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Abstract

Pool boiling is a pretty well-known benchmark of diffusive system with both practical and theoretical interest.
We have investigated Neumann-boundary feedback control by combining the backstepping approach and
the circle criterion. Conditions for local/global stability with nonlinear boundary conditions as input are
investigated by explicitly solving the backstepping kernel equations. Simulation results are reported to
illustrate the findings of the theoretical investigation and compare all the considered approaches.
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1. Introduction

Pool-boiling (PB) systems have recently attracted a lot of attention from the research community for the
purpose of both modeling [1, 2, 3, 4] and control [5, 6]. Such diffusive systems are of interest to develop more
performing conditioning plants but also for increasing component integration in electronic setups to enhance
efficiency by heat removal as well as in the semiconductor manufacturing, where the lithographic process is
severely affected by temperature fluctuations and loss of homogeneity. Boiling heat tranfer achieves a higher
flux when compared with single phase cooling [7, 8, 9]. However, some issues may arise such as the burnout
risk, i.e., an uncontrolled increase in temperature when the boiling process approaches the critical heat flux
(CHF). A safe use of boiling needs efficient, closed-loop methods to deal with the unpredictability of the
boiling curve and to control the unstable behavior of the process when exceeding the CHF.

The motivations to study the control of PB systems are also theoretical. The capability to control such
systems allows to address the problem of optimizing efficiency with cost reduction. From the point of view
of theory, it represents a challenging example of a parabolic boundary control problem with a nonlinear
behavior and an unstable equilibrium. Concerning the connection with the control of parabolic systems, it
is worth to recall that the boundary feedback stabilization of parabolic systems was previously considered
by Triggiani [10, 11]. Specifically in [11], the system is splitted in a stable infinite-dimensional part and an
unstable-finite dimensional one, to be stabilized by the pole-shifting theorem.

Following [12], in this paper we present a new approach to the control of PB systems based on backstep-
ping and the circle criterion. The backstepping method has been successfully applied to construct stabilizing
feedback regulators and relies on the use of a Volterra transformation that turns a distributed parameter
system into an equivalent one with known stability properties [13, 14, 15, 16]. Here, three feedback laws
will be analyzed with two of them designed according to backstepping by showing that global stability holds
thanks to the circle criterion.

The circle criterion is usually adopted to prove the stability of dynamic systems in the presence of
nonlinear interconnections. Its original formulation is reported in [17]. In [18] this criterion is analyzed in
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relation with the notion of absolute stability and has been extended to infinite dimensional systems in [19].
Clearly, for such systems the additional difficulty is the need of accounting for well-posedness. Toward this
end, in this paper an extension of the theory of C0-semigroups dealing with systems with inputs, will be
exploited [20, 21, 22].

We will show that the local stability results based on backstepping can be extended to become of
global type by using arguments based on the circle criterion for infinite-dimensional systems [19, 23]. This
complements the previous theoretical achievements reported in [5, 24, 6], where global results are presented
by using Lyapunov arguments for one-dimensional and two-dimensional PB systems.

The considered PB system is described in Section 2. The closed loop stabilization by the backstepping
method and the local stability results are presented in Section 3. The extension from local to global stability
properties is addressed in Section 4, by properly applying the circle criterion. Theoretical and numerical
results are analyzed in Section 5. Section 6 presents a final discussion and the conclusions.

2. Description of the PB system

Figure 1: Schematic representation of a PB system.

The PB system depicted in Fig. 1 can be regarded as a solid heater positioned under a liquid pool
[25, 7, 8, 9, 5]. A heat source is located below the heater; it provides an heat flux qH entering the conducting
solid, while cooling is achieved by the interface heat flux qF .

Boiling is a phase change process taking place when the temperature at the solid-fluid interface (denoted
by TF ) exceeds the saturation temperature of the fluid TSAT , defined as the temperature at which the
liquid boils into its vapour phase for a corresponding saturation pressure. The local boiling curve in Fig.
2 summarizes the complex dynamics resulting from the solid-liquid interaction, and it characterizes qF as
a function of the interface temperature TF . It describes the dependence of the local interface heat flux qF
on the local interface superheat ∆T , the latter being the difference between the interface temperature TF
and the saturation temperature TSAT of the fluid. Here the term local has to be intended at a suitable
mesoscopic level, so that the quantities above, qF and TF , are in fact local averages in space and time, over
intervals larger than the bubble sizes and the bubble lifetimes.

