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Abstract The concept of connectedness has been widely used in financial ap-
plications, in particular for systemic risk detection. Despite its popularity, at
the state of the art, a rigorous definition of connectedness is still missing. In this
paper we propose a general definition of connectedness introducing the notion
of Proper Measures of Connectedness (PMCs). Based on the classical concept
of mean introduced by Chisini, we define a family of PMCs and prove some
useful properties. Further, we investigate whether the most popular measures
of connectedness available in the literature are consistent with the proposed
theoretical framework. We also compare different measures in terms of fore-
casting performances on real financial data. The empirical evidence shows the
forecasting superiority of the PMCs compared to the measures that do not
satisfy the theoretical properties. Moreover, the empirical results support the
evidence that the PMCs can be useful to detect in advance financial bubbles,
crises, and, in general, for systemic risk detection.
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1 Introduction

In the last decade a wide stream of research focused on the notion of con-
nectedness and its applications. Despite the growing attention on the topic, at
the state of the art, a formal definition of connectedness is not yet available
and the concept remains vague and elusive (see Diebold and Yilmaz 2014).
The concept of connectedness together with a proposal for its measurement
has been first introduced by Diebold and Yilmaz (2009). Then, the connected-
ness of financial systems has been investigated in many subsequent papers, see
among the others Andersen et al. (2010), Barunkin et al. (2016), Diebold and
Yilmaz (2014), Demirer et al. (2018), Zhang and Broadstock (2018). The idea
behind connectedness is to measure the degree of the inter-relations and the
inter-dependencies between the components of a whole system concentrating
this information in a single number or index. For this reason, the connect-
edness is defined on a multidimensional domain representing, in general, the
elements of a set, for instance, the agents of a system, the firms quoted in a
given market.

A high connectedness reflects a strong interdependence between the ele-
ments of the considered set. In economic and financial applications, the re-
lation between connectedness and systemic risk is intuitive. In financial mar-
kets, where the elements can be the returns of the assets, a high connectedness
means that there is at least a subset of returns that behave in a similar way.
Obviously, this constitutes a limit to the effective diversification opportunities.

Different models and approaches to predict financial crises and, in general,
to detect systemic risk have been proposed in the economic literature starting
from the late 1970s, when currency crises increased the interest both in specific
indicators (Bilson 1979) and in the theoretical models (Krugman 1979) able to
explain and predict such crises. Kaminsky (1999) identifies a single indicator
following variable selection criterium; moreover, Frankel and Saravelos (2010),
Rose and Spiegel (2009), Sarlin and Holopainen (2017) and Sarlin and Mezei
(2016) apply multivariate models for estimating the probability of a future
event from a set of several potential warning indicators.

In this paper we focus on the concept of connectedness and its possible ap-
plication to systemic risk detection. Various measures of connectedness have
been proposed and studied for market risk (return connectedness and mar-
ket diversification), see among others Belsey et al. (1980), credit risk (default
connectedness), see for example Merton (2014), and in general systemic risk
(for system wide connectedness), see Billio et al. (2012), Figini et al. (2018),
Acemoglu et al. (2015), Acharya et al. (2012). In particular, financial inter-
connectedness is well-known as a potential source of systemic risk. Volatility
spillovers across and within markets are significant when the interdependence
is high (see Diebold and Yilmaz 2012). Furthermore, market returns show high
positive correlation when their volatility increases such that periods of high
volatility are associated with market bubbles or crashes (see Wu 2001). Market
volatility, especially in association with a high degree of connectedness, is the
main cause of contagion during severe financial crises. Markets had become so
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intricately connected to each other, that it is impossible to effectively shield
against risks across global financial markets, though a source of competitive
gain had proved itself also as a mechanism for propagating risks.

Considering the previous discussion, it is natural to use a measure of con-
nectedness as an early warning indicator of financial crises and bubbles. On
one hand, a high degree of connectedness of an economic system is an indica-
tor of the potential severity of a crisis, when occurring. On the other hand, it
is interesting to understand whether an increase in connectedness leads to a
higher probability of a financial crisis. One appealing feature of this approach
is that the definition of an economic model is not needed and macroeconomic
variables are not taken into account as direct explanatory variables.

As pointed out by Diebold and Yilmaz (2014), in the literature on con-
nectedness the use of correlation-based measures is widespread, despite their
intrinsic limitations on the pairwise analysis and the linearity assumptions.
The concept of connectedness may be seen as a generalization of the concept
of correlation. For example, while the connectedness of the assets returns on a
given market directly reports to the classical portfolio diversification problem,
default connectedness in credit risk reflects a contagion problem that can not
be measured through the standard correlation-based approaches. Indeed, the
idea behind connectedness is much broader and this strengthens the opinion
that it would be too restrictive to consider it as a simple matter of linear
correlation between the variables of a system.

In this paper we propose a general theoretical framework to identify the
measures of connectedness: we define a Proper Measures of Connectedness
(PMC) as a real-valued function defined on the set of full-rank matrices and
satisfying a given set of minimal properties. Among the PMCs we introduce
a specific class of measures based on the notion of power mean, a special case
of the classical concept of mean introduced by Chisini (1929), and investigate
the theoretical properties. In particular, we show that the proposed family of
PMCs is a generalization of the condition number of a matrix (see Golub and
Van Loan 1989) and its minimum is attained at special orthogonal matrices.
Furthermore, we compare different measures of connectedness in a real data
out-of-sample exercise aimed at assessing the forecasting performances. In the
empirical experiment, the PMCs show an effective capacity for discriminat-
ing high volatility negative returns periods with respect to normal volatility
periods, providing a useful instrument to predict future market distresses.

The paper is organized as follows: in Section 2 we discuss some literature
on systemic risk; in Section 3 we provide the definition of the PMCs comment-
ing on the required minimal properties; in Section 4 we recall the notions of
Chisini and power means and, based on them, we discuss general classes of
PMCs along with their properties; in Section 5 we consider some widely used
measures of connectedness proposed in the literature and investigate whether
they belong to the PMC class; finally, in Section 6, using real financial data,
we set up an empirical application and compare the forecasting performances
of the considered measures of connectedness. We gather comments and con-
clusions in Section 7, which ends the paper.
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2 Systemic risk and its measurement

A typical characteristic of connectedness stands in its good capability of mea-
suring the propagation strength of a signal within a set of elements. This
feature proves to be fundamental for systemic risk analysis. In fact, although
it does not exist a unique and globally accepted definition of systemic risk, it
can be generally defined as the risk of catastrophic events affecting the vast
majority of the elements of a system (companies, banks, governments, eco-
nomic sectors, . . . ). For example, systemic risk can be defined as “any set of
circumstances that threatens the stability of or public confidence in the finan-
cial system” (see Billio et al. 2012), while the European Central Bank generally
refers to a financial instability “so widespread that it impairs the functioning
of a financial system to the point where economic growth and welfare suffer
materially.” The plurality of definitions and their vagueness give rise to the
proposal of a multitude of measures, each of them focusing on some specific
aspect of systemic risk.

In the recent literature, various other different approaches have been pro-
posed for systemic risk detection in finance: for qualitative models see Gaytán
and Johnson (2002), for network theory based models see Elsinger et al. (2006),
for artificial intelligence based models see Chin-Shien et al. (2006), for machine
learning based approaches see Manasse and Roubini (2009), for the scenario
analysis framework see Aikman et al. (2009), for principal components analy-
sis approaches see Kritzman et al. (2011) and Zheng et al. (2012), for market
based measures and the use of marginal expected shortfall see Pederzoli and
Torricelli (2017) and Acharya et al. (2017), for pivotal systemic risk measures
see Stolbov and Shchepeleva (2018).

