartilage at least in vitro, but their 

susceptibility to various inflammatory mediators such as NF-k B and ILβ1 in late stages of OA may 

hamper their utility in vivo [78,79].  

Finally, a recent study shows that the increase in progenitor frequency in OA tissue is concurrent 

with the emergence of a divergent progenitor sub-population that can be separated on the basis of 

proliferative potential and capacity for telomere maintenance. Upon culture expansion, OA-CPCs 

could be separated into two groups: an early-senescent one and another classified as late-senescent 

population [80]. OA is an age-related disease and cellular senescence is predicted to be a significant 

component of the pathological process, as mentioned above. Deranged progenitors that have 

adopted a senescence-associated secretory phenotype following replicative exhaustion may cause 

long-term deleterious effects and be a significant contributor to the progressive degradation of 

cartilage within the osteoarthritic tissue.  

 

1.4. Current therapeutic approaches for articular cartilage repair 

Traumatic and degenerative pathologies of the articular cartilage are currently treated through 

several therapeutic approaches developed by clinicians and researches, including symptomatic 

treatments and restoration procedures both clinically available and under development [81]. 

Symptomatic treatments consists of systemic treatment (usually pain killers and anti-inflammatory 

drugs) and local intra-articular injections, such as injections of corticosteroids or platelet-rich 

plasma. Among clinically available cartilage repair procedures, surgical approaches (microfracture 

and mosaicplasty) and those based on regenerative medicine (implantation of expanded autologous 

chondrocytes) are the most representative to be mentioned. Moreover, experimentations of 

regenerative approaches based on tissue engineering field and involving different combinations of 

biomaterials and stem cells are in progress. 

 

1.4.1 Clinical orthopaedic approaches: intra-articular injections and surgery 

Intra-articular injection is a minimally invasive procedure used to directly deliver compounds, such 

as corticosteroids, hyaluronic acid (HA) and platelet-rich plasma (PRP), to an affected joint. 
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The Osteoarthritis Research Society International (OARSI) guidelines recommend the treatment 

with corticosteroids as an anti-inflammatory agents to reduce joint pain [82]. However, these drugs 

should be given at low doses and for a short period of time, given that high doses and long 

treatment result in chondrocyte toxicity, cartilage damage and accelerated progression of OA [83].  

The so-called viscosupplementation therapy is based on intra-articular injections of HA in OA 

synovial fluid with the aim to restore its normal concentration and molecular weight levels [84]. 

Since HA is considered a critical component of normal synovial fluid and an important contributor 

to joint homeostasis [85], this type of treatment received United States Food and Drug 

Administration (FDA) approval 20 years ago. However, a significant effect of intra-articular 

injections of HA compared to intra-articular injections of a placebo did not emerge from a meta-

analysis of randomized clinical trials for the treatment of OA [86]. 

PRP is a concentrate of platelets derived from blood, whose growth factors and cytokines are 

thought to activate a variety of signalling pathways promoting tissue repair [87,88]. Despite the lack 

of knowledge and long-term data about its action in arthritic joints [87,88], the use of PRP intra-

articular injections in degenerative OA reports improvements in pain and functional outcome scores 

[89]. The topic of therapeutic use of platelet derivatives will be explored in the next sections (see 

1.4.4). 

In the surgical field, microfracture and chondroplasty are the most common procedures for damaged 

cartilage repair (Figure 1.7). Microfracture together with abrasion and drilling techniques work by 

disrupting the subchondral bone integrity to create channels between the defect in the cartilage and 

the underlying bone marrow [90]. The recruitment of bone marrow-derived progenitor cells through 

these channels leads to subsequent formation of cartilage-like tissue in the defect region. Despite its 

minimal invasiveness and low cost, this strategy has revealed a relatively short-term functional 

improvement (< 24 months) due to the formation of fibrocartilage rather than hyaline articular 

cartilage [91]. Mosaicplasty represents another surgical approach in the treatment of cartilage 

defects and it provides for the use of tissue grafts, i.e. osteochondral allo- or auto-grafts. [92]. In the 

latter case, small cylindrical plugs are harvested from patient‟s own non-weight-bearing cartilage 

areas and then fitted into the defects. Although cartilage restoration via mosaicplasty often produces 

a good functional outcome, some drawbacks, such as donor-site soreness and limited availability of 

donor tissue, remain and often limit its feasibility [93]. 
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1.4.2 Regenerative medicine approaches: cell-based therapies 

Regenerative medicine focuses on new therapies to replace lost or damaged tissue with the final 

goal to restore tissue function.  

Because of the lack of blood supply and subsequent wound healing response, damage to cartilage 

results in an incomplete attempt at repair by local chondrocytes. To prevent progressive cartilage 

degeneration or to replace damaged cartilage, the surgical treatment is often the only option, but it 

rarely restores full function of the injured tissue. Therefore, regenerative medicine for the 

generation of functional cartilage tissue has emerged as an important field of research. There are 

different approaches for cartilage regeneration that may help to replace, repair or promote tissue 

healing. The use of cells including chondrocytes and stem cells may represent a promising 

approach.  

 

1.4.2.1 Chondrocytes-based cartilage therapy 

The first cell-based approach to cartilage regeneration, autologous chondrocyte implantation (ACI), 

was developed by Brittberg and colleagues in 1994 [94] and involves harvesting small tissue 

biopsies from the patient‟s own cartilage, followed by the expansion of chondrocytes in vitro and 

subsequent injection of them into the defect (Figure 1.7). In the original procedure, the injected cells 

were covered with an autologous periosteal patch, while in the second-generation ACI chondrocytes 

were put in contact with an absorbable collagen membranes, to prevent their outflow into the joint 

cavity upon transplantation [95]. Compared to microfracture (first-choice treatment for lesions < 2.5 

cm
2
) or mosaicplasty, ACI allows repair of larger cartilage defects (full-thickness chondral defects) 

[96]. The main limitations to this approach include its high cost [97], as well as the invasiveness of 

harvesting (two-stage operations), the formation in most cases of fibrocartilage and graft 

hypertrophy [95,98]. Since chondrocytes reside within an ECM that provide specific mechanical 

properties, a further development of ACI is the implementation of the matrix-induced autologous 

chondrocyte implantation (MACI) for cartilage regenerative purposes [99]. This procedure involves 

transplantation into the cartilage defect of a special three dimensional (3D)-scaffold with 

mechanical properties resembling those of the native ECM and containing autologous chondrocytes 

(previously expanded in vitro) (Figure 1.7). A large number of commercial products suitable for this 

type of biomedical application is already available [100]. 

Although the implantation of mature cultured chondrocytes is performed worldwide, there are still 

unresolved challenges associated with the maintenance of these chondrocytes in a stable state. The 
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expansion of autologous chondrocytes in vitro to obtain a sufficient number of cells is associated 

with chondrocyte de-differentiation, a reduction in the expression of cartilage-specific markers 

(type II collagen and aggrecan) with an increase in the synthesis of non-specific type I collagen 

[101]. Accordingly, such cells often produce fibrocartilage rather than the native hyaline cartilage. 

On the other hand, mature differentiated chondrocytes do not proliferate and cannot therefore be 

easily expanded in vitro [24]. One way to counteract chondrocyte dedifferentiation during in vitro 

expansion is to re-differentiate them by 2D- or 3D-culture in media supplemented with 

chondrogenic growth factors [102,103]. Thus, the proper balance between chondrocytes 

proliferation and differentiation represents an open issue that has yet to be fully resolved.  

 

 

 

Figure 1.7: Schematic illustration of the clinically developed approaches for cartilage tissue 

restoration. Image taken from [81]. 
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1.4.2.2 Stem cell-based cartilage therapy 

Another strategy involves the use of an alternative cell type that maintains its inherent proliferative 

capacity, such as MSCs or CSPCs.  

BM-MSCs are a pluripotent stem cell population that can be isolated from bone marrow and 

expanded for therapeutic use thanks to their differentiation ability along bone, cartilage and adipose 

tissue lineages [104]. Despite several preclinical [105] and clinical studies [106] have demonstrated 

the efficacy of using MSCs as a cell-based therapy for cartilage defects and OA, they are mostly 

prone to hypertrophy or differentiate completely along the osteogenic lineage, therefore conferring 

a lack of stability in their commitment to a desired tissue lineage (in this case cartilage) [107]. This 

should be taken into account especially when treating an OA joint where there is a dysregulation of 

cytokines, chemokines and growth factors underlying the disrupted tissue homeostasis. Therefore, it 

would be advantageous to utilize instead a population of progenitors that is lineage restricted to 

achieve the same goal, like CSPCs. 

CSPCs can be obtained from local cartilage and they have sufficient clonability for expansion 

without losing their chondrogenic differentiation potential. Moreover, CSPCs from native cartilage 

are believed to be further along in their commitment or to be primed to the chondrogenic lineage 

making them a logical choice for cell implantation into cartilage defects, contrary to immature 

stromal cells from bone marrow- and adipose-derived progenitors. Nevertheless, using autologous 

chondro-progenitors to fill cartilage defects has also some limitations. For instance, CSPCs 

represent a very rare population of cells, since they are significantly less than even 1% of all cells in 

adult articular cartilage [5,42]. The search of alternative sources of progenitors with chondrogenic 

potential has brought much attention to pluripotent progenitors that can be derived from various 

tissue types including that of the joint synovium and infrapatellar fat pads [108]. Nonetheless, the 

major challenge of identifying an accessible and abundant source of expandable chondro-

progenitors is still a limiting factor for their utilization for cartilage repair. 

Thus, each source of cells has its own advantages and drawbacks, and a further evaluation of their 

potential and especially of their long-term outcomes is required. 

 

1.4.3 Tissue-engineering approach 

The goal of tissue engineering is to develop tissue or organ replacement strategies through the use 

of specific scaffolds. They represent templates for cell adhesion and cell recruitment into a defect 

site as well as provide mechanical supports during tissue regeneration. Biomimetic scaffolds create 
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an environment close to the natural ECM of a specific tissue, in which cells could be guided to 

organize a new one with appropriate biomechanical characteristics and functions.  

Tissue engineering for the restoration of damaged articular cartilage involves several different 

scenarios. The basic scenario utilizes synthetic or natural scaffolds that mimic the ECM of native 

cartilage [109]. In an advanced one, tissue-engineered constructs are loaded with living cells and/or 

growth factors which facilitate the integration of the implant into the host tissue [110]. 

The polymers utilized for the articular cartilage engineering can be synthetic or natural [81]. Natural 

polymers (such as alginate, gelatin, agarose, HA, fibrin and collagen) are both biodegradable and 

biocompatible, but their composition varies from batch to batch. Conversely, synthetic polymers 

(such as some polyesters, polyethers, Pluronic
®
, polyurethane and self-assembling peptides) are 

more easily reproducible and their synthesis is precisely controlled. Nonetheless, natural polymers 

are the most widely used in ongoing clinical studies, with collagen being the most common. 

Overall, the requirements for a tissue engineering scaffold must be tissue-like mechanical 

properties, biocompatibility and resistance to wear. Recently, a number of commercially available 

tissue-engineered constructs, both synthetic and based on natural polymers, demonstrated 

favourable clinical outcomes [111]. However, several limitations still impede the complete and 

sustained repair of damaged articulate cartilage tissue. 

Scaffolds are produced using various techniques, including 3D-bioprinting. Layer-by-layer 3D-

bioprinting is based on computer-aided design (CAD) and allows the construct to be customized to 

the shape of the individual defect [112]. The use of hydrogel-based bioinks enables the homogenous 

incorporation of cells and biological factors during production, while retaining mechanical support 

[113]. Importantly, the water content of hydrogels (~80 wt%) is similar to that of articular cartilage. 

The polymers used in hydrogels are often naturally occurring. Among them, alginate or gelatin take 

favour with a low biodegradation rate and compatibility with chondrocytes, although, at the same 

time, their low adhesiveness and bio-inertness limit the regenerative potential. The bioink can also 

be rendered bioactive by incorporating various functional components [113]. Collagen and HA, 

inherent components of articular cartilage, support cell attachment and stimulate formation of the 

ECM, but exhibit little mechanical stability and are subject to intense biodegradation [114,115]. 

Synthetic polymers are superior to these natural ones in terms of controllable biodegradation and 

biomechanics, but often demonstrate poor biocompatibility and require modifications to provide 

specific biological functions. Thus, hybrid bioinks are often combinations of polymers with 

different desirable properties. The next chapter will explore the topic further. 
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1.4.4 Platelet derivatives in the treatment of injured articular cartilage 

Along with macrophages and MSCs, platelets participate in tissue regenerative processes. Upon 

wounding, platelets coagulate and degranulate releasing bioactive factors that, with a fine 

spatiotemporally regulation, promote inflammation and thus neutrophil and macrophage activation, 

as well as migration and proliferation of fibroblast, smooth muscle cells, endothelial cells and 

MSCs, collagen synthesis and angiogenesis, resulting in tissue regeneration [116]. 

Given the avascular nature of cartilage tissue, traditional inflammatory factors involved in tissue 

repair process are hindered in reaching the locally affected area and therefore do not contribute to 

the healing response in the setting of cartilage injury, especially in the full-thickness defects. Thus 

the rationale for the use of platelet products is that the supraphysiological direct delivery of platelet-

derived factors to the site of cartilage injury or disease can stimulate the natural healing cascade and 

tissue regeneration. The term “platelet-rich plasma” (PRP) indicates autologous blood containing 

such platelets in higher amount than normal concentrations, typically obtained via differential 

centrifugation [117]. A further derivate is represented by “platelet lysate” (PL), that is usually 

prepared by several freeze-thaw cycles of platelet concentrates and subsequent centrifugal 

separation of the debris from all the bioactive platelet factors. 

Proteomic studies have shown that platelets contain more than 1,500 protein-based bioactive factors 

[118], including immune system messengers, growth factors, enzymes and their inhibitors, which 

together can participate in tissue repair and wound healing. Platelets also store proteins with 

antibacterial and fungicidal effects, coagulation factors and membrane glycoproteins that influence 

inflammation by modulating the synthesis of interleukins (ILs) and chemokines. Furthermore, 

platelets‟ granules contain and release adenoside diphosphate, adenoside triphosphate, calcium ions, 

histamine, serotonin and dopamine, which contribute to tissue homeostasis. PDGF, epidermal 

growth factor (EGF), IGF-1, TGFβ-I, vascular endothelial growth factor (VEGF), hepatocyte 

growth factor (HGF) and basic fibroblast growth factor (bFGF) should be mentioned among 

platelet-derived growth factors [119].  

In particular, the release of the aforementioned growth factors and hundreds of others after platelet 

activation could promote cartilage matrix synthesis, cell growth, migration and phenotype changes, 

and facilitate protein transcription within chondrocytes [120,121]. Among them, TGF-β plays a 

significant role in regulating chondrocyte homeostasis from early to terminal stages [122]. In 

particular, TGF-β acts as inhibitor of terminal hypertrophic differentiation in post-natal 

chondrocytes and promotes their anabolism, by enhancing matrix production, cell proliferation and 
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osteochondrogenic differentiation. Furthermore, in vivo short-term intra-articular injections showed 

beneficial effects on osteochondrogenesis [123].  

Evidences support also PRP or PL anti-inflammatory properties. The transcription of many 

degradative cytokines, including IL-1β, tumor necrosis factor-α (TNF-α), and IL-6, are under the 

upstream control of nuclear factor-κB (NF-κB), which is activated in OA. Platelet α-granules 

contain several factors able to inhibit this pro-inflammatory and catabolic pathway preventing the 

detrimental effects of persistent inflammation on OA articular cartilage [124]. In this context, 

activated PRP increases in vitro levels of HGF, which enhances cellular IκBα expression and 

subsequently disrupts the NF-κB transactivating activity [125]. Moreover, it has been reported from 

in vitro studies on several cell systems (including human keratinocytes, osteoblasts, articular 

chondrocytes, and murine BM-MSCs) an early and transiently enhanced PL-induced activation of 

the pro-inflammatory NF-κB pathway in an inflammatory milieu [126–129]. In such conditions, 

after the early inflammatory burst, PL inhibits the activation of NF-κB showing a pro-resolving 

activity. It‟s likely that platelet-released factors exert an immediate pro-inflammatory effect causing 

a rapid antimicrobial response by the tissue, as demonstrated by the release of antimicrobial 

proteins such as neutrophil gelatinase-associated lipocalin (NGAL) and the migration of neutrophils 

and macrophages that engulf contaminant microorganisms and remove the devitalized tissue. At 

later time, these factors exert an opposite effect by inhibiting NF-κB activation and promoting 

resolution of the inflammatory phase. 

Since the use of platelet derivatives shows beneficial effects at molecular level, there has been a 

great increase in the number of randomized trials and meta-analyses that evaluate whether these 

promising findings in vitro can be translated to the clinical practice. Thus, these studies, as 

previously discussed, have shown that PRP injections in joint lead to a reduction in pain scores and 

an improvement in the function of the repaired tissue at several follow-up times [130,131].  

With the development of tissue engineering technology, treatment with cultured autologous 

cartilage cells and engineered construct for repairing articular cartilage defects has also spread in 

clinical practice. Since cell therapy requires a large chondrocyte numbers, suitable protocols for in 

vitro cell expansion have been developed. The standard method for cartilage cell expansion 

involves culture medium with fetal bovine serum (FBS) or serum-free medium. Furthermore, the 

low number of human articular chondrocytes obtained from cartilage biopsies along with their 

limited proliferation potential and the de-differentiation process during monolayer culture have 

promoted research aimed at the discovery of alternative and more efficient culture procedures. 

Thus, while FBS may contain undesired xenogeneic pathogens and raises safety concerns when 
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used in clinical-grade preparations and serum-free medium is expensive, substitutes for these 

supplements are represented by human platelet derivatives, effective also thanks to their mitogenic 

power [132–134].  

In this context, several studies have confirmed that PL stimulates proliferation of chondrocytes 

[128,135], but controversial results have been reported on its impact on chondrogenic 

differentiation and cartilage matrix accumulation [136–139].  

Nevertheless, acellular repair technology has greatly used in recent years based on the use of PRP 

gel, the solid state of PRP, or PRP in combination with scaffolds such as HA or hydrogel to imitate 

the native cartilage environment. For instance, it has been reported that the combination of a 

polyglycolic acid (PGA)-hyaluronan scaffold with PRP after subchondral drilling can lead to the 

formation of hyaline-like cartilage in the knee at 1-year follow-up [109]. 

Although PRP and PL are used in orthopaedics, sports medicine, dentistry and maxillary surgery for 

the treatment of several disorders, their efficacy is still controversial due mainly to the lack of 

consensus on its preparation methods. Furthermore, the platelet concentration in the blood is highly 

variable from individual to individual and within the same individual it can vary over time. Thus, 

products with distinct platelet concentration and variable composition of growth factors and 

cytokines can be produced, making difficult the comparison of the results obtained by different 

laboratories. This variability leads also to different therapeutic outcomes given that some of the 

soluble factors contained in these products have the ability to maintain the phenotype of 

chondrocytes while others lack this property. Hence, a standardized PRP/PL-production procedure, 

starting from pools of human-certified buffy coats has been proposed to reduce variability and to 

obtain a platelet products with a well-defined platelet and growth factor concentration [132–134]. 
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2 Three-dimensional (3D) bioprinting as emerging tool in 

cartilage tissue engineering 

2.1 3D-bioprinting basics, spreading and applications 

Bioprinting is an emerging additive manufacturing (AM) technique that is having a growing impact 

on medical and pharmaceutical sciences, and hence is gaining significant attention worldwide [140]. 

It dates back to 1988, when Klebe [141] described with the term „cytoscribing‟ a technique for the 

precise positioning of cells on a 2D substrate using a computer-controlled ink jet printer or graphics 

plotter. Since several research groups joined, the technique evolved and the first international 

workshop on bioprinting was held in 2004 at the University of Manchester [142]. Between 2012 

and 2015, the number of papers referring to bioprinting increased fourfold [143] and to date the 

field is rapidly expanding. 

Bioprinting consists of the simultaneous writing of living cells and biomaterials with a 

predetermined layer-by-layer stacking organization using a computer-aided transfer process for the 

fabrication of bioengineered constructs [144]. Bioprinting technology has a broad utility in various 

application areas such as tissue engineering, regenerative medicine, transplantation, clinics, drug 

screening and high throughput assays and cancer research (Figure 2.1).  

 

 

Figure 2.1: Application areas of bioprinting technology. Image taken from [145]. 
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In biomedical area, 3D bioprinting allows the development of 3D tissue models that can replace 

current 2D cell culture and animal models for drug discovery and toxicology, and for the study of 

tissue pathological processes. Recent research has greatly increased awareness of the dramatic 

differences between 2D and 3D-culture systems, since the latter provides a more physiologically 

relevant environment to guide cell behaviour [146,147]. In addition, great efforts have been made to 

develop 3D biofabrication techniques that can generate complex, functional 3D architectures with 

appropriate biomaterials and cell types suitable in mimic tissues such as tracheal splints, heart 

tissue, vascular grafts, multilayered skin, cartilaginous structures and bone in view of future clinical 

applications for regenerative purposes [148]. Due to a scarcity of patient-compatible donor tissue 

and organs, the demand for tissue engineering solutions, including 3D-bioprinted tissues, is 

constantly increasing. In this context, the advantage provided by 3D-printing is that personalized 

tissues can be fabricated starting from anatomical 3D image analysis and computed tomography 

techniques. In comparison to traditional tissue engineering strategies, this technique allows also a 

homogeneous distribution of cells [148], which is achieved even when they have to fill large tissue 

scaffolds. 