The PB conditioning system is required to operate in the nucleate boiling regime (Region II: TF < TC):
bubbles detach from the surface and rise in the liquid versus the free surface. Both bubble frequency and
heat flux increase with TF . Nucleate boiling transits to film boiling (Region IV: TF > TM ) upon exceeding
the critical heat flux (CHF), when a vapour blanket, which thermally insulates the heater, appears at the
heater-liquid interface. Transition boiling (Region III: TC < TF < TM ) connects the two previous boiling
modes, and its instability is the sum of the reduced heat flux, due to the insulating vapour film, and the
temperature increase. Even if the boiling curve is not well defined in this region, it will be assumed to be
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Figure 2: Typical local boiling curve.

continuous, with a typical transition boiling temperature TD, approximately matching the flex point of the
curve. For a fixed heat supply qH (the red dotted line), the system admits three equilibria: A and C are
stable, B unstable. Efficient conditioning requires the system to operate in the fully developed nucleate
boiling regime and not far from the CHF, in order to maximize the interface heat flux responsible for the
cooling action. This operating point, however, exposes the system to a burnout risk: whenever the CHF
temperature is exceeded and assuming the heat supply remains constant, the transition boiling mode is
entered, and its instability quickly settles the system to the equilibrium C. This point is located at a much
higher temperature, even over the material melting point, and an unrecoverable fail of the heater is plausible
in this condition. Moreover, the burnout risk is increased both by the unpredictability of the boiling curve
in the transition regime, and by its dependence on the liquid pressure. Indeed a pressure increase could
translate into a positive shift of the CHF and of the whole boiling curve along the temperature axis.

Only an active temperature control can avoid the evolution of transition boiling to one of the two stable
boiling modes, and can prevent the burnout occurrence. This motivates the investigation of feedback laws
stabilizing the system around the unstable transition boiling equilibrium B [5, 24, 6]. The heater-only model
introduced in [25, 7, 8, 9, 5], relies on the synthesizing capability of the local boiling curve. Its mesoscopic
level allows to smooth out microscopic fluctuations, yet capturing the behaviour of heterogeneous or non
uniform states, i.e., states with “hot” and “cold” spots on the boiling surface. This is a key feature when
the heater is modeled as a two or three-dimensional solid. For the purpose of this work, we consider the
one-dimensional model that approximates physical behaviors with negligible temperature fluctuations in the
two other spatial dimensions. This turns out to be the case when the heater thickness H is large and/or the
thermal diffusivity k high.

Let H = [0, H ] be the spatial domain and Γ = ∂H = ΓH ∪ ΓF = {ξ ∈ H|ξ = 0} ∪ {ξ ∈ H|ξ = H} its
boundary. The state of the system is the superheat profile in the heater, denoted by T and simply referred
to as temperature. Instead, it is convenient to deal with the temperature offset with respect to TSAT . The
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evolution of T is described by the heat equation

Tt(ξ, t) = αTξξ(ξ, t)
T (ξ, 0) = T0(ξ)
−kTξ

∣

∣

ΓH

= qH + u(t)

kTξ
∣

∣

ΓF

= −qF (TF )

(1)

with ξ ∈ H and t ≥ 0 and where k is the thermal conductivity, ρ the density, cp the specific heat and
α := k/ρ cp the heater thermal diffusivity. The Neumann boundary conditions account for the heat in-flux
and the out-flux from the heater to the fluid, modeled by the local boiling curve. The in-flux acting on ΓH

is the sum of a steady contribute qH and a variable contribute u(t) representing the control used to stabilize
the system. The out-flux is expressed by the local boiling curve qF (TF ), where TF (t) = T (H, t) for all t ≥ 0.