For a comprehensive review of the measures proposed in the literature we
refer to the survey Bisias et al. (2012). In this paper, the measures of systemic
risk are divided into different categories on the base of the types of inputs
required, analysis performed, and outputs produced.

In particular, the survey considers the measures of connectedness proposed
in Billio et al. (2012) that we prove to belong to the class of PMCs (see Sec-
tion 5), providing the natural link between our proposal and the existing mea-
sures. Systemic risk emerged as a relevant issue principally as a consequence
of the global financial crisis of 2007–2009. The subject has been treated from
different points of view, stressing various aspects of the phenomenon. A typical
notion of systemic risk analysis is that of systemically important institution.
A systemically important institution is an element of a system with strong
effects on a large number of elements, in case of negative events (large price
drops, financial distress, default). The Financial Stability Board publishes the
list of the global systemically important financial institutions, after a moni-
toring activity of the main banks and financial institutions. In the academic
literature, among the technique to detect such institutions, we recall CoVaR
analysis (see Adrian and Brunnermeier 2009; 2011) and network theory (see
Caccioli et al. 2018; for a complete review). In this field it is possible to as-
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sign each element a measure of systemic danger, and thus they are suited for
monitoring and regulation of financial institutions.

In this paper we refer to another line of research. In fact, we are interested
to an overall measure of the systemic fragility of a whole system (see Bisias
et al. 2012; and the references therein). This way, the single elements are not
individually analyzed and the focus is placed on the comprehensive effects.
In our approach the systemic risk is considered as endogenous, in the sense
that it generates within the system and does not comes from an external
source of risk. Thus, the definition and the application of the measures of
connectedness appear to be valuable tools to assess the fragility of the system.
This is an important aspect, for instance when considering the policy makers’
attention to systemic risk, as the notion of connectedness can add relevant
information to the risk analysis. In financial applications, the connectedness is
a measure of how strong the effects of systematic bad news can be on financial
returns. A highly connected financial system is exposed to large fluctuations,
because the possible diversification effect is weak and all the returns display
common pattern. In such financial markets, the risk is hardly diversifiable and
the possible losses can be severe. In this situation negative feedback effects can
worsen the initial shock, producing a risk amplification. In this sense, it is also
possible to consider the connectedness as a candidate predictor for market
risk increase. This is the motivation of the empirical analysis we present in
Section 6, where various measures of connectedness are compared on the basis
of their predicting power, with respect to an increase of the foregoing market
risk. Moreover, we consider connectedness measures that can be computed
directly on the same variables which defines the elements of the system. In
other words, we do not insert in the analysis exogenous variables, such as
macroeconomic variables.

3 Proper Measures of Connectedness

In this section we present the theoretical framework to introduce the Proper
Measures of Connectedness: we provide a general definition of a measure of
connectedness as a real-valued function satisfying a given set of minimal prop-
erties.

Let m ≥ n ≥ 2, let Matm×n be the set of m× n real matrices and Mm×n
be the subset of Matm×n containing all the full-rank matrices, i.e. rank(A) =
n, ∀A ∈ Mm×n. Throughout the paper, we will interpret the columns Aj ,
with j = 1, . . . , n, of A as the m realizations of a random variable representing
the jth element of the system. We indicate with At the transposed of any
matrix A, with 〈·, ·〉 the scalar product and with ‖ · ‖ the Euclidean norm.

Definition 1 (Proper Measure of Connectedness) A real-valued func-
tion C : Mm×n → R is a Proper Measure of Connectedness (PMC) if it
satisfies the following minimal properties 1, 2, 3 and 4.

Property 1 C(A) ≥ 0, for any A ∈Mm×n.
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A PMC is a non-negative function of a given input matrix.

Property 2 C(A) is invariant for any permutation of the columns of A ∈
Mm×n.

This property states that the connectedness is required to be independent
from the order the constituents of a system are considered. For example, if we
consider a financial market, its connectedness is independent from the order
the assets are considered in the calculation.

Property 3 C(A) > C(B) if and only if C(αA) > C(αB), for any A,B ∈
Mm×n and α > 0.

This property requires that a positive rescaling in the data does not signifi-
cantly impact the structure of connectedness of the corresponding system; in
other words, if one system results to be more connected compared to another
one, it remains so, after any rescaling of the data.

Remark 1 If C is a homogeneous function, that is if there exists an integer
r ∈ R such that C(αA) = αrC(A) for any A ∈ Mm×n and α > 0, then C
satisfies Property 3.

It is worthwhile to give an interpretation of Remark 1 in the special case
r = 0: the PMCs contain the functions whose value is independent from any
positive rescaling of the input data, i.e. a scale invariant measures.

Property 4 Let ρ be the linear correlation coefficient and a1, a2, a3 ∈ Mm×1,
with ‖a2‖ = ‖a3‖ and 〈1, a2〉 = 〈1, a3〉 = 0, where 1 is the unit vector.
Let A1j = (a1|aj) ∈ Mm×2, with j ∈ {2, 3}. If |ρ(a1, a2)| ≥ |ρ(a1, a3)| then
C(A12) ≥ C(A13).

This last property reflects the relation between correlation and connectedness:
a higher correlation results in a higher connectedness. On the opposite, noth-
ing is specified when the connectedness is high: a high level of connectedness
could mean something more than a simple high correlation in the data. Prop-
erty 4 requires a PMC to incorporate at least the information provided by the
correlation and, if possible, some extra information. The technical conditions
‖a2‖ = ‖a3‖ and 〈1, a2〉 = 〈1, a3〉 = 0 are required to avoid potential numeri-
cal distortions related to a wide difference in the norm of a2 and a3. Moreover,
they imply that the additional columns contain data with zero mean and equal
variance, focusing the comparison on the correlation.

4 A class of PMCs

In this section, based on the classical concept of mean introduced by Chisini
(1929), we define a family of measures respecting the requirements for a PMC.
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Definition 2 (Chisini mean) Let I be a real interval, x1, . . . , xn ∈ I and
f : In → R. If there exists a value x ∈ R such that

f(x1, . . . , xn) = f(x, . . . , x)

then x = x(x1, . . . , xn) is called the Chisini mean of x1, . . . , xn with respect
to f (or more simply the Chisini mean of x1, . . . , xn).

As pointed out by De Finetti (1931) (see in particular page 19), despite the
fact that Chisini has been the first mathematician to shed light on the deep
meaning of the concept of mean, Chisini’s definition is so general that it does
not even satisfy the property to be an internal function, which is required in
many practical situations. Therefore, very useful properties, like idempotency,
inbetweenness, monotonicity and homogeneity, do not generically hold and
need to be imposed upon request, as in our case. We state Definition 3 by
referring to the state-of-the-art (see Grabisch et al. 2011).