Bioprinting devices have the ability to print cell aggregate, cell encapsulated in hydrogels or 

viscous fluids, or cell-seeded microcarriers, all of which can be referred to as bioink, as well as cell-

free polymers that provide mechanical structure [149]. However, the technique is still at its early 

stage and many challenges have to be faced for transplantation and other applications. 

The 3D bioprinting process can be divided into three crucial technological steps: pre-processing, 

processing (actual printing) and post-processing. Pre-processing is a blueprint of tissue or organ 

design using imaging and computer-aided design (CAD) techniques. Subsequently, after the 

blueprint is designed, the actual printing is processed through a bioprinter, and a bioprinted cell-

laden construct is rapidly obtained. Being 3D bioprinting an AM technique, deposition of 

biomaterials (either encapsulating cells or loaded with cells later on) in micrometer scale to form 

subtle structures, is provided in most cases by a three-axis mechanical platform that controls the 

movements of extruders printing the bioink in the required shape. This platform's movement is 

governed by coordinates created by the designer and saved in a file format such as g-code that could 

be easily followed by the printer. As the third step, the bioprinted construct must then undergo the 

process of cell proliferation, tissue remodelling and maturation. 

3D bioprinting has advantages such as precise deposition, cost-effectiveness, simplicity and cell 

distribution controllability. As a result of increasing interest in 3D bioprinting, need for new bioinks 
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providing required properties for successful printing, such as printability, printing fidelity, and 

mechanical properties has been rising, leading to development of new materials. 

 

2.2 Classification of 3D-bioprinting technologies  

For the fabrication of 3D-bioprinted constructs, the bioink and bioprinter are key elements. 

Important factors such as strength, resolution and shape depend on the fabrication method. The 

main bioprinting technologies, as discussed below, are droplet-based, extrusion-based, laser-

induced forward transfer and stereolithography (Figure 2.2).  

 

2.2.1 Droplet-based bioprinting (DBB) 

DBB is an agile technique in which droplets are layered in a controlled way on the top of a substrate 

without contact between the nozzle and the substrate. DBB is highly versatile as it is compatible 

with many biological materials and it can print low viscous inks (3.5–12 mPa s
−1

) with high speed 

and resolution [150]. However, it has to face some challenges, such as inconsistent encapsulation of 

cells [150], lack of droplet uniformity as well as poor mechanical and structural integrity of the 

printed constructs [151]. DBB can be further subdivided into three categories: inkjet, acoustic and 

micro-valve bioprinting. 

 Inkjet bioprinting 

As the most common form of DBB, this technology includes continuous-inkjet, drop-on-demand 

inkjet and electrodynamic inkjet bioprinting. In continuous-inkjet bioprinting, a stream of bioink 

solution is extruded through a nozzle and breaks up into droplets due to the Rayleigh-Plateau 

instability [151]. The drop-on-demand (DOD) inkjet technique generates droplets using thermal or 

piezoelectric actuators or electrostatic forces. Briefly, in the thermal DOD typology, a voltage pulse 

is applied to locally heat the bioink solution and produce a vapour bubble that then expands rapidly 

and bursts. The pressure produced by this pulse will at some point overcome the surface tension at 

the nozzle orifice, causing droplet ejection. In piezoelectric-induced droplet formation, a 

piezoelectric actuator causes deformation in the fluid chamber and a following pressure wave, 

which overcomes the surface tension at the nozzle orifice leading to droplet ejection. The third 

subset of inkjet bioprinting, electrohydrodynamic inkjet bioprinting, uses an electric field to pull the 

droplet through the nozzle orifice [151].  
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 Acoustic bioprinting 

In acoustic-droplet ejection bioprinters, the bioink is not exposed to stressors like heat, high 

pressure, high voltage or shear stress as in inkjet bioprinting. Rather, the bioink is kept in an open 

pool and droplets are produced through acoustic waves. The bioink in the reservoir is held in place 

due to the surface tension at a small exit microfluidic channel. The acoustic actuator consists of a 

piezoelectric substrate with interdigitated gold rings placed upon it, which generate acoustic waves 

on demand on the surface. The generated circular waves move from the air–bioink interface down 

toward the exit channel to form an acoustic focal point. When the force of this focal point exceeds 

the surface tension at the exit channel, a droplet will be ejected [151].  

 Micro-valve bioprinting 

In a micro-valve bioprinter, droplets are generated by the opening and closing of a microvalve 

under pneumatic pressure [152]. The printer contains a solenoid coil and a plunger that blocks the 

orifice. When a voltage pulse is applied, the valve coil at the top of the print head will generate a 

magnetic field which pulls the plunger upwards, unblocking the exit. When the back pressure in the 

bioink chamber is large enough and exceeds the surface tension, the bioink is ejected [151]. 

 

2.2.2 Extrusion-based bioprinting (EBB) 

EBB is the most common and affordable bioprinting technique [150]. It is able to fabricate 2D and 

3D structures by continuous dispersion of a hydrogel containing cells through a micro-nozzle. 

Extrusion-based printers disperse the bioink through a pneumatic or mechanical system and the 2D 

patterns are created by physically or chemically solidifying the hydrogels. By stacking these 2D 

patterns, 3D structures can be created [152]. The advantages of this technique are the ability to 

deliver multiple cells and materials and the high material selectivity. It has the ability to disperse 

highly viscous bioinks with high cell densities, cell pellets, tissue spheroids, and tissue strands. 

Furthermore, the production is scalable and synthetic polymers can be used. A great advantage is 

the high cell viability, even above 90% [152]. The technique however has a downside, as it has a 

relatively low resolution (>100 μm). Several tissue types have already been explored for extrusion-

based bioprinting, including cartilage [113,153]. 
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2.2.3 Laser-induced forward transfer (LIFT) bioprinting  

LIFT bioprinting was first used for the deposition of inorganic materials and then adapted for 

bioprinting [154]. The system contains a donor layer and an energy-absorbing layer (gold or 

titanium), sensible to laser stimulation. During printing, a laser pulse is applied on the donor layer, 

heating a small portion that evaporates and creates a high-pressure bubble. In turn, the high-pressure 

bubble puts pressure on the bioink layer suspended on the bottom of the donor one and propels the 

bioink towards the substrate, where it will then immediately be cross-linked [155]. 

 

2.2.4 Stereolithography 

Instead of heating a donor layer as in LIFT printing, stereolithography uses a laser or digital light 

projector to layer by layer photo-cross-link the bioinks. Advantages of stereolithography are its high 

resolution (<100 μm), short printing time (<1 h), and high cell viabilities [155]. 

 

 

 

Figure 2.2: Schematic representation of bioprinting technologies. (a) Inkjet bioprinting includes 

continuous, drop-on-demand, and electrohydrodynamic jetting. (b) Extrusion-based printing. (c) 

Laser-assisted (also known as laser-induced forward transfer) bioprinting. (d) Stereolithography. (e) 

Comparison of the techniques a–d. Image taken from [156]. 
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2.3 Bioink typologies 

3D bioprinting allows fabrication of living tissue/organ-like structures throughout the deposition of 

bioink. In this context, an ideal bioink should resemble the mechanical, rheological and biological 

properties of the target tissues in order to ensure correct functionality of the bioprinted tissues and 

organs. Two main bioink types have been developed: scaffold-based and scaffold-free [144]. The 

former type is composed of cells and biomaterials (hydrogels or similar exogenous materials) which 

are mixed and released together in order to produce a construct. The biomaterial acts as scaffold 

that provide an environment suitable for cell growth and differentiation with the final goal of tissue 

formation. The latter type is instead characterized by aggregates such as cell pellets, tissue strands 

or spheroids bioprinted without the use of an exogenous biomaterial in a scaffold-free process 

mimicking embryonic development. The scaffold-based approach is the most common, but it has 

been suggested that both approaches can complement each other to help cover the broad spectrum 

of tissue engineering/regenerative medicine applications.  

Regarding scaffold-based bioink, a wide array of biomaterials have been developed for tissue 

engineering and regenerative medicine [157], but most of them are not compatible with existing 

bioprinting technologies. Some important features of an ideal bioink material are printability, 

tunable mechanical properties, insolubility in cell culture medium, post-printing maturation, 

biocompatibility, non-immunogenicity, and the ability to promote cell adhesion. In addition, bioink 

materials should be easily manufactured and processed, affordable and commercially available. 

Finally, bioprinted constructs are expected to keep their designed shape, structural strength and 

integrity, maintain 3D architecture for a defined period of time in vitro, easily engraft with the host 

and degrade over time in vivo at a rate appropriate to the regenerating tissue [158]. 

 

2.3.1 Hydrogels in 3D-bioprinting 

Hydrogel is generally referred as a class of insoluble cross-linked polymeric substances, of natural 

or synthetic origin, capable of absorbing and retaining large quantities of water [159]. Since 

hydrogels are highly hydrated and also permeable to oxygen, nutrients and other water-soluble 

compounds, they are attractive biocompatible materials for fabrication of tissue constructs [160]. In 

contrast to polymeric scaffolds used in tissue engineering where cells are generally seeded on the 

surface, hydrogels provide an appropriate environment for embedding cells when undergo gelation 

(cross-linking), which enables them to migrate in any direction in 3D and communicate with each 
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other through a porous flexible network [161]. A disadvantage of hydrogels, however, is their weak 

mechanical properties, which preclude them from maintaining their designed shape [162]. 

The suitability of a hydrogel for a specific bioprinting process mainly depends on its 

physicochemical properties (Figure 2.3), including rheological properties and cross-linking 

mechanisms [163,164]. However, the specific processing parameters, such as nozzle gauge, will 

consequently determine the shear stress the embedded cells are exposed to, as well as the maximal 

time required for fabrication of a construct.  

Finally, once the hydrogel precursors and cells have been printed, the construct has to possess, 

develop or be endowed with shape fidelity and sufficient mechanical stability, for example by post-

processing gelation as a result of cross-linking. These parameters are important for the different 

biofabrication technologies: thus, DBB is generally limited to low maximum viscosities and 

requires rapid gelation to allow fabrication of an intricate 3D structure; while EBB bioinks with 

higher viscosities can be processed and the maintenance of the initial shape is facilitated allowing 

for gelation of the generated structures post-fabrication, as well as building large constructs in the x, 

y, z directions.  
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Figure 2.3: Crucial variables and relations in hydrogel-based 3D bioprinting. Hydrogel features 

(polymer types, concentration, molecular weight and chemical composition) directly influence the 

viscosity, gelation, and mechanical properties of the final gel. This, in combination with processing 

parameters, such as nozzle gauge and fabrication time, influence the printing fidelity and viability 

of embedded cells. Image taken from [164]. 

 

2.3.1.1 Rheology of bioprinted hydrogels: viscosity, shear thinning and yield stress 

Rheology is highly relevant to biofabrication (Figure 2.4) since it represents the study of the flow of 

matter under application of an external force. Some of the rheological parameters of a hydrogel, 

including viscosity, shear thinning and yield stress, are discussed below. 

Viscosity is the resistance of a fluid to flow upon application of stress. It depends mainly on 

polymer concentration and molecular weight of the selected material, but also solubility parameter, 

shear rate and temperature can contribute. In biofabrication, a high viscosity hinders both surface 

tension-driven droplet formation and the collapse of deposited structures. Thus, viscosity of the 

bioink directly influences shape fidelity after deposition [165]. Printing fidelity generally increases 

with increasing viscosity, but it implies an increase of the applied shear stress, which may be 
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harmful for the suspended cells [166]. However, cell viability in printed hydrogels used so far was 

generally not severely affected although a (negative) influence of shear stress has been observed for 

EBB [167]. Shear stress is influenced by the geometry of the dispensing setup (dimensions of 

channels, nozzles and/or orifices) and flow rates. Consequently, shear stresses may be reduced at 

the cost of loss of resolution (larger nozzles/orifices) or at the cost of flow rate.  

Shear thinning refers to the non-Newtonian behaviour in which the viscosity decreases as shear rate 

increases [168]. It is caused by shear-induced reorganization of the polymer chains to a more 

stretched conformation, which leads to decreased entanglements and, therefore, viscosity. This 

phenomenon is, to a variable extent, exhibited by most polymeric systems. Particularly, shear 

thinning is observed for solution of polymers with high molecular weight. Sodium alginate is an 

example of a polymer that shows strong shear thinning behaviour [169]. Before starting the 

bioprinting, polymer chains form a temporary network in the syringe and induce gel-like viscosity. 

Upon dispensing through a needle, the temporary network is broken up by shear and all polymer 

chains align, reducing the viscosity by orders of magnitude. Directly after removal of shear stress, 

the temporary network is restored, viscosity increases (resulting in a high printing fidelity) and the 

plotted filament solidifies instantly. 

Yield stress is stress that must be overcome to initiate flow. Generally, interactions between 

polymer chains result in the formation of a fragile, physically cross-linked network, which is broken 

by shear forces (above the yield stress) and slowly reforms when the shear is removed. Where high 

viscosity only delays collapse of a deposited 3D structure, the presence of a yield stress can 

potentially prevent flow and collapse. Besides improving printing fidelity, the presence of a yield 

stress also prevents cell settling in the hydrogel precursor reservoir. Hydrogel systems that exhibit 

yield stress and shear thinning have been developed more specifically for delivering cells or 

bioactive molecules into the body by injection from a syringe [168].  
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Figure 2.4: Parameters to assess bioink printability in EBB. 1. Initial screening of ink formulation 

that must show (a) fibre formation and (b) layer stacking. 2. Rheological evaluations of the ink 

regarding (a) the flow initiation properties and yield stress, (b) degree of shear thinning and (c) 

post-printing recovery. Image taken from [170]. 

 

2.3.1.2 Cross-linking mechanisms of bioprinted hydrogels 

As discussed above, cross-linking or gelation of a printed hydrogel structure is necessary to 

preserve its shape, which otherwise could collapse at some point. The gelation can either be 

physical (based on reversible interaction), chemical (based on formation of covalent chemical 

bonds), or a combination of both processes, and it is achieved by intervention of an external 

stimulus, such as light, temperature, or ion concentration. 

Physical cross-linking consist on non-covalent interactions, including hydrogen bonds, ionic 

interactions, hydrophobic interactions and thermal response. Physically cross-linked gels are very 

common in biofabrication since they do not require harmful chemical cross-linking agents and 

consequently are compatible with cells and biomolecules [164]. However, one disadvantage of 

these hydrogels is the lack of stability due to the fact that the reactions are reversible and can be 

disrupted by changes in ion concentrations, pH or temperature.  

Chemical cross-linking leads to hydrogel formation by newly formed covalent bonds between gel 

precursors (i.e. low molecular weight monomers). Chemical cross-linking mechanisms include 

radical polymerization, chemical reaction of complementary groups, high energy irradiation and 

enzymatic reactions. Chemically cross-linked hydrogels are more stable than physically cross-

linked hydrogels. Moreover, their mechanical strength can be controlled by the cross-linking 
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density. Among the disadvantages of these methods, the toxicity of the cross-linking agents and the 

potential unwanted reactions with the bioactive substances should be taken into account [164].  

 

2.3.2 Hydrogel types used in 3D-bioprinting  

Hydrogels are classified into two groups: naturally-derived hydrogels, such as gelatin, fibrin, 

collagen, HA and alginate, and synthetically-derived hydrogels such as Pluronic
®
 or polyethylene 

glycol (PEG) [171]. Naturally-derived hydrogels can be further categorized based on where they 

have been derived from. Hydrogels such as collagen, fibrin, and gelatin are generally derived from 

vertebrates and so they possess inherent signaling molecules for cell adhesion, whereas hydrogels 

like alginate are derived from other living organisms such as algae or sea weeds and lacks these 

signalling molecules. Both natural and synthetic hydrogels have some limitations. Natural 

hydrogels generally have weak mechanical properties while synthetic counterparts lack bioactive 

signals for cell adhesion or migration [160]. In next sections, examples of hydrogels belonging to 

these two categories exploited in 3D bioprinting are described (Figure 2.5). 

 

2.3.2.1 Natural hydrogels 

 Agarose  

Agarose is a naturally-derived polysaccharide molecule which undergoes gradual gelation at low 

temperatures and liquefies at temperatures ranging from 20 to 70 °C, depending on the 

hydroxyethylation [172]. Low cell adhesion and spreading suggest that agarose is a poor material 

for cell culture; however, its biological properties can be improved by blending with other 

hydrogels such as collagen [173]. Agarose provides superior stability and construct thickness in 

EBB compared to collagen/agarose blends. Although cell viability was maintained, they retained a 

round as opposed to a spread morphology [173]. Since agarose has a thermally-reversible 

behaviour, it can be used as a sacrificial material in a bulky scaffold of a thermally stable hydrogel. 

It can be liquefied and drained, leaving a hollow, perfusable structure [174]. In general, its viscous 

nature does not allow inkjet bioprinting as it can easily clog the nozzle. Agarose is a promising 

candidate for laser-based bioprinting due to its viscoelastic nature and rapid gelation mechanism.  

 Alginate 

Alginate is a popular hydrogel used in bioprinting processes due its biocompatibility, various 

choices of cross-linking and bioprinting methods, low price and ease of use in the creation of 3D 

structures [175]. It is a polysaccharide made of alternating β-D-mannuronate (M) and its C-5 epimer 
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α-L-guluronate (G) units [176], where the G subunits are responsible for forming the gel phase. 

Alginate undergoes ionic cross-linking in calcium chloride (CaCl2) or calcium sulfate (CaSO4) 

solutions. The divalent calcium ions form a bridge due to the attraction of negatively charged 

carboxylic acid groups between two neighbouring alginate chains. Alginate has been widely used 

for cell encapsulation, including articular chondrocytes [177]. EBB of alginate has been one of the 

most popular techniques in the field. Alginate in 2–4% (w/v) is extrudable, structurally stable and 

biologically acceptable and, after contacting the cross-linker, solidifies rapidly and maintains its 3D 

shape [178,179]. The concentration of alginate determines the viscosity of the solution, porosity and 

cross-linking time. It is possible to form pre-cross-linked alginate by mixing with low 

concentrations of the cross-linker, which increases its printability [180]. 

 Type I collagen 

As one of the major components of connective tissues in mammals, type I collagen is a triple helical 

biocompatible protein which has been extensively used in tissue engineering applications [181]. 

Collagen matrix facilitates cell adhesion and growth due to abundant integrin-binding domains. 

Although type I collagen has been used in bioprinting, it has limitations as it remains in a liquid 

state at low temperatures and forms a fibrous structure at a slow gelation rate and with increased 

temperature (complete gelation can take up to half an hour at 37 °C). Thus, before gelation takes 

place, 3D printed collagen structure loses its shape as well as embedded cells are pulled down by 

gravity and consequently not homogeneously distributed. EBB has utilized collagen alone as a 

bioink [182], but low mechanical properties together with the abovementioned issues necessitate the 

use of supportive hydrogels (mixing it with Pluronic
®

 has generated better results [183]). Droplet-

based bioprinting also takes advantage of collagen as a bioink material; however, collagen needs to 

be deposited before the onset of cross-linking [184]. 

 Fibrin  

Fibrin is a hydrogel formed by the enzymatic reaction between thrombin and fibrinogen, the key 

proteins involved in blood clotting. It plays a significant role in wound healing and has been used in 

fabrication of skin grafts [185]. Due to the no shear thinning nature of fibrinogen and thrombin, 

fibrin is rarely extruded. However, bioprinting of the two components of fibrin is an ideal option for 

DBB [151], while it can be mixed with other compatible hydrogels in laser-based bioprinting [186]. 
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 Gelatin 

Gelatin is a denatured form of collagen protein, whose strands self-associate to form helical 

structures in a gel-like state at low temperatures and reverts back to a random coil conformation as 

temperature increases [187]. Gelatin retains the Arg–Gly–Asp (RGD) sequence from its precursor, 

and promotes cell adhesion, differentiation, migration and proliferation [188]. Gelatin is rarely 

bioprinted in its native form due to its poor mechanical properties. To employ gelatin for 

bioprinting, it has been chemically cross-linked by the addition of agents such as glutaraldehyde 

[189]. Gelatin is, however, not a popular hydrogel for DBB. Some studies have been performed by 

blending gelatin with other hydrogels such as alginate [190]. Gelatin has been successfully used in 

laser-based bioprinting due to its viscoelastic properties, stability and ability to hold cells in precise 

positions without damaging them [191].  

 HA 

HA, a linear non-sulfated glycosaminoglycan, is ubiquitous in almost all connective tissues and a 

major ECM component of cartilage. It is comprised of repeating disaccharide units of D-glucuronic 

acid and N-acetyl-D-glucosamine moieties linked by alternating β-1,4 and β-1,3 glycosidic linkages 

[192]. HA has slow gelation rate and poor mechanical properties, thus, chemical modifications of 

the aforementioned groups are often carried out to enhance its rheological properties [114]. 

Hyaluronic acid has been used in EBB blended (chemically linked) with other hydrogels to enhance 

its bioprintability and solidification ability. Use of HA in DBB has not been demonstrated so far 

due to its viscous nature and slow gelation rate; however, it has been employed in laser-based 

bioprinting when combined with other hydrogels such as fibrin [186] to facilitate faster cross-

linking. 

