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Abstract. We consider the problem of reconstructing the cross–power spectrum
of an unobservable multivariate stochastic process from indirect measurements
of a second multivariate stochastic process, related to the first one through a
linear operator. In the two–step approach, one would first compute a regularized
reconstruction of the unobservable signal, and then compute an estimate of its
cross–power spectrum from the regularized solution. We investigate whether
the optimal regularization parameter for reconstruction of the signal also gives
the best estimate of the cross–power spectrum. We show that the answer
depends on the regularization method, and specifically we prove that, under
a white Gaussian assumption: (i) when regularizing with truncated SVD the
optimal parameter is the same; (ii) when regularizing with the Tikhonov method,
the optimal parameter for the cross–power spectrum is lower than half the
optimal parameter for the signal. We also provide evidence that a one–step
approach would likely have better mathematical properties than the two–step
approach. Our results apply particularly to the brain connectivity estimation from
magneto/electro-encephalographic recordings and provide a formal interpretation
of recent empirical results.

Keywords: regularization theory, multivariate stochastic processes, cross–power
spectrum, magneto–/electro–encephalography (M/EEG), functional connectivity.

1. Introduction

Dynamical inverse problems are typically concerned with two interplaying and in some
sense still open issues. The first one is related to the reconstruction of the unobserved,
multivariate stochastic process from the measured time series; the second one is
the estimate of the statistical interdependence of the individual components of the
multivariate stochastic process. A paradigmatic example of these issues is the estimate
of brain functional connectivity from recordings of magneto/electro-encephalographic
(M/EEG) data, currently a hot topic in neuroscience. Functional connectivity is
systematically used to study both the healthy [10] and the pathological [38, 41] brain,
either at rest [4] or during the execution of specific tasks [25, 43].

While there is no unique formal definition of functional connectivity, the term
is generally used to identify various forms of statistical interdependence between the
temporal waveforms of spatially distinct brain areas [34]. In the last couple of decades,
such interdependence is increasingly studied in the frequency domain; this makes sense
in light of the increasingly accepted model that neural interactions between brain
regions are mediated by synchronization of their rhythmic activity in specific frequency
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bands [13]. However, M/EEG only record the magnetic field/electric potential at the
scalp; therefore functional connectivity between brain regions has to be estimated
indirectly, using the scalp data and the physical model that relates neural currents to
the recordings.

In this framework, the majority of connectivity studies employs a two–step
approach [35]: first, an estimate of the source time courses is obtained using an
inverse method; then, frequency–domain connectivity metrics are computed from the
cross–spectrum of the reconstructed source time courses. Due to the multitude of
available inverse methods [17, 42, 5, 9, 2, 26, 37, 19, 23] and connectivity metrics
[1, 27, 6, 15, 33, 34], in the last decade there has been growing interest in validating
and comparing different combinations of methods [12, 22, 7, 36, 30].

Recent empirical evidence suggests that the two–step approach might feature
an unexpected parameter tuning issue. Indeed, the usual approach to overcome
ill–posedness consists in searching a tradeoff between solution complexity and data
fitting, and this tradeoff is realized by means of the selection of a proper regularization
parameter. It would seem natural that the optimal estimate of the cross–spectrum
can only be attained with the optimal reconstruction of the signal. Yet, in a recent
study the authors in [21] have shown that the value of the regularization parameter
that provides the best reconstruction of the source spectral power does not coincide
with the value that provides the best reconstruction of the source-level functional
connectivity quantified through coherence.

Motivated by this empirical result, in this work we investigate the following
problem: let Y(t) be noisy and indirect measurements of a multivariate stochastic
process X(t); let xλ(t) be the reconstruction of the hidden signal, obtained by means of
a regularization algorithm; finally, assume that the cross–spectrum of X(t), denoted as
SX(f), is estimated from the reconstructed signal xλ(t); under these conditions, does
the optimal regularization parameter for reconstruction of the hidden signal coincide
with the optimal regularization parameter for reconstruction of its cross–spectrum?

In particular, we will prove that the answer is “no” when the regularized solution
is computed via Tikhonov regularization, thus confirming the empirical results of
[21]. We will also prove that the answer is “yes” when the regularized solution is
computed via truncated Singular Value Decomposition, thus showing that the answer
to the question actually depends on the choice of the inverse method. In addition,
we will show the potential of a one–step approach relying on a mathematical model
directly relating the measured data to the unknown cross-spectrum. In particular,
a preliminary analysis performed in this paper shows that the one–step approach
enhances the filtering effectiveness of regularization with respect to the standard two-
step approach.