The choice of the output signal is less natural. Measurements of temperature can be done by thermo-
couples, placed in some points on the heater. However measurements at the heater-fluid interface, just one
point in the non-dimensional model, are the most practical ones. That is why the system output will be
assumed to be the scalar value:

y(t) = TF (t) . (2)

2.1. Derivation of the non-dimensional PB model

From (1) and (2) a non-dimensional model can be derived by scaling variables and parameters by char-
acteristic values; let us redefine:

ξ′ =
ξ

H
π, t′ =

t

τ
, T ′ =

T

TD
, u′ =

u

qH
, qF

′ =
qF
qC

(3)

where τ > 0 is the time scale of the system evolution, qH the typical heat supply, TD the temperature during
transition boiling, and qC the critical heat flux. These last two values characterize the boling curve and
affect its scaling as well. The non-dimensional equations, dropping primes in favor of readability, become

Tt(ξ, t) = κTξξ(ξ, t)
T (ξ, 0) = T0(ξ)
Tξ
∣

∣

ΓH

= − 1
Λ(1 + u(t))

Tξ
∣

∣

ΓF

= −Π
Λ qF (TF )

y(t) = TF (t)

(4)

with domain H = [0, π], t ≥ 0 and boundary Γ = ΓH ∪ ΓF = {ξ = 0} ∪ {ξ = π}; the non-dimensional
parameters are

κ :=
ατ

H2
, Λ :=

kTD
qHH

, Π :=
qC
qH

. (5)

The boiling curve qF (TF ) is scaled too and the normalized value TF = 1 corresponds now to the typical
transition boiling temperature. Even if this curve is quantitatively different from the local boiling curve,
nevertheless it allows to study the generic dynamics of boiling systems and their control strategies.

2.2. Equilibria of the PB system

The equilibrium or steady-state solution of the system (4) is the solution of the Laplace equation:

T ξξ(ξ) = 0

T ξ

∣

∣

∣

ΓH

= − 1
Λ

T ξ

∣

∣

∣

ΓF

= −Π
Λ qF (TF )

(6)
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where TF = TF |ΓF
. The solution of (6) is straightforward:

T (ξ) =
π − ξ

Λ
+ TF . (7)

The steady state temperature TF can be computed by substituting the solution (7) in the boundary condition
at the heater-fluid interface, or, equivalently, the solution being a line, forcing the boundary conditions at
the top and the bottom of the heater to be equal. The resulting equation is given by

qF (TF ) = Π−1 (8)

and its solution provides the temperatures corresponding to the three intersections - denoted by A, B, and
C - between the normalized boiling curve and the heat-supply characteristic line. As anticipated, there exist
three possible equilibria, corresponding to three interface temperatures TF,1, TF,2 and TF,3, one for each
boiling mode, i.e., nucleate boiling, transition boiling, and film boiling, respectively.

The linearization around some of the three equilibrium points can be performed as follows. Toward this
end, let us denote by TF the temperature corresponding to one of such of them, we define

x(ξ, t) = T (ξ, t)− TF

Since Π−1 = qF (TF ), we define

u′(t) = −
1

Λ
u(t), f(x) = −

Π

Λ
(qF (x+ TF )− qF (TF ) .

When TF = TF,2, the transition boiling equilibrium, f is the cubic-like function in Fig. 3, which is assumed
to be globally Lipschitz continuous and to satisfy the sector condition, which it is usally denoted by f ∈ [a, b],
i.e.,

ay2 ≤ f(y) y ≤ by2 (9)

with a, b > 0. Reasonable values for a and b are, respectively, a = −1 and b = q, where q = fy(0) with
f ∈ [−1, q].

Figure 3: Typical shape of the nonlinearity f , satisfying the sector condition f ∈ [a, b], with a and b slopes.

2.3. State equation of the PB system

Based on the aforesaid, if we drop primes in favour of readability, the PB system turns out to be described
by

xt(ξ, t) = κxξξ(ξ, t)
x(ξ, 0) = x0(ξ)
xξ(0, t) = u(t)
xξ(π, t) = f(y(t))
y(t) = x(π, t)

(10)
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over H× [0,+∞), where x ∈ X = L2[0, π] (for well-posedness see [12] and the references therein).
A block diagram corresponding to (10) is reported in Fig. 4. where also the controller K : X → R is

depicted. Note the resulting interconnected system is a Lure system, which will be a key ingredient for the
application of the circle criterion in Section 4.