 

2.3.2.2 Synthetic hydrogels 

 Methacrylated gelatin (GelMA)  

GelMA consists in gelatin with methacrylate groups conjugated to its amine side groups. It has been 

used for tissue engineering due to its tunable mechanical characteristics [193]. GelMA is frequently 

used in EBB studies, including bioprinting of chondrocytes [165]. It is easy to extrude since it has 

low viscosity at room temperature, furthermore it forms a hydrogel that is mechanically strong 

when cross-linked in the presence of a photo-initiator. Its cross-linking rate can be also manipulated 

by the length of exposure to UV light.  
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 Pluronic
® 

F-127 

Pluronic
®

 F-127 is a trade name for a synthetic poloxamer-based polymeric compound. It exhibits a 

polymeric architecture consisting of two hydrophilic blocks between a hydrophobic block making it 

an effective surfactant [194]. Pluronic
®

 undergoes reverse gelation as it starts to cross-link with 

increasing temperature. However, its copolymer structure erodes quickly and cannot hold structural 

integrity for longer than a few hours. Despite this issue, Pluronic
®
 in combination with other 

hydrogels such as PEG, is useful for drug delivery and controlled release applications [195]. The 

reversible properties of Pluronic
®
 can be useful in fabrication of complex constructs: if Pluronic

®
 in 

solid form (at room temperature) is surrounded by a second type of hydrogel, it liquefies after the 

construct is placed at 4 °C. This procedure creates perfusable channels within bulky cell-laden 

constructs [196]. The thermosensitive nature and high viscosity of Pluronic
®
 is problematic for 

DBB and the lack of viscoelasticity preclude from its use in laser-based bioprinting. 

 PEG 

PEG has been widely used in medical and pharmaceutical products [197]. One of the major 

limitations of PEG is its poor mechanical strength, which can be overcome by addition of diacrylate 

(DA) of methacrylate (MA) moieties. However, additives such as DA and MA require photo-

induced cross-linking by UV-light exposure for a specific time to obtain the desired mechanical 

properties. Excessive exposure to UV-light can dramatically reduce cell viability. PEG-DA and 

PEG-MA hydrogels are used in all types of bioprinting modalities: EBB [198], DBB [199] and 

laser-based technologies [200].  
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Figure 2.5: 3D-bioprinted structures of naturally- and synthetic-derived hydrogels. (A) Agorose 

filaments; (B) alginate in brain shape; (C) type I collagen construct inserted in a wound; (D) tubular 

scaffolds of fibrin; (E) gelatin with embedded cells; (F) HA grid; (G) GelMA scaffold with 

embedded cells; (H) Pluronic
®
 F-127 tube; (I) PEG aortic valve construct. Image taken from [158] 

with some modifications. 

 

2.4 3D-bioprinting for cartilage regeneration purposes and perspectives 

3D bioprinting has the potential to replicate complex native-like tissue architecture more faithfully 

than traditional tissue engineering methods of assembly, consisting of nonspecific cell seeding of 

scaffolds [201]. This emerging technology represents a developmental biology inspired alternative 

to classic scaffold-based approaches in tissue engineering and has the ability to assemble biological 

components in prescribed 3D structure as well as patient customization [202]. Many tissue 

engineering and 3D bioprinting researches to date have focused on cartilage since it theoretically 

should be a simple tissue type to replicate as it is avascular and aneural. Although significant 

improvements in reparative cartilage treatments, as already discussed, have been achieved over the 

past few decades, full cartilage restoration remains a significant challenge. 
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Since bioprinting technology is rapidly gaining interest in the field of regenerative medicine, 

bioprinted constructs may provide a solution for cartilage injuries and defects. However, it is still an 

emerging technology and consequently some challenges have to be overcome before its translation 

to clinical applications. 

EBB is the most suitable and used technique for the fabrication of viable constructs of several 

centimeters in size and with high cell densities [164]. However, the resolution of the printed fiber 

thickness is limited by the extrusion process to ~100 μm. In contrast, inkjet and laser-based printing 

allow the deposition of smaller volumes and are, thus, more suitable for the accurate deposition of 

micropatterns, down to the level of single cells. Despite these considerations, inkjet bioprinting, in 

combination with electrospinning, has been used in vitro to generate layered cartilage constructs 

able to maintain suitable mechanical and structural properties and to support cell function [203]. 

Currently, the most promising bioinks for cell-based 3D bioprinting are based on hydrogels, as they 

provide a highly hydrated and mechanically supportive 3D environment for cell encapsulation.  

So far, in cartilage bioprinting research, the focus has predominantly been on the use of 

chondrocytes as cell source. Nevertheless, when using autologous chondrocytes, obtaining 

sufficient cell numbers remains a challenge, especially since expansion in monolayer culture causes 

dedifferentiation of the cells toward a fibroblastic phenotype [204]. An alternative cell type is the 

multipotent MSC population, which can be derived from multiple tissues, including bone marrow, 

adipose tissue and muscle [205]. These cells can be differentiated towards chondrogenic lineage in 

presence of specific growth factors, such as the TGF-β, although some of them are often less 

efficient in terms of chondrogenic commitment [206]. However, other cues to control MSC fate 

have to be provided, as these cells have the tendency to progress into hypertrophic chondrogenesis 

and to give rise to bone formation via the endochondral pathway once implanted in vivo [207]. 

Therefore, alternative cell populations with regenerative potential are being investigated, including 

subpopulations of chondro-progenitor cells, which can be harvested from mature cartilage and can 

be expanded in monolayer culture without losing their chondrogenic phenotype [34]. 

Additionally, in order to generate bioactive constructs based on 3D-printing technologies, the 

embedding of biological cues that stimulate encapsulated cells or attracts and/or stimulates cells 

from the host can be pursued. Overall, hydrogel-based bioinks allow for the incorporation of growth 

factors, bioactive proteins, peptides, chemicals and matrix components [208], and printing 

procedures have not shown any negative effects on the activity of these biological cues [113,209]. 

In this context, since one of the limitations of the synthetic or natural biomaterials currently used for 

cartilage repair is their poor capacity to mimic the complexity of natural ECM, decellularized ECM 
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(dECM) has been recently printed to provide microenvironments able to promote cells engraftment, 

survival and growth of cartilage tissue [210]. 

Moreover, multiple inks consisting of different biomaterials, bioactive factors, and cells can be 

loaded in a bioprinter to fabricate complex anatomical architectures with multiple tissue types. 

Printing with multiple bioinks also allows for the inclusion of tissue interfaces in the construct. This 

is of particular importance in the orthopaedic field, where osteochondral constructs can be 

fabricated through suitable bioinks that mimic bone and cartilage regions [211]. 

3D bioprinting may be a unique tool to achieve also the appropriate zone-specific compositional 

and mechanical heterogeneity present in articular cartilage. It could be pursued by mimic its 

specific fiber arrangement or depth dependent differences in cell densities and phenotypes, as it has 

been obtained by gradient bioprinting method [212] and incorporation of biological cues and matrix 

components [213] respectively. 

Finally, bioprinting can contribute to the automation of the implant production process. Besides 

printing into a cell dish, constructs could also be printed directly into a bioreactor, minimizing 

handling and, thus, infection risks. Potentially, cartilage defects could also be filled in situ, by 

printing the implant directly into the lesion. In line with this, steps exploring the feasibility of in situ 

bioprinting have been taken for calvarial defects in living mice [214]. Additionally, a bio-pen is 

being developed to simplify the in situ print procedure [215]. 
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3 MSC-like progenitor cells activated by platelet lysate in 

human articular cartilage as a tool for future cartilage 

engineering and reparative strategies 

 

Carluccio S., Martinelli D., Pereira R. C., Palamà M. E., Guijarro A., Benelli R., Cancedda R., 

Gentili C. 

 

Abstract: Regenerative strategies for human articular cartilage are still challenging despite the 

presence of a progenitor cell population inside. Platelet derivatives are studied since they can 

promote tissue healing processes by re-activation of endogenous regenerative mechanisms. While 

their use in orthopaedics continues, mechanisms of action and efficacy still remain to be elucidated. 

Primary cultures of human articular chondrocytes (ACs) and cartilage chips were set up from donor 

biopsies and were treated in vitro with platelet lysate (PL). Proliferation, clonogenic potential and 

phenotype of ACs and chondro-progenitor cells (CPCs) derived from organ culture in PL were 

characterized. Secretory profile of CPCs were analysed together with their migratory capabilities by 

mimic osteoarthritis in vitro. Tri-lineage differentiation potential were tested in vitro and scaffold-

assisted chondrogenesis of CPCs were studied in nude mice. PL recruited a CPCs-enriched 

population from ex vivo cartilage culture, that showed high proliferation rate, clonogenicity and 

nestin expression. CPCs were positive for in vitro tri-lineage differentiation, formed hyaline 

cartilage-like tissue in vivo without hypertrophic fate and have migratory phenotype. Some of CPC-

feature were found also in ACs-PL compared to ACs-FBS. PL treatment of articular cartilage 

activates a stem cell subset responsive to injury being therefore promising in cartilage therapeutic 

applications. 

 

Keywords: articular cartilage, platelet lysate, chondro-progenitors, nestin, chondrocytes 

 

3.1 Introduction 

Despite possessing resident progenitors primed for chondrogenesis, articular cartilage has poor 

intrinsic regenerative capability and cell turnover mainly due to its avascular and alymphatic nature 

[216]. A dense and abundant extracellular matrix, made of proteoglycans and collagen fibers, 

surrounds few and no-proliferating chondrocytes, responsible for ensuring tissue mechanical 
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integrity and functionality by maintaining a dynamic balance between matrix synthesis and 

degradation [217].  

The isolation from the systemic circulation keeps away the inflammatory and reparative 

mechanisms triggered after injury, precluding damaged cartilage to recover its functional 

configuration, which leads to tissue degeneration and the subsequent establishment of the 

osteoarthritis (OA) pathology. Nowadays, OA is one of the major musculoskeletal diseases [64], 

and affects joints by causing gradual loss of articular cartilage together with osteophyte growth and 

synovial inflammation [218]. Since articular cartilage works as lubricant and load-bearing surface 

in healthy joints, symptoms of these disorders are pain and disability, that lead to an impaired 

patients‟ quality of life and increased health-care costs for the society. 

Currently, several therapeutic approaches for focal chondral defects and OA are used, including 

bone marrow surgical stimulation aimed at triggering intrinsic reparative mechanisms, cell therapy 

based on autologous chondrocyte implantation (ACI) and osteoarticular auto/allografts to fill and 

restore cartilage defects [219]. However, the treatment of extended defects is still challenging, 

especially for the elderly people, and these techniques are still defective because the neo-tissue is 

often fibrotic or its integration with neighbouring tissues is not complete [220].  

Therefore, research efforts are directed to explore new methods to achieve articular cartilage 

regeneration and repair. The use of therapies based on stem cells has attracted great interest, since it 

is widely known that mesenchymal stem cells (MSCs), such as bone marrow-derived MSCs (BM-

MSCs), can differentiate into the chondrogenic lineage both in vitro and in vivo [221,222]. 

However, stem cell niches are located in situ, where they could participate directly in tissue 

homeostasis and repair processes. In fact, tissues in the joint, such as the synovium, hold MSCs 

with chondrogenic potential [45] and articular cartilage itself contains a postnatal progenitor cell 

population [7,223]. Moreover, during OA, pathological joint tissues and synovial fluid become 

enriched of cells with features of stemness [46,224], probably as an attempt to limit the ongoing 

damage and restore the integrity of the tissue.  

It is reasonable that exploiting local chondro-progenitors (CPCs) for cartilage repair may be a better 

and more efficient cell-based therapeutic strategy compared to the use of BM-MSCs. CPCs are 

developmentally primed for differentiation into chondrocytes, while BM-MSCs are more prone to 

form fibrocartilage with poor bio-mechanical properties and display hypertrophic phenotype [225]. 

However, the fact that chondrocytes and cartilage-derived CPCs share the same anatomical 

location, and chondrocytes can dedifferentiate and acquire stemness-like characteristics in culture 
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makes the distinction between the two populations difficult [226]. Therefore, in this study we tried 

to find some features that can help to distinguish CPCs from mature chondrocytes. 

In the field of regenerative medicine, local transplantation or systemic infusion of stem cells 

represent an effective cellular therapy in many pathological states, including those that concern 

musculoskeletal system. Nevertheless, regeneration strategies targeting stem cells in situ could be 

more attractive and more advantageous thanks to the absence of in vitro culture steps and loss of 

injected cells. According to this approach, endogenous stem cells are recruited to the injury site by 

administration of bioactive factors. Thus, in the last decades, among a wide range of products, 

platelet rich plasma (PRP) has spread as a clinical treatment tool for musculoskeletal diseases [227]. 

Since PRP or other platelet derivatives (i.e. platelet lysate, PL) are a mix of growth factors, 

cytokines, chemokines and microRNAs normally involved in tissue healing, the rationale behind 

their application is the re-activation of latent endogenous regenerative mechanisms. Several studies 

have investigated PRP or PL roles both in vitro and in vivo, highlighting their capacity to exert anti-

inflammatory and proliferating effects on cells [128,228,229], as well as to stimulate resident 

progenitors [230] or to recruit circulating ones (together with immune and endothelial cells) [231]. 

Regarding cartilage disorders, treatments based on platelet-derived products have shown pain relief 

and functional improvement in patients, confirming their chondroprotective function in these 

pathologies [232,233]. From a mechanistic point of view, these beneficial outcomes could be 

explained by the fact that PRP-derived factors, besides of promoting matrix deposition and 

downregulating inflammatory signalling in chondrocytes [234,235], induce postnatal maturation of 

damaged cartilage tissue that during degeneration had come back to an immature stage [236]. 

However, mechanism of action and efficacy of platelet products in orthopaedics still need to be 

elucidate, especially due to the wide variety of preparation and standardization methods that can 

impact the composition of the product [237] thereby affecting the physiological response. A better 

understanding of the events that lead to cartilage repair induced by PRP or PL may allow to solve 

these issues.  

Here it is reported that ex vivo treatment of human articular cartilage with PL induces activation and 

outgrowth of cells that are endowed with some features of stemness, such as clonogenicity and 

expression of nestin [238], higher proliferation capacity than resident chondrocytes with concurrent 

chondrogenic potential maintenance. The stimulation of nestin-positive progenitor cells induced by 

PL in articular cartilage is of especial interest for the future development of therapeutic strategies 

given the involvement of these cells in tissue regenerative processes. Moreover, we further 
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characterize the PL effects on phenotype of mature articular chondrocytes (ACs), by showing that 

they reverted to an earlier stage similar to that of CPCs. 

 

3.2 Materials and Methods 

3.2.1 PL preparation 

Buffy coat samples obtained from the whole blood of healthy donors at the Blood Transfusion 

Center of the IRCCS AOU San Martino-IST Hospital (Genoa, Italy) were used to prepare PL. All 

the procedures were performed with the approval of the Institutional Ethics Committee. According 

to Backly et al. [126], platelet pellet was obtained after serial centrifugation and resuspended at a 

concentration of 1 × 10
7
 platelets/µl in plasma to get PRP. Platelet membrane rupture in the PRP 

suspension was achieved by three cycles of immersion in liquid nitrogen for 1 minute and 

incubation at 37°C for 6 minutes. The suspension was centrifuged at 900 × g for 3 minutes at 4°C 

and the supernatant was collected to obtain the PL, divided in aliquots and stored at -20°C until use.  

3.2.2 Cell primary cultures 

 Chondro-progenitor cells (CPCs)  

Human articular cartilage biopsies were harvested from patients (n = 20, age ranges from 31 to 88 

years old, 65-year median age) undergoing hip replacement surgery. All the tissue samples were 

obtained with written informed patient consent and according to the guidelines of the institutional 

Ethics Committee of the IRCCS AOU San Martino-IST National Cancer Research Institute (Genoa, 

Italy). Articular cartilage was separated from subchondral bone and fragmented in slices, which 

were further cut in disks with a biopsy punch of 8 mm in diameter. Each disk was divided in two 

halves and each half was then cultured in Dulbecco‟s Modified Eagle‟s Medium High Glucose 

(DMEM HG) containing 1 mM sodium pyruvate, 100 mM HEPES buffer, 1% 

penicillin/streptomycin and 1% L-glutamine (all from Euroclone) supplemented either with 10% 

FBS (Gibco) or 5% PL in 6-well plates for 1 month. Putative chondro-progenitor cells (from here 

on called CPCs), moving from cultured cartilage to the dish, were detached with trypsin/EDTA 

(Euroclone) and expanded in aforementioned medium supplemented with 5% PL (CPCs-PL). All 

described cell cultures were maintained in a humidifier incubator at 37°C and with 5% CO2. 
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 Primary articular chondrocytes (ACs) 

Primary articular chondrocytes (ACs) were obtained as described by Pereira et al. [128] from the 

remaining cartilage biopsy. In brief, chondrocytes were released by repeated digestions using an 

enzymatic solution composed by 1 mg/mL hyaluronidase (Sigma-Aldrich), 400 U/mL collagenase I, 

1,000 U/mL collagenase II (both from Worthing Biochemical) and 0.25% trypsin (Thermo Fisher 

Scientific). The cells obtained were plated in DMEM HG basal medium described above and 

containing 10% FBS. At ~90% of confluence, cells were trypsinized and split in culture medium 

supplemented with 10% FBS (ACs-FBS) or 5% PL (ACs-PL). During culture, cells were monitored 

using a bright field microscope equipped with a digital camera (Leica DMi1; Leica Microsystems). 

 

3.2.3 Growth kinetics 

Growth kinetics were determined by plotting cells doublings of ACs-FBS, ACs-PL and CPCs-PL 

against time in culture. Cell doublings were calculated considering the number of cells plated and 

recovered at each passage. Briefly, semi-confluent cells were trypsinized, counted and always 

replated at a density of 1.25 × 10
4
 cells/cm

2
 in 60 mm culture dishes. Six primary cultures were 

tested (n = 6).  

 

3.2.4 Western blot analysis 

At passage 2, confluent ACs-FBS, ACs-PL and CPCs-PL were washed with phosphate-buffered 

saline 1X (PBS), then the monolayer of cells were scraped in cold radioimmunoprecipitation assay 

(RIPA) buffer containing 50 mM Tris (pH 7.5), 150 mM sodium chloride, 1% deoxycholic acid, 1% 

triton X-100, 0.1% SDS, 0.2% sodium azide and proteinase inhibitor cocktail (Sigma-Aldrich). 

Protein extract concentration was quantified by Bradford assay (SERVA) and western blot was 

performed according to Nguyen et al. [135]. Equal amounts of total proteins (10 µg) were loaded on 

4%–12% NuPAGE Bis-Tris gel (Thermo Fisher Scientific) and electrophoresis was performed. 

Gels were blotted onto nitrocellulose membranes (GE Healthcare Life Sciences), immunoprobed 

overnight at 4°C with primary antibodies raised against cyclin D1 (Abcam) and α-tubulin (Sigma-

Aldrich), both at a dilution of 1:10,000. After washing, membranes were exposed to horseradish 

peroxidase-linked goat anti-rabbit IgG (1:5,000, GE Healthcare Life Sciences) for 1 hour at room 

temperature (RT) and bands were visualized using enhanced chemiluminescence (ECL, GE 

Healthcare). Then, X-ray films (Fujifilm GmbH) were exposed to membranes, developed and fixed. 

Three primary cultures were tested (n = 3).  
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3.2.5 Evaluation of cell senescence  

ACs-FBS, ACs-PL and CPCs-PL were analysed for senescence by detection of the senescence-

associated β-galactosidase (SA-βgal) activity in a chromogenic assay, according to previous 

protocol [239]. In brief, adherent cells in 24-well dishes were fixed in 3% paraformaldehyde (PFA) 

and stained overnight at 37°C with fresh staining solution containing 40 mM citric acid/sodium 

phosphate buffer, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM sodium 

chloride, 2 mM magnesium chloride and 1 mg/mL 5-bromo-4-chloro-3-indolyl-D-galactoside (X-

gal) in distilled water (all reagents from Sigma-Aldrich). Positive cells were observed under 

microscope Axiovert 200M (Carl Zeiss) and counted from five different fields at 20X magnification 

for each (five) replicate. Stained cells were calculated as a percentage of the total number of cells on 

the plate. Cells from 5 donors were subjected to the assay at passage 2 (n = 5).  

 

3.2.6 Assay for in vitro and in vivo neoplastic transformation of CPCs 

To exclude CPCs malignant properties, in vitro colony assay formation and in vivo tumorigenesis 

were investigated. For in vitro test, anchorage-independent growth assay in methylcellulose media 

was conducted [240]. Thus, CPCs-PL at passage 3 were plated at a density of 10,000 cells/35 mm 

petri dishes in the semi-solid culture system provided by StemMACS HSC-CFU Media (Miltenyi 

Biotec) according to the manufacturer‟s protocol. After 14 days of incubation, formation of CFU-

cells (CFU-C) was assessed under an inverted microscope (Leica DMi1; Leica Microsystems). 

Three primary cells were tested (n = 3). MDA-MB-231 triple-negative breast cancer cell line was 

used as positive control. In vivo tumorigenesis was assessed with CPCs-PL at passage 2 from two 

different pools. For each pool, 1 × 10
6
 cells were injected subcutaneously into 12 NOD/SCID mice. 

The mice were monitored up to 2-3 months. 

 

3.2.7 RNA extraction and real-time quantitative reverse transcription polymerase chain 

reaction (qRT-PCR) 

Total RNA from ACs-FBS, ACs-PL and CPCs-PL at passage 1 until confluence (in 100 mm dishes) 

was extracted by TRIzol™ Reagent (Thermo Fisher Scientific) according to the manufacturer‟s 

protocol. RNA concentrations were measured at 260 nm using Nanodrop TM 1000 (Thermo Fisher 

Scientific Inc.) and RNA purity was checked considering 260 nm/280 nm ratio with values included 

in 1.5–2.1 range. Complementary DNA (cDNA) synthesis was performed starting from 1 μg of total 

RNA and using SuperScript First-Strand synthesis system for reverse transcription polymerase 
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chain reaction (RT-PCR) (Thermo Fisher Scientific, USA) following the manufacturer‟s instruction. 