The structure of the article is as follows: in Section 2 we provide the general
definitions and formalize the main question of the paper. In Section 3 we express the
reconstructions errors in terms of the filter factors and provide an interpretation.
Section 4 contains the main results of our work: we show that the optimal
regularization parameters for reconstruction of x(t) and Sx(f) are generally different
and that this difference depends on the inversion method. In Section 5 we show how
the filter factors of the two–step approach have a jittering behaviour, while those of
a possible one–step approach would be smooth. In Section 6 we show the results of a
numerical simulation in which we remove the somewhat restrictive assumptions that
are needed to prove the theorems of Section 4. Our conclusions will be offered in
Section 6, together with the discussion of possible directions for future work.
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2. Definition of the problem

Let X(t) = (X1(t), . . . , XN (t))> be a multivariate, stationary stochastic process whose
realizations x(t) cannot be observed directly; indirect information on x(t) can be
obtained by observing the realizations y(t) of the process Y(t), which is a noisy linear
mixture of X(t)

Y(t) = GX(t) + N(t) (1)

where G is an M × N forward matrix, with M = dim(Y(t)), N = dim(X(t)), and
N(t) is the measurement noise process, which is assumed to be a zero–mean Gaussian
process independent from X(t). For ease of presentation, we further assume M ≤ N
and G to be a full row rank matrix so that all its singular values are strictly positive;
however, the results below can be easily extended to the general case.

We consider the case where one is interested in reconstructing the cross–spectrum
of the process X(t), that contains information on the statistical dependencies between
the different components of the signal. The cross–spectrum is a one–parameter family
of N ×N matrices SX(f), whose (j, k)–th element is defined as

SX
j,k(f) = lim

T→+∞

1

T
E[X̂j(f, T )X̂k(f, T )H ] (2)

where X̂j(f, T ) is the Fourier transform of Xj(t) over the interval [0, T ], defined as

X̂j(f, T ) =

∫ T

0

Xj(t)e
−2πiftdt (3)

and XH is the Hermitian transpose of X [3].
In this work we consider the case when the reconstruction of the cross–spectrum

is done in a two–step process:

(i) First, a regularized estimate xλ(t) of x(t) is computed as

xλ(t) = Wλy(t) = VΦ(λ)Σ
†
U>y(t) , (4)

where: G = UΣV> is the singular value decomposition (SVD) of the forward
matrix, being U ∈ RM×M , V ∈ RN×N , and Σ = diag(σ1, . . . , σM ) ∈
RM×N with σ1 ≥ . . . ≥ σM > 0; Σ

†
is the pseudo-inverse of Σ; Φ(λ) =

diag(ϕ1(λ), . . . , ϕM (λ), 0, . . . , 0) ∈ RN×N are the filter factors [18], which are
functions of one (or more) regularization parameter(s) λ.

(ii) Then, an estimate of the cross–spectrum is obtained from these reconstructed
time–series using the Welch’s method [44], which consists in partitioning
the data in P overlapping segments {xpλ(t)}p=1,...,P , computing x̂pλ(f) =
1
L

∑L−1
t=0 xpλ(t)w(t)e−

2πitf
L , the Discrete Fourier Transform of the signals

multiplied by a window function w(t), and then averaging these modified
periodograms:

Sxλ(f) =
L

PW

P∑
p=1

x̂pλ(f)x̂pλ(f)H , f = 0, . . . , L− 1, (5)

where L is the length of each segment and W = 1
L

∑L−1
t=0 w(t)2.
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This two–step approach is largely used, e.g., in connectivity estimation from
M/EEG data, where the estimated cross-spectrum is typically used to compute a
large pool of connectivity metrics such as coherence [31], imaginary part of coherency
[27], and phase slope index [29]. Naturally but crucially, this estimate depends on the
choice of the regularization method, as well as on the choice of λ, which modulates
the degree of regularization of the estimate xλ.

In this work we will mainly focus on two regularization methods, namely truncated
SVD (tSVD) and Tikhonov regularization. The reason of this specific choice is as
follows: the Tikhonov method is one of the more commonly employed methods for
connectivity estimation in M/EEG, and it has been used by Hincapié and colleagues
in the paper that motivated this study [21]; tSVD is a method which is easy to deal
with analytically, and in addition it will provide a different result than the Tikhonov
method, thus showing that the answer to the main question of this study is method–
dependent.