Definition 3 Let I be a real interval and let us consider a Chisini mean
x(x1, . . . , xn) defined on (x1, . . . , xn) ∈ In. Then the Chisini mean is:

- idempotent: if x1 = . . . = xn = x ∈ I implies x(x, . . . , x) = x, for any
x ∈ I;

- internal: if min{x1, . . . , xn} ≤ x(x1, . . . , xn) ≤ max{x1, . . . , xn} for any
x1, . . . , xn ∈ I;

- nondecreasing: if x(x1, . . . , xn) ≤ x(y1, . . . , yn) for any tuples (x1, . . . , xn),
(y1, . . . , yn) ∈ In such that xi ≤ yi, i = 1, . . . , n;

- strictly increasing: if x(x1, . . . , xn) < x(y1, . . . , yn) for any (x1, . . . , xn) 6=
(y1, . . . , yn) ∈ In such that xi ≤ yi, i = 1, . . . , n;

- homogeneous (of degree 1): if x(αx1, . . . , αxn) = αx(x1, . . . , xn) for any
x1, . . . , xn ∈ I and for any α > 0.

Starting from an idempotent, internal, nondecreasing, homogeneous Chisini
mean, we introduce a general class of PMCs (see Definition 1).

Definition 4 (Chisini measure) Let A ∈ Mm×n and let σ1(A) ≥ . . . ≥
σn(A) > 0 ∈ I ⊂ R be the singular values of A (for instance, see Golub and
Van Loan 1989) listed, as usual, in nonincreasing order. For each k ∈ {1, . . . , n}
the Chisini measure mk(A) is defined as

mk(A) =
σ1(A)

σ(σn−k+1(A), . . . , σn(A))
,

where σ is an idempotent, internal, nondecreasing, homogeneous Chisini mean.

In the following proposition we prove that mk is a PMC.

Proposition 1 The Chisini measure mk is a PMC, for each k ∈ {1, . . . , n}.
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Proof Let k ∈ {1, . . . , n}. From Definition 4 each mk is a real-valued function
defined on the full-rank matrices Mm×n.

Let A ∈ Mm×n and σ1(A) ≥ . . . ≥ σn(A) > 0 be its singular values.
Since the considered Chisini mean is internal, then σ(σn−k+1(A), . . . , σn(A)) ≥
min{σn−k+1(A), . . . , σn(A)} > 0, and so

mk(A) =
σ1(A)

σ(σn−k+1(A), . . . , σn(A))
> 0

therefore Property 1 is satisfied.

To prove Property 2 it is enough to observe that the singular values of a
matrix do not change under rows or columns permutation.

To prove Property 3, we recall that σj(αA) = ασj(A) for each α > 0
and for each j ∈ {1, . . . , n} (it immediately follows from the singular value
decomposition, see Golub and Van Loan (1989)). Further, since the consid-
ered Chisini mean is homogeneous of degree 1, it is easy to show that mk is
homogeneous of degree 0. In fact

mk(αA) =
σ1(αA)

σ(σn−k+1(αA), . . . , σn(αA))
=

ασ1(A)

ασ(σn−k+1(A), . . . , σn(A))
= mk(A)

for each α > 0 and for each k ∈ {1, . . . , n}. So Property 3 is proved.

To prove Property 4, we note that the assumptions |ρ(a1, a2)| ≥ |ρ(a1, a3)|,
‖a2‖ = ‖a3‖ and 〈1, a2〉 = 〈1, a3〉 = 0 are equivalent to 〈a1, a2〉2 ≥ 〈a1, a3〉2.
Since n = 2, then k ∈ {1, 2}. If k = 1, for the idempotency property of the
Chisini mean σ(σ2(A1j)) = σ2(A1j), for any j ∈ {2, 3}, and so:

m1(A1j) =
σ1(A1j)

σ2(A1j)
, j ∈ {2, 3}. (1)

If k = 2, using the homogeneity property of the Chisini mean, we have:

m2(A1j) =
σ1(A1j)

σ (σ1(A1j), σ2(A1j))
=

1

σ
(

1,
σ2(A1j)
σ1(A1j)

) , j ∈ {2, 3}. (2)

Since the singular values are invariant to matrix transpose and recalling
a result of Torrente and Uberti (2018) (see Proposition 6, formula (14)) it
follows that

σ1(A1j)

σ2(A1j)
=

√√√√1 + 2
1√

h(at1, a
t
j)− 1

(3)

where h(at1, a
t
j) is defined by

h(at1, a
t
j) =

(‖a1‖2 + ‖aj‖2)2

(‖a1‖2 − ‖aj‖2)2 + 4〈a1, aj〉2
.
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Since ‖a2‖ = ‖a3‖ and 〈a1, a2〉2 ≥ 〈a1, a3〉2 then h(at1, a
t
2) ≤ h(at1, a

t
3), and

consequently, using formula (3), it follows

σ1(A12)

σ2(A12)
≥ σ1(A13)

σ2(A13)
. (4)

Using expression (1) and inequality (4), we have:

m1(A12) =
σ1(A12)

σ2(A12)
≥ σ1(A13)

σ2(A13)
= m1(A13).

Analogously, using expression (2), inequality (4) and the nondecreasing prop-
erty of the Chisini mean, we have:

m2(A12) =
1

σ
(

1, σ2(A12)
σ1(A12)

) ≥ 1

σ
(

1, σ2(A13)
σ1(A13)

) = m2(A13).

Therefore, we conclude that mk is a PMC, for each k ∈ {1, . . . , n}.

The proposed class of PMCs {mk}k=1,...,n verifies a bunch of interesting
properties in addition to the minimal properties required for a PMC, presented
in Proposition 2, whose proof requires the following technical lemma.

Lemma 1 Let mk, k ∈ {1, . . . , n}, be the Chisini measure defined overMm×n
and let A ∈Mm×n. Assume that the Chisini mean that defines mk is strictly
increasing. If there exists i ∈ {1, . . . , n} such that mi(A) = 1, then σ1(A) =
. . . = σn(A) = ‖A‖ and mk(A) = 1 for each k ∈ {1, . . . , n}.

Proof Let mi(A) = 1 for some i ∈ {1, . . . , n}; using the internal property of
the Chisini mean we have:

1 = mi(A) =
σ1(A)

σ(σn−i+1(A), . . . , σn(A))
≥ σ1(A)

σn−i+1(A)
≥ 1, (5)

from which it follows that σn−i+1(A) = σ1(A), and therefore

σj(A) = σ1(A), j = 1, . . . , n− i+ 1. (6)

If i = 1, the proof is complete. If i > 1, since in particular σ1(A) = σn−i+1(A),
we rewrite (5) as follows:

σ(σn−i+1(A), . . . , σn(A)) = σn−i+1(A) = max{σn−i+1(A), . . . , σn(A)},

from which, since by assumption the Chisini mean is strongly increasing, we
have

σj(A) = σn−i+1(A), j = n− i+ 1, . . . , n. (7)

Consequently, from (6) and (7) and the equality σ1(A) = ‖A‖, it follows
σ1(A) = . . . = σn(A) = ‖A‖; therefore

mk(A) =
σ1(A)

σ(σn−k+1(A), . . . , σn(A))
=

σ1(A)

σ(σ1(A), . . . , σ1(A))
=
σ1(A)

σ1(A)
= 1,

for each k ∈ {1, . . . , n}, so the lemma is proved.
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Proposition 2 (Properties of the Chisini measures mk) Let mk, k ∈
{1, . . . , n}, be the Chisini measure defined overMm×n, let A ∈Mm×n and let

K(A) = σ1(A)
σn(A) be the condition number of A (see Golub and Van Loan 1989).

Then:

1. m1(A) = σ1(A)
σn(A) = K(A);

2. 1 ≤ mk(A) ≤ K(A), for each k ∈ {1, . . . , n}.