Transcript levels of target genes were measured by Real Time quantitative PCR (qRT-PCR) using 

Power SYBR
®
 Green PCR Master Mix on 7500 Fast Real-Time PCR System (Applied Biosystems) 

under the following conditions: UDG activation at 50°C for 2 minutes, dual-lock DNA polymerase 

at 95°C for 2 minutes, 40 cycles of amplification at 95°C for 15 seconds (denaturation) and at 60°C 

for 1 minute (annealing/extension). After amplification, a melt curve was performed at 95°C for 15 

seconds, 60°C for 1 minute and 95°C for 15 seconds. The housekeeping gene GAPDH was used as 

the endogenous control for normalization. The selected human-specific primer sequences were: 

type II collagen (COL2A1), forward 5' - GGCAATAGCAGGTTCACGTACA - 3', reverse 5' - 

CGATAACAGTCTTGCCCCACTT - 3'; type I collagen (COL1A1), forward 5' - 

CAGCCGCTTCACCTACAGC - 3', reverse 5' - TTTTGTATTCAATCACTGTCTTGCC - 3'; 

SOX9, forward 5' - CCCGCACTTGCACAACG - 3'; reverse 5' - TCCACGAAGGGCCGCT - 3'; 

nestin, forward 5' - CAGAGGTGGGAAGATACGGT - 3', reverse 5' - 

AGCTCTGCCTCATCCTCATT - 3'; GAPDH, forward 5' - CCATCTTCCAGGAGCGAGAT - 3', 

reverse 5' – CTGCTTCACCACCTTCTTGAT - 3'.  

Relative quantification was performed using the 2
-ΔΔ

Ct method. 

 

3.2.8 Immunofluorescence staining and immunophenotypic characterization by flow 

cytometry 

To perform immunofluorescence staining, ACs-FBS, ACs-PL and CPCs-PL at passage 1 were 

seeded on coverslips at density of 10.5 cells/cm
2 

and fixed with 3.7% PFA after three-four days of 

culture. Fixed cells were permeabilized with a solution containing 20 mM HEPES (pH 7.4), 300 

mM sucrose, 50 mM sodium chloride, 3 mM magnesium chloride and 0.5% triton X-100. After 

blocking with 20% normal goat serum (NGS, Gibco), samples were incubated overnight at 4°C 

with primary antibodies raised against SOX9, 1:200 diluted in 10% NGS (Abcam); type II collagen, 

1:250 diluted in 10% NGS (CIICI-Developmental Studies Hybridoma Bank, University of Iowa); 

type I collagen, 1:300 diluted in 10% NGS (SP1.D8-Developmental Studies Hybridoma Bank, 

University of Iowa) and nestin, 1:2,000 diluted in 10% NGS (Abcam). Positive staining was 

detected by incubation with Alexa Fluor 488- or Alexa Fluor 594-conjugated anti-mouse or anti-

rabbit immunoglobulin IgG secondary antibodies diluted 1:300 in NGS 10% (Life Technologies) 

for 1 hour at RT, followed by nuclear labeling with DAPI (Sigma-Aldrich). Samples were observed 
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under epifluorescent illumination using an Axiovert 200M microscope and images were captured 

with AxiocamHR camera (Carl Zeiss).  

Expanded ACs-FBS, ACs-PL and CPCs-PL at passage 2 were phenotypically characterized for a set 

of surface markers using flow cytometry. After trypsinization, 100,000 cells were incubated 

separately with 1 µl of one of the following fluorescein isothiocyanate (FITC)- or phycoerythrine 

(PE)-conjugated antibodies: CD44-FITC, CD166-PE, HLA-ABC-PE, HLA-DR-FITC (all from BD 

Pharmigen), CD90-PE, CD105-PE, CD73-FITC, CD146-FITC, CD106-PE, CD45-FITC, CD34-PE, 

CD29-PE and isotype-matched IgG-PE and IgG-FITC control antibodies (all from Biosciences). 

The staining was performed for 30 minutes at 4°C in the dark to preserve the fluorochromes. 

Samples were run on a CyAN ADP cytofluorimeter (Beckman-Coulter). Data were analysed using 

FlowJo V10 software (Tree Star Inc.) and expressed as Log fluorescence intensity versus number of 

cells. Experiments were repeated on three different primary cultures (n = 3). 

 

3.2.9 Colony forming unit fibroblast (CFU-F) assay  

Clonogenic potential of ACs-FBS, ACs-PL and CPCs-PL at passage 1 was explored by plating 

them at low density (10 cells/cm
2
) in a 100 mm culture dishes and performing the colony staining 

after 12 days of culture. At the end of the culture time, cells were washed with PBS, fixed with 

3.7% PFA in PBS for 15 minutes at RT and stained with 1% methylene blue in borate buffer (10 

nM, pH 8.8) for 45 minutes at RT. CFU-F assay was performed in duplicate for each tested primary 

cultures. Set of 6-well dishes were prepared for detection of nestin by immunofluorescence. 

 

3.2.10 In vitro multilineage differentiation potential 

The chondrogenic potential of ACs-FBS, ACs-PL and CPCs-PL was checked at passage 1 by 

micromass pellet culture in vitro. About 2.5 × 10
5 

cells were pelletted in conical tubes and cultured 

for 3 weeks in chondrogenic medium containing 10 ng/mL human transforming growth factor-β1 

(hTGF-β1) (PeproTech), 10
-7

 mol/L dexamethasone and 50 mg/mL ascorbic acid (both from Sigma-

Aldrich) according to Johnstone et al. [221]. Chondrogenic differentiation was subsequently 

investigated by histological staining with toluidine blue (see 3.2.12 Histology and 

immunohistochemistry below).  

To test osteogenic differentiation, cells were seeded in 24-well plates at the density of 10.5 

cells/cm
2
 in presence of osteogenic induction medium containing 5 μg/mL ascorbic acid, 10

−7
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mol/L dexamethasone and 10 mmol/L β-glycerophosphate (all from Sigma-Aldrich). After 3 weeks 

of culture, calcium deposits were stained by Alizarin Red S (Sigma-Aldrich) solution. 

To induce adipogenesis, cells were seeded as just reported above and grown in cuture medium 

containing 1 μmol/L dexamethasone, 60 μmol/L indomethacin, 10 μg/mL insulin and 1 mmol/L 3-

Isobutyl-1-methylxanthine (IBMX) (all from Sigma-Aldrich). After 3 weeks of culture, intracellular 

lipid drops were detected with Oil Red O staining (Sigma-Aldrich). Chondrogenic, osteogenic and 

adipogenic potential of ACs and CPCs were determined, respectively at passage 1 and 2, on three 

different primary cell cultures (n =3). 

 

3.2.11 In vivo cartilage and bone formation  

CPCs-PL chondrogenic and osteogenic potential in vivo was investigated by implantation of cell 

pellets and cell-seeded biomaterials in athymic mice (female CD-1 nu/nu; Charles River 

Laboratories Italia, Italy).  

CPC pellets were obtained as already described in previous section (3.2.10 In vitro multilineage 

differentiation potential) and implanted subcutaneously in mice after three days of in vitro culture in 

chondrogenic medium. 

Moreover, CPCs-PL at passage 2 were also seeded on absorbable polyglycolic acid-hyaluronan 

(PGA/HA) scaffolds (BioTissue AG) to detect cartilage formation or on calcium phosphate ceramic 

scaffolds (MBCP
+®

 Biomatlante SA) for osteogenic induction. Briefly, CPCs-PL were trypsinized 

at passage 1 and 2 × 10
6
 cells were resuspended in 33% v/v fibrinogen in PBS (Tissucol, Baxter). 

Constructs with ACs-FBS at passage 1 associated to ceramic granules were also prepared as 

control. Both types of scaffolds were soaked with CPCs suspension and fibrinogen was 

polymerized by the addition of 1:10 v/v thrombin in PBS (Tissucol, Baxter). Cell grafts were 

maintained in chondrogenic or osteogenic medium for 3 days before subcutaneous implantation in 

mice. A number of at least three primary cells was used for these experiments. Groups of 8 animals 

were sacrificed 4 and 8 weeks after surgery for chondrogenesis or osteogenesis, respectively, and 

the harvested implants were processed for the histological analysis to evaluate cartilage and bone 

formation. All animals were maintained in accordance with standards of the Federation of European 

Laboratory Animal Science Associations, as required by the Italian Ministry of Health.  
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3.2.12 Histology and immunohistochemistry 

Cartilage fragments, pellets and implants were fixed in 3.7% PFA in PBS, dehydrated in ethanol, 

and paraffin embedded. Cross sections of 5 µm were cut (by using microtome RM2165, Leica) 

dewaxed and stained according to the appropriate histological analysis: hematoxylin and eosin 

staining to observe cell organization and toluidine blue staining to detect sulfated 

glycosaminoglycans in cartilage. 

For immunohistochemical analysis, dewaxed sections were treated with methanol:hydrogen 

peroxide (49:1) solution for 30 minutes to inhibit endogenous peroxidase activity, then 

permeabilized with 0.3% triton X-100 in PBS for 10 minutes and finally incubated with 

hyaluronidase (Sigma-Aldrich) at concentration of 1 mg/mL in PBS (pH 6.0) for 30 minutes at 

37°C. After washes in PBS and incubation with 20% NGS for 1 hour to inhibit nonspecific binding, 

the slices were incubated overnight at 4°C with primary antibodies raised against: type II collagen, 

1:250 diluted in 10% NGS (CIICI-Developmental Studies Hybridoma Bank, University of Iowa); 

type X collagen, 1:1,000 diluted in 10% NGS (Abcam) and proliferating cell nuclear antigen 

(PCNA), 1:200 diluted in 10% NGS (Abnova). The immunobinding was detected by incubation 

with biotinylated secondary anti-mouse or anti-rabbit antibodies (Dako) for 30 minutes at RT 

followed by treatment with streptavidin-peroxidase (Jackson ImmunoResearch). Peroxidase activity 

was finally visualized by 3-amino-9-ethylcarbazole (Sigma-Aldrich) chromogen substrate. Images 

were acquired by a microscope Axiovert 200M (Carl Zeiss) at different magnifications. 

 

3.2.13 Production of CPCs and ACs conditioned media 

ACs-FBS, ACs-PL and CPCs-PL at passage 1 were grown until 80% of confluence, extensively 

washed with PBS and incubated with DMEM HG culture medium without any supplements for 24 

hours of conditioning. Conditioned media (CM) from each condition (CPCs-PL-CM, ACs 10% 

FBS-CM and ACs 5% PL-CM) were collected and centrifuged at 300 × g for 10 minutes then at 

2,000 × g for 20 minutes and supernatants stored in aliquots at -80°C. In cytokine array experiment, 

supernatants in each condition were further concentrated by using Amicon™ Ultra Centrifugal 

Filter Units with 3KDa molecular weight cut-off (Merck Millipore). Amount of proteins in CM 

from CPCs and ACs was quantified by performing Bradford assay (SERVA). 
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3.2.14 Cytokine identification in ACs and CPCs secretomes 

The release of cytokines and chemokines in CPCs- and ACs-CM (n = 1, from young patient of 31 

years old) was analyzed using the Human XL Proteome Profiler™ Array (R&D Systems) according 

to the user‟s manual. Briefly, membranes spotted with antibodies were incubated with the same 

amounts (50 µg/mL) of each CM overnight at 4°C. The following day, detection antibody cocktail 

was added for 1 h at room temperature, before visualization using enhanced chemiluminescence. 

Quantitative analysis was performed on scanned (Epson perfection 1260 scanner, Seiko Epson 

Corporation) X-ray films (Fujifilm GmbH) using the Protein Array Analyser plugin available for 

ImageJ software (U. S. National Institutes of Health). For each membrane, average spot signal 

density was determined by densitometry, followed by background subtraction and normalization to 

the reference spots. 

 

3.2.15 In vitro CPCs chemotaxis  

CPCs-PL migration was investigated by Boyden chamber assay using serum-free medium as 

negative control and ACs-CM pre-treated for 24 hours with IL-1β (PeproTech), 5% PL or both 

stimuli as chemoattractants (see 3.2.13 for CM preparation). Cells were plated at density of 

120,000/chamber on the top of the filter inserts and incubated for 4 hours at 37°C, 5% CO2. Cells 

migrated to the lower surface of the filters were fixed in ethanol, stained with toluidine blue and 

quantified by a bright field microscope (Leica DMi1; Leica Microsystems). Each experiments was 

performed in triplicate and repeated at least three times (n = 3). 

 

3.2.16 In vitro scratch assay on ACs and CPCs 

ACs at passage 1 were plated in 6-well plates, cultured until confluence and treated with either 10% 

FBS or 5% PL for 24 hours. In parallel, CPCs-PL were cultured until confluence. Cell monolayers 

were washed extensively with PBS to remove residual of factors, scratched using 100 µl pipette tips 

and covered with serum-free DMEM HG culture medium. Scratch closure was monitored from t0 = 

0 h to t1 = 24 h and t2 = 48 h with inverted microscope (Leica DMi1, Leica Microsystems). Analysis 

on acquired images was performed with TScratch software (https://github.com/cselab/TScratch) as 

reported by Romaldini et al. [228]. Experiments were performed in triplicate on three different 

primary cultures (n = 3). 
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3.2.17 Statistical analysis 

All data are presented as means and standard error of the mean (SEM). Unpaired Student‟s t-test 

was used to determine statistical significance within ACs-PL versus ACs-FBS or ACs-PL versus 

CPCs-PL. Level of significance was set at p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p 

< 0.0001). Two-way ANOVA was used to analyse in vitro scratch assay and growth kinetics, one-

way ANOVA for in vitro chemotaxis assay, both followed by post-hoc Sidak's multiple 

comparisons test. Data were analyzed with GraphPad Prism
®
 8.0 software (GraphPad Software, 

Inc.). 

 

3.3 Results 

3.3.1 PL induced release of cells with fibroblastic-like phenotype from ex vivo cultured 

cartilage fragments and promoted their proliferation 

Articular cartilage biopsies from patients were divided in fragments, some fragments were 

enzymatic digested to obtain ACs primary cultures and other fragments were directly cultured in 

vitro in petri dishes. Each fragment used for organ culture was divided in two halves. One of them 

was cultured in 10% FBS and the other one in 5% PL (Figure 3.1). This approach allows to 

consider the observed tissue reactions as a consequence of the culture conditions and not due to the 

heterogeneity of the sample. 

After 15-20 days of cartilage chip culture in presence of PL, spindle-shaped putative CPCs derived 

from the tissue could be observed attached to the bottom of the plate (Figure 3.1B) as opposed to 

FBS-control culture, in which, in most of the cases, no cells exited from the cartilage chips. In the 

few cases in which cells were derived from tissue cultured in FBS, those cells were unable to 

proliferate and to be expanded for further analysis. Immunohistochemistry performed on cartilage 

chips after cell harvesting showed higher positivity to the proliferation marker PCNA in cartilage 

slices treated with PL compared to FBS ones (Figure 3.1C).  
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Figure 3.1: Setting up of cell cultures (ACs and CPCs) from human articular cartilage biopsies. (A) 

Representative illustration of biopsy handling to obtain ACs culture and cartilage chips culture. (B) 

Optical images of cartilage chips after 15-20 days in culture with cell coming out in medium 

supplemented with PL versus FBS and (C) representative immunohistological distribution of PCNA 

positive cells inside tissue under both culture conditions (n = 3). All scale bars correspond to 100 

μm. 

 

3.3.2 PL increased the proliferation of ACs and reduced their senescence 

Growth kinetics analysis (Figure 3.2A) showed similar proliferative rate of CPCs-PL and ACs-PL 

throughout the culture time, while ACs-PL displayed higher cell doublings than ACs-FBS at all the 

time points analyzed (9.4 ± 0.6, 10.2 ± 1.3, 1.3 ± 0.3 cell doublings at 23 days in culture 

respectively). The assessment of cyclin D1 levels, marker of cell cycle progression [241], in 

confluent cells by western blot confirmed the increased proliferative rate of ACs expanded in PL 

versus almost quiescent ACs grown in FBS as well as the similar growth of CPCs-PL and ACs-PL 

(Figure 3.2B). These experimental data highlight the drastic potential of platelet-derived products to 

induce a strong mitogenic response on cells, especially on chondrocytes, which usually have a low 

turnover. 

To confirm the variation observed in the growth kinetics of different cell populations, we analysed 

also the SA-βgal activity in order to identify senescent cells in culture by a chromogenic assay. This 

test performed on enzymatically isolated ACs showed that the percentage of βgal-positive cells 

significantly decreases in PL-treated group compared to control group (20 ± 5 and 39 ± 4, 

respectively with p < 0.05). CPC population recruited from cartilage fragments by PL contains a 

comparable fraction of labelled cells in respect to ACs grown in PL (12 ± 2 and 20 ± 5, respectively 
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with no statistically significant difference). Representative images of the three experimental cell 

groups after staining and the percentage of positive cells are shown in Figure 3.2C. These data, 

together with the ones described above, suggest that PL have a role in re-activation of quiescent 

cells, according to which its clinical application in cartilage field could be justified and exploit. 

Furthermore, CPCs tumorigenic potential was tested in vitro by anchorage-independent growth in 

methylcellulose media [240]. No CFU-C were detected after CPCs seeding, contrary to positive 

control metastatic breast cancer cell line MDA-MB-231 as expected (Figure 3.2D). Moreover, 

CPCs safety was also confirmed in vivo by implantation of CPCs in NOD/SCID mice and 

monitoring of the animals up to 12 weeks. No mouse developed tumors or macroscopic nodules and 

showed signs of illness. Finally, autopsy did not reveal anatomical abnormalities (data not shown). 

 

 

 

Figure 3.2: Growth rate and senescence profile of ACs and CPCs and in vitro tumorigenesis test on 

CPCs. (A) Growth kinetics plotted as number of cell duplications versus time of culture: black line 

indicates ACs expanded in presence of 10% FBS, grey line for ACs in 5% PL and light grey line for 

CPCs in 5% PL (n = 6, * p < 0.05, ** p < 0.01, and **** p < 0.0001 versus ACs 10% FBS at the 

same time point by two-way ANOVA analysis and Sidak's multiple comparisons test). (B) 

Representative images of the detection of cyclin D1 and α-tubulin as control by western blot in cell 

lysates from all the examined groups (n = 3). (C) Representative images of ACs 10% FBS, ACs 5% 

PL and CPCs 5% PL stained for senescence associated (SA)-βgal and histogram showing the 

percentage of positive cells (n = 5, * p < 0.05 versus ACs 10% FBS by Student‟s t-test analysis). 

All data are represented as mean ± SEM. (D) Anchorage independent growth in methylcellulose for 

CPCs (upper panel) and human MDA-MB-231 breast cancer cells as positive control (bottom 

panel) (n = 3). All scale bars correspond to 100 μm. 
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3.3.3 Effect of PL on gene expression and phenotype in cartilage-derived cells 

To characterize and define cells obtained from cartilage chips cultured in PL as real progenitor cells 

(CPCs), we analysed their phenotype in parallel with that of ACs expanded in PL. Moreover, we 

also compared ACs-PL versus ACs-FBS cultures. The analysis of typical chondrocyte markers by 

qRT-PCR (Figure 3.3A) showed a drastic reduction of type II collagen (COL2A1) in ACs-PL 

compared to ACs-FBS (p < 0.05), also found in immunofluorescence staining experiments although 

in a lesser extent (Figure 3.3B). No statistical differences were observed between ACs-PL and 

CPCs-PL in this marker. The master regulator of cartilage cells SOX9 and type I collagen 

(COL1A1) levels were instead not significantly different among all analysed cell types. Flow 

cytometric analysis performed in all three cell populations reported almost complete positivity for a 

common set of surface markers such as CD90, CD73, CD105, CD44, CD29 and HLA-ABC (HLA 

class I), typically expressed by mesenchymal stem/progenitor cells and chondrocytes after in vitro 

expansion [53]. Hematopoietic markers (CD45 and CD34) and HLA-DR (HLA class II) were not 

expressed, as well as CD146, member of the immunoglobulin (Ig) superfamily of cell adhesion 

molecules (CAMs), was negative in ACs-FBS and ACs-PL and, although a low positivity in one 

case, also in CPCs-PL. Differences in the percentages of CD106
+
 and CD166

+
 cells were observed 

among the three populations. The levels of positivity for CD106, constitutively expressed by human 

articular cartilage [242], did not significantly change between ACs-FBS and ACs-PL cultured in 

vitro (59 ± 9% and 41 ± 8%), while the percentage of CD106
+
 cells was lower in CPCs-PL than 

ACs-PL (16 ± 5% and 41 ± 8%, respectively with p < 0.05). Conversely, ACs-PL were enriched of 

CD166
+
 cells compared to ACs-FBS (59 ± 10 % and 29 ± 8 % respectively with p < 0.05) and 

CPCs-PL displayed not statistically different levels of CD166 expression versus that of ACs-PL (72 

± 8 % and 59 ± 10 % respectively).  