Henceforth, ui and vi will denote the i-th column of matrices U and V,
respectively. tSVD relies on the 1–parameter family of regularized estimates

xλ(t) =

λ∑
i=1

u>i y(t)

σi
vi λ ∈ {1, . . . ,M} , (6)

which are obtained from equation (4) by setting

ϕi(λ) =

{
1 if i ≤ λ
0 if i > λ

. (7)

Tikhonov estimates are defined as

xλ(t) =

M∑
i=1

σ2
i

σ2
i + λ

u>i y(t)

σi
vi λ ≥ 0 , (8)

which are obtained from equation (4) by setting ϕi(λ) =
σ2
i

σ2
i
+λ

. From now on, for

simplicity, we omit the dependence of Φ and ϕi on λ. Also note that in the two
methods the parameter λ assumes values in different sets. In tSVD λ determines
the number of retained SVD components, and therefore assumes integer values in
{1, . . . ,M}, where a small λ value means few retained components and thus an
high level of regularization. In Tikhonov regularization λ determines the strength
with which each SVD component contributes to the solution; in this case λ assumes
continuous values in [0,+∞) and the higher the value the higher the degree of
regularization.

For the two mentioned methods, we consider the problem of the optimal choice
of the regularization parameter λ for reconstruction of the cross–spectrum. We define
optimality through the minimization of the norm of the discrepancy, specifically we
define the two following optimal values for the parameter.

Definition 1. Consider the regularized solution (4) and the cross–spectrum estimate
(5) associated to a realization of equation (1); we define the optimal parameter for the
reconstruction of x(t)

λ∗x = arg min
λ
εx(λ) with εx(λ) =

∑
t

‖xλ(t)− x(t)‖22 , (9)

and the optimal parameter for the reconstruction of Sx(f)

λ∗S = arg min
λ
εS(λ) with εS(λ) =

∑
f

‖Sxλ(f)− Sx(f)‖2F , (10)
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where ‖ · ‖2 and ‖ · ‖F are the L2-norm and the Frobenius norm, respectively; εx(λ)
and εS(λ) will be called reconstruction errors.

In the following sections we shall answer the following question: does the optimal
regularization parameter for reconstruction of x(t), λ∗x, coincide with the optimal
regularization parameter for reconstruction of Sx(f), λ∗S?

3. Reconstruction errors with filter factors

In this section we aim at deriving an explicit formulation of εx(λ) and εS(λ) in terms
of the filter factors Φ. To this end we observe that from equations (1) and (4) we can
derive the following relationship between the true and the reconstructed signal:

xλ(t) = Rλx(t) + Wλn(t) (11)

where Rλ = WλG is the resolution matrix [11, 18].
A similar relationship between the true and the estimated cross-spectrum can be

derived by substituting equation (11) into definition (5) and by exploiting the linearity
of the Discrete Fourier Transform:

Sxλ(f) = (Rλ ⊗Rλ)Sx(f) + (Wλ ⊗Wλ)Sn(f)

+ (Wλ ⊗Rλ)Sxn(f) + (Rλ ⊗Wλ)Snx(f)
, (12)

where Sx(f) is the vector obtained by concatenating the columns of the matrix Sx(f),
⊗ is the Kronecker product, and Sxn(f) is the cross–spectrum between x and n, i.e.,

following the notation in equation (5), Sxn(f) = L
PW

∑P
p=1 x̂p(f)n̂p(f)H .

Since X(t) and N(t) are independent, Sxn(f) and Snx(f) are negligible provided
that enough data time-points are available. Hence from definition 1 it follows

εx(λ) =
∑
t

‖(Rλ − IN ) x(t) + Wλn(t)‖22 (13)

εS(λ) =
∑
f

‖(Rλ ⊗Rλ − IN2)Sx(f) + (Wλ ⊗Wλ)Sn(f)‖22 (14)

where IN is the identity matrix of size N ×N .