Furthermore, if the Chisini mean identifying mk is strongly increasing, the
following properties hold:

3. mk(A) = 1, for each k = 1, . . . , n, if and only if 1
‖A‖A is unitary;

4. let m > n, let b ∈Mm×1, let Aj denote the j-th column of A, j = 1, . . . , n,
and let (Aj | b) ∈ Mm×2. If m1(Aj | b) = 1, for each j ∈ {1, . . . , n}, then
the matrix (A | b) ∈Mm×(n+1) and

mk(A | b) = mk(A), ∀k ∈ {1, . . . , k},

where k = max{j ∈ {1, . . . , n} | σn−j+1(A) < ‖b‖}.

Proof 1: It is enough to exploit the idempotency property of the Chisini mean
which yields σ(σn(A)) = σn(A).

2: It easily follows using the internal property of the Chisini mean

mk(A) ≥ σ1(A)

max{σn−k+1(A), . . . , σn(A)}
=

σ1(A)

σn−k+1(A)
≥ 1,

mk(A) ≤ σ1(A)

min{σn−k+1(A), . . . , σn(A)}
=
σ1(A)

σn(A)
= K(A).

3: If there exists k ∈ {1, . . . , n} such that mk(A) = 1 then, applying
Lemma 1, it follows that σ1(A) = . . . = σn(A) = ‖A‖. Therefore the sin-
gular value decomposition of 1

‖A‖A is

1

‖A‖
A = U

(
In

0(m−n)×n

)
V t,

with U ∈ Matm×m(R) and V ∈ Matn×n(R) be orthonormal matrices. Con-
sequently, 1

‖A‖2A
tA = In, that is, 1

‖A‖A is unitary. Vice versa, by defini-

tion of unitary matrix, it follows that AtA = AAt = ‖A‖2In. Therefore
σ1(A) = . . . = σn(A) = ‖A‖ and, by an easy computation, using the idem-
potency property of the Chisini mean, it follows that mk(A) = 1 for each
k ∈ {1, . . . , n}.

4: Let j ∈ {1, . . . , n}; using the assumption m1(Aj | b) = 1 and applying
Lemma 1 and item 3, it follows that 1

‖(Aj | b)‖ (A
j | b) is orthonormal, therefore,

in particular, b is orthogonal to each Aj . Consequently, b 6∈ span(A1, . . . , An),
so the matrix (A | b) ∈ Mm×(n+1). Using again Lemma 1 it follows that

σ1(Aj |b) = σ2(Aj |b) = ‖(Aj |b)‖ and from the orthonormality of 1
‖(Aj | b)‖ (A

j |b)
we conclude that ‖(Aj |b)‖ = ‖Aj‖ = ‖b‖, for each j ∈ {1, . . . , n}. In particular,



Proper Measures of Connectedness 11

the squared Frobenius norm of (A | b) is ‖(A | b)‖2F = (n+ 1)‖b‖2. We consider
the characteristic polynomial of the matrix (A | b)t(A | b):

pλ((A | b)t(A | b)) = det((A | b)t(A | b)− λIn+1) =

= det

(
AtA− λIn 0
0 btb− λ

)
= (‖b‖2 − λ) det(AtA− λIn),

from which it easily follows that the singular values of the matrix (A | b) are
the (not ordered) values ‖b‖, σ1(A), . . . , σn(A). We prove that σn(A) ≤ ‖b‖ ≤
σ1(A). In fact, by contradiction, if ‖b‖ > σ1(A), then we have

(n+ 1)‖b‖2 = ‖(A | b)‖2F = σ2
1(A) + . . .+ σ2

n(A) + ‖b‖2 < (n+ 1)‖b‖2.

Analogously, if ‖b‖ < σn(A), then we have

(n+ 1)‖b‖2 = ‖(A | b)‖2F = σ2
1(A) + . . .+ σ2

n(A) + ‖b‖2 > (n+ 1)‖b‖2.

So, in particular, we have σ1(A|b) = σ1(A) and σ(n+1)−k+1(A|b) = σn−k+1(A),

for each k ∈ {1, . . . , k}. Therefore, by computing mk(A | b), for each k ∈
{1, . . . , k}, we obtain:

mk(A | b) =
σ1(A | b)

σ(σ(n+1)−k+1(A | b), . . . , σn+1(A | b))
=

=
σ1(A)

σ(σn−k+1(A), . . . , σn(A))
= mk(A),

so the proposition is proved.

Proposition 2 provides interesting properties of the measures {mk}k=1,...,n

highlighting the relations between such class of PMCs and well-known linear
algebra concepts. Item 1 shows that m1 coincides with K, so that the measure
mk, whose values mk(A) belong to the interval [1,K(A)] (see item 2), is a
generalization of the condition number of a matrix. Further, items 3 and 4
relate the minimum value of mk to special geometrical properties of the input
matrix.

4.1 The Power Mean Measure

In this section we explicitly propose a family of PMCs by simply specifying
a class of means chosen among the Chisini means. A well-studied class is
represented by the quasi-arithmetic means (QAM) (for instance, see Grabisch
et al. 2011), yielding the general form of each associative and monotone Chisini
mean (Nagumo-Kolmogoroff Theorem, see Kolmogoroff 1930). We construct
the proposed PMCs using the class of power means, which basically coincides
with the homogeneous QAM (see Grabisch et al. 2011; Theorem 3).

Definition 5 (Power mean) Let p ∈ R≥0 ∪ {+∞} and x1, . . . , xn be n real
positive numbers. The power mean with exponent p of x1, . . . , xn, denoted by
Mp(x1, . . . , xn), is defined as follows:
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- if p > 0:

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

xpi

) 1
p

;

- if p = 0:

M0(x1, . . . , xn) = lim
p→0

Mp(x1, . . . , xn) = n
√
x1 · . . . · xn;

- if p = +∞:

M+∞(x1, . . . , xn) = lim
p→+∞

Mp(x1, . . . , xn) = max{x1 . . . xn}.

We list some special cases:

- if p = 0 then M0(x1, . . . , xn) = (
∏n
i=1 xi)

1
n is the geometric mean;

- if p = 1 then M1(x1, . . . , xn) =
∑n

i=1 xi

n is the arithmetic mean;

- if p = 2 then M2(x1, . . . , xn) =
(∑n

i=1 x
2
i

n

) 1
2

is the quadratic mean or root
mean square;

- if p = +∞ then M+∞(x1, . . . , xn) = max{x1, . . . , xn} is the maximum.

The power mean just defined allows us to introduce the Power Mean Mea-
sure µpk.

Definition 6 (Power Mean Measure) LetA ∈Mm×n, let σ1(A), . . . , σn(A)
be the singular values of A and let p ∈ R≥0 ∪ {+∞}. For each k ∈ {1, . . . , n}
the Power Mean Measure µpk(A) is defined by:

µpk(A) =
σ1(A)

Mp(σn−k+1(A), . . . , σn(A))
,

where Mp is the p-power mean.

Proposition 3 The Power Mean Measure µpk, p ∈ R≥0 ∪ {+∞}, is a PMC
for each k ∈ {1, . . . , n}.

Proof It is enough to observe that the power mean Mp, p ∈ R≥0 ∪ {+∞}
is an idempotent, internal, nondecreasing, homogeneous Chisini mean (see
Definition 3) and to apply Proposition 1.