A linearized version of the PB system is also exploited in Section 3. In order to turn the nonlinear system
(10) into a linear one, the nonlinear boundary condition in ξ = π is replaced by the linear one, i.e.,

xξ(π, t) = q y(t), q = fy(0) . (11)

The sign of q in (11) depends on the equilibrium corresponding to the linearization point: it is positive
(q > 0) for the transition boiling equilibrium and negative (q < 0) for the nucleate and film boiling ones.

3. Closed-loop local stabilization

In order to face the design process of the controller, we first consider the stabilization of the linearized
PB system. This simplified problem can be treated with by the available methods for linear system theory.
Below, three different feedback laws K making the closed-loop linearized system stable, will be constructed:
one of them is a simple proportional feedback, the two others are of backstepping type. When applied to
the nonlinear PB system (10) such feedback laws can ensure only local stability in a neighborhood of the
transition boiling equilibrium. These local stability properties will be extended to global ones in Section 4.

Figure 4: Block diagram for the controlled PB system, where v denotes a reference.

When dealing with systems described by PDEs, even the feedback operator can undermine well-posedness.
Toward this end, we need to rely on the abstract differential representation of the linear part of the PB
system in the Kalman state space form; the adopted notations follow [22]. The input is composed of two
components u1 and u2. Hence, we define the Hilbert spaces

X = L2[0, π], U = U1 ⊕ U2 = R
2, Y = R .

The semigroup generator of the system is the operator A : X1 → X with ψ 7→ Aψ = ψξξ, where

X1 =
{

ψ ∈ H2(0, π)
∣

∣ψξ(0) = 0, ψξ(π) = 0
}

.

A is the Neumann Laplacian, a regular Sturm-Liouville operator, and the generator of an analytic semigroup.
As for the control operator B, let us first consider the solution operator S : U → Z of the elliptic boundary
value problem

d2z(ξ)

dξ2
− βz(ξ) = 0 , β ∈ ρ(A) , z ∈ Z (12a)
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(

dz(ξ)

dξ
(0),

dz(ξ)

dξ
(π)

)

= (u1, u2) ∈ R
2 (12b)

where ρ(A) denotes the resolvent set of A and Z = H2[0, π]. According to [21, Remark 10.1.5], S =
(βI −A)−1B, so that B is in fact the operator

B : U → X−1, B = (βI −A)S (13)

where X−1 is the extrapolation space defined as the completion of X with respect to the norm ‖z‖−1 =
‖(βI −A)−1z‖, actually a space of distributions. Indeed, B can be rewritten (see [26]) in the more intuitive
form

[u1, u2] 7→ B[u1, u2] = [−δ(ξ), δ(π − ξ)]

[

u1
u2

]

. (14)

As B(U) ⊂ X−1\X , B is an unbounded control operator. Finally, the observation operator C is the Sobolev
trace operator:

C : X1 → Y, ψ ∈ X1 7→ y = ψ(π) . (15)

Based on the aforesaid, let us introduce the following definitions, which also account for the possibility of
unbounded control and observation operators, such as the one above.

Definition 1. Consider the state equation ẋ(t) = Ax(t) + Bu(t), with state space X, input space U and
D(A) = X1. The system is said

(i) boundedly stabilizable if a state feedback operator K ∈ L(X,U) exists such that AK = A + BK, with
domain D(AK) = D(A), generates an exponentially stable semigroup;

(ii) regularly stabilizable if a state feedback operator K ∈ L(X1, U) exists such that

(a) (A,B,K) is a regular triple;
(b) I is an admissible feedback operator for KΛ(sI −A)−1B;
(c) AK = A+ BKΛ (with its natural domain) generates an exponentially stable semigroup.

(iii) (A,B) is said completely boundedly or regularly stabilizable if for arbitrary ω ∈ R there exists an
operator K as above and a constant M > 0 such that

‖TK(t)‖ ≤M exp(ωt) , ∀t ≥ 0

where TK(t) = e(A+BK)t.

The interested reader is referred to [22] for the notion of admissible feedback operator. Even if the notion
of regular stabilizability was introduced in [27], the naming convention in Def. 1 is taken from [28].

In the following, three different types of feedback will be considered for the linearized PB system.