Proposition 1. The reconstruction errors defined in (9) and (10) are given by:

εx(λ) =
∑
t

N∑
i=M+1

(
v>i x(t)

)2
+
∑
t

M∑
i=1

[
(ϕi − 1)

2 (
v>i x(t)

)2
+ ϕ2

i

(
u>i n(t)

)2
σ2
i

]
(15)

and

εS(λ) =
∑
f

∑
i≥M+1 or
j≥M+1

∣∣(vi ⊗ vj)
>Sx(f)

∣∣2 +
∑
f

M∑
i,j=1

[
(ϕiϕj − 1)

2 ∣∣(vi ⊗ vj)
>Sx(f)

∣∣2

+

(
ϕiϕj
σiσj

)2 ∣∣(ui ⊗ uj)
>Sn(f)

∣∣2 + 2 (ϕiϕj − 1)
ϕiϕj
σiσj

Re
(

(vi ⊗ vj)>Sx(f)(ui ⊗ uj)
>Sn(f)

)](16)

Proof. To prove equation (15) we observe that

Wλ = VΦΣ
†
U> =

M∑
i=1

vi
ϕi
σi

u>i
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and

Rλ − IN = VΦΣ
†
ΣV> − IN =

M∑
i=1

vi(ϕi − 1)v>i −
N∑

i=M+1

viv
>
i .

Then the thesis follows from equation (13) by exploiting the orthonormality of V and
the independence between processes X(t) and N(t).
Analogously, equation (16) follows from equation (14) by observing

Wλ ⊗Wλ = (V ⊗V)
(
ΦΣ

†
⊗ΦΣ

†
)

(U⊗U)
>

=

M∑
i,j=1

(vi ⊗ vj)
ϕiϕj
σiσj

(ui ⊗ uj)
>

and

Rλ ⊗Rλ − IN2 = (V ⊗V)
(
ΦΣ

†
Σ⊗ΦΣ

†
Σ− IN2

)
(V ⊗V)

>

=

M∑
i,j=1

(vi ⊗ vj)(ϕiϕj − 1)(vi ⊗ vj)
> −

∑
i≥M+1 or
j≥M+1

(vi ⊗ vj)(vi ⊗ vj)
>

Remark 1. The expression in (15) is a classical result in regularization theory [18],
in which the reconstruction error is expressed in terms of three distinct components.
The first component is the norm of the projection of the original signal onto the kernel
of G, i.e. the part of the signal that cannot be reconstructed. The second term is
the regularization error, i.e. the error introduced by regularization itself; indeed, this
term vanishes when the value of all the filters is one. The last term is the perturbation
error, i.e. the backprojection of stochastic noise components onto the reconstructed
signal, that regularization tries to reduce.

Remark 2. Expression (16) is the analogue of (15) for the cross–spectrum estimated
with the two–step approach. To the best of our knowledge this expression is novel and
has never been studied. The reconstruction error εS(λ) here is made of four distinct
components: three of them have the same interpretation of those appearing in εx(λ);
the fourth term is a non–vanishing mixed term, that depends on both the signal and
the noise spectra; as we shall see below, this term turns out to be negative at least in
some special cases.

4. The relationship between the optimal regularization parameters: two
case studies

We will now address the main question posed in the introduction: does the optimal
regularization parameter for reconstruction of the time–series coincide with the
optimal regularization parameter for reconstruction of the cross–spectrum? As we
shall see, the answer depends on the specific choice of the inverse method, i.e. of the
form of the filter factors. Here we study first the case of tSVD, and then the case of
the Tikhonov method.

In order to proceed analytically, in this section we make the further assumption
that both the signal and the noise are white–noise Gaussian processes, with covariance
matrices ω2IN and α2IM , respectively. The Gaussian assumption is often not too far
fetched; in M/EEG, particularly, it is widely used and, even though perhaps the data
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distribution is not exactly Gaussian, the Gaussian assumption is implicit (when not
explicit) in the vast majority of connectivity studies [28]. The white–noise assumption,
on the other hand, is stronger, as it implies that there is no temporal structure in the
signal: we will come back to this point in the Discussion.

4.1. Truncated SVD

When tSVD is employed, by substituting the values of the corresponding filter factors
into equations (15) and (16) we get the following corollary of Proposition 1.

Corollary 1. Consider the tSVD estimate xλ(t) given by equation (6), with
regularization parameter λ ∈ {1, . . . ,M}. Then

εx(λ) =
∑
t

N∑
i=λ+1

(
v>i x(t)

)2
+
∑
t

λ∑
i=1

(
u>i n(t)

)2
σ2
i

(17)

and

εS(λ) =
∑
f

∑
i≥λ+1 or
j≥λ+1

∣∣(vi ⊗ vj)
>Sx(f)

∣∣2 +
∑
f

λ∑
i,j=1

∣∣(ui ⊗ uj)
>Sn(f)

∣∣2
σ2
i σ

2
j

(18)

Remark 3. When regularization is accomplished through tSVD, the mixed term
in εS(λ) vanishes; this allows us to compute the optimal regularization parameter
explicitly.

