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Abstract. Measurement aims at obtaining a numerical description of objects/events/persons in 
real world by means of a measuring system. Measurement is widely used as a key way for 
obtaining high quality information from the real world, across disciplines. In the present day, 
there is growing consensus in holding that measurement is characterized by the use of 
something that qualifies as a “measuring system”. Therefore, we discuss  sufficient conditions 
for an empirical system to qualify as a measuring system. 

1.  Introduction 
The notion of measurement (or measuring) system has been recently raised as a key issue in 
measurement science [3-4]. Curiously, at the dawn of measurement theory, Campbell noted that the 
way measurement is actually performed is of no foundational interest [1], which probably contributed  
to often identify the theory of measurement with the representational approach [6]. On the other hand 
others recognised the centrality of this issue in measurement. One of the earliest contributions in this 
direction was an important communication by the late Gonella, at the IMEKO World Congress in 
Huston [7], which unfortunately had much less resonance than it deserved. The focus on the 
measurement system as a way for going beyond the representational viewpoint, was well highlighted 
by Mari [9], although somewhat overlooking, in our opinion, the still permanent validity of the 
representational approach in addressing measurability issues [10]. Another curious fact is the almost 
total absence of such a notion in The Guide to the evaluation of uncertainty in measurement (GUM) 
[15], somehow reflecting, consciously or not, the initial Campbell’s prejudice. On the other hand, 
anyone involved in measurement in real life, and/or in education in measurement, cannot fail to 
recognise the centrality of this concept, and, consequently, of the related modelling issues, as attested, 
in our experience, by all accredited textbooks on measurement, one for all being the excellent book by 
Bentley [8]. In consequence of this awareness, other papers have been published meanwhile on the 
notion of measurement (or measuring) system, including contributions by Sommer [13-14] and by 
Ruhm [12]. In fact, such a model is essential for measurement science to qualify as an autonomous 
discipline,  and the development of a generally agreed view of measurement among disciplines [5], 
which constitutes the key focus of this IMEKO Joint TC1-TC7-TC13 event, strongly depends, in our 
humble opinion, upon that. Noteworthy, for example, the important and influential Rash model, 
defines a kind of measurement system, although of an essentially probabilistic nature [16-17]. 
Furthermore, from the application side, we think that one major difficulty for an extensive application 
of GUM’s principles, very likely stems from the lack of reference, in the GUM and its related 
documents, to a proper modelling of the measuring system. 
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Therefore, as a part of such a debate, we try and contribute here by proposing a general model of 
the measurement process, which is based on the primitive notion of “empirical relations” which allows 
defining measurement in terms of a more primitive notion. As far as we know, what here proposed is 
totally new in the measurement-science panorama. 

2.  The proposed framework 

2.1.  The notion of cross order 
 
To attain to a general description of the measuring system (MS), we consider an input-output 
description, where the input is an “object”1 a A∈ , in a (not directly observable) state2 *Aα ∈ , in 
respect to some quantity3 x , and the output is a (directly observable) indication of the MS, b B∈ , 
with respect to some quantity y .  

One idea we wish to convey here, is that the measuring system makes the originally unobservable 
state of the measurand actually observable, by transducing it into another – generally, but not 
necessary, different – quantity, belonging to the MS. For example, a force to be measured may be 
transduced into the strain of an elastic bar and then into a voltage; or a temperature into a voltage, 
through the thermoelectric effect, and so on. Another possibility is that, e.g., a small displacement is 
transformed into an easy-to-detect rotation of a needle on a gage: here a mechanical quantity is made 
actually observable by an amplification transformation. 

Another idea to be conveyed, is that a mapping from a scale holding for the measurand into a scale 
holding for the output quantity of the MS, is realised.  

With these ideas in mind, let us then look for appropriate properties of the MS, that fully 
characterise it. For the principle of parsimony, generally accepted in science, such properties should be 
as weak as possible. 