Previous work reported a cell population in human adult articular cartilage that coexpresses CD105 

and CD166 as multi-potent mesenchymal progenitors with features similar to MSCs [46]. A 

representative experiment on CPCs-PL and relative percentages of positive cells for all the 

examined cell groups are reported in Figure 3.3C and D, respectively. 
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Figure 3.3: Analysis of chondrogenic and cell surface markers in ACs-FBS, ACs-PL and CPCs-PL. 

(A) Expression profile of the chondrogenic markers SOX9, type II collagen and type I collagen in 

ACs 10% FBS, ACs 5% PL and CPCs 5% PL determined by qRT-PCR; data are represented as 

mean ± SEM (n = 7, * p < 0.05 versus ACs 10% FBS by Student‟s t-test analysis). (B) 

Immunofluorescence staining for SOX9 (upper panel) type II collagen (middle panel), and type I 

collagen (bottom panel) in the three experimental groups. Scale bars correspond to 100 μm. (C) 

Representative flow cytometry characterization of CPCs for a set of typical surface markers: light 

grey peaks indicate the isotype control staining and dark grey peaks indicate the antibody staining. 

(D) Histogram reporting the percentage of positive ACs 10% FBS, ACs 5% PL and CPCs 5% PL 

for each tested marker in flow cytometry experiments; data are represented as mean ± SEM (n = 3, 

* p < 0.05 versus ACs-FBS for CD166 and versus ACs-PL for CD106 by Student‟s t-test analysis). 

 

3.3.4 PL modulated the clonogenic potential and expression of nestin stem marker 

Colony forming ability is a recognised trait of stem/ progenitor cells. CPCs obtained from cartilage 

chips cultured in PL were able to form colonies at low density plating (Figure 3.4A). When we 

tested the CFU-F potency using mature ACs cultured in FBS and PL conditions, interestingly, we 

observed that cells exposed to PL (ACs-PL) were able to recover this potential, which was absent in 

ACs-FBS (sporadic cell spots). Moreover, CPCs and ACs were investigated for nestin expression 

by qRT-PCR and immunofluorescence experiments. Nestin is an intermediate filament protein 

involved in cytoskeleton remodelling in several tissues [243]. Nestin has been often considered as a 

progenitor cell marker and it has been reported that its levels are downregulated during cell 
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differentiation [244]. This evidence supports the presence of nestin in self-renewing cells that 

formed colonies in CFU-F assay among CPCs and ACs populations exposed to PL (Figure 3.4B). 

As showed in Figure 3.4C, during culture expansion CPCs-PL expressed nestin at higher level than 

ACs-PL (p < 0.05). In mature chondrocytes the level of nestin was low, although there was a slight 

but not statistically significant increase in ACs-PL compared to ACs-FBS at least on passage 1. 

These data were confirmed by immunofluorescence staining in Figure 3.4D where we detect no 

nestin positive cells in ACs-FBS, scant stained cells among ACs-PL and more constant presence of 

nestin expressing cells in CPC population.  

 

 

 

Figure 3.4: Clonogenic potential and detection of nestin expression in ACs-FBS, ACs-PL and 

CPCs-PL derived from articular cartilage tissue. (A) CFU-F assay for ACs isolated in 10% FBS, 

ACs treated with 5% PL and CPCs recruited by 5% PL from cartilage chips: cell colony staining in 

culture dish (upper panel) and magnifications of stained colony cells (bottom panel). (B) 

Immunofluorescence staining for nestin in CFU-F cells of the three examined groups. (C) 

Expression level of the stem cell marker nestin in ACs 10% FBS, ACs 5% PL and CPCs 5% PL 

determined by qRT-PCR; data are represented as mean ± SEM (n = 5, * p < 0.05 versus ACs 5% 

PL by Student‟s t-test analysis). (D) Immunofluorescence staining for nestin in the three examined 

experimental groups. All scale bars corresponds to 100 μm. 

 

3.3.5 Comparison of in vitro multilineage differentiation potential between CPCs and ACs 

CPCs recruited from cartilage in culture by PL were tested in vitro for their chondro-, osteo- and 

adipo-genic potential in parallel with ACs in both culture conditions (PL and FBS) as shown in 

Figure 3.5. Pellet culture is suitable to investigate chondrogenic differentiation in vitro [221]. Thus, 
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after 21 days of induction in pellet culture, both CPCs and ACs were able to produce metachromatic 

matrix as shown by toluidine blue staining. The size of the recovered pellets is different among the 

analysed cell groups, in particular CPCs-PL pellets were bigger than the ACs-PL ones and showed 

an interesting tissue-like organization. In turn, ACs-PL pellets were bigger than ACs-FBS ones 

(Figure 3.5A). Osteogenic differentiation was estimated based on calcium deposition in culture after 

21 days of induction. CPCs-PL showed positivity to alizarin red staining as well as ACs (Figure 

3.5B). Similarly, when cells underwent adipogenesis induction, clusters of lipid vacuoles oil-red 

positive were observed in all three populations (Figure 3.5C).  

Since multilineage potential is a proof to identify stemness properties, this data showed that adult 

articular cartilage contains cells able to give trilineage differentiation as MSCs. PL treatment may 

act on cartilage in order to select and mobilize this progenitor cells.  
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Figure 3.5: Multi-lineage differentiation potential of ACs-FBS, ACs-PL and CPCs in vitro. (A) 

Toluidine blue staining of three-dimensional pellets formed by ACs 10% FBS, ACs 5% PL and 

CPCs 5% PL after 21 days of chondrogenic differentiation in vitro; insets show pellet appearance 

and size. (B) Alizarin Red staining for the three experimental groups after 21 days of osteogenic 

culture in vitro. (C) Oil Red O staining for the three experimental groups after 21 days of 

adipogenic culture in vitro. (D) Uninduced cell controls. Scale bars correspond to 100 µm (n = 3). 

 

3.3.6 CPCs-PL produced hyalin-like cartilage in vivo suitable for tissue engineering strategies 

Chondrogenic potential of CPCs-PL was investigated by ectopic implantations of pellets and cell-

seeded biomaterials in immunodeficient mice. Both types of implants led to a well-defined cartilage 

tissue-like formation: 1 month after implantation, CPC-pellets (Figure 3.6A) and CPCs-seeded 
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constructs of PGA-HA biomaterials (Figure 3.6B) showed metachromatic extracellular matrix, 

therefore rich in proteoglycans, and positivity to type II collagen. Weak or no signs of type X 

collagen, marker of hypertrophy, were found in the histological analysis. After in vitro results, the 

possible osteogenic potential of CPCs in vivo was assessed. CPCs combined to the osteoinductive 

ceramic granules, as described in [245], 2 months after implantations formed a compact fibrous 

tissue virtually ascribable to an immature bone-like matrix (Figure 3.6C). Altogether these data 

demonstrate that CPCs were preferentially committed to a stable chondrogenic fate, evidence that is 

crucial for cartilage regeneration purposes over traditional MSCs usually predetermined to develop 

from transient endochondral cartilage to bone [225]. 

 

 

 

Figure 3.6: In vivo ectopic chondrogenesis and osteogenesis assay of CPCs. (A, B) Histological 

analysis of ectopic cartilage formed in vivo after subcutaneous implantation of CPC-pellets (A) and 

CPCs-seeded biomaterials (B) in nude mice; from left to right: toluidine blue staining, type II and 
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type X collagen stainings. (C) Histological analysis by hematoxylin/eosin staining of ectopic tissue 

formed in vivo after subcutaneous implantation of ACs-FBS (left) or CPCs (right)-seeded 

osteoinductive scaffolds in nude mice. D) Representative view of selected scaffolds, PGA-HA (left) 

and MBCP
+®

 assembled construct (right). Scale bars correspond to 50 µm (upper panel), 100 µm 

(middle and bottom panel) and 1 cm. Arrows in panel B and asterisks in panel C point out the 

biomaterials of the scaffolds. 

 

3.3.7 Secretory profile of CPCs revealed an intricate scenario including hypertrophy 

counteraction, PL-induced pro-inflammatory effects, tissue turnover and chemoattractive 

capability  

CM collected from cultures of ACs-FBS, ACs-PL and CPCs-PL were characterized by using 

cytokine array (Figure 3.7A). Although examined cell populations were derived from intact and 

apparently healthy tissue, the biopsies were obtained from patient undergoing hip replacement and 

probably with ongoing degenerative processes. This assumption may explain the detection of 

angiogenic molecules (angiogenin and vascular endothelial growth factor, VEGF), molecules 

expressed in deep and hypertrophic cartilage layers (osteopontin, OPN) and others factors usually 

related to disorders (B cell activating factor, BAFF/BLys), in all the three experimental groups. 

Molecules usually secreted from chondrocytes were identified in CM of ACs grown in FBS, 

including chitinase-3-like protein 1 (CHI3L1), insulin-like growth factor-binding protein 2 and -3 

(IGFBP-2, -3), serpin E1, cystatin C (CST3), apolipoprotein A1 (ApoA1), thrombospondin 1 

(THBS1) and pentraxin 3 (PTX3) as previously reported [246]. Moreover, ACs are usually positive, 

as detected in this analysis, for CD14 [247] and CD147 [248], but not for dipeptidyl peptidase-4 

(DPPIV/CD26), whose expression could indicate de-differentiation [53]. Growth differentiation 

factor 15 (GDF15) is described as a protein expressed in normal chondrocytes and de-regulated in 

OA disorder [249]. The urokinase receptor (uPAR), a glycoprotein key regulator of the plasmin-

mediated pericellular proteolysis, is also present on chondrocyte surface [250].  

Among the aforementioned factors, apoliprotein A1 markedly increased in ACs-PL if compared 

with ACs-FBS, while its amount was similar to that in CM of CPCs-PL, and IGFBP-2 decreased in 

CM of CPCs-PL in comparison with that of ACs-PL, in turn similar to ACs-FBS. 

Dkk-1, an antagonist of the Wnt/β-catenin signalling pathway that prevents hypertrophy and 

cartilage degradation [251], was not released by ACs-FBS but slightly produced by ACs-PL. CM 

from CPCs-PL displayed markedly higher levels of this factor in comparison with CM from ACs-

PL. On the contrary, in comparison with ACs-PL, CPCs-PL released very low amount of 

Interleukin 1 receptor-like 1 (ST2/IL1RL1), that has recently been described as RUNX2 target and 
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it is expressed during hypertrophic differentiation in chondrocytes [252]. Moreover, OPN release 

from CPCs-PL was much lower than those from ACs-PL.  

CPCs-PL also secreted DPPIV, not detected in ACs-PL, and higher amount of the cysteine protease 

inhibitor cystatin C than ACs-PL. Levels of the factors just reported were comparable between 

ACs-FBS and ACs-PL. The serine proteinase inhibitor Serpin E1, also known as plasminogen 

activator inhibitor 1, was instead less released in ACs-PL, similarly as in CPCs-PL, compared to 

ACs-FBS. Simultaneously, uPAR, urokinase-type plasminogen activator receptor, increased. Thus 

the catabolic activity changed among the analysed experimental groups. 

Other soluble molecules were identified into analysed secretomes, such as leukemia inhibitory 

factor (LIF) and macrophage migration inhibitory factor (MIF). LIF is actively produced and 

secreted by articular chondrocytes and its expression is induced after treatment with growth factors 

[253] as also here confirmed. MIF, whose amount is similar in all three examined CM, usually 

regulates several biological processes and in cartilage is highly involved in its metabolism [254]. 

Retinol binding protein 4 (RBP4) is another component that in this analysis decreased in CPCs-PL 

secretome: its expression has been reported in epiphyseal chondrocytes of secondary ossification 

regions and a role in OA pathogenesis has been suggested in literature [255,256]. A higher content 

of vitamin D binding protein (VDB) was detected in CM derived from ACs-PL in comparison with 

ACs-FBS, while lower levels of this factor were found in CM from CPCs-PL than in CM from 

ACs-PL: vitamin D is known as immunomodulator and anti-inflammatory agent and its deficiency 

is associated to OA [257]. 

Finally, pro-inflammatory cytokines, i.e. interleukin-8 (IL-8), interleukin-6 (IL-6) and lipocalin-2 

(LP2/NGAL), and chemokines, i.e. monocyte chemotactic protein 1 (MCP-1/CCL2) and -3 (MCP-

3/CCL7), were found as secreted molecules by examined cell groups. In particular, the first three 

were up-regulated in CM of PL-treated ACs in comparison with ACs-FBS. In fact, it‟s widely 

documented the pro-inflammatory effect of PL on cells functional in triggering cascades of pro-

resolving events [126,128,228] that could lead to regeneration in injured sites, just like it happens 

physiologically during wound healing. IL-6 and NGAL release by CPCs-PL was lower than that by 

ACs-PL, while the release of IL-8 was similar in both types of cells. 

Other soluble chemokines, i.e. CXCL1 (GROα), CXCL4, CXCL5, CXCL12 (SDF1), CCL5 

(RANTES) and CCL20 were observed in the secretome of ACs-PL but not detected in that of ACs-

FBS. Except for CXCL1 and CCL5 levels that are comparable, CXCL5, CXCL4 and CCL20 

widely decreased in CPCs-PL, while CXCL12 increased in comparison with ACs-PL. These 

molecules are usually involved in the regulation of leukocyte trafficking and stem cell 
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chemoattraction [258,259], but it has also been suggested that chemokines could have a role in 

cartilage physiological turnover [260].  

Finally, metalloproteinase 9 (MMP9) is mainly secreted by ACs-PL compared to control ACs and 

there are evidence that it is involved in chondrocyte motility [261]. 

 

3.3.8 PL-treated ACs acquired migratory capability and exerted chemoattraction on CPCs 

under inflammatory conditions 

Since our final aim was to support biological basis for possible therapeutic application of PL on 

cartilage defects, migratory capability of ACs and CPCs was tested by an in vitro scratch assay 

(Figure 3.7B). Cell motility was evident for each experimental groups between 24 and 48 hours of 

monitoring during wound healing assay (ACs-FBS: from 18.9 ± 0.5 % to 29.6 ± 0.8 % with p < 

0.05; ACs-PL: from 36 ± 1.4 % to 62 ± 1.5 % with p < 0.0001; CPCs-PL: from 46.7 ± 0.7 % to 95.1 

± 0.2 % with p < 0.0001). Interestingly, PL treatment significantly promoted ACs motility in the 

migration assay compared to control ACs cultured in FBS. The scratch width in PL-treated ACs 

was significantly reduced at 24 hours (p < 0.05) and further at 48 hours in comparison to ACs-FBS 

(p < 0.0001). As expected also CPCs were able to migrate and close the scratch during the assay, in 

a similar extent within 24 hours but with a statistically significant increase at 48 hours compared to 

ACs-PL (p < 0.0001). Thus, migratory behaviour of CPCs was further tested by mimicking the 

inflammatory environment of a pathological state, i.e. by exposition to the CM of ACs underwent 

treatment with the inflammatory cytokine IL1-β concurrently or not with PL exposition (Figure 

3.7C). Under basal conditions, CM of ACs-PL was not enough to act as a chemoattractant for 

CPCs. However, an enhanced chemotaxis on CPCs occurred in presence of CM from IL1-β-treated 

ACs (p < 0.05) and when CM derived from cells exposed to both stimuli PL + IL1β was tested (p < 

0.01) compared to control. 

These experiments together showed that cartilage cells after PL treatment increase motility, despite 

they normally have not such a marked behaviour in cartilage. Actually, this effect probably allowed 

to obtain CPCs from cartilage fragments and furthermore they showed to be reactive to 

inflammatory stimuli. Thanks to this property, CPCs and also ACs under platelet derivative 

influence may move towards injured sites in vivo and participate in reparative processes. 
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Figure 3.7: In vitro analysis of ACs and CPCs secretory profiles, migratory capability and CPC 

chemotaxis in an OA mimetic system. (A) Quantification of the mean pixel density for each 

identified cytokine in the three experimental groups; inset shows the cytokine array membranes for 

CM of ACs-FBS, ACs-PL and CPCs-PL respectively. (B) “Closed scratch area (%)” calculated by 

TScratch software at each time points in all three experimental groups. Data are represented as 

mean ± SEM (n = 3, * p < 0.05 and **** p < 0.0001 versus ACs-FBS or ACs-PL at the same time 

point; # p < 0.05 and #### p < 0.0001 versus 24 h in the same experimental group by two-way 

ANOVA analysis and Sidak's multiple comparisons test). (C) Relative quantification of CPC 

migration in presence of ACs-CM obtained in four different conditions: control (CTRL-CM, 10% 

FBS culture), PL-treatment (PL-CM, 5% PL culture), inflammatory stimulus (IL1-CM, IL1-β 

culture) and PL-treatment plus inflammatory stimulus (PL+IL1-CM, 5%PL plus IL1-β culture) (n = 

3, * p < 0.05 and ** p < 0.01 versus CTRL-CM by one-way ANOVA analysis). 
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3.4 Discussion 

This study sustains that articular cartilage from joints of patients with ongoing OA contains a MSC-

like progenitor cell population that could be mobilized and subsequently ex vivo recruited from 

intact tissue by treatment with PL. Several studies have already confirmed the presence of MSC-

like cells in articular cartilage able, at least in vitro, to migrate from human late-stage OA tissue 

[49], to repopulate compromised tissue areas after an induced trauma [33], to move from healthy 

tissue in contact with growth factors or products released following a trauma [48]. Since the 

outgrowth of the so-called chondro-progenitors needs to be induced, PL showed to be a powerful 

stimulus in this context. In fact, PL is a cocktail of platelet derived-growth factors, cytokines and 

chemokines widely studied for its multiple effects in the field of regenerative medicine, including 

cell chemoattraction during healing processes. In particular, among the factors released from 

activated platelet granules, PDGF and IGF or SDF-1α (CXCL12) are known to stimulate the 

migration of human progenitor cells [262–264]. Another effect that has aroused the interest in 

platelet products concerns the strong proliferative stimulus, due to the high content in mitogenic 

growth factors, exerted on treated cells as previously reported on different in vitro cultured cells 

including human chondrocytes, keratinocytes, human and murine MSCs [126,128,135,229,265]. 

Regarding chondrocytes, it has already been described that after PL treatment partially growth-

arrested cells show a changed morphology with smaller size and more elongated shape than the 

native ones, cell cycle re-entry in addition to a strong mitogenic response [128,135].  

Given the therapeutic use of platelet derivatives in orthopaedics, the aim of our study was to explore 

their stimulatory activity on in vitro cartilage cell homeostasis, focusing on chondro-progenitor 

cells. Hence, in vivo setting was mimed by performing cartilage explant cultures derived from 

human biopsy fragments in presence of PL or FBS-supplemented medium. No CPC population 

could be recruited when cartilage fragments were cultured in medium with FBS. This is the reason 

why we could not have a direct comparison between CPCs-FBS and CPCs-PL to test the effects of 

platelet-derived supplement on the biology of this cell type. Therefore, we compared CPCs isolated 

from cartilage chips cultured in presence of PL with the chondrocyte population enzymatically 

released from the surrounding tissue and expanded in PL after the first passage in monolayer. In 

parallel, we considered also the comparison between the latter and the chondrocyte counterpart 

maintained in culture with FBS.  

The proliferative trend, in terms of doubling number and protein levels of cyclin D1, was similar 

between CPCs-PL and ACs-PL along the time, while markedly higher in ACs-PL compared to 
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ACs-FBS. The similar replicative potential and clonogenic ability of ACs-PL and CPCs-PL found 

in our study are in accordance with the absence of differences reported previously between 

monocultures of ACs and CPCs isolated by fibronectin differential adhesion assay [266]. Moreover, 

the increase in proliferation was concomitant with a senescence attenuation in ACs-PL, likewise in 

CPCs-PL. In general, a subset of senescent cells is characterized by cell cycle irreversible arrest, 

meanwhile quiescent and slowly proliferating cells can restart or increase proliferation after 

mitogenic stimulation [267,268]. Thus, our results reconfirm that PL is able to induce the re-entry 

of quiescent ACs into the cell cycle progression with consequent decrease of the senescent cell 

fraction no longer able to replicate. Therefore, our findings suggest that PL could be suitable for 

expansion of cells intended to be used in therapeutic applications, especially since senescent 

cartilage cells are involved in the development of OA in joints and their clearance may attenuate its 

progression encouraging a pro-regenerative milieu [269].  

The immunophenotypical analysis of the three experimental groups showed that ACs-FBS, ACs-PL 

and CPCs-PL were positive for MSC markers CD105, CD73, CD90, CD106 and CD166, and 

negative for hematopoietic stem cell markers CD45 and CD34. The presence of these stemness 

markers in CPCs is in accordance with previous reports [8,47] and further supports their progenitor 

nature. Although it has been shown that, unlike CPCs, a large percentage of ACs do not express, 

CD90, CD105 or CD166 [54], it is not surprising that in our study ACs displayed these markers 

since they undergo phenotypic changes known as dedifferentiation during monolayer culture [53]. 