Theorem 1. Let xλ(t) be the tSVD estimate as given by equation (6), with
regularization parameter λ ∈ {1, . . . ,M}; assume X(t) and N(t) to be white–noise
Gaussian processes with covariance matrices ω2IN and α2IM , respectively. Then

λ∗x = λ∗S = max
{
λ ∈ {1, . . . ,M} s.t σλ ≥

α

ω

}
(19)

Proof. As X(t) and N(t) are white–noise Gaussian processes with covariance matrices
ω2IN and α2IM , we have Sx(f) = ω2I and Sn(f) = α2I. Provided that enough data
time-points are available‡, these imply that∑

t

(
v>i x(t)

)2
= Tω2

∑
t

(
u>i n(t)

)2
= Tα2 (20)

and

∣∣(vi ⊗ vj)
>Sx(f)

∣∣2 = ω4
∣∣v>j vi

∣∣2 = ω4δij∣∣(ui ⊗ uj)
>Sn(f)

∣∣2 = α4
∣∣u>j ui

∣∣2 = α4δij
(21)

where δij is the Kronecker delta. By substituting equalities (20)-(21) in equations (17)
and (18) we get

εx(λ) = (N − λ)Tω2 + Tα2
λ∑
i=1

1

σ2
i

‡ The sufficient number of time points is of course dependent on the size of the problem, and in
particular it grows with the dimensions of the data and of the unknown.
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εS(λ) = (N − λ)Lω4 + Lα4
λ∑
i=1

1

σ4
i

The thesis follows by observing that the increments

εx(λ)− εx(λ− 1) = −Tω2 +
Tα2

σ2
λ

and

εS(λ)− εS(λ− 1) = −Lω4 +
Lα4

σ4
λ

are non–decreasing functions of λ and thus εx(λ) and εS(λ) have a unique minimum
at the biggest λ for which such increments are negative.

4.2. Tikhonov method

We now consider the case when regularization is performed by means of the standard
Tikhonov formula.

Corollary 2. Let xλ(t) be the Tikhonov estimate as given by equation (8), with
regularization parameter λ ≥ 0. Then

εx(λ) =
∑
t

N∑
i=M+1

(
v>i x(t)

)2
+
∑
t

M∑
i=1

[
λ2

(σ2
i + λ)2

(
v>i x(t)

)2
+

σ2
i

(σ2
i + λ)2

(
u>i n(t)

)2] (22)

and

εS(λ) =
∑
f

∑
i≥M+1 or
j≥M+1

∣∣(vi ⊗ vj)
>Sx(f)

∣∣2

+
∑
f

M∑
i,j=1

[( σ2
i σ

2
j

(σ2
i + λ)(σ2

j + λ)
− 1

)2 ∣∣(vi ⊗ vj)
>Sx(f)

∣∣2
+

σ2
i σ

2
j

(σ2
i + λ)2(σ2

j + λ)2
∣∣(ui ⊗ uj)

>Sn(f)
∣∣2

+ 2

(
σ2
i σ

2
j

(σ2
i + λ)(σ2

j + λ)
− 1

)
σiσj

(σ2
i + λ)(σ2

j + λ)
Re
(

(vi ⊗ vj)>Sx(f)(ui ⊗ uj)
>Sn(f)

) ]
(23)

Again we assume that X(t) and N(t) are white–noise Gaussian processes with
covariance matrices ω2IN and α2IM . Under this assumption equations (22) and (23)
become

εx(λ) = T (N −M)ω2 + Tω2
M∑
i=1

λ2

(σ2
i + λ)2

+ Tα2
M∑
i=1

σ2
i

(σ2
i + λ)2

(24)
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and

εS(λ) = L(N −M)ω4 + Lω4
M∑
i=1

(
σ4
i

(σ2
i + λ)2

− 1

)2

+ Lα4
M∑
i=1

σ4
i

(σ2
i + λ)4

+ 2Lω2α2
M∑
i=1

(
σ4
i

(σ2
i + λ)2

− 1

)
σ2
i

(σ2
i + λ)2

, (25)

where we notice that, as anticipated in the previous section, the fourth addend is
negative; this fact suggests that, to the extent that the other terms are comparable
to those in the corresponding expression for the tSVD (18), the reconstruction error
generated by the Tikhonov method is smaller than the one generated by tSVD.