It is immediate to observe that µpk also satisfies additional properties. In
particular, if p 6= +∞, µpk satisfies Lemma 1 and Proposition 2; whereas, in
the case p = +∞, since the power mean M+∞ is not strongly increasing, µpk
only satisfies Proposition 2, items 1 and 2. Further, for p ∈ R≥0∪{+∞} other
properties of µpk are outlined in the following proposition; in order to prove it,
we recall that power means are decomposable (see Grabisch et al. 2011), i.e.
for the integers 0 ≤ k ≤ n

Mp(x1, . . . , xn) = Mp(Mp(x1, . . . , xk), . . . ,Mp(x1, . . . , xk)︸ ︷︷ ︸
k times

, xk+1, . . . , xn).



Proper Measures of Connectedness 13

Proposition 4 Let µpk, p ∈ R≥0∪{+∞}, be the Power Mean Measure defined
on Mm×n, with k ∈ {1, . . . , n}. Then the following properties hold:

1. µpk+1(A) ≤ µpk(A), for each A ∈Mm×n and for each k ∈ {1, . . . , n};
2. if p < q then µpk(A) ≥ µqk(A) for each A ∈ Mm×n and for each k ∈
{1, . . . , n}; further, µpk(A) = µqk(A) if and only if 1

‖A‖A is orthonormal.

Proof 1: Let M = Mp(σn−k+1(A), . . . , σn(A)). Thanks to the decomposability
of the power means

Mp(σn−k(A), σn−k+1(A), . . . , σn(A)) = Mp(σn−k(A),M, . . . ,M︸ ︷︷ ︸
k times

).

Since the power means are internal and the singular values are listed in de-
creasing order then σn−k(A) ≥M ; moreover, power means are nondecreasing
and idempotent, so

Mp(σn−k(A),M, . . . ,M︸ ︷︷ ︸
k times

) ≥Mp(M, . . . ,M︸ ︷︷ ︸
k+1 times

) = M = Mp(σn−k+1(A), . . . , σn(A)).

Consequently,

µpk+1(A) =
σ1(A)

Mp(σn−k(A), . . . , σn(A))
≤ σ1(A)

Mp(σn−k+1(A), . . . , σn(A))
= µpk(A).

2: since p < q, by applying the power mean inequality, we have:

Mp(σn−k+1(A), . . . , σn(A)) ≤Mq(σn−k+1(A), . . . , σn(A)),

and therefore

µpk(A) =
σ1(A)

Mp(σn−k+1(A), . . . , σn(A))
≥ σ1(A)

Mq(σn−k+1(A), . . . , σn(A))
= µqk(A),

for each A ∈ Mm×n and for each k ∈ {1, . . . , n}. Further, using again the
power mean inequality, which states that two means with different powers p
and q are equal if and only if all the elements of the list are the same, we have
that µpk(A) = µqk(A) for each k ∈ {1, . . . , n} if and only if σ1(A) = . . . = σn(A),
which is equivalent to the condition 1

‖A‖A is orthonormal.

5 Some measures of connectedness proposed in the literature

A bunch of indexes has been proposed in the literature in order to measure the
connectedness of the financial markets and possibly to prevent systemic risk
and financial crises. In this section, we review some of the most used connect-
edness indicators and investigate whether these measures verify the minimal
properties required by the PMCs definition. We focus our attention on the fol-
lowing most commonly used measures: the Total Connectedness (see Diebold
and Yilmaz 2009), the Cumulative Risk Fraction (see Billio et al. 2012), the
Market Rank Indicator (see Figini et al. 2018), the Average Correlation, the
Variance Inflation Factor (see Belsey et al. 1980), the Mahalanobis distance
(see Mahalanobis 1936).
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5.1 The Total Connectedness

The Total Connectedness (TC) has been first introduced in (see Diebold and
Yilmaz 2009). The measure of connectedness is evaluated on the base of an
average of the entries of the so called Connectedness Table, a matrix where
the entries depends on a “variance decomposition matrix” and the estimation
of a Vector autoregression (VAR) model. For more details on the calculation
of TC see (see Diebold and Yilmaz 2009). Considering that the value of TC
depends on the estimation of an econometric model, it is not immediate to
prove if the TC belongs to the class of PMCs. In our opinion, this is behind
the scope of the present paper. Nevertheless, given the importance of the TC
in the framework of connectedness measures, we decided to include it in our
empirical experiment as a benchmark for the PMCs.

5.2 The Cumulative Risk Fraction

The notion of Cumulative Risk Fraction (see Billio et al. 2012) is defined as
the portion of the variability of the returns explained by the first principal
components.

Definition 7 (Cumulative Risk Fraction) The Cumulative Risk Fraction
hk, k = 1, . . . , n, is a real-valued function of the matrices A ∈ Mm×n defined
as

hk(A) =

∑k
j=1 σ

2
j (A)∑n

j=1 σ
2
j (A)

.

Proposition 5 The Cumulative Risk Fraction hk is a PMC, for each k ∈
{1, . . . , n}.
Proof Let k ∈ {1, . . . , n}. From Definition 7 each hk is a real-valued function
defined on the full-rank matrices Mm×n.

Let A ∈ Mm×n and σ1(A) ≥ . . . ≥ σn(A) > 0 be its singular values.
Obviously, we have

0 < hk(A) =

∑k
j=1 σ

2
j (A)∑n

j=1 σ
2
j (A)

≤ 1,

therefore Property 1 is satisfied.
To prove Property 2 it is enough to observe that the singular values of a

matrix do not change under rows or columns permutation.
To prove Property 3, it is enough to note that hk is a positive homogeneous

function of degree 0 (see Remark 1).
Now we prove Property 4. Recall that the assumptions |ρ(a1, a2)| ≥ |ρ(a1, a3)|,

‖a2‖ = ‖a3‖ and 〈1, a2〉 = 〈1, a3〉 = 0 are equivalent to 〈a1, a2〉2 ≥ 〈a1, a3〉2.
Since n = 2, then k ∈ {1, 2}. If k = 1, then:

h1(A1j) =
σ2
1(A1j)

σ2
1(A1j) + σ2

2(A1j)
=

1

1 +
(
σ2(A1j)
σ1(A1j)

)2 , j ∈ {2, 3}. (8)
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Arguing in the same way as in the proof of Proposition 1 (see formula (3) and
(4)), we obtain

σ1(A12)

σ2(A12)
≥ σ1(A13)

σ2(A13)

from which, using expression (8) it follows h1(A12) ≥ h1(A13).
Finally, if k = 2, then:

h2(A1j) =
σ2
1(A1j) + σ2

2(A1j)

σ2
1(A1j) + σ2

2(A1j)
= 1, j ∈ {2, 3},

so the proof is concluded.

5.3 The Market Rank Indicator

The notion of Market Rank Indicator (see Figini et al. 2018) is defined as a
ratio of some of the eigenvalues of a given matrix and it is useful to detect the
collinearity between the columns of the input matrix.

Definition 8 (Market rank indicator) (see Figini et al. 2018) The market
rank indicator sk, k = 1, . . . , n, is a real-valued function of the matrices A ∈
Mm×n defined as

sk(A) =
σ1(A)(∏k

j=1 σn−j+1(A)
) 1

k

.

We point out that sk is a special case of the Power Mean Measure µpk when
k = 0, i.e. sk = µ0

k for each k ∈ {1, . . . , n}. Therefore, from Proposition 3,
it immediately follows that sk is a PMC. In particular, from Proposition 4,
item 2, it follows that

sk(A) ≥ µpk(A), ∀p > 0 or p = +∞.