3.1. Proportional feedback: KP

Consider the state feedback operator

KP : X1 → R, x 7→ Fx(π) (16)

where F is a static gain to be selected as proportional law [5, 24, 6]. In order for KP to stabilize the system,
the operator AKP

= A+BKP corresponding to the closed-loop system

ẋ(t) = AKP
x(t)

x(0) = x0(ξ)
(17)

has to generate an exponentially stable semigroup. AKP
is defined as follows:

D(AKP
) =

{

ψ ∈ H2(0, π)
∣

∣ (18a)
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ψξ(0)− Fψ(π) = 0, ψξ(π)− qψ(π) = 0
}

AKP
: D(AKP

) → X, ψ 7→ AKP
ψ = ψξξ . (18b)

This is a (non regular) Sturm-Liouville operator and its stability properties are related to its spectral bound.
In order for the closed-loop system to be exponentially stable, the unique positive eigenvalue λ1 of the PB
system has to be moved in the open left half-plane, and, as shown in [24], this is possible for some F if

q < 2/π . (19)

If (19) is not satisfied, the proportional feedback does not stabilize the system, irrespective of the gain value
F .

3.2. First backspepping-based feedback: KBS1

The full-state backstepping-based feedback considered in the following is motivated by the goal of remov-
ing the limitation due to (19). The proposed approach by Krstic and coworkers [13, 14, 15] consists in the
search of an invertible transformation of the state space and in turning the system in a stable autonomous
target system. Toward this end, let us consider the Volterra-like operator

z(ξ, t) = x(ξ, t)−

∫ π

ξ

K(ξ, η)x(η, t)dη (20)

where K is an upper triangular kernel to be determined and z denotes the state of the target system.
The first choice for the target system is the exponentially stable system

ż(ξ, t) = κzξξ(ξ, t)

z(ξ, 0) = z0(ξ) (21)

zξ(0, t) = 0

zξ(π, t) = −Qz(π, t)

with Q > 0. In order for (10) and (11) to match (21), the kernel K in (20) has to satisfy the kernel equations

Kξξ(ξ, η)−Kηη(ξ, η) = 0

Kη(ξ, π) − q K(ξ, π) = 0

K(ξ, ξ) = p

(22)

where p is a positive constant to be fixed over the upper triangular domain Ω = {(ξ, η) : 0 ≤ ξ ≤ η ≤ π}.
Even if the target system is different, the kernel equations (22) are similar to the ones derived in [14]

with solution
K1(ξ, η) = −(q +Q) exp (q(η − ξ)) .

Finally, the feedback law u corresponding to the kernel K1 is

u(t) =

∫ π

0

K1ξ(0, η)x(η, t)dη −K1(0, 0)x(0, t)

and hence

u(t) = (q +Q)

[

x(0, t) + q

∫ π

0

exp (qη) x(η, t) dη

]

. (23)

For the sake of brevity, let us refer to u = KBS1x in operator form.
With the control (23) the closed-loop PB system is exponentially stable in L2[0, π] but with a decrease

rate that cannot be arbitrarily fixed by adjusting the control parameter Q, i.e., the system is not completely
stabilizable by this feedback law.
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3.3. Second backspepping-based feedback: KBS2

The second choice for the target system is:

zt(ξ, t) = κzξξ(ξ, t)− Cz(ξ, t)
z(ξ, 0) = z0(ξ)
zξ(0, t) = 0
zξ(π, t) = qz(π, t)

(24)

with C > 0. The unstable boundary condition is still present, however exponential stability is achieved by
the additional addendum −Cz(ξ, t) in the state equation whenever C ≥ kq2 + k/2 (see [13]).

To match (24), we need to solve the kernel equations

Kξξ(ξ, η)−Kηη(ξ, η) = λK(ξ, η)

Kη(ξ, π)− qK(ξ, π) = 0

K(ξ, ξ) = (λξ)/2, λ = C/k

(25)

over the upper triangular domain Ω = {(ξ, η) : 0 ≤ ξ ≤ η ≤ π}. The solution K2 of (25), yet with a scaled
and mirrored domain, can be found in [13]. With the needed adjustments, it is K2(ξ, η) = H(π − ξ, π − η)
where

H(ξ, η) = −λξ
I1(
√

λ(ξ2 − η2))
√

λ(ξ2 − η2)
−

qλ
√

λ+ q2
(26)