By differentiating equations (24) and (25) we have

d

dλ
εx(λ) = 2T

(
ω2λ− α2

) M∑
i=1

σ2
i

(σ2
i + λ)3

(26)

and

d

dλ
εS(λ) = 4Lω2

M∑
i=1

σ2
i

(σ2
i + λ)5

(α2 + σ2
i ω

2)

·

(
λ+ σ2

i +

√
σ4
i + σ2

i

α2

ω2

)(
λ+ σ2

i −
√
σ4
i + σ2

i

α2

ω2

) . (27)

We are now able to prove the following theorem.

Theorem 2. Let xλ(t) be the Tikhonov estimate as given by equation (8), with
regularization parameter λ ≥ 0; assume X(t) and N(t) to be white–noise Gaussian
processes with covariance matrices ω2IN and α2IM , respectively. Then

λ∗x =
α2

ω2
(28)

and

λ∗S <
λ∗x
2

(29)

Proof. The first statement simply follows from equation (26) by observing that
d
dλεx(λ) ≥ 0 if and only if λ ≥ α2

ω2 .

Instead, equation (27) implies that d
dλεS(λ) > 0 if

λ > −σ2
i +

√
σ4
i + σ2

i

α2

ω2
. (30)

Consider the function h : [0,+∞) 3 z → −z2 +
√
z4 + z2 α

2

ω2 . As schematically shown

in Figure 1, h is strictly increasing and bounded above by
λ∗x
2 = α2

2ω2 . As a consequence,

the condition (30) is satisfied if λ ≥ λ∗x
2 , that means εS(λ) is strictly increasing in

[
λ∗x
2 ,+∞) and thus inequality (29) holds.

The main interest of Theorem 2 is that it provides a simple relationship between
λ∗S and λ∗x. However, expression (27) contains more information about the values of
λ∗S, as stated in the following Theorem.
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z

h(z)

O

h(z)
λ∗x
2

σM σ1

h(σM )

h(σ1)

d
dλεS(λ) < 0

d
dλεS(λ) > 0

| |
σ3

|
σ2
|

· · ·

λ∗S ?

Figure 1. Plot of the function h(z) defined in the proof of Theorem 2. h(z) is
related to the sign of the addends at the right hand side of (27). If λ < h(σM )
all the addends in (27) are negative therefore εS(λ) is decreasing (green area),
whereas if λ > h(σ1) all the addends in (27) are positive therefore εS(λ) is
increasing (blue area); it follows that the optimal regularization parameter λ∗S

lies in the interval [h(σM );h(σ1)]. Moreover, for λ ≥ λ∗x
2

all the addends in (27)
are positive regardless of the singular values, and therefore εS(λ) is increasing;

this fact leads to the inequality λ∗S <
λ∗x
2

Theorem 3. Under the same hypotheses of Theorem 2, the value of λ∗S belongs to the

interval [h(σM ), h(σ1)], where h(z) = −z2 +
√
z4 + z2 α2

ω2 .

Proof. As schematically shown in Figure 1, when λ > h(σ1), all the addends in (27)
are positive and thus d

dλεx(λ) is positive; on the other hand, when λ < h(σM ) the

derivative d
dλεx(λ) is negative as all the addends are negative.

Remark 4. Theorem 3 also gives information on the limiting behaviour of λ∗S as

λ∗x = α2

ω2 approaches very small or very large values. In the no–noise scenario, when
λ∗x ∼ 0, λ∗S grows approximately linearly with λ∗x. The other boundary is however
more interesting. Indeed, when λ∗x →∞ the extremes of the interval h(σ1) and h(σM )
grow with the same order of

√
λ∗x. Therefore, when noise gets larger not only λ∗S is

smaller than λ∗x, but it also grows more slowly.

Remark 5. Theorems 2 and 3 imply that, when regularization is accomplished
through the Tikhonov method, λ∗x does not depend on the forward matrix G, while
λ∗S does. The fact that λ∗x does not depend on G may appear counter–intuitive:
if the singular values grows, also the effective SNR of the data grow, and then the
regularization parameter should become smaller. In fact, the regularization parameter
does become smaller with respect to the data; in other words, this is the classical
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behaviour of the optimal regularization parameter, where we are changing the SNR
by increasing the strength of the exact signal, rather than decreasing the variance of
the noise.