No marked differences emerged among analysed cell populations except for vascular cell adhesion 

molecule 1 (VCAM-1, CD106) and activated leukocyte cell adhesion molecule (ALCAM, CD166) 

expressions. CD106 is an adhesion molecule belonging to the immunoglobulin superfamily 

constitutively expressed on human articular chondrocytes and modulated in response to cytokines 

[270]. Here we found that CPCs-PL exhibited lower expression of this marker than ACs-PL, that is 

in line with the results reported in a recent study [77] showing that absence of CD106 expression in 

MSCs-like progenitors isolated from OA cartilage. CD166, also a member of the immunoglobulin 

superfamily, and CD105 are co-expressed in both bone marrow-derived and cartilage mesenchymal 

progenitor cells [46,223]. In agreement with these results, we found that CPCs-PL consistently 

expressed both markers. We also observed that the percentage of CD166
+ 

cells significantly 

increased in ACs-PL when compared to ACs-FBS. Since this percentage in ACs-PL was similar to 

that found in CPCs, it suggests that PL is able to bring fully differentiated ACs to an earlier 

differentiation stage. CD44, hyaluronan receptor highly expressed in chondrocytes, was present at 

similar levels in ACs-FBS and ACs-PL, as expected. It was also expressed by CPCs as already 
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demonstrated in migratory chondro-progenitors [49]. CD29, a marker of cells with enhanced 

chondrogenic potential [49], was similarly expressed in the three experimental groups, in 

accordance with their ability to undergo chondrogenic differentiation in vitro, as well as in vivo in 

the case of CPCs-PL. The absence of CD146 expression in ACs was in agreement with a recent 

study showing no expression of this surface marker in monolayer cultures of chondrocytes at early 

passages, instead accompanied by the expression of type II collagen [271]. Despite, in toto CPCs-

PL population did not show a significant level of CD146 expression in our study, it has been 

recently reported that small sorted fractions of CD146
+
 cartilage-cells from late OA stage has 

marked chondro-progenitor features and capabilities [272]. 

An evident proof of the progenitor nature of cells exposed to PL was the clonogenic potential of 

CPCs-PL and ACs-PL when tested in CFU-F assay. Interestingly, enzymatically digested ACs, 

unable to form colonies, acquired this ability when they were switched from FBS- to PL-

supplemented medium. Articular cartilage contains a subpopulation of self-renewing cells, mainly 

concentrated in the superficial layer [7,33], but it was also reported that cells with stem cell 

phenotype can emerge even from fully differentiated chondrocytes [271]. Despite ACs used in this 

study were quiescent and mature, PL stimulation seemed to bring out certain features of stemness. 

Moreover, ACs-PL and CPCs-PL were very similar in terms of proliferation, senescence levels and 

potential to form colonies. Therefore, our findings suggests that PL retrieved a miscellaneous cell 

population from cartilage tissue enriched in chondro-progenitors among committed cells. The origin 

of progenitor cells still needs to be elucidated, since it remains elusive if they derive from below 

subchondral bone marrow after migration or from reverted chondrocytes or if they are resident 

progenitors that are involved in cartilage homeostasis. The difficulties for an accurate identification 

are to date the lack of a well-defined markers and the alteration of cell phenotype upon isolation and 

monolayer expansion.  

Progenitor nature of PL-exposed cells in this study is mainly supported by the expression of the 

stem cell marker nestin. Initially described in neural stem cells, nestin is a cytoskeletal protein of 

type VI intermediate filaments known to be expressed in proliferating and migrating 

stem/progenitor cell subsets in several human tissues [243], both during embryonic development 

[273] and after injuries in adulthood [238]. Our results are in line with the study of Fellows et al. 

[274], which demonstrated the presence of nestin-labelled cells in human articular cartilage. Data 

from qRT-PCR and immunostaining experiments for nestin showed an up-regulation of this marker 

in CPCs-PL compared to the weak expression observed in ACs-PL. Furthermore, no nestin-positive 

cells were observed in ACs-FBS but some could be detected when PL was used as a supplement 
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instead of FBS in culture at first passage. Nevertheless, as expected, self-renewing cells in colony 

units of CPCs-PL and ACs-PL were positive to Nestin.  

Nestin expressing cells compose a quiescent reserve in adults that, if properly re-activated, is able to 

proliferate, differentiate and migrate. These events are triggered after injury, implying the 

involvement of these cells in processes of tissue regeneration [238], although the precise 

mechanisms have not been understood yet. Therefore, given the involvement of PL in such events, 

including the transient activation of the inflammatory cascade during tissue regeneration, some of 

its effects on cell self-renewal, proliferation, differentiation and migration could be due to activation 

and expansion of a subset of nestin-positive cells within the cartilage. 

Considering the status of the PL-recruited cells, that showed high proliferation capacity and stem/ 

progenitor behaviour, we analysed their chondrogenic potential in view of a future therapeutic 

applications. Generally, adult chondrocytes are characterized by a finite capability to form stable 

cartilage in vivo, that is gradually lost during in vitro monolayer culture [275]. Chondrocytes 

express mainly type II collagen, with a switch to type I collagen during culture due to 

dedifferentiation [226]. We found a slightly higher expression of type I collagen than type II 

collagen in in vitro expanded ACs-FBS, while ACs-PL displayed very low expression of type II 

collagen in comparison to ACs-FBS and maintain a similar level of type I collagen, as previously 

reported [128]. CPCs-PL showed similar collagens expression to ACs-PL, a trend that is also 

confirmed by previous works [49,77]. Despite this change in collagens, no statistically significant 

difference were found in the expression of the master regulator of chondrogenesis SOX9 [61] 

among the three experimental groups, just a slight decrease in ACs-PL compared to ACs-FBS that 

occurs also in CPCs-PL. Indeed, it has been previously reported that chondro-progenitors show 

decreased SOX9 expression compared to fully differentiated chondrocytes, but it is maintained over 

extended monolayer culture passages together with chondrogenic potential [56]. Moreover, SOX9 

is even not highly expressed in MSCs, which are the precursors to CPCs, since they are not yet fully 

committed to the chondrogenic lineage [216]. Finally, Pereira et al. [128] have already 

demonstrated that PL, contrary to animal supplement, supports chondrocyte expansion preserving 

their chondrogenic phenotype both in vitro and in vivo. The lack of differences in mRNA levels of 

SOX9, type I collagen and type II collagen between ACs-PL and CPCs-PL found in our study is in 

agreement with the results obtained by Vinod et al., who showed similar levels of these markers 

between monocultures of ACs and CPCs isolated by fibronectin differential adhesion assay [266]. 

Consistently with these data, we show here that, in a permissive 3D pellet culture in vitro, CPCs-PL 

regained chondrogenic phenotype with cartilage tissue-like formation and form larger aggregates 
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compared to ACs-PL, that in turn were bigger than those of ACs-FBS. In agreement with previous 

reports [8,49] these cells also underwent osteogenic and adipogenic differentiation, capabilities 

usually not present in articular cartilage. Such a trilineage differentiation potency is a typical 

property of adult MSCs, although adipogenesis in chondro-progenitors is controversial and 

sometimes reported as limited or not inducible [33,41,77]. Indeed, the potential for chondrogenic, 

osteogenic and adipogenic differentiation has become a defining trait of CPCs that distinguish them 

from mature chondrocytes [76]. However, ACs-FBS and ACs-PL, derived from enzymatically 

digested tissue in toto, showed trilineage differentiation potency in our hands, probably because 

these two populations contain a subset of progenitor/stem cells, as also reported by Alsalameh et al. 

[46]. Moreover, given the nature of the available donor biopsies, the latter evidence could even be 

in accordance with previous reports showing that ACs isolated from OA cartilage are able to 

differentiate into osteogenic, adipogenic and chondrogenic lineages [276].  

In orthopaedics, several trials have been conducted to test the potential application of platelet 

derivatives, although their contributions still need to be clarified. The strategies for progenitor cell 

recruitment/enrichment could be exploited for in situ reparative therapies based on platelet 

products, as previously demonstrated by Siclari et al. [233] or in a conventional tissue engineering 

approach since the CPCs have shown multiple advantages compared to ACs and even to BM-MSCs 

for scaffold-assisted cartilage regeneration, as recently reported by [277]. 

Indeed, ectopic cartilage formation was obtained in this work when expanded PL-recruited 

progenitors (CPCs-PL) were implanted in nude mice as high density pellets or after seeding on a 

hyaluronan-based resorbable scaffold. Neo-formed tissue showed a typical metachromatic staining, 

it was type II collagen positive and type X collagen negative, thus ascribable to a hyaline-like 

cartilage without hypertrophy signs. Therefore, migrating cells from articular cartilage under PL 

treatment (CPCs-PL) can be properly considered a population consisting of chondro-progenitors 

since they showed to be committed towards chondrocytic lineage, but were not able to form a 

mature bone tissue in vivo, despite their in vitro multipotency. From a translational point of view, a 

high safety profile may be achieved following this approach for cartilage tissue engineering, since 

progenitor cells from patient may be harvested and expanded in autologous platelet derivatives 

without any tumorigenic risk and then delivered by a clinical-approved biomaterial to the lesion 

site. Recent findings have demonstrated that cartilage-derived progenitor cells have also a strong 

immunomodulatory capacity similarly to MSCs [278] that may be crucial in counteracting tissue 

inflammatory/pathological processes that usually accompany cartilage injury. 
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Characterization of the CM from ACs-FBS, ACs-PL and CPCs-PL could help in understanding the 

effects of PL on cartilage-derived cells and their involvement in tissue dynamics. Indeed, human 

chondrocytes, both normal and osteoarthritic, produce chemokines and express a variety of 

chemokine receptors, suggesting that their autocrine/paracrine pathway within cartilage may be 

involved in its homeostasis and matrix remodelling [260].  

Secretome derived from digested ACs in this study contained a plethora of molecules, including not 

only chondrocyte factors, but also angiogenic proteins, pro-inflammatory cytokines, hypertrophic 

differentiation markers and chemokines with chemoattractant activity on immune system cells. 

Since cells used in the present study derived from articular cartilage biopsies with ongoing 

inflammatory processes, the described secretory profile could reflect the long-lasting exposure to a 

pathological joint environment. 

PL treatment induced increased release or de novo secretion of some pro-inflammatory cytokines by 

ACs. In line with this evidence, PL elicited an elevation of the release of ApoA1, which has pro-

inflammatory properties in vitro [279]. In addition, PL was also able to induce an increase in the 

secretion of neutrophil gelatinase-associated lipocalin (NGAL), another pro-inflammatory cytokine 

that has been implicated in inflammatory degenerative articular diseases [280]. Indeed, it is well 

known from previous works that PL exerts an initial strong pro-inflammatory activity resulting in 

NF-κB activation and secretion of pro-inflammatory cytokines, events that are transient in order to 

prime certain defensive and reparative tissue mechanisms, then it inhibits and promotes resolution 

of the inflammatory phase [128,228]. 

Apart from pro-inflammatory cytokines, PL was able to modulate the secretion of other factors. 

Thus, compared to ACs-FBS, ACs-PL released higher amounts of uPAR that regulates MSCs 

mobilization and their engraftment at injury site [281]. Culture of ACs with PL also elevated the 

secretion of Dkk-1, an antagonist of the Wnt signalling, which activation is correlated with OA and 

osteoporosis [282,283]. Growth differentiation factor 15 (GDF15) [284], which has been involved 

in initiation of cartilage formation, was higher in ACs-PL CM than in ACs-FBS CM. Leukemia 

inhibitory factor (LIF) inhibits chondrocyte maturation and hypertrophy [32] and it was more 

contained in ACs-PL CM than in ACs-FBS CM. The AC secretion of Serpine1, that together with 

the relevant components of plasminogen/plasmin system are involved in the degradation of 

extracellular matrix [285], was markedly reduced by PL. Moreover, PL markedly increased the 

release of CCL5 (RANTES) by ACs, suggesting that PL exposure may promote the migration of 

joint resident cells towards damaged areas where they could engraft and take part in regenerative 

processes, as previous observed for annulus fibrosus cells mobilized in response to this secreted 
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chemokine in degenerated intervertebral disk [286]. CCL5 has been reported to be involved also in 

MSCs recruitment [259] and thus it is considered attractive for regenerative therapies. Moreover, 

PL enhanced the release of CXCL12, known to stimulate the migration of human stem/progenitor 

cells [287].  

Interestingly, secretory profile of CPCs-PL differed from that of ACs-PL for soluble components 

involved in bone and cartilage biology or correlated with hypertrophic phenotype. Among them, the 

Wnt pathway antagonist Dkk-1 was highly up-regulated in CPCs-PL. Dkk-1 is highly expressed in 

cartilage and its expression is required for chondrogenic differentiation of MSCs, redifferentiation 

and preventing hypertrophy of chondrocytes [288]. Furthermore, a low amount of ST2 was also 

detected in CPCs-PL compared to ACs-PL. It has been recently described ST2 as chondrocyte 

differentiation regulator that promotes expression of hypertrophic markers after RUNX2 induction 

[252]. Finally, osteopontin (OPN), a protein that contributes to hypertrophic phenotype in 

chondrocytes [289] was lower in the CM of CPCs-PL compared to the CM of ACs-PL.  

Another advantage of CPCs-PL over ACs-PL is that the former cell type secreted higher amounts of 

CST3, an inhibitor of cathepsins. In OA cartilage with severe lesions, a reduced inhibitory activity 

of CST3 has been reported, suggesting that down regulation of CST3 contributes to articular 

cartilage damage [290]. DPPIV release was significantly higher in CPCs-PL than in ACs-PL. In a 

murine model of collagen-induced arthritis (CIA), it has been demonstrated that DPPIV injection 

decreases the overall extent of inflammation and articular damage around the arthritic joint and 

periarticular tissue [291]. Overall, CPCs-PL secreted less amount of pro-inflammatory cytokines 

than ACs-PL, thus representing a better candidate to be effective in clinic setting for treatment of 

cartilage degenerative pathologies that are characterized by some degree of inflammation. 

As already reported [44], high levels of CXCL12/SDF-1α in chondro-progenitor secretome may 

indicate their ability to mobilize other endogenous progenitor cells within injured articular joint and 

recruit immune cells in order to help in mediating tissue repair.  

A recent study has confirmed that chondro-progenitors are more suitable candidates for 

therapeutical treatment of meniscus injury than BM-MSCs since they resist to hypertrophic 

differentiation during tissue repair [292]. Similarly, and according with our findings, we can suggest 

that PL-induced activation of such CPC population able to counteract cell hypertrophy within 

articular cartilage could be considered beneficial in therapeutic treatments for OA. 

Although their role in cartilage disorder (OA) progression has not yet been clarified, chondro-

progenitor cells are responsive to injury. In this study we demonstrated that they are able not only to 

release into the surrounding environment chemoattractant factors, but also to actively migrate in 
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response to signals coming from inflamed chondrocytes. This is in accordance with the 

demonstrated capability of CPCs to migrate across the articular surface to sites that have suffered 

trauma and therefore display an ongoing inflammation [33]. These findings suggest that these 

mobilized cells may organize a kind of regenerative response in an attempt to restore the perturbed 

cartilage homeostasis in a damaged joint. Finally, PL exerts a general strong chemotactic action on 

the entire cartilage cell population, including mature chondrocytes (ACs) that usually are 

considered not provided with a mobile phenotype. Conversely to culture with FBS supplemented 

medium, ACs exposed to PL, probably as a result of changes in cell morphology and cytoskeletal 

rearrangements, acquired enhanced motility and were able to close a wound scratch in vitro, 

suggesting the possibility of using PL to promote their involvement in the overall tissue reparative 

process. 

 

3.5 Conclusions 

In conclusion, as reported previously, articular cartilage contains a reserve of progenitors, but since 

the tissue shows a limited regenerative potential, they seem to be not suitable to organize a proper 

resolving response after injury. Platelet products attract much interest for their intrinsic capacity to 

induce endogenous reparative and regenerative mechanisms when administered both in vitro and in 

vivo. In this study, it has been demonstrated that PL exerts stimulant effects on articular cartilage, 

such as promotion of chondrocyte proliferation, cell mobilization and activation of nestin 

expressing progenitors. In particular, these PL-recruited progenitor cells (CPCs-PL) are able to 

migrate in response to inflammatory stimulus, show paracrine activity in attracting other cells 

(ideally toward injured sites), high chondrogenic potential and resistance to hypertrophy. Thus, they 

potentially may replace damaged chondrocytes in a compromised cartilage environment and 

represent a promising target for future therapeutic approach for cartilage disorders. 
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4 Primary human articular chondrocyte re-differentiation in 

3D-printed Platelet Rich Plasma (PRP) and alginate-based 

bioink 

 

Carluccio S., Palamà M. E., Pitto M., Ghelardoni M., Guijarro A., Gentili C. 

 

Abstract: Tissue engineering strategies in current clinic treatments of cartilage defects are mainly 

based on in vitro expansion of autologous chondrocyte monolayer and subsequent in vivo 

transplantation in patient tissue damaged areas. However, chondrocyte de-differentiation occurs 

during in vitro expansion often leading to sub-optimal outcomes of the therapeutic intervention. 

Three-dimensional (3D) culture systems are able to revert chondrocyte de-differentiated state and 

re-establish chondrogenic phenotype. In this context, 3D-bioprinting, that consists in layer-by-layer 

fabrication of patient-shaped grafts starting from cell-laden bioink, is a suitable technology to create 

a more physiological environment for transplanted cells favouring tissue regeneration and repair. 

Thus, human articular chondrocytes (hACs) were isolated from patient tissue biopsies and in vitro 

expanded in monolayer (2D culture). 3D-bioprinting was performed by embedding expanded hACs 

in alginate or alginate-Platelet Rich Plasma (PRP)-mixed bioinks. Cell morphology, viability, 

growth and chondrogenic differentiation in both types of printed constructs were studied in vitro 

before implantation in nude mice. PRP addition to alginate bioink did not interfere with the printing 

process, rather obtained constructs released PRP-derived factors to the surrounding environment 

within 120 hours from the fabrication. In alginate/PRP constructs, hAC viability and growth were 

enhanced compared to alginate ones. 3D-culture in bioink significantly increased the expression of 

chondrogenic markers in hACs compared to 2D condition. Furthermore, the addition of PRP to 

alginate up-regulated the expression of these markers. The analysis of the constructs implanted for 

two months in mice showed a slight cartilage tissue-like organization, but did not reveal any evident 

difference between the two typologies of bioinks. Finally, 3D-bioprinting of de-differentiated hACs 

allowed them to regain chondrogenic phenotype and the embedding in PRP-supplemented bioink 

supported chondrogenic culture inside the printed constructs. In view of future clinic translation, the 

choice of cell source for 3D-bioprinting of patient-specific grafts will have to be oriented towards 

cell types with higher potential, such as chondro-progenitors, than mature hACs in order to ensure a 

successful cartilage regeneration and repair. 



79 

 

Keywords: 3D-bioprinting, articular chondrocytes, platelet rich plasma, alginate, re-differentiation 

 

4.1 Introduction 

Hyaline articular cartilage covers the bone extremities and bears the load in the joint. Cartilage 

extracellular matrix (ECM) is a dense and hydrated network of type II collagen, proteoglycans and 

other non-collagenous proteins that confers unique mechanical properties to the tissue, such as 

tensile and compressive strength [293,294]. ECM components are synthetized by chondrocytes, a 

specialized cells that are surrounded and isolated by their own products within the tissue. Damages 

are particularly critical for articular cartilage because of its avascular, alymphatic and aneural nature 

that impairs healing process [295]. Thus, cartilage injuries, if not properly treated, may worsen and 

progress to pathologic states such as osteoarthritis [296]. Current therapeutic strategies for cartilage 

defects, including microfracture surgery [297] or autologous chondrocyte implantation (ACI) [298], 

provide neo-tissue formation to fill and restore the damaged area, but often it results in 

fibrocartilage [299] that fails mechanically on the long term, or in symptom recurrence with 

consequent need to repeat surgery [300]. ACI and its advanced generation, i.e. matrix associated 

chondrocytes implantation (MACI) [99], are tissue engineering methods in which autologous 

articular chondrocytes are mainly enrolled in regenerative events. Generally, after enzymatic 

isolation from patient biopsy, long expansion time and multiple passaging in vitro are required in 

order to obtain sufficient amount of cells prior implantation. Unfortunately, during in vitro two 

dimensional (2D) expansion, harvested chondrocytes undergo de-differentiation, losing their 

chondrogenic phenotype [301,302]. In particular, expression of typical differentiated chondrocyte 

markers, such as ECM molecules, including glycosaminoglycans (GAGs), type II collagen 

(COL2A1) and aggrecan (ACAN) are downregulated [24,303]. At the same time, the cells acquire a 

fibroblastic morphology and shift towards fibrochondrogenic phenotype, characterized by type I 

collagen (COL1A1), which expression increases over time in culture [304]. Thus, the subsequent 

use of these non-performing cells in cartilage therapy results in poor outcomes, including the 

formation of low quality tissue (fibrocartilage). 

The de-differentiation process can be decelerated by adopting several strategies during cell culture 

step, including supplementation with several growth factors [305,306] or variations in cell density 

[307] or in oxygen tension [308,309]. Furthermore, re-differentiation of de-differentiated 

chondrocytes with the recovery of the expression of cartilage markers can be achieved by specific 

culture condition, such as three-dimensional (3D) culture systems [310,311]. The 3D environment 
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influences cellular morphology and the cytoskeletal organization that play an important role in 

modulating chondrogenic features [312]. It was first shown that expanded chondrocytes can re-

differentiate when embedded in agarose gel [313,314], but also in other biomaterials such as fibrin 

glue [315,316], alginate beads [317,318] and synthetic polymer [110,319] or by forming pellets 

after centrifugation [320,321]. In particular, chondrocyte encapsulation in hydrogels attracts 

particular interest for regenerative strategies since they also provide a highly hydrated environment 

similar to that of native cartilage tissue [322]. In this context, advances in tissue engineering and 

regenerative medicine are expected thanks to the application of the 3D-bioprinting. This technology 

allows to deposit biomaterials, such as hydrogels, and cells in a layer-by-layer fashion with high 

control in 3D pattern, architecture and cell distribution [152]. Bioprinted constructs may represent a 

new generation tool suitable for regenerative therapies since they are fabricated to be a 3D patient-

specific and anatomically-shaped grafts [323]. Furthermore, these constructs provide the native 3D 

arrangement to embedded cells that finally drive the regeneration. The crucial step in bioprinting is 

the bioink choice, that has to be provided not only with certain rheological properties needed for 

good printability, but also with biological cues [164]. However, the field of biofabrication often 

strongly focuses on the first feature to allow for bioink controlled extrusion, taking less care of its 

inherent impact on cellular phenotype. The combination of both aspects can be achieved by 

incorporation of biological components in printable hydrogels that often lack of bioactivity. Thus, 

these biological components can act improving cell adjustment within the construct and also 

promote its host integration if released to the surrounding environment. In this context, the use of 

platelet rich plasma (PRP), a cocktail of platelet-derived growth factors involved in tissue healing 

and regeneration processes, is very appealing given that several studies have described its anti-

inflammatory properties and beneficial effects on proliferation and differentiation of many cell 

types including chondrocytes [231]. 