×

∫ ξ−η

0

exp(qτ/2) sinh

(

√

λ+ q2

2
τ

)

× I0(
√

λ(ξ + η)(ξ − η − τ))dτ,

and I0 and I1 are modified Bessel functions of the first kind. Finally, the second backstepping-based feedback
is

u(t) =

∫ π

0

K2ξ(0, η)x(η, t)dη −K2(0, 0)x(0, t) . (27)

Shortly, in operator form it will be denoted by u = KBS2x. The resulting closed-loop system is completely
stabilizable by a proper choice of the control parameter C, and the convergence is stronger, both in L2[0, π]
and H1[0, π].

feedback law
local stability global stability

property property
KP exponential stab. if q ∈ (0, 2/π) exponential stab. if fy(0) ∈ (0, 0.5)
KBS1 exponential stab. for any q > 0 exponential stab. if fy(0) ∈ (0, 1)
KBS2 complete stab. for any q > 0 only conjecture on complete stab. for any q > 0

Table 1: Summary of the stability properties of feedback laws for the PB system.

4. Global stabilization using the circle criterion

Now let us show that the three approaches presented so far enjoy global stability by using the infinite
dimensional version of the circle criterion [19, 23]. Its application is made straightforward by the particular
Lure structure of the PB system. This is emphasized in Fig. 5, where the block diagram of the PB system is
properly rearranged by exploiting the symmetric roles played by the controller and the nonlinear boundary
condition.
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Figure 5: The Lure structure of the controlled PB system, with its linear part inside the red box, and with K being one
among KP , KBS1, or KBS2.

The latter, which was part of the PB system in Fig. 4, is now moved outside the system, on the feedback
path, as shown in Fig. 5. At the same time, the controller K, i.e., one of the three linear feedbacks
considered in Section 3, is put inside the “red box,” which becomes a linear system since the nonlinearity f
stays outside. The resulting system in Fig. 5 clearly exhibits a Lure structure, made by the interconnection
of a linear system on the forward path and a nonlinearity in the feedback path.

As the linear system is a scalar single-input single-output one, the circle criterion just reduces to the
classical circle criterion for finite-dimensional systems [19]. In particular, the Lure system in Fig. 5, with
ay2 ≤ f(y)y ≤ by2, is exponentially stable when the following three conditions are met:

1. The linear part of the system, with U = Y = R, is both optimizable and estimatable2.

2. The transfer function T of the linear part of the system is H∞3.

3. T (iω) ∈ ∆(a, b), where ∆(a, b) is the open disk in C with centre in R and −1/a and −1/b in its
boundary (circle criterion).

The first two hypotheses are easily verified. Moreover, the considered feedback makes the system stable
even when q = 0, and this implies T ∈ H∞. The last condition requires to compute T (s) for each feedback,
i.e., the ratio

T (s) =
x̂(π, s)

û2(s)
(28)

by using the Laplace transform [29, 30]. Again relying on the Laplace transforms, we get

sx̂(ξ, s) = x̂ξξ(ξ, s) (29)

x̂ξ(0, s) = û1(s), x̂ξ(π, s) = û2(s) . (30)

Once solved (29) with the two boundary conditions (30), its solution x̂(ξ, s) can be placed in the feedback
law, as follows:

û1(s) = F x̂(π, s) (31)

for the proportional feedback KP . For the other two control laws, we have

û1(s) =

∫ π

0

Kiξ(0, η)x̂(η, s)dη −Ki(0, 0)x̂(0, s) (32)

2Roughly speaking, a system is optimizable if, for every input belonging to L2, the system admits a solution in L2; it is
estimatable if the output belongs to L2 [19]

3The space of the H∞ transfer functions from U to Y is given by the holomorphic mapping from any nonempty half space
of the complex plane into the set of the bounded functions from U to Y [19]

10



with i ∈ {1, 2}, when the backstepping-based feedback BSi is considered. In the latter case, the integration
in (32) can be carried on. The resulting equation is thus solved in the unknown û1(s) and its expression is
substituted in x̂(ξ, s) so as to find the ratio (28).