Remark 6. When M = N and σ1 = . . . = σM = 1, the forward matrix G is
orthogonal and the inverse problem in equation (1) is well–posed. Theorems 2 and 3
imply that λ∗S and λ∗x are different also under these conditions, as

h(σM ) = h(σ1) = −1 +

√
1 +

α2

ω2
<
α2

ω2

Although unrealistic, this case is of particular interest in M/EEG functional
connectivity because it corresponds to the ideal case where there is no cross–talk
or source–leakage between sources [20].

Indeed, in this case the resolution matrix is proportional to the identity matrix
(Rλ = (1 + λ)

−1
I), i.e. the estimate at one location is not influenced by neural

activity at different locations. Our result shows that also in this ideal case the optimal
values of the regularization parameters are different.

5. Beyond the two–step approach: Filter factor for a direct estimation of
Sx(f) from Sy(f)

As an alternative to the two–step approach described so far, one may directly estimate
the cross–power spectrum of the unknown Sx(f) from that of the data Sy(f). Indeed,
from equation (1) and from the linearity of the Fourier Transform it follows

Sy(f) = (G⊗G)Sx(f) + Sn(f) , (31)

which describes a linear inverse problem.
Analogously to what we did in the previous Sections for the forward operator G,

we can introduce the SVD of the forward operator G⊗G = (U⊗U)(Σ⊗Σ)(V⊗V)>,
up to reordering the elements of Σ⊗Σ and the corresponding columns of U⊗U and
V ⊗V. We can then express a one–step regularized estimate of the cross–spectrum
in terms of the SVD and of the filter factors

Sxλ (f) = (V ⊗V) Φ̃(λ) (Σ⊗Σ) † (U⊗U)
> Sy(f)

=

M∑
i,j

ϕ̃i,j(λ)
(ui ⊗ uj)

> Sy(f)

σiσj
(vi ⊗ vj) .

(32)

In particular, if Tikhonov regularization is employed, the filter factors read

ϕ̃i,j(λ) =
σ2
i σ

2
j

σ2
i σ

2
j + λ

(33)

while in tSVD the components such that the product σiσj is below the threshold
defined by λ are filtered out. Instead, in the classical two–step approach the filter
factors for the estimated cross–spectrum are simply given by the product of the filter
factors for the estimated source time–courses, that means each of the singular value
σi and σj is individually filtered, instead of their product σiσj . Indeed, the cross–
spectrum of the regularized estimate xλ(t) in equation (4) is

Sxλ(f) = (V ⊗V)
(
ΦΣ

†
⊗ΦΣ

†
)

(U⊗U)
> Sy(f)

=

M∑
i,j

ϕi(λ)ϕj(λ)
(ui ⊗ uj)

> Sy(f)

σiσj
(vi ⊗ vj) .

(34)
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Figure 2. Filter factors for the tSVD method. On the x–axis the product
of the singular values σiσj , on the y–axis the corresponding values of the filter

factors ϕi(λ)ϕj(λ) for the two–step approach (left) and ϕ̃i,j(λ) for the one–step
approach (right). The three different colors correspond to three different values
of the regularization parameter, as illustrated in the legend. Please notice that
the filter factors for tSVD are either zero or one, but different colors are plotted
at slightly different levels for the sake of clarity.

As a comparison in Figures 2 and 3 we plotted the filter factors ϕ̃i,j(λ) and
ϕi(λ)ϕj(λ) for the tSVD and Tikhonov method. The forward matrix was obtained
by randomly selecting (uniform sampling) M = 20 sensors and N = 25 source
locations from a standard MEG forward operator based on a realistic, three–layer
boundary element method (BEM) head model, publicly available within the mne–
python software [16]. Such selection of a subset of rows and columns allows to produce
more readable plots than those obtained by using the whole leadfield, that would be
qualitatively similar but with a denser cloud of points. The specific choice of source and
sensor locations does not modify the results: we tried several random configurations
and they all provided similar plots. Figure 2 and 3 highlight the potential advantages
of the one–step approach over the two–step approach. In the case of tSVD, the filter
factors of the two–step approach are zero whenever either i < λ or j < λ, which
implies a jittering behaviour when plotted as a function of the product σiσj . In the
one–step approach this issue is not present, because filtering is applied directly to the
product of the singular values. In the case of the Tikhonov method we observe a
similar behaviour, where in the one–step approach the filter factors increase smoothly
when the product σiσj increases, while in the two–step approach also higher values
of such product may be severely filtered because of the effect of the regularization
parameter on the individual singular values.