In this work, we bioprinted primary human articular chondrocytes (hACs) derived from previous 

monolayer culture expansion by embedding them in a commercial available alginate-based ink and 

evaluated their ability to regain the chondrogenic potential both in vitro and in vivo. Furthermore, 

we hypothesized that by adding PRP, as a source of biological agents, the ability of the alginate-

based ink to sustain cell viability inside the construct will increase. In fact, after mixing the pristine 

hydrogel with PRP we found an increase in cell proliferation and viability as well as a certain 

degree of re-differentiation and rescue of the chondrogenic phenotype. 
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4.2 Materials and methods 

 

4.2.1 PRP preparation 

Buffy coat samples from the expired whole blood of healthy donors were used to produce PRP at 

the Blood Transfusion Center of the IRCCS AOU San Martino-IST Hospital (Genoa, Italy), 

according to protocol reported by [324]. Briefly, pooled buffy coats were centrifuged at 400 × g for 

10 min at 4°C and the plasma fraction - representing the PRP - was transferred to a new blood bag. 

After a complete blood count (CBC), the PRP preparation was centrifuged at 2,200 × g for 20 min 

at 4°C to sediment the platelets, that were subsequently re-suspended in an appropriate volume of 

platelet-poor-plasma in order to have a platelet count of 10 × 10
6
 plt/μL. These preparations were 

divided into aliquots and stored at -20°C.  

 

4.2.2 Primary human articular chondrocyte (hACs) isolation and 2D-expansion in culture 

Femoral heads were collected from patients undergoing hip arthroplasty, with their informed 

consent and the approval of the institutional Ethics Committee of the IRCCS AOU San Martino-

IST National Cancer Research Institute (Genoa, Italy). The patients‟ age ranged from 65 to 80 years 

(n = 6). After surgery, samples were washed with sterile PBS, minced into small pieces and 

digested repeatedly at 37°C in serum free Dulbecco‟s modified Eagle‟s medium High Glucose 

(DMEM HG, Euroclone) containing 0.25% (v/v) trypsin (Gibco), 1 mg/ml hyaluronidase (Sigma-

Aldrich), 400 U/ml collagenase type I and 1000 U/ml collagenase type II (both from Worthington 

Biochemical, USA). Isolated cells were plated in 6-well plates and expanded for one passage in 

complete medium DMEM HG supplemented with 1 mM sodium pyruvate, 100 mM HEPES buffer, 

1% (v/v) penicillin/streptomycin, 1% L-glutamine (all from Euroclone, Italy) and 10% (v/v) Fetal 

Bovine Serum (FBS) (Gibco). Cells were maintained in a humidifier incubator with 5% CO2 at 

37°C and monitored using a bright field microscope equipped with a digital camera (Leica DMi1; 

Leica Microsystems). When reaching 80–90% confluence, cells from different primary cultures 

were detached, pooled and counted before mixing with the bioinks. 

 

4.2.3 Alginate/PRP-based bioink preparation and protein release assessment from 3D-printed 

constructs 

CELLINK
®
 bioink (CELLINK AB) was used as basic bioink in this study. It contains 2% (w/w) of 

plant-derived nanofibrillated cellulose (NFC) and 0.5% (w/w) sodium alginate. In order to obtain an 
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alginate/PRP bioink, 200 µL of PRP were mixed with 1 mL of CELLINK
®
 bioink to reach a final 

concentration of 2 × 10
6
 plt/μL, previously reported as physiologically effective in tissue healing 

process [324]. To generate alginate and alginate plus PRP (alginate/PRP) constructs, each ink was 

respectively loaded into a printer-compatible syringe cartridge with a 25G nozzle. A series of (5 × 5 

× 1) mm grids was printed using an extrusion 3D-bioprinter (BioX, Cellink AB, Sweden) equipped 

with a laminar flow cabinet that allows to perform the printing process under sterile conditions. The 

printing parameters of pressure and velocity were set in the following range: 9-18 kPa and 9-11 

mm/s. After bioprinting, the alginate and alginate/PRP constructs were immediately cross-linked 

with 50 mM acqueous CaCl2 solution for 10 min. The total protein release from bioinks was 

evaluated as follows. Each tested grid was immersed in 400 μL of phosphate-buffered saline 1X 

(PBS) at 37°C and at selected time points (0.5, 3.5, 6, 24, 48, 120 and 144 hours) a volume of 350 

μL was removed and replaced with fresh one. The supernatants recovered at each medium change 

were used to determine protein release kinetics (supernatants from alginate grids were used as 

negative control). Protein concentration in each sample was quantified by Pierce™ BCA Protein 

Assay Kit (Thermo Fisher Scientific) and the results are presented as percentage (%) of PRP-

derived proteins released by printed grids as a function of time. Curve fittings of the experimental 

data were performed by using OriginPro 8.5 software (Originlab Corporation). Measurements were 

performed on five 3D-printed grids for both groups (n = 5).  

 

4.2.4 Preparation of cell-laden bioinks and 3D-bioprinting 

Trypsinized 2D-expanded hACs were pooled and resuspended in 200 µL of culture medium or PRP 

and mixed with CELLINK
®
 bioink to obtain a final concentration of 10 × 10

6
 cells/mL. Cell-laden 

bioinks were used to generate grids as described above. After bioprinting, cell-laden alginate and 

alginate/PRP constructs were immediately cross-linked with 50 mM aqueous CaCl2 solution for 10 

min and then incubated in culture medium in standard conditions (37°C, 5% CO2). Each printed 

grid contains approximately 2 × 10
5
 cells. Cell-laden 3D-constructs were monitored during culture 

time by using a bright field microscope equipped with a digital camera (Leica DMi1; Leica 

Microsystems). 

 

4.2.5 Chondrogenic re-differentiation in 3D-culture  

Both groups of 3D-printed constructs (alginate and alginate/PRP) embedding hACs were incubated 

in culture medium supplemented with inductive factors of chondrogenic differentiation for 3 weeks. 
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Chondrogenic culture medium contains 10 ng/mL human transforming growth factor-β1 (hTGF-β1) 

(PeproTech), 10
-7

 mol/L dexamethasone and 50 mg/mL ascorbic acid (both from Sigma-Aldrich) 

according to [18]. In parallel, some hAC-laden constructs of both groups were maintained in basal 

medium without chondrogenic factor supplementation for the same period as control.  

 

4.2.6 Cell viability tests 

 Live/dead
®

 assay 

Cell viability was assessed within 3D-constructs after printing process using LIVE/DEAD
®
 assay 

(Thermo Fisher Scientific) in order to distinguish between live and dead cells printed inside. Both 

alginate and alginate/PRP constructs were washed in PBS 1X and incubated in the staining solution 

for 45 minutes at room temperature (RT) according to manufacturer‟s instructions. Samples were 

observed under epifluorescent illumination using an Axiovert 200M microscope and images were 

captured with Axiocam HR camera (Carl Zeiss).  

 Alamar Blue™ assay 

Cell-laden constructs (alginate and alginate/PRP) were placed in separate wells of a 24-well plate. 

Then 0.4 mL of 10% Alamar Blue™ (Thermo Fisher Scientific) solution were added to each well 

and reactions were then incubated (37°C, 5% CO2) in darkness for 4 h. After incubation, 200 μl 

from each replicate well (n = 5) were taken and transferred to a 96-well plate for absorbance 

reading at two wave lengths of 570 nm and 600 nm respectively. Viability assay was repeated on 

the same constructs at consecutive time points of 1, 7, 14 and 21 days after 3D-printing process. 

Cell viability was reported as percentage (%) of reduced dye along culture time. 

 

4.2.7 Cytoskeleton-imaging 

To visualize cell cytoskeleton within the 3D-constructs, Phalloidin-Alexa Fluor 594 (Thermo Fisher 

Scientific) was used for the staining of F-actin. AC-laden constructs (alginate and alginate/PRP) 

were fixed in 3.7% paraformaldehyde (PFA) for 30 minutes at RT. After rinsing the samples with 

PBS 1X, the cells were permeabilized with 0.1% triton X-100 for 15 minutes. The 3D-constructs 

were rinsed twice and then stained with the reagent for 30 minutes at RT, using the manufacturer‟s 

recommended concentration. Cell nuclei were stained by DAPI (Sigma-Aldrich) for 15 minutes. 

Following the staining, 3D-constructs were washed twice and observed by fluorescence microscopy 

(Axiovert 200M, Carl Zeiss). 
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4.2.8 DNA content 

Quantification of DNA and cell number in cell-laden constructs at 7 and 21 days of culture was 

performed using the fluorimetric CyQUANT™ Cell Proliferation Assay (Thermo Fisher Scientific), 

according to the manufacturer‟s instructions. Briefly, culture medium was removed from printed 

constructs and samples were stored at -80°C. After thawing just before the assay, cells were lysed 

by adding 200 µl of CyQUANT™ reagent to each sample for 5 minutes at RT in darkness. 

Fluorescence was measured at excitation/emission wavelengths of 480/520 nm in a microplate 

reader (VICTOR X Multilabeled Plate Reader, Perkin Elmer) coupled to a Perkin Elmer 2030 

Workstation. Cell number and DNA content were determined by comparing the average 

fluorescence of each sample (n = 3) to a cell standard curve and a DNA standard curve, 

respectively. 

 

4.2.9 Glycosaminoglycan (GAGs) content 

Neo-synthesis of GAGs was assessed by the spectrophotometric 1,9-dimethylmethylene blue 

(DMMB) assay as described by [325]. 3D-printed constructs were collected at 7 and 21 days of 

chondrogenic culture and digested in papain buffer (Sigma-Aldrich) at 60°C overnight. Following 

centrifugation at 10,000 × g for 10 minutes, 100 µl of the digested samples were added to 200 µl 

DMMB solution (pH 1.5) and the absorbance was measured spectrophotometrically at 595 nm. The 

GAG content was calculated against a standard curve of chondroitin sulphate C derived from Shark 

(Sigma-Aldrich). For each sample, the amount of GAGs (µg) was corrected for the mean dsDNA 

(µg) content as determined by the CyQUANT™ Cell Proliferation Assay (n = 3) (see section 4.2.8 

above).  

4.2.10 Gene expression analysis by qRT-PCR 

Expression of aggrecan (ACAN), collagen type II (COL2A1), collagen type I (COL1A1) and 

transcription factor SOX9 were investigated after monolayer expansion of hACs and 3D-culture of 

cell-laden constructs by analysing mRNA levels. Samples were resuspended in TRIzol™ Reagent 

(Thermo Fisher Scientific) and total RNA was extracted according to the manufacturer‟s protocol. 

RNA concentrations were measured at 260 nm using Nanodrop TM 1000 (Thermo Fisher 

Scientific) and its purity was checked considering 260 nm/280 nm ratio with values included in 1.5–

2.1 range. Complementary DNA (cDNA) synthesis was performed starting from 2 μg of total RNA 

and using SuperScript™ VILO™ Master Mix (Thermo Fisher Scientific) following the 
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manufacturer‟s instructions. Transcript levels of target genes were measured by Real Time 

quantitative PCR using Power SYBR
® 

Green PCR Master Mix on 7500 Fast Real-Time PCR 

System (Applied Biosystems). The housekeeping gene GAPDH was used as the endogenous control 

for normalization. The selected human-specific primer sequences were: 

COL2A1, forward 5' - GGCAATAGCAGGTTCACGTACA - 3', reverse 5' - 

CGATAACAGTCTTGCCCCACTT - 3'; COL1A1, forward 5' - CAGCCGCTTCACCTACAGC - 

3', reverse 5' - TTTTGTATTCAATCACTGTCTTGCC - 3'; SOX9, forward 5' - 

CCCGCACTTGCACAACG - 3'; reverse 5' - TCCACGAAGGGCCGCT - 3'; ACAN, forward 5' - 

ACCAGACGGGCCTCCCAGAC - 3', reverse 5' - ACAGCAGCCACACCAGGAAC - 3'; 

GAPDH, forward 5' - CCATCTTCCAGGAGCGAGAT - 3', reverse 5' - 

CTGCTTCACCACCTTCTTGAT - 3'. Relative quantification was performed using the 2
-ΔΔCt 

method. 

 

4.2.11 Subcutaneous implantation of 3D-constructs in nude mice 

AC-laden 3D-constructs of both groups (alginate and alginate/PRP) were maintained in 

chondrogenic medium for 3 days before implantation in athymic mice (female CD-1 nu/nu; Charles 

River Laboratories Italia). The constructs were surgically implanted in subcutaneous pockets on the 

back of mice. 3D-printed constructs without embedded cells were implanted as control. Six animals 

were used for each group. After 60 days the mice were euthanized and the constructs retrieved and 

processed for histological analysis. All animals were maintained in accordance with standards of the 

Federation of European Laboratory Animal Science Associations, as required by the Italian 

Ministry of Health. 

 

4.2.12 Histological and immunohistochemical analysis 

Explanted and in vitro cultured 3D-constructs (alginate and alginate/PRP) were fixated in 3.7% 

buffered paraformaldehyde overnight and 20 minutes respectively at 4°C, then embedded in 

paraffin and sectioned at 5 µm by using microtome RM2165 (Leica). Prior to histological and 

immunohistochemical staining, all sections were deparaffinized and rehydrated. To visualize cell 

morphology, cell distribution and deposition of sulphated-GAGs within the 3D-constructs, the 

sections were stained with haematoxylin/eosin and alcian blue (pH 2.5), respectively.  

For immunohistochemical analysis, dewaxed sections were treated with methanol:hydrogen 

peroxide (49:1) solution for 30 minutes to inhibit endogenous peroxidase activity, then 
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permeabilized with 0.3% triton X-100 in PBS for 10 minutes and finally incubated with 

hyaluronidase (Sigma-Aldrich) at concentration of 1 mg/ml in PBS (pH 6) for 30 minutes at 37°C. 

After washing in PBS and incubation with 20% normal goat serum (NGS) for 1 hour to inhibit 

nonspecific binding, the slices were incubated overnight at 4°C with primary antibodies raised 

against: type II collagen, 1:250 diluted in 10% NGS (CIICI-Developmental Studies Hybridoma 

Bank, University of Iowa); type I collagen, 1:300 diluted in 10% NGS (SP1.D8-Developmental 

Studies Hybridoma Bank, University of Iowa); SOX9, 1:200 diluted in 10% NGS, and aggrecan, 

1:100 diluted in 10% NGS (both from Abcam). The immunobinding was detected by incubation 

with biotinylated secondary anti-muose or anti-rabbit antibodies (Dako) for 30 minutes at RT 

followed by treatment with streptavidin-peroxidase (Jackson ImmunoResearch). Peroxidase activity 

was finally visualized by 3-amino-9-ethylcarbazole (Sigma-Aldrich) chromogen substrate. Images 

were acquired by a microscope Axiovert 200M (Carl Zeiss) at different magnifications. 

 

4.2.13 Statistical analysis 

All values are reported as mean and standard error of the mean (SEM). Statistical tests were 

performed to compare group data sets as follows: two-way ANOVA followed by Bonferroni‟s post-

hoc test in cell viability assay, cell quantification, DMMB assay and gene expression in 3D-

bioprinted constructs; Student‟s t-test in gene expression 2D versus 3D comparison. Values of p < 

0.05 were considered statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001). Data were 

analyzed with GraphPad Prism
®
 8.0 software (GraphPad Software, Inc.). 

 

4.3 Results 

 

4.3.1 Feasibility in 3D-bioprinting of hACs embedded in alginate alone or supplemented with 

PRP 

Primary hACs were isolated from hip cartilage biopsy of patients underwent arthroplasty by serial 

digestions with enzymes degrading ECM components (i.e. mix of collagenases and hyaluronidase) 

(Figure 4.1A). The tissue portions selected for the primary cell culture preparation were apparently 

healthy, free of visible defects and quite white in colour. As illustrated in Figure 4.1A, harvested 

hACs were expanded in monolayer (2D) culture in order to obtain an amount enough to be printed 

through a bioprinter and not beyond passage 2 to avoid irreversible dedifferentiation process. 

Expanded hACs were mixed with hydrogel just before the printing process (Figure 4.1B) with the 
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help of a spatula. The resulting mix of biomaterial and embedded cells are defined bioink. The 

printability of the bioink depends on some rheological parameters specific for the adopted 

biomaterial, that in this study is composed of alginate and nanocellulose (nanofibrillated cellulose, 

NFC) as the one reported in [153]. Besides offering a biocompatible 3D environment for cells, this 

NFC-based bioink is highly viscous and shows shear thinning behaviour, two properties that make 

possible to bioprint even complex anatomically-shaped constructs without the need of sacrificial 

support structures. In parallel with the basic aforementioned hydrogel, another bioink formulation 

was proposed in this work based on the addition of PRP in order to provide a supply of biological 

factors able to better support cell growth and differentiation. As shown in Figure 4.1C, the two 

typologies of final bioinks (alginate and alginate/PRP) retained their correct printing behaviour 

despite the dilution with cell suspension and grids were printed with a resolution not really high, but 

typical of soft materials such as hydrogels. Alginate in the bioinks could be cross-linked after 

printing process with a cell-friendly calcium solution and a free-standing constructs could be 

obtained at the end of the 3D-printing procedure (Figure 4.1C). 
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Figure 4.1: Primary culture of hACs and bioprinting of 3D cell-laden grids. (A) Isolation of hACs 

from hip cartilage biopsy by enzymatic digestion and monolayer (2D) expansion in vitro. (B) 

Preparation of bionks suitable for 3D-bioprinting process by mixing biomaterials (alginate or 

alginate plus 2 × 10
6
 plt/μL PRP) with expanded hACs. (C) 3D-bioprinting process of the bioink 

directly deposited in a 24-well dish (upper left and right panels) in (5 × 5 × 1) mm grids (bottom 

right panel) derived from a computer-aided design (CAD) models; cross-linked construct 

immediately after printing are compact and free-standing (bottom left panel).  

 

4.3.2 Cell morphology, viability and growth in 3D-bioprinted constructs and PRP-based 

bioink contribution in embedded cell responses 

Alginate/PRP bioink was obtained by simply blending the platelet concentrate (the amount is 

reported in Materials and methods section) with the commercial alginate-NCF hydrogel and not by 

chemical linking. Thus, the PRP derived factors embedded in the printed constructs were released in 

the surrounded medium following a kinetics affected by the type of non-covalent interaction with 

the hydrogel molecular structures. The cumulative release of PRP-derived proteins from the printed 

grids (before cell embedding) was evaluated for 6 days (144 hours) and the analysis revealed a burst 
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in the first 24 hours from the biofrabrication followed by a minor train in the subsequent time points 

(mostly 48 hours) (Figure 4.2A). As shown in Figure 4.2A, among three different models of drug 

kinetics release from a matrix, Korsmeyer-Peppas, single stage desorption and double stage 

desorption models, our data of protein release by alginate/PRP bioink fitted to the latter one. 

Alginate bioink without PRP supplementation was used as negative control in the protein release 

quantification assay. 

Morphology and distribution of the cells embedded in both types of printed constructs were 

evaluated by observations under optical microscope and fluorescent staining of actin cytoskeleton 

(Figure 4.2B). Overall, the cell density within the hydrogel appeared homogeneous and their shape 

was rounded as induced by 3D-environment. Moreover, cells were small in size, they showed low 

surface/volume ratio and their actin cytoskeleton assumed a cortical arrangement with no apparent 

monolayer typical features (stress fibers, focal adhesions, lamellipodia and filopodia). Interestingly, 

at the end of the chondrogenic re-differentiation in vitro (3 weeks) cells in alginate/PRP group 

formed spherical and dense aggregates mainly concentrated on the surface of the constructs (Figure 

4.2B). 

Since the printing process could subject cells to stress, mainly due to the extrusion pressure through 

the syringe nozzle, a qualitative assessment of hAC viability post-fabrication in both experimental 

groups was performed by a fluorescent LIVE/DEAD assay (Figure 4.2C). The observations did not 

reveal an evident difference between the two bioink groups, and most of the stained cells were 

alive, while the dead ones were damaged because of the manual mixing with hydrogels or the time 

duration of the whole printing process (2/3 hours from the cell monolayer detachment to the cell-

laden bioink cross-linking). Cell viability monitoring along the whole culture time in vitro (3 

weeks) revealed that it was higher in alginate/PRP constructs at 7 (p < 0.001), 14 (p < 0.001) and 21 

days (p < 0.01) compared to alginate constructs. Moreover, PRP enhanced cell viability at day 7 

compared to day 1 (p < 0.01), an increase that was not observed in alginate constructs. However, 

PRP was unable to revert the decrease in cell viability observed with time (Figure 4.2C). This 

finding could be explained both by the not optimal perfusion of nutrients in the inner construct 

layers, with subsequent cell necrosis, and the weakening of the cross-linking strength (due to the 

diffusion of calcium ions in the medium) with consequent loss of cells from the hydrogels along 

culture period. Finally, despite the cell density at the starting point was the same for both types of 

bioinks, a higher number of cells in alginate/PRP group compared to alginate constructs was 

observed at both 7 and 21 days (p < 0.001 and p < 0.01, respectively), as demonstrated by the 

quantification of the DNA amount per construct. However, it was not observed a statistically 
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significant change in cell number over time during differentiation culture period within the same 

experimental group (Figure 4.2D). 