5.4 The Average Correlation

We recall the definition of Average Correlation commonly used to measure the
internal reliability of the set of variables in a matrix.

Definition 9 (Average correlation) The average correlation cave is a real-
valued function of the matrices A ∈Mm×n defined as

cave(A) =
2

n(n− 1)

n∑
i,j=1,i6=j

|ρ(Ai, Aj)|, (9)

where A1, . . . , An denote the columns of A and ρ(Ai, Aj) is the Pearson cor-
relation coefficient between Ai and Aj .
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Proposition 6 The average correlation cave is a PMC.

Proof From Definition 9 the average correlation cave is a real-valued function
defined over the full-rank matrices Mm×n.

Property 1 immediately follows from the definition.
To prove Property 2 it is enough to observe that any permutation of the

columns of A does not change (9).
To prove Property 3, we show that cave is a positive homogeneous func-

tion of degree 0 (see Remark 1). Recalling that the correlation coefficient ρ is
invariant under (even different) scale changes in the two arguments, it easily
follows that, for each α > 0:

cave(αA) =
2

n(n− 1)

n∑
i,j=1,i<j

|ρ(αAi, αAj)| =

=
2

n(n− 1)

n∑
i,j=1,i<j

|ρ(Ai, Aj)| = cave(A).

Regarding Property 4, since n = 2, the average correlation is simply

cave(A1j) = |ρ(a1, aj)|, j ∈ {2, 3},

therefore the statement immediately follows.

5.5 The Variance Inflation Factor

The Variance Inflation Factors (VIFs) are measures commonly used by econo-
metricians to detect the presence of collinearity in a multiple linear model, see
for instance Belsey et al. (1980). From the VIFs of the data matrix, it is
possible to obtain a measure of connectedness as follows.

Definition 10 (Maximum Variance Inflation Factor - M-VIF) Let A ∈
Mm×n and A1 . . . , An be the columns of A. The Variance Inflation Factors
of A are defined by

VIFj(A) =
1

1−R2
j

, j = 1, 2, . . . , n,

where R2
j is the coefficient of determination of the linear regression of Aj with

respect to {Ai | i = 1, . . . , n, i 6= j}. The Maximum Variance Inflation Factor
M-VIF(A) is defined as

M-VIF(A) = max{VIF1(A), . . . ,VIFn(A)}.

Proposition 7 The Maximum Variance Inflation Factor M-VIF is a PMC.
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Proof From Definition 10, M-VIF is a real-valued function defined over the
full-rank matrices Mm×n.

To prove Property 1 we recall that for each j ∈ {1, . . . , n} the coefficient of
determination R2

j ∈ [0, 1], therefore VIFj(A) ≥ 1, and so M-VIF(A) ≥ 1 > 0.
To prove Property 2 it is enough to observe that any permutation of the

columns of A induces the same permutation in the set of values {VIFj(A) | j ∈
{1, . . . , n}}, but this does not affect their maximum value, and so M-VIF does
not change.

To prove Property 3, it is enough to show that the function VIF(A) is
homogeneous of degree 0 (see Remark 1). Recalling that, for each j, the coeffi-
cient of determination R2

j is invariant under any scale change of the problem,
it follows that the same holds for VIFj(A), and this allows us to conclude that
M-VIF(αA) = M-VIF(A) for each α > 0.

Finally, we consider Property 4. First of all, we recall that with n = 2 the
two VIFs of a data matrix are equal. Therefore, we need only to show that
VIF1(A12) ≥ VIF1(A13) or, equivalently, that R2

1(A12) ≥ R2
1(A13). Thanks to

the definition of the coefficient of determination we obtain, for j ∈ {2, 3},

R2
1(A1j) =

β2
1,j‖aj‖2

‖a1‖2
,

where β1,j =
cov(a1,aj)
Var(aj)

is the slope of the regression line, and therefore

R2
1(A1j) = ρ(a1, aj)

2 Var(a1)

Var(aj)

‖aj‖2

‖a1‖2
.

Since the assumptions ‖a2‖ = ‖a3‖ and 〈1, a2〉 = 〈1, a3〉 = 0 lead to Var(a2) =
Var(a3), using the hypothesis |ρ(a1, a2)| ≥ |ρ(a1, a3)| we get

R2
1(A12) ≥ R2

1(A13),

so that M-VIF1(A12) ≥ M-VIF1(A13).

5.6 The Mahalanobis distance

The Mahalanobis distance is a measure of a distance between a point and a
distribution, see Mahalanobis (1936).

Definition 11 (Mahalanobis distance) The Mahalanobis distance dM is a
real-valued function of the matrices A ∈Mm×n defined by:

dM (A) =
√
AmS

−1
A Atm,

where SA ∈Mn×n is the covariance matrix of the column vectors A1, . . . , An

of A and Am ∈ Mat1×n(R) is the mth row vector of A.
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The Mahalanobis distance is not a PMC: indeed, it satisfies Property 1, 2
and 3, as proved in Proposition 8, but it does not satisfy Property 4, as shown
in Example 1.

Proposition 8 The Mahalanobis distance dM satisfies Property 1, 2, 3 of
PMCs.

Proof Property 1 follows from the definition of dM .
To prove Property 2, let Π ∈ Matn×n(R) be a permutation matrix and

AΠ ∈ Matm×n(R). Let SAΠ be the covariance matrix of the column vectors
of AΠ and (AΠ)m ∈ Mat1×n(R) be the mth row of AΠ. It is immediate to
verify that SAΠ = ΠtSAΠ and (AΠ)m = AmΠ. Therefore

dM (AΠ) =
√

(AΠ)mS
−1
AΠ(AΠ)tm =

√
AmΠ(ΠtSAΠ)−1(AmΠ)t =

=
√
AmΠ Π−1S−1A (Πt)−1ΠtAtm =

√
AmS

−1
A Atm = dM (A),

thus Property 2 is proved.
Regarding Property 3, it is enough to show that dM is a positive homoge-

neous function of degree 0 (see Remark 1). To this end, we consider the matrix
αA, with α > 0. The covariance matrix of the columns of αA is SαA = α2SA,
and the m-th row of αA is (αA)m = αAm; therefore

dM (αA) =
√

(αA)mS
−1
αA(αA)tm =

√
αAm(α2SA)−1αAtm = dM (A).

Example 1 We consider a1, a2, a3 ∈ Mat4×1(R), A12 = (a1 | a2) and A13 =
(a1 | a3) in M4×2. Note that the assumptions ‖a2‖ = ‖a3‖ and 〈1, a2〉 =
〈1, a3〉 = 0 of Property 4 are satisfied.

In the following two cases we compare the ordering of |ρ(a1, a2)| and
|ρ(a1, a3)| with the ordering of the Mahalanobis distance dM (A12) and dM (A13).

First case:

a1 =


−0.7609

0.6421
0.0880
0.0309

 a2 =


−0.6485

0.6718
0.2411
−0.2644

 a3 =


0.6213
0.2844
−0.7007
−0.2050


|ρ(a1, a2)| = 0.9379 > 0.3581 = |ρ(a1, a3)|
dM (A12) = 1.4659 > 0.3638 = dM (A13).

Second case:

a1 =


0.0693
0.7904
−0.4511
−0.4086

 a2 =


−0.8558

0.2244
0.4102
0.2213

 a3 =


−0.1810

0.1147
−0.6567

0.7230


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|ρ(a1, a2)| = 0.1574 > 0.0790 = |ρ(a1, a3)|
dM (A12) = 0.7593 < 1.4910 = dM (A13).

