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ABSTRACT   

Multiple Myeloma (MM) is a blood cancer implying bone marrow involvement, renal damages and osteolytic lesions. 
The skeleton involvement of MM is at the core of the present paper, exploiting radiomics and artificial intelligence to 
identify image-based biomarkers for MM. Preliminary results show that MM is associated to an extension of the intrabone 
volume for the whole body and that machine learning can identify CT image features mostly correlating with the disease 
evolution. This computational approach allows an automatic stratification of MM patients relying of these biomarkers 
and the formulation of a prognostic procedure for determining the disease follow-up. 

  

Keywords: X-ray CT; image segmentation; image features; clustering 
 

1. INTRODUCTION  
Multiple Myeloma (MM) is a blood cancer implying bone marrow involvement, renal damages and osteolytic lesions. 
Skeleton involvement of MM is at the core of the present paper, which introduces artificial intelligence and radiomics 
approaches for the identification of image-based biomarkers for MM. CT data already allows early identification of MM 
progression and the assessment of the positive response to chemotherapy. However, CT potentials in this field are far to 
be fully exploited; in particular, there is currently no image-based prognostic index predicting the evolvement of MM. 
We investigate whether this kind of indices can be identified in either the volumetric dimension of the intrabone space 
for the whole skeleton asset, or in the imaging features extracted from the focal lesion.  

Image processing tools for the analysis of FDG-PET/CT data have been recently developed quantitatively assessing the 
composition of the skeleton asset and of FDG metabolism in bone marrow. These algorithms utilize pattern recognition 
in whole-body CT images of patients to segment the compact bone tissue from the bone marrow hosting intrabone volume. 
In this way, a normalcy database has been constructed [1], which has been utilized to identify the intra-bone volume as a 
prognostic marker for chronic lymphatic leukemia (CLL) [2] and to associate such alterations to functional modifications 
in the bone marrow asset of allogeneic transplant [3]. Even more recently, machine learning methods have been applied 
to features extracted from different imaging modalities within the framework of radiomics paradigms for disease 
assessment. A few of these methods perform the evaluation of bone formation, regeneration, and asset and, in some cases, 
these algorithms are able to identify image features that mostly impact the prediction of the disease follow-up. However, 
none of these methods have been applied so far to CT data from MM patients and therefore the purpose of this paper is 
two-fold:  

 

 

 

 

 

 



• To verify that, as in the case of CLL, intrabone volume represents a reliable biomarker for determining the 
evolution of MM. 

• To verify that the image properties of the compact bone focal lesions can be used for patients' stratification. 

The plan of the paper is as follows. Section 2 illustrates the data used for the analysis and the computational methods for 
their processing. Section 3 describes the results obtained from the data analysis. Section 4 provides some comments about 
these results. Our conclusions are offered in Section 5. 

 
Table 1. Minimal and standard Computed Tomography technical parameters for inclusion 

Number	of	detector	rows* 16	or	more	up	to	128 
Minimum	Scan	coverage* Skull	base	to	femur 
Tube	voltage(kV)/time-current	product	
(mAs) 

120/50–70,	adjusted	as	clinically	
needed 

Reconstruction	convolution	kernel 

Sharp,	high-frequency	(bone)	
and	smooth	(soft	tissue).	Middle-
frequency	kernel	for	all	images	
are	adjusted	by	the	radiologist	as	
deemed	necessary 

Iterative	reconstruction	algorithms Yes	(to	reduce	image	noise	and	
streak	artifacts) 

Thickness* ≤5	mm	 

Multiplanar	Reconstructions	(MPRs) Yes	(sagittal,	coronal	and	parallel	
to	long	axis	of	proximal	limbs) 

Matrix,	Rotation	time,	table	speed,	pith	
index 

128x128,	0.5	s,	24mm	per	gantry	
rotation,	0.8 

 

 

2. MATERIALS AND METHODS 
2.1 Study design, inclusion criteria and CT imaging 

The study was performed in accordance with the current version of the Declaration of Helsinki and the International 
Conference on Harmonization of Good Clinical Practice Guidelines. All patients signed a written informed consent form, 
encompassing the use of anonimized data for retrospective research purposes, before CT examination. Radiomic analysis 
was applied to CT data collected in the clinical workup and did not influence patient care in any way.  

As far as the design of this retrospective study and the corresponding inclusion criteria are concerned, we have considered 
25 consecutive patients (mean age, 62 years ± 8.3; range, 35–70 years) admitted to the IRCCS Policlinico San Martino 
Hospital because they were suspected of having MM in the last five years. Inclusion criteria were baseline whole-body 
CT available and retrievable from the Hospital PACS or available from outpatient clinic. The imaging technical standards 
are minimal and reported in Table 1.    

Data obtained in patients' population were compared to data from 102 control subjects with no history of hematological 
disease, selected from a previously published normalcy database [1].  