To achieve this goal, we firstly introduce the notion of cross-order, that we define as a weak order, 
denoted by “� ”, that holds true over the union of two sets,C A B= ∪  in our case, and that also 
satisfies the following additional properties: 

• its restriction to B  is a strict order, denoted by “≻ ”; 
• for each a A∈  there exists b B∈  such that a b∼ , where “∼  ” denotes equivalence. 

Then, it is possible to show that there exist order-preserving measure functions on both A  and B , 
• :Am A X→ , and  

• :Bm B Y→ ,  

where X  and Y  are numerical sets, that fulfil order-representation properties. In fact, since A C⊂ , 

the structure ( ),A �  is a weak order, and thus, for each 1 2,a a A∈ , there exists a function Am  such 

that [11] 
 
                                                      
1 Here the term “object” generically denotes the carrier of the property to be measured (this property is also 
called the “measurand” in the current terminology). Therefore it may be either a material object, such as a 
workpiece, whose length is measured for quality-control purposes, or an environment, such as an office, whose 
temperature, noisiness, … are measured for checking the conformance to ergonomic standards, or an event, such 
as the taking off of an airplane, where the peak loudness of the emitted noise is controlled for safety reasons, or 
even a person, whose attitude to mathematics is tested, for allowing access to a specialized high-level college. 
2 The notion of “state” here considered corresponds to the notion of “quantity value”, of the current terminology, 
at least in the interpretation recently provided by Mari and Giordani [4]. In a few words, the state of a quantity is 
a non-numeric entity that expresses the way in which an object manifests some (measurable, in our case) 
property. 
3 Here quantity means “measurable property”. 

IMEKO2016 TC1-TC7-TC13 IOP Publishing
Journal of Physics: Conference Series 772 (2016) 012010 doi:10.1088/1742-6596/772/1/012010

2



 
 
 
 
 
 

( ) ( )1 2 1 2A Aaa m a m a↔ ≥� .     (1) 

Furthermore, since ( ),B ≻  is a strict order, for each 1 2,b b B∈ , there exists a function Bm  such that  

 

( ) ( )1 2 1 2B Bbb m b m b↔ >≻ .     (2) 

2.2.  Transduction or observation 
 
As already noted, one of the main ideas we want to express is that, in the input/output model we are 
considering, the output, y , constitutes an observable entity, whilst the input, x , does not. This idea 

can be expressed by regarding Bm  as a known function, which somewhat implies that we assume to be 

able to express instrument indication by numbers, whilst Am  is known to exist but it is otherwise 
unknown: this is indeed the reason why we need a measuring system for actually performing 
measurement. 

Regarding Bm  as a known function, is equivalent to assume that we are always able to express 
instrument indications by numbers. Let us then briefly discuss this point. One could argue that y  is 
also a quantity, and therefore it also needs measuring, which requires an additional transduction step 
associated to y . But this would lead to a regressio ad infinitum, since for the transduction of y  we 
would also have an output stage needing measurement, and so on. Therefore, for the measurement 
procedure to be really applicable – as it actually is – we should require that  it ends with a transduction 
where the indication may be directly expressed by numbers. As an example, in the case of temperature 
measurement by liquid-in-glass thermometers, we can assume that a  expresses the thermal state of 
the measurand, and b  the height of the liquid column in the thermometer. Such states (heights) of the 
column may be revealed by traits on the external surface of the glass tube containing the thermometric 
liquid, and a number may be associated to each trait. Now, although the number we directly read on 
the glass is linked to the height of the column through intermediate transformations – for example if 
we associate the level of the column to its representative trait by visual inspection, we may have an 
error due to misalignment, and so on – but the very final step, that is the association of the number to 
the traits, may be reasonably assumed as a direct, uncertainty-free step: the hypothesis that we may 
associate a greater number to a trait that precedes, rather than following, a trait with a lower number, 
would be an unreasonable speculation! Furthermore, for the reasoning above, this possibility of finally 
associating a number to an indication, must always be the case. Lastly, note now that it is immaterial 
how many transduction steps we have before this last one: we may thus always consider, without loss 
of generality, an overall transduction that corresponds to the chaining of all such transduction steps, 
followed by the final conversion-to-numbers step. This is exactly what we propose in this model. 