 

 

 

Figure 4.2: Analysis of PRP-derived protein release from bioink and evaluation of cell 

morphology, viability and growth in alginate and alginate/PRP-printed constructs. (A) PRP-derived 

protein release (%) from printed alginate/PRP grids plotted versus time (hours) and data curve 

fitting with Korsmeyer-Peppas (green), single- (blue) and double- (red) stage desorption kinetic 

models (left panel) (n = 5); representative image of media withdrawals from alginate and 

alginate/PRP constructs assayed during protein quantification (BCA assay). (B) Optical microscope 

images (upper panel) of both alginate and alginate/PRP constructs; immunofluorescent staining for 

cellular F-actin cytoskeleton (red) and nuclei (blue) inside the constructs during in vitro 

chondrogenic culture (bottom panel). (C) Fluorescent staining (LIVE/DEAD
®
 assay) for alive 

(green) and dead (red) cells inside the bioinks after printing process (upper panel) and cell viability 

quantification (Alamar Blue
™

 assay) during 3 weeks of chondrogenic culture in vitro (bottom 

panel) for both the experimental groups (** p < 0.01 and *** p < 0.001 versus alginate within the 
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same day; # p < 0.05, ## p < 0.01 and ### p < 0.001 versus t = 1 day within the same group by two-

way ANOVA analysis and Bonferroni‟s multiple comparisons test) (n = 5). (D) Hematoxylin/eosin 

staining of histological section of both types of constructs at 21 days of chondrogenic culture in 

vitro (upper panel) and determination of cell number (CyQUANT™ assay) in each group at 7 and 

21 days of culture period (** p < 0.01 and *** p < 0.001 versus alginate within the same day by 

two-way ANOVA analysis and Bonferroni‟s multiple comparisons test) (n = 3). All data are 

represented as mean ± SEM. All scale bars correspond to 100 µm. 

 

4.3.3 In vitro chondrogenic differentiation of hACs in 3D-bioprinted constructs  

GAGs deposition by hACs within both types of scaffold was evaluated with DMMB assay during in 

vitro chondrogenic culture (Figure 4.3A). GAGs secretion increased during the re-differentiation 

period in both experimental groups (alginate, p < 0.01 and alginate/PRP p < 0.001 versus 7 days of 

culture). However, no statistically significant differences were found between the two typologies of 

constructs at any time.  

The hAC expression of chondrogenic markers such as type II and type I collagens, aggrecan and 

SOX9 were investigated at the end of the chondrogenic culture by immunohistochemistry on 

paraffin-embedded sections of the two types of constructs (Figure 4.3B). The cellular staining was 

found similar in both conditions for all chondrogenic molecules.  

From the comparison of gene expression levels by qRT-PCR (Figure 4.3C), it emerged a clear 

difference of hAC differentiation state between 2D (monolayer) culture and 3D-culture (printed 

constructs), even in absence of chondrogenic induction. Expanded hACs in monolayer before 3D-

bioprinting were de-differentiated and after the change of spatial arrangement they increased the 

expression of the chondrogenic markers COL2A1 (p < 0.05), SOX9 (p < 0.01), and ACAN (p < 

0.01) without chondrogenic factor supplementation. Conversely, the expression level of COL1A1, a 

fibrocartilage marker, decreased in 3D-arranged cells compared to 2D ones (p < 0.001). The 

analysis of gene levels in the 3D-printed constructs incubated in chondrogenic conditions confirmed 

the aforementioned immunohistochemistry results. Two additional groups represented by alginate 

and alginate/PRP constructs cultured for 21 days without chondrogenic factors were added to the 

previous investigation. The expression levels of COL2A1 (p < 0.01) and ACAN (p < 0.001) were 

higher in differentiation culture conditions in both types of constructs than in non-differentiation 

ones, while SOX9 increased under chondrogenic conditions only in alginate constructs (p < 0.05). 

COL1A1 did not change in any of the 3D-constructs after chondrogenic conditions compared to 

non-chondrogenic conditions. Interestingly, an up-regulation of ACAN and SOX9 expression levels 
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was detected in alginate/PRP constructs compared to alginate ones cultured in absence of 

chondrogenic factors (p < 0.05). 

 
 

Figure 4.3: GAG deposition and chondrogenic marker expression by hACs embedded in alginate 

and alginate/PRP printed constructs. (A) Alcian blue staining on paraffin-embedded sections of 

alginate and alginate/PRP constructs at 21 days of chondrogenic culture (left panel); GAG 

quantitative levels (DMMB assay) normalized to DNA content in both experimental groups at 7 and 

21 days of chondrogenic culture (## p < 0.01 and ### p < 0.01 versus 7 days of culture within the 

same group by two-way ANOVA analysis and Bonferroni‟s multiple comparisons test) (right 

panel). (B) From top to bottom: immunohistochemical staining for type I and II collagens, SOX9 

and aggrecan on paraffin-embedded sections of both experimental groups after 21 days of 

chondrogenic culture; all scale bars correspond to 100 µm. (C) Gene expression analysis by qRT-

PCR of COL1A1, COL2A1, ACAN and SOX9 in hACs monolayer (2D) culture versus 3D-printed 

constructs (left panels) and in both types of constructs after 21 days of culture with or without 

differentiation factors (right panels) (* p < 0.05, ** p < 0.01, *** p < 0.001 versus 2D condition or 

non-differentiation culture by Student‟s t-test analysis; # p < 0.05 versus alginate within the same 
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culture condition by two-way ANOVA analysis and Bonferroni‟s multiple comparisons test) (n = 

3). All data are represented as mean ± SEM. All scale bars correspond to 100 µm. 

 

4.3.4 In vivo chondrogenic differentiation of hACs in 3D-bioprinted constructs 

Printed constructs implanted for 2 months in mice were well integrated subcutaneously and, when 

explanted after animal sacrifice, were intact, not reabsorbed, glossy in appearance and white in 

color (Figure 4.4A). Printed constructs without embedding of cells (empty) were implanted as 

control to detect and define murine cell colonization. Host cells were mailnly concentrated at the 

edges and sometimes in internal fissures of the implanted constructs (Figure 4.4A). Most of the 

scaffold area in cell-free constructs was empty, evidence that should allow to consider cells in 

samples as hACs previously encapsulated. The histological analysis showed that hACs in the 

constructs divided, began to form clusters and to be surrounded by pericellular matrix. However, no 

evident differences were noted between the two types of constructs in terms of morphology or GAG 

deposition (Figure 4.4B). Immuhistochemistry for human ECM molecules, type II collagens and 

aggrecan, and the human transcriptional factor SOX9 showed a diffused staining with a similar 

distribution between the two experimental groups (Figure 4.4C). 
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Figure 4.4: Implantation of hAC-laden alginate and alginate/PRP constructs in nude mice and 

histological analyses on explanted grafts. (A) Representative images of an euthanized nude mouse 

just before the recovery of the implanted constructs (upper left panel) and of the explanted alginate 

and alginate/PRP constructs after two months from the surgery (below left panel); 

hematoxylin/eosin staining on paraffin-embedded sections of explanted constructs without hAC 

embedding (empty). (B) Hematoxylin/eosin (upper panel) and alcian blue (lower panel) stainings on 

paraffin-embedded sections of explanted alginate and alginate/PRP constructs after two months 

from in vivo implantation; insets show minor magnifications. (C) Immunohistochemistry for type II 

collagen (upper panel), aggrecan (middle panel) and SOX9 (bottom panel) on paraffin-embedded 

sections of alginate and alginate/PRP explanted constructs. Scale bar correspond to 50 µm and 100 

µm (insets) (n = 6). 

 

4.4 Discussion 

Natural hydrogels, such as alginate, are common biomaterials exploited in the field of cartilage 

tissue engineering thanks to their biocompatibility and since the high water content makes them 

structurally similar to native tissue ECM. Alginate is extracted from brown algae and it gels when 

in contact with divalent cations such as calcium chloride (CaCl2) [326]. The latter property, i. e. the 

cross-linking ability, makes a hydrogel especially suitable for 3D-bioprinting as a component of 

bioinks, given that it allows to maintain the printed structure after the fabrication. Furthermore, 

shape fidelity has to be ensured also during the printing process by high solution viscosity. Since 
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alginate is not viscous enough to keep the shape and an acceptable printing resolution, even at high 

concentration and high molecular weight, it has been proposed to reinforce the solution formulation 

with NFC for an optimal printing process [153]. Cellulose nanofibres are biocompatible and their 

similarity in size (~ 100 nm) with collagen fibers makes them interesting in biomaterial design for 

cartilage tissue engineering purposes. NFC, as bioink for bioprinting, has optimal viscosity and 

shear thinning, however printed constructs cannot be gelled and thus their shape is easily lost after 

fabrication. Indeed, combining the two components together in an unique solution allows to merge 

the gelation properties of alginate with the rheological ones of the NFC and to obtain a high 

performing ink [153]. 

In this work two types of hAC-laden constructs were bioprinted based on alginate alone or mixed 

with PRP exploiting the aforementioned properties of NFC supplementation to the hydrogel. Such 

experimental conditions allowed to dispense the cell-laden bioink at low (“cell-friendly”) pressure 

(< 40 kPa) and to provide embedded cells with a stable 3D environment at the end of the process.  

PRP formulations contain a high concentration of blood-derived platelets and are widely use in 

regenerative medicine because they are able to mimic the events that take place during the 

physiological reaction to injury, in particular the phase in which platelet-released growth factors and 

cytokines trigger tissue healing [327]. Among these platelet-released factors are included platelet-

derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor 

(EGF), fibroblast growth factor (FGF), transforming growth factor-β (TGF-β) and interleukin 8 

(IL8), all with relevant roles in several biological events such as cell proliferation, differentiation, 

migration and inflammatory response [231,328,329].  

The local delivery of PRP for the treatment of musculoskeletal disorders has led to promising 

outcomes [330]. Moreover, platelet-derived products (i.e. platelet lysate) exert several stimulating 

effects on different types of cells in vitro, including chondrocytes [128,135]. PRP supplementation 

to bioinks for bioprinting has been recently developed by Faramarzy et al. [331], with the aim to 

introduce a new tool for the embedding and controlled-release of autologous biological factors in 

the field of personalized therapies.  

In this study PRP was added to NFC/alginate-based bioink in order to provide biological stimuli to 

hACs encapsulated within an inert environment and, given the release of platelet-derived factors to 

the surrounding environment, to further promote the integration of the printed cell-laden graft in the 

host, especially required for its successful transplantation in regenerative medicine applications. 

The chosen PRP concentration to be added to the bioink was that already tested by Spanò et al. 
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[324] and proved to be effective in the generation of an activated membrane intended for wound 

care.  

PRP biological effects are physiologically achieved after platelet activation that generally involves 

the polymerization of plasma fibrinogen and the formation of a protein-based 3D-mesh with 

entrapped platelets that release their cargo out [332]. Calcium ions have a role in events that lead to 

platelet activation [333] and, in the context of the aforementioned bioprinting process with alginate-

based bioinks, they are also necessary for the cross-linking of the printed constructs. In our hands, 

alginate/PRP-based bioink resulted more compact after cross-linking than the alginate alone one, 

however this merely qualitative observation was validated by Faramarzi et al. [331], who reported 

an increased mechanical stiffness of the cross-linked constructs explained by the network formation 

of activated platelets. However, the addition of PRP did not modify the rheological properties of the 

pristine bioink and it did not interfere with the printing process. 

The total release rate of proteins from alginate/PRP bioink was similar to the one reported for other 

hydrogel systems [334] and it was characterized by an initial burst followed by a slower and more 

gradual release phase over 144 hours. This biphasic release process followed the desorption model 

described by Khansari et al. [335] for nanostructured scaffolds. Furthermore, as reported by 

Faramarzi et al. [331], protein release from PRP-containing bioinks showed the same trend seen for 

PRP gels, that are commonly produced but with the drawback of poor mechanical integrity. 

Regarding the fate of hACs embedded in bioinks and bioprinted, cell distribution and morphology 

were investigated. An homogeneous cell distribution was observed within the printed constructs as 

a result of an optimal mixing process and a biomaterial ability to keep cells in suspension. 

Furthermore, embedded hACs, as also reported by Martínez Ávila et al. [336] using nasoseptal 

chondrocytes in the same typology of bioink, showed a spherical morphology, that is typical of their 

native phenotype, with a diffuse actin organization. Some spheroids of aggregated cells were found 

in alginate/PRP-based constructs and sometimes flattened cells on the edge surface of both 

construct types were observed. This morphological difference between the hACs cultured in 2D and 

those grown in 3D could have been crucial in influencing the differentiation state of chondrocytes, 

as already demonstrated after 3D chondrocyte encapsulation in several biomaterials [337,338]. 

A challenging aspect of the mixing process of cells with biomaterials and their subsequent culture is 

to preserve cell viability during and after encapsulation over time. Martínez Ávila et al. [336] have 

already evaluated cell viability at each bioprinting step until construct fabrication, i.e. embedding, 

bioprinting and cross-linking. As expected, they reported that cell handling before embedding 

significantly decreased cell viability compared to their previous condition, but no further adverse 
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effects occurred after bioprinting and cross-linking of the bioink. Furthermore, they observed an 

increment in cell viability and cell number in the printed constructs as in vitro culture progressed 

along 28 days. Here, we did not find the same phenomenon, likely due to the different source of the 

cells used or to the tight meshes adopted in the grid design of the construct. In our study, hACs 

were obtained from elderly patients and therefore they were mostly resting cells expected to hardly 

proliferate in vitro, according to the low doubling rate of these cell type previously reported by 

Pereira et al. (about two doublings in 25 days of culture in monolayer) [128]. It has already been 

demonstrated that switch from 2D to 3D-culture conditions slowed down the proliferation of hACs 

[311]. In addition, chondrocytes derived from different cartilaginous sites of the same individual 

showed different behaviour, including that concerning growth rate [339]. Furthermore, the detected 

decrease in cell viability after the first week in 3D-culture could be due to the low nutrient diffusion 

from the medium to the inside of the constructs caused by the geometrical pattern of the grids with 

small pores. Finally, we cannot rule out the occurrence of an impairment of the grid structure due to 

low supply of calcium ions. This putative loss of the original construct structure could have caused 

cell spillage from the scaffolds. To avoid this issue probably a multiple cross-linking repetitions 

during the culture time will be required. Cell viability was higher in PRP supplemented bioink at 

day 7 compared to day 1 of culture, while it was lower at day 14 and day 21 compared to day 1 in 

both types of constructs. After 7, 14 and 21 days of 3D-culture, cell viability was higher in 

alginate/PRP than in alginate constructs. Furthermore, the number of cells per construct increased 

after 7 and 21 days of 3D-culture in presence of PRP compared to the pristine bioink, although 

hACs did not proliferate further between these two time points. In this regard, it is necessary to 

keep in mind that during an inductive culture with specific factors, differentiation is generally 

favored over proliferation. Data concerning cell viability and number per constructs were quite 

concordant each other. This mitogenic effect of platelet derivatives on chondrocytes both in 2D and 

3D-culture conditions was already reported in literature [133,340], but in our study, PRP was not 

used as a medium supplements but as a supporting component of the scaffolds.  

Re-differentiation potential of hACs in both 3D-printed constructs was evaluated on the basis of 

their capability of regaining ECM molecules production by the analysis of GAG deposition and 

gene expression profile. Compared to the first week of culture in vitro under chondrogenic 

conditions, encapsulated chondrocytes in both alginate and alginate/PRP constructs increased 

markedly the production of GAGs after 3 weeks.  

As previously anticipated, 3D environment affected hAC chondrogenic phenotype. Upon expansion 

in monolayer culture, hACs underwent de-differentiation, as indicated by high levels of COL1A1 
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and low expression of COL2A1, but after embedded in bioinks and bioprinting their gene 

expression pattern reverted to a more differentiated state. Indeed, this phenotypic change was 

confirmed by the up-regulation of cartilage-related genes, including those coding for SOX9, 

COL2A1 and ACAN in 3D-printed constructs versus cell monolayer in basal culture condition 

without chondrogenic factors. Simultaneously, the expression of COL1A1, a marker of 

fibrocartilage, up-regulated during in vitro expansion, was significantly reduced upon 3D-culture. 

This finding indicated that the switch in type II/I collagen ratio typical of chondrogenic phenotype 

loss in vitro was reverted. Although this reversion was already known in literature in the context of 

3D biomaterials, it is particularly interesting the up-regulation in gene expression of the 

chondrogenic markers SOX9 and ACAN in cells embedded in alginate/PRP constructs cultured 

without differentiation factors. This effect of PRP may be elicited by the platelet-derived TGF-β, a 

factor known to be critical for maintenance of cartilage [341] and a regulator of SOX9 [342] and 

other cartilage proteins. All the discussed findings make the hAC-laden constructs with PRP 

embedding a promising and suitable 3D-model for studies on cartilage homeostasis and pathology-

related mechanisms, at least in vitro.  

The analysis of the constructs implanted in nude mice revealed a moderate cartilage-like 

organization of cells within the printed grids after 2 months, but there was not an evident effect of 

PRP in that organization. Probably the PRP dose used in this work is not strong enough to be 

effective in driving in vivo cartilage regeneration, mostly when it is expected to start from adult 

hACs. Although they recovered the ability to deposit cartilage-like matrix when embedded in 3D-

environment, they are mature cells destined to exhaust its potential faster than cells with stemness 

features such as multipotent progenitor cells. Recently, the identification and characterization of 

such a cartilage-resident population has opened new avenues for cartilage repair [8,46]. Despite 

their promising features, the use of cartilage stem/progenitor cells are almost unexplored in tissue 

engineering and bioprinting, with some exceptions recently published [343]. This absence of studies 

may be likely due to the low frequency of these cells in the tissue and a lack of definitive and proper 

identification markers for this particular population [34]. So far, advanced biofabrication strategies 

for clinical applications in cartilage regeneration still use patient-derived mature chondrocytes 

expanded in vitro prior to the shape-specific 3D-construct assembly [344]. PRP contribution in this 

field could be exploited given its well-known role in tissue regeneration mechanisms.  
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4.5 Conclusions 

Based on the results reported in this study, we conclude that alginate/PRP bioink provides a 

biologically relevant environment that supports re-differentiation of hACs, re-establishing and 

maintaining their chondrogenic phenotype. This bioactive property combined with a proper 

printability make it a promising bioink to be exploited for articular cartilage tissue engineering and 

other biomedical applications. 
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Conclusions 

In this PhD thesis, contributions and applications of platelet-derived products have been 

investigated on articular cartilage cells, targeting tissue regeneration. Given the wide and varied 

molecular content of platelet derivatives, they induce multiple cellular reactions. Treatment with 

platelet products promotes proliferation in low turnover chondrocytes, as well as cell phenotypic 

changes towards an earlier stage (self-renewal capability), enhanced migratory activity and 

modulated secretion of inflammatory and chemotactic molecules. All these events together could 

summarise tissue regeneration mechanisms, that in cartilage rarely occur because its poor intrinsic 

self-healing capacity. PRP or PL-induced effects support their use in biomedical applications 

concerning cartilage repair, from direct injections in injured joints to culture media supplementation 

for expansion of transplantable chondrocytes or embedding in scaffold assembly for tissue 

engineering and in vitro model generation. Hence, study of cartilage cell behaviour exposed to 

platelet products could be useful to improve current therapeutic strategies (that sometimes appear 

controversial because of the lack of consensus in adopted methods and protocols) and design of 

innovative ones consistent with tissue engineering and regenerative medicine advances.  

Main outcomes and conclusions of this thesis are presented below. 

1) PL exerted stimulant effects on articular cartilage, such as promotion of chondrocyte 

proliferation, cell mobilization and activation of nestin expressing progenitors. These PL-recruited 

progenitor cells were able to migrate in response to inflammatory stimuli, showed paracrine activity 

in attracting other cells (ideally toward injured sites), high chondrogenic potential and resistance to 

hypertrophy. The findings are remarkable in terms of a local chondro-progenitor cell subset, not 

previously identified, that may replace damaged chondrocytes in a compromised cartilage 

environment and represent a promising target in future therapeutic approach for cartilage disorders. 

2) 3D-bioprinting of de-differentiated human articular chondrocytes allowed them to regain 

chondrogenic phenotype and the embedding in PRP-supplemented bioink supported chondrogenic 

culture as well as cell growth inside the 3D-printed constructs. In view of future clinic translation, 

the choice of cell source for 3D-bioprinting of patient-specific grafts will have to be oriented 

towards high performing cell types, such as chondro-progenitors, in order to ensure a successful 

cartilage regeneration and repair. Nevertheless, the bioactive property combined with a proper 

printability of the PRP-based hydrogel analysed in this preliminary study, make it a promising 

bioink to be exploited for articular cartilage tissue engineering and other biomedical applications. 
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