The above outlined computation can be accomplished for the first two feedback laws, KP and KBS1 with
the support of Matlab symbolic toolbox [12]. The case of KBS2 is more difficult, as its complex analytic
form does not allow the integration in (32). Thus, a polynomial approximation of K2 can be used to obtain
an expression for TBS2.

5. Analysis of the theoretical and numerical results

We show below how the application of the circle criterion may be a key instrument to study the closed-
loop stability of the PB system. Indeed, global stability is evaluated for each feedback law considered. The
diagrams in Fig.s 6-8 assume the sector condition f ∈ [−1, q], and they try to highlight the maximum value
of q matching the circle condition.

Table 1 provides a concise comparison of the conditions for both local and global stability of the PB
system, namely the ranges of q and fy(0) such that the closed-loop system is stable, at least for a choice of
the control parameters F , Q, and C.

For the proportional feedback KP , the local stability region reported in Table 1 has been derived in
[24] by spectral methods. As expected, global stability is achievied in a subregion of the latter, constrained
by the circle condition (see Fig.6). Moreover, in [24] even a condition for global stability was derived by
Lyapunov methods, i.e., fy(0) ∈ (0, 1/π); if compared with the one in Table 1, it looks more severe, thus
confirming the effectiveness of the circle criterion.

KBS1 extends the global stability region of KP from fy(0) ∈ (0, 0.5) to fy(0) ∈ (0, 1), yet preserving a
simple analytic form. Fig. 7 highlights the constraint imposed by the circle condition on the choice of KBS1,
where a high value of the control parameter Q is required. When fy(0) is greater than 1 even an increase of
Q fails to ensure a stable closed-loop behaviour.

To enlarge again the global stability region the feedbak KBS2 is required. We already pointed out how it
is the only control law, among the three considered, achieving complete stability of the linearized PB system.
Not surprisingly, KBS2 also exhibits the larger global stability region. For instance, Fig. 8 shows the circle
condition is met when fy(0) = 1.5, with the choice C = 12 for the control parameter. We conjecture this
feedback law is able to achieve global stability even for large slopes fy(0) of the boiling curve. However, the
large value of C required as well has the exponential growth of the kernel K2 make increasingly challenging
the computation of the transfer function.

Finally, the theoretical results obtained so far have been confirmed via simulations of a PB system given
by (10) with κ = 1 with Comsol Multiphisics 4.2. The initial state x0(ξ) in all the simulation runs is chosen
equal to a triangle shaped function. The stabilizing effect of the three feedback laws considered is compared
against different performance indexes (see Fig. 9). In particular, the transient behavior of x(π), the state
value on the opposite side of the controlled boundary, ‖x‖L2(0,π) and ‖x‖H1(0,π) are plotted and compared
(see Fig. 10-12). Note that, even when the circle condition is not met, the PB system turns out to be stable.

6. Conclusions

Three feedback laws for the PB system have been investigated: specifically, in addition to KP and
KBS2 already reported in the literature, a new, yet quite simple feedback (i.e.,KBS1) is derived by using
the backstepping method. For the proportional feedback KP , the results obtained match the ones already
derived by using Lyapunov-based approaches [24, 6]. Not surprisingly, KBS2 is the only feedback achieving
complete stability.

This work shows how the application of the circle criterion may be a key instrument to study the global
closed-loop stability of one-dimensional diffusive systems and an effective alternative to direct Lyapunov
methods; a possible extension to the two-dimensional case will be evaluated. Future work will be devoted
to the construction of observers for such systems to design an output feedback control scheme that allows
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Figure 6: Plot of TP (iω); sector condition: f ∈ [−1, 0.56].

Figure 7: Plot of TBS1(iω); sector condition: f ∈ [−1,+1].

12



Figure 8: Plot of TBS2(iω); sector condition: f ∈ [−1,+1.5].

to avoid the knowledge of the full state and hence enjoying an increased practical interest. Another topic of
interest will the the investigation of the robustness of closed-loop PB systems subject to external disturbances
by using input-to-state stability.
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Figure 10: Transient plot of x(ξ, t) for KP with q = 0.5 and F = 0.7.

Figure 11: Transient plot of x(ξ, t) for KBS1 with q = 0.5 and Q = 40.

Figure 12: Transient plot of x(ξ, t) for KBS2 with q = 0.5 and C = 1.
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