After this premise, let us now go back to the characterisation of what we have called the 
“transduction” or, more generally, the observation process. This process may be described, at different 
discourse levels, by the following functions, all of which may be called observation or transduction 
functions, to avoid an unnecessary multiplication of terms that would be confusing. 

• A function, ϕ ′ , form “things” to “things”, that maps objects into states4 of the output quantity 
of the MS; this function may be formally defined and characterised as follows: : A Bϕ ′ →  
such that  
 
                                             ( )b a a bϕ ′= ↔ ∼ .        (3) 

Note that such a function it is well defined, since the order on B  is strict. 
                                                      
4 The attentive reader may have noted that we describe the output by “indications” or by “states of the output”. 
In fact, since a strict order is assumed for the output quantity, states and indications are mutually isomorphic. 
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• A function, ϕ , form “things” to “numbers”, that maps objects into indications of the MS; that 
is, : A Yϕ →  such that  
 

                                    ( ) ( )( )By a y m aϕ ϕ ′= ↔ = .                  (4) 

 
• Lastly, a function, f , from “numbers” to “numbers”, :f X Y→  such that 

 

                                ( ) ( )( ) ( )B Ay f x y m a x m xϕ ′= ↔ = ∧ = .    (5) 

 
In the application of this model to the description of real systems, under certain circumstances,f  

may be called “calibration function” (whilst a general acceptance of this definition may create 
problems, as has been discussed elsewhere [18]). 

An overview of these transformations is provided in Fig. 1. 
 

A B

X Y

Am Bm

ϕ ′

ϕ

f
 

 
Fig. 1 Topology of the measuring system. Ellipses denote sets of “things”, rectangles represent sets of 

numbers, solid-line arrows indicate real transformations, described at different discourse levels, and dashed-lines 
arrows express purely numerical correspondences, which do not correspond to real transformations but 

nonetheless do contribute to understand the properties of some real transformations. 
 
Now, the key property of MS is that the observation transformation is order preserving, and this 

holds true at all the description levels just considered. 
In formal terms, for each 1 2,a a A∈ , 
 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2a a a a a a f a f aϕ ϕ ϕ ϕ′ ′↔ ↔ ≥ ↔ ≥� � .   (6) 

 

2.3.  The overall measurement process 
 

Let us now show why property (6) is so important: in fact it ensures that the MS is capable of 
performing proper, consistent, measurements. 

To show this, let us introduce the measurement function 
 

ˆ: A Xγ → ,     (7) 
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where X̂  is the set of the possible measurement values5. Obviously, such a set coincides with the set 
of measure values, X , we already encountered. This simply means that if x X∈  is one of the 

possible measure values, it will also be one of the possible measurement values, that is ˆx X∈ , and 
vice versa. 

Then, interestingly enough, if the MS satisfies property (6), it also satisfies the following 
representational property, that holds true between objects and measurement values: 
 

( ) ( )a b a bγ γ↔ ≥� .     (8) 

 
In fact such a property may be satisfied by taking, for each a A∈ , 
 

( ) ( )( ) ( )1 1x̂ a f a f yγ ϕ− −= = =  ,    (9) 

 
which makes sense, since under the above assumptions, f  turns out to be invertible. 
Therefore, γ  may be implemented, in the current practice of measurement, by 

• Inputting the measurand to the MS and acquiring the (numerical) indication y : this is the 
observation phase; 

• Applying the transformation 1f −  to the indication, where f  is known, typically by 
calibration, and is invertible, thanks to the above assumptions, which constitutes the 
restitution phase. 

3.  Conclusion 
 
The notion of measuring system is gaining increasing interest in measurement science. Here we have 
presented a formal model of the MS, in terms of empirical relations among objects to be measured and 
the measuring device. We hope that this may help fill a gap in these studies. 

By now, we have limited our investigation to order structures and related ordinal quantities, but we 
plan to extend this treatment to all the structures of metrological interest, as a further step of this study. 
Another possible development may consist in searching for a suited probabilistic counterpart of this 
model, which does not look like an easy task, at the present stage. 
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