Since, under the assumption |ρ(a1, a2)| > |ρ(a1, a3)|, both cases dM (A12) <
dM (A13) or dM (A12) < dM (A13) may occur, we conclude that the Mahalanobis
distance does not satisfy Property 4.

6 Empirical application

In this section various measures of connectedness are considered and compared
according to their capabilities to forecast the risk of a market. To this aim,
following Figini et al. (2018), we build up a financial application in which, for
each considered measure of connectedness, the capability to detect possible
financial tensions in the system is related to an increase in the probability
of overall financial losses. We measure the market risk of losses by means of
the Value at Risk at 5% level (VaR5%) of a market index. We consider three
financial indexes: the S&P (SPX), Eurostoxx (EUROSTOXX50) and DAX
(DAX30), together with their components. For the SPX we use its sector sub-
indexes1 instead of its components. For all datasets, the observations are daily
from July 9, 2005 to June 5, 2019.2 We consider the measures of connectedness
of Section 4 and Section 5, namely:

– The Total Connectedness (TC) (see Section 5.1).
– The Cumulative Risk Fraction (CRF) (see Section 5.2).
– The Power Mean Measure µpk (see Section 4.1) with various parameter

settings:
(i) µp1, i.e. the condition number K (note that the value of p is not relevant);
(ii) µ0

3, i.e. the market rank indicator s3 (see Section 5.3);
(iii) µ2

3.
Note that, in cases (ii) and (iii), the choice k = 3 turns out to be a good
trade off between the number of dimensions and the information about the
numerical rank of the data matrix.

– The average correlation (AC) (see Section 5.4).
– The Maximum Variance Inflation Factor (M-VIF) (see Section 5.5).
– The Mahalanobis distance (M) (see Section 5.6).

We remark that all the above measures except TC and M are proper measures
of connectedness.

In order to investigate the behavior of the distribution of each index’s
return conditioned on the value of the above measures of connectedness we
proceed as follows. Using the components or the sector sub-indexes of each
market, whose cardinality is denoted by n, we compute the value of each
measure of connectedness on a sliding window of length we days, and relate
the value of the measure to the return on 20 days (i.e. one month) ahead.

1 The sectors obtained from Bloomberg are the 10 level 1 sector aggregations.
2 Remark that the sample period covers the global financial crisis of 2008.
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Although the computation of each measure of connectedness is feasible for
sliding windows of length we ≥ n, we opt for a longer estimation window
of length we = 3n, that is, we set we = 30 for the SPX, we = 141 for the
EUROSTOXX50 and we = 81 for the DAX30. This choice is related to the
computation of TC that, being based on a VAR model, performs better using
longer estimation windows. Indeed, we observe that this settings could favour
TC, as higher values of we may turn the other measures to be less reactive and,
consequently, may worsen their performances. However, a detailed analysis of
the optimal settings is out of the scope of this application.
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Fig. 1 SPX. Comparison between unconditional (dashed) and conditional (solid) densities
of the 20-days ahead return of the index return. The conditional densities are conditioned
to values of the connectedness indicators belonging to their largest 10% quantile.

In Figures 1, 2 and 3 we compare the unconditional distributions of the
20-days ahead return of the the financial indexes SPX, EUROSTOXX50 and
DAX30 respectively, with the corresponding conditional distributions, condi-
tioned to the values of each considered measure of connectedness belonging
to their largest 10% quantile. We observe that, in order to be useful as an
early warning signal, the conditional distribution should display a fatter left
tail than the unconditional one; moreover, larger differences between the left
tails of the two distributions lead to better forecasting performances. In our
application we note that, as a general tendency, the conditional distributions
present fatter tails, mainly the left ones, if compared to the unconditional ones,
and this could be interpreted assessing that high values of the connectedness
indicators can anticipate an increase of the market risk. Further, it is evident
that the considered measures of connectedness show different performances: in
particular, the Power Mean Measures and, in general, the proper measures of
connectedness display overall good performances. On the other side, the worst
results are given by the Mahalanobis measure, which is not a proper measure
of connectedness.
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Fig. 2 EUROSTOXX50. Comparison between unconditional (dashed) and conditional
(solid) densities of the 20-days ahead return of the index return. The conditional densi-
ties are conditioned to values of the connectedness indicators belonging to their largest 10%
quantile.
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Fig. 3 DAX30. Comparison between unconditional (dashed) and conditional (solid) densi-
ties of the 20-days ahead return of the index return. The conditional densities are conditioned
to values of the connectedness indicators belonging to their largest 10% quantile.

In the following, using the above setting, we propose an alternative way to
estimate the forecasting capability of the various measures of connectedness.
We compare the Value at Risk at 5% level of the 20-days ahead returns of
each financial index, SPX, EUROSTOXX50 and DAX30, conditioned to low
and high values of the measures of connectedness computed on estimation
windows on length we = 30 for the SPX, we = 141 for the EUROSTOXX50
and we = 81 for the DAX30. We consider two different quantile levels, namely
25% and 10%, and gather the corresponding results in Table 1, subtables (a)
and (b), respectively. More in details, each subtable of Table 1 reports the
Value at Risk at 5% level of the return of the considered financial market,
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conditioned to the value of the measures of connectedness listed in the column
labeled with “Measures”. The column labeled with ql contains the VaR5% con-
ditioned to the measure’s values belonging to its lowest quantile; analogously,
the column labeled with qh contains the VaR5% conditioned to the measure’s
value belonging to its highest quantile; finally, the column labeled with ∆ con-
tains the difference between the two previous values. Note that a large value
of ∆ indicates that the measure can well discriminate between periods with
low and large VaR. Therefore, this difference may be used as a performance
measure of the various connectedness indicators. From Table 1 we observe that
in all but two cases the values of ∆ are strictly positive. Further, in most cases,
proper measures of connectedness yield the best results. In fact, except for the
case of the EUROSTOXX50 and 0.10 quantiles, proper measures outperform
non proper ones. We also remark that the class of Power Mean Measures shows
consistently good results, whereas the bad performances of CRF and AC cor-
responding to the DAX30 in the case of 0.10 quantiles may highlight the fact
that these kind of measures strongly rely on the linear correlation structure of
the returns.