 

 

 

 

 

 

 

 



2.2 Image analysis: whole body data 

First, the global CT information was processed in order to determine the intraosseous volume potentially available for 
bone marrow. In order to determine this intrabone volume (IBV) we utilized an already published software code whose 
underlying assumption is that the Hounsfield value is highest in compact bone among all tissues. Given the fact that 
attenuation coefficients differ in bones belonging to different districts, we could not apply a mere thresholding technique 
and therefore we relied on a pattern recognition process based on active contours (see Figure 1). More precisely, the 
process starts with the unique human intervention asking the operator to draw a loose region of interest around the skull 
vertex as a starting reference. Then, the functional representing the energy of a curve surrounding the bone profile is 
iteratively minimized thus determining a sequence of active contours that progressively adapt themselves onto the 
compact bone border. This procedure is automatically replicated to all slices. In particular, the optimized active contour 
obtained at the end of the processing of the first slice is utilized as initialization contour for the successive slice. The final 
3D result is thus displayed to the operator for the removal of not-bone calcified regions as well as for the check of the 
appropriate recognition of the spinal canal as extraosseous space. 

The output of the software is therefore the quantitative assessment and the 3D representation of three different volumes: 
1) the whole skeleton; 2) the compact bone tissue and 3) the space potentially available for BM. The application of these 
procedures to all slices of acquisition permits to evaluate the whole skeleton and each slice to exclude non-bone calcified 
regions or possible inclusion of spinal canal. 

 

      

 

 
 

     Figure 1. Pictorial description of the pattern recognition approach for IBV identification. 

 

2.3 Image analysis: radiomics of focal lesion 

For each MM patient, and utilizing an open source software tool for radiomics 
(https://www.radiomics.io/slicerradiomics.html), we have also applied pattern recognition algorithms on several primary 
lesions present on the compact bone tissue in order to extract image properties that can be used as input features for 
machine learning algorithms (see Figure 2). Specifically, for each focal lesion radiomics extracts 140 features that may 
be given as input to either supervised or unsupervised artificial intelligence algorithms for automatic stratification.  

 
Figure 2. Outcome of the radiomics tool in the case of a focal lesion in the vertebral body. 

 

 

 



2.4 Post-processing: patients' stratification 

The post-processing relied on a standard unsupervised clustering analysis of both properties provided by the software tool 
realizing the assessment of the skeleton asset and features provided by radiomics of the focal lesions. To this aim we 
applied a hard C-means algorithm in which the number of classes is fixed a priori and each data sample may belong to 
just one cluster. Extension of this approach may include fuzzy clustering and possibilistic clustering, in which the two 
main constraints are relaxed, i.e. the number of classes adapts itself to the data properties and each sample may belong to 
different classes with a specific probability. 

3. RESULTS 
 
For each MM patient, the software for the quantitative assessment of the whole skeleton asset computed the following 
parameters: 
 

• The intrabone volume (the volume at disposal of the spongiosa) normalized with respect to the ideal body weight 
(N-IBV) 

• The volume occupied by the compact bone normalized with respect to the ideal body weight (N-CBV). 
• The whole skeleton volume normalized with respect to the ideal body weight (N-BV = N-IBV + N-CBV). 
• The fraction of volume occupied by trabecular bone with respect to the overall skeleton volume (%IBV). 
• The average Hounsfield value for the compact bone and its standard deviation. 
• The average Hounsfield value for the spongiosa and its standard deviation. 

 
Trabecular bone was expanded in MM patients and occupied a larger fraction of the whole skeleton asset with respect to 
the control subjects whose data are contained in a normalcy database made of 102 control subjects (see Figure 3). We 
obtained N-IBV = 31 ± 5 mL/Kg (vs N-IBV = 27 ± 8 mL/kg), N-CBV = 51 ± 8 mL/kg (with respect to 59 ± 9 mL/kg), 
and N-BV = 81 ± 12 mL/kg (with respect to 86 ± 12 mL/kg). Further, in MM patients this trabecular bone occupies a 
larger fraction of the skeleton with respect to controls (%IBV = 38 ± 2 vs %IBV = 31 ± 7). 
 
The application of the hard C-means clustering to some of the properties extracted from the whole skeleton asset. Table 
1 illustrates the results of this stratification process: on the basis of five of these properties the 25 patients were partitioned 
into 2 classes made of 15 (cluster 1) and 10 patients (cluster 2), respectively. Interestingly, an a posteriori check of the 
populations of these two clusters showed that all four patients that underwent relapse of the disease within the three 
months following the diagnosis (see Figure 4). This is preliminary result is not confirmed by an analogous analysis made 
on features extracted by radiomics from ROIs including the focal lesions. Figure 5 shows that the partition obtained in 
the case of these local features is not coherent with the one obtained in the case of features corresponding to global 
properties associated to the whole skeleton asset. The histograms in the figure have been realized by means of 100 runs 
of the hard C-means code corresponding to 100 initialization of the clusters' centroids and reporting how many times the 
samples is classified in each one of the two clusters.  
 