6. A numerical simulation

In this Section we use a numerical simulation to show what happens when the rather
restrictive assumption of a white Gaussian signal, that was needed to prove the results
in Section 4, no longer holds. We exploit the same simulation to show that in this case
the one–step approach described by equation (32) enables to estimate the cross–power
spectrum with a lower reconstruction error. We remark, however, that this simulation
is just an example and is not meant to be a full validation, for which a more thorough
set of simulations would be needed and which is beyond the scope of this article.

Following Hincapié et al. [21], we simulated two interacting oscillatory sources.
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Figure 3. Filter factors for the Thikonov method. On the x–axis the product
of the singular values σiσj , on the y–axis the corresponding values of the filter

factors ϕi(λ)ϕj(λ) for the two–step approach (left) and ϕ̃i,j(λ) for the one–step
approach (right). The three different colors correspond to three different values
of the regularization parameter, as illustrated in the legend.

The first source was placed in the temporal lobe of the left hemisphere, the second
source was placed in the occipital lobe of the right hemisphere at a distance of 11.8
cm from the first one. The time courses of the two sources were simulated with a
coherence level of 0.4, as follows: first the base frequency was set to 12 Hz for both
sources; then the instantaneous frequency was randomly drawn independently around
the base frequency, causing fluctuations in the phase relationship between the two
signals. A total number of T = 30, 000 time points was used. The process was
repeated until the desired level of coherence (0.4) was attained.

Source time courses were then projected to the sensor level through a forward
operator obtained by downsampling the same MEG leadfield used in the previous
section; the final forward operator has M = 102 sensors (magnetometers) and N = 274
source points guaranteeing a uniform coverage of the brain. With the exception of the
two oscillatory sources, all other source time courses were set to zero. White Gaussian
noise was added at the sensor level to reach five different values of Signal–to–Noise
Ratio (SNR) defined as

SNR = 10 log10

(∑T−1
t=0 ||Gx(t)||2∑T−1
t=0 ||n(t)||2

)
, (35)

where n(t) = σñ(t), being ñ(t) ∼ N (0, I), and σ was defined in order to attain the
desired SNR. The values of SNR were evenly selected in the range [−10dB, 10dB].

For each simulated data we numerically computed the two optimal parameters
λ∗x and λ∗S, as defined in Definition 1, for tSVD and for the Tikhonov method. The
optimal values are reported in Table 1. For both methods, optimal reconstruction
of the cross–spectrum requires less regularization than optimal reconstruction of the
signal. For tSVD this result is qualitatively different from the white noise case, where



On the two-step estimation of the cross–power spectrum for dynamical linear inverse problems14

we proved that the two optimal parameters are equal; for the Tikhonov method, on
the other hand, the optimal values obey the same inequality, and the ratio between
the optimal values is very similar to the one reported in [21]. This is expected, since
the numerical simulation here was constructed following the same scheme.

Finally, we numerically computed the optimal regularization parameter for the
one–step approach defined as

λ̃∗S = arg min
λ
ε̃S(λ) with ε̃S(λ) =

∑
f

‖Sx
λ(f)− Sx(f)‖2F (36)

and we compared the reconstruction error reached by the one–step and the two–step
approach when the corresponding optimal regularization parameters are employed,
i.e. εS(λ∗S) and ε̃S(λ̃∗S). Figure 4 shows the reconstruction errors for the cross–power
spectrum for tSVD and Tikhonov method for both the two–step and the one–step
approach as a function of the SNR. The line corresponding to the two-step approach
is always above the one corresponding to the one-step approach, showing that the
latter provides a better estimation for the cross-power spectrum.

tSVD Tikhonov
SNR λ∗x λ∗S λ∗x λ∗S λ∗S/λ∗x
-10 7 25 110 9.36 · 10−1 8.5 · 10−3

-5 8 35 35.0 2.93 · 10−1 8.4 · 10−3

0 8 45 9.86 9.53 · 10−2 9.7 · 10−3

5 25 53 3.15 3.00 · 10−2 9.5 · 10−3

10 28 69 1.12 9.40 · 10−3 8.4 · 10−3

Table 1. λ∗x and λ∗S for the