(a) Quantile level 25%

SPX EUROSTOXX50 DAX30

Measures ql qh ∆ ql qh ∆ ql qh ∆
TC 0.0559 0.0891 0.0332 0.0623 0.1112 0.0489 0.0816 0.1031 0.0216
CRF 0.0483 0.1037 0.0554 0.0722 0.0984 0.0262 0.0833 0.1027 0.0194
K 0.0469 0.1046 0.0577 0.0648 0.1240 0.0592 0.0776 0.1176 0.0400
µ03 = s3 0.0478 0.1210 0.0732 0.0637 0.1106 0.0468 0.0762 0.1048 0.0286
µ23 0.0474 0.1236 0.0762 0.0637 0.1106 0.0468 0.0794 0.1031 0.0238
AC 0.0496 0.1018 0.0522 0.0637 0.0969 0.0332 0.0855 0.0973 0.0118
M-VIF 0.0518 0.1192 0.0675 0.0683 0.1240 0.0558 0.0715 0.1008 0.0294
M 0.0696 0.0917 0.0221 0.0857 0.1169 0.0312 0.0840 0.1014 0.0174

(b) Quantile level 10%

SPX EUROSTOXX50 DAX30

Measures ql qh ∆ ql qh ∆ ql qh ∆
TC 0.0487 0.1067 0.0581 0.0661 0.1249 0.0588 0.0835 0.1061 0.0226
CRF 0.0468 0.1293 0.0825 0.0718 0.0936 0.0218 0.1019 0.1004 -0.0015
K 0.0483 0.1634 0.1151 0.0707 0.1042 0.0335 0.0735 0.0994 0.0258
µ03 = s3 0.0528 0.154 0.1012 0.0677 0.1032 0.0354 0.0735 0.0994 0.0258
µ23 0.0528 0.1517 0.0988 0.0677 0.1032 0.0354 0.0735 0.0994 0.0258
AC 0.0487 0.1021 0.0534 0.0677 0.0927 0.0251 0.1035 0.0922 -0.0113
M-VIF 0.0579 0.1668 0.1089 0.0659 0.1013 0.0354 0.0720 0.1004 0.0284
M 0.0785 0.1018 0.0233 0.0791 0.1351 0.0561 0.0893 0.1128 0.0235

Table 1 Value at Risk at 5% level of the return of the three indexes, conditioned to the
value of the listed measures of connectedness for quantile levels 25% (table (a)) and 10%
(table (b)). In columns ql the VaR5% is conditioned to the measure’s values belonging to its
lowest quantile; in columns qh the VaR5% is conditioned to the measure’s values belonging
to its lowest quantile; columns ∆ report the difference between the two previous values.
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From this empirical application, we can conclude that proper measures
of connectedness are able to detect some tensions on the financial markets
related to an increase in the co-movement or the similarity of the returns of
the component of a market. This can be related to an increase in the riskiness
of the market, resulting in a larger probability of market losses.

7 Conclusions

In this paper we provide a rigorous definition of the concept of connectedness,
identifying the class of Proper Measures of Connectedness (PMCs) through a
set of minimal required properties. These properties are justified from a theo-
retical point of view. We propose a general class of PMCs, proving they satisfy
the minimal required properties. We also proved some interesting properties of
the proposed class of measures. The interpretation of the concept of connect-
edness is determined by the meaning of the required minimal properties and its
relations to some well known concepts of linear algebra; for example, we show
that the class of the so called Power Mean Measure is a generalization of the
condition number of a matrix. We also investigate if the most popular measure
of connectedness are included in the proposed general theoretical framework.
The empirical exercise on real financial data highlights the following results.
First, the PMCs seem to be a useful instrument to forecast systemic risk and
financial bubbles/crashes. Second, the measures belonging to the class of the
PMCs show a clear forecasting superiority with respect to the measures that
do not satisfy the minimal properties.

Declarations

Funding This research was supported by the research fund available at the
authors’ departments.
Conflict of interest The authors declare that they have no conflict of interest.
Availability of data and material Data are obtained from the Bloomberg
database, provided by the University of Pavia.
Code availability The codes written by the authors are not published.
Author’s contributions All authors contributed equally to this paper.

References

Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A.: Systemic Risk and Stability
in Financial Networks. Am Econ Rev 105(2), 564 – 608 (2015)

Acharya, V.V., Engle, R., Richardson, M.: Capital shortfall: A new approach
to ranking and regulating systemic risks. Am Econ Rev 102, 59 – 64 (2012)

Acharya, V.V., Pedersen, L.H., Philippon, T., Richardson, M.: Measuring Sys-
temic Risk. Rev Financial Stud 30(1), 2 – 47 (2017)



24 Mario Maggi et al.

Adrian, T., Brunnermeier, M.K.: CoVar: a method for macroprudential regu-
lation. Federal Reserve Bank of New York Staff Report, 348 (2009)

Adrian, T., Brunnermeier, M.K.: CoVar. Natl Bur Econ Res Working Paper
17454 (2009) http://www.nber.org/papers/w17454

Aikman, D., Alessandri, P., Eklund, B., Gai, P., Kapadia, S., Martin, E., Mora,
N., Sterne G., Willison, M.: Funding Liquidity Risk in a Quantitative Model
of Systemic Stability. Working Paper No. 372, Bank of England (2009)

Andersen, T.G., Bollerslev, T., Diebold, F.X.: Parametric and nonparametric
volatility measurement, Handbook of Financial Econometrics: Tools and
Techniques, Handbook in Finance 1, 67 – 137 (2010)

Barunikn, J., Kocenda, E., Vacha,L.: Asymmetric connectedness on the U.S.
stock market: Bad and good volatility spillovers. J Financial Mark 27, 55 –
78 (2016)

Belsley, D.A., Kuh, E., Welsch, R.R.: Regression Diagnostics: Identifying In-
fluential Data and Sources of Collinearity. New York: John Wiley & Son
(1980)

Billio, M., Getmansky, M., Lo, A.W., Pelizzon, L.: Econometric measure of
connectedness and systemic risk in the finance and insurance sectors. J Fi-
nancial Econ 104(3), 535 – 559 (2012)

Bilson, J.F.O.: Leading indicators of currency devaluations. Columbia J World
Bus 14, 62 – 76 (1979)

Bisias D., Flood M., Lo A.W., Valavanis S.: A survey of systemic risk analytics.
Annu Rev Financial Econ 4, 255 – 299 (2012)

Caccioli, F., Barucca, P., Kobayashi, T., Network models of financial systemic
risk: A review. J Comput Soc Sci 1(1), 81 – 114 (2018)

Chin-Shien, L., Khan Haider, A., Chang, W.Y., Ruei-Yuan, C.: A New Ap-
proach to Modelling Early Warning Systems for Currency Crises: Can a
Machine-Learning Fuzzy Expert System Predict the Currency Crises Effec-
tively? Center for International Research on the Japanese Economy Discus-
sion Paper, CIRJE-F-411, Tokyo (2006)

Chisini, O.: Sul concetto di media. Periodico di Matematiche 4, 106 – 116
(1929)

De Finetti, B.: Sul concetto di media. Giornale dell’Istituto Italiano degli At-
tuari, Anno II(3), 369 – 396 (1931)

Demirer, M., Diebold, F.X., Liu, L., Yilmaz, K.: Estimating global bank net-
work connectedness. J Appl Econometrics 33(1), 1 – 15 (2018)

Diebold, F.X., Yilmaz, K.: Measuring financial asset return and volatility
spillovers, with application to global equity markets. Econ J 119, 158 –171
(2009)

Diebold, F.X., Yilmaz, K.: Better to give than to receive: predictive directional
measurement of volatility spillovers (with discussion). Int J Forecast 28, 57
– 66 (2012)

Diebold, F.X., Yilmaz, K.: On the network topology of variance decomposi-
tions: Measuring the connectedness of financial firms. J Econometrics 182,
119 – 134 (2014)



Proper Measures of Connectedness 25

Elsinger, H., Lehar, A., Summer, M.: Systemically important banks: an anal-
ysis for the european banking system. Int Econ Econ Policy 3(1), 73 – 89
(2006)

Figini, S., Maggi, M., Uberti, P.: The market rank indicator to detect financial
distress. Econometrics Stat in press (2018).

Frankel, J.A., Saravelos, G.: Are Leading Indicators Of Financial Crises Useful
For Assessing Country Vulnerability? Evidence From The 2008-09 Global
Crisis. Natl Bur Econ Res Working paper No. 16047 (2010)
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