       
Figure 3. Quantitative assessment of the whole bone asset in its different components and comparison between control and MM 
subjects. Left panel: normalized intrabone volume (IBV), normalized compact bone volume (CBV) and normalized total bone 
volume (BV). Right panel: rate of IBV with respect to BV. All values have been averaged over the corresponding population and 
the standard deviation has been computed. 
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4. COMMENTS AND CONCLUSIONS 
A standard Student t-test shows that the statistical significance of the differences between the two populations is higher 
for N-CBV and for %IBV (p<0.05) with respect to N-IBV (p=0.05). However, this test represents a first hint supporting 
the prognostic value of these three global parameters. The global properties associated to the overall compact bone and 
trabecular tissues are also effective to stratify the patents' population. Indeed, the results of the application of hard C-
means on 25 sets made of five over the overall 5 global features, show that all four patients who underwent MM relapse 
are classified in the same cluster. Interestingly enough, this stratification power seems not to be shared by the 26 
radiomics features extracted from the focal lesion associated to each patient: clearly, the histograms in Figure 5 are not 
coherent with the class identified in Figure 4. 
 
 
 
Table 2. Results of the clustering process applied against five features extracted by means of the software tool for the assessment of 
the whole skeleton asset. Specifically, f1 is the standard deviation associated to the average Hounsfield value for the trabecular bone; 
f2 is the average volume expressed in cm3; f3 is the average Hounsfield value for the compact bone; f4 is the standard deviation 
associated to the average Hounsfield value for the compact bone; f5 is the fraction of volume occupied by trabecular bone with respect 
to the overall skeleton volume; C-means is the identification of cluster analysis (cluster 1 or cluster 2); Relapse 0/1 indicate if the 
patient underwent MM relapse. 

 
 
 
 

patient f1 f2 f3 f4 f5 C-means relapse 0/1
1 152,6 1547 494,6 364,6 37,3 1 0
2 156,8 1748 515,0 379,6 38,5 1 0
3 161,9 1401 483,6 430,5 39,8 1 0
4 174,5 1978 641,5 437,6 39,8 2 0
5 165,2 1181 555,9 405,6 36,6 1 0
6 166,0 2889 606,5 453,2 44,5 2 0
7 187,3 2029 633,8 448,2 38,3 2 1
8 173,1 2340 582,4 436,2 39,5 2 1
9 160,6 2558 563,5 395,4 39,3 1 0
10 163,9 1473 571,5 442,1 35,6 1 0
11 153,6 1107 514,7 376,2 37,7 1 0
12 170,2 2822 531,1 420,0 37,5 1 0
13 165,3 1674 637,5 407,6 37,8 2 0
14 154,1 1843 481,0 354,8 36,1 1 0
15 189,4 2534 685,4 428,3 35,2 2 1
16 162,5 1285 579,2 401,0 37,2 1 0
17 209,5 1282 610,9 607,6 37,3 2 0
18 165,7 1451 573,6 419,9 38,4 1 0
19 172,4 2325 582,1 406,0 39,9 2 0
20 171,0 1931 624,3 456,5 35,2 2 0
21 163,9 2292 565,6 423,8 37,6 1 0
22 146,0 1450 504,1 369,3 38,0 1 0
23 173,0 1649 577,9 410,6 35,4 1 0
24 167,0 1764 594,9 436,8 38,9 2 1
25 148,0 2241 522,9 393,8 38,1 1 0



 
Figure 4. Patients' stratification obtained by applying a hard C-means clustering code on the five features described in Figure 3 and 
associated to the 25 MM subjects (the representation involves just three features). Blue small circle: patients classified in cluster 1; 
red small circle: patients classified in cluster 2; red big circle: patients with relapsed MM within three months after diagnosis. 

 

 
Figure 5. Result of the application of the hard C-means algorithm on the 26 features extracted by an open source code for pattern 
recognition from CT images of the focal lesion. In the figure we have highlighted the four patients who actually underwent MM 
relapse. 
 
 
 
 
 
 
 
 
 
 
 
 

 



REFERENCES 

[1] Sambuceti, G., Brignone, M., Marini, C., Massollo, M., Fiz, F., Morbelli, S., Buschiazzo, A., Campi, C., Piva, 
R., Massone, A. M., Piana, M. and Frassoni, F. "Estimating the whole bone marrow asset in humans by a 
computational approach to integrated PET/CT imaging", Eur. J. Nucl. Med. Mol. Imag., 39(8) 1326-1338 (2012).  

[2] Fiz, F., Marini, C., Piva, R., Miglino, M., Massollo, M., Bongioanni, F., Morbelli, S., Bottoni, G., Campi, C., 
Bacigalupo, A., Bruzzi, P., Frassoni, F., Piana, M. and Sambuceti, G., "Adult advanced chronic lymphocytic 
leukemia: computational analysis of whole-body CT documents a bone structure alterantion", Radiology, 271(3) 
805-813 (2014).  

[3] Fiz, F., Marini, C., Campi, C., Massone, A. M., Podestà, M., Bottoni, G., Piva, R., Bongioanni, F., Bacigalupo, 
A., Piana, M., Sambuceti, G. and Frassoni, F., "Allogeneic cell transplant expands bone marrow distribution by 
colonizing previously abandoned areas: an FDG PET/CT analysis", Blood, 125(26) 4095-4102 (2015). 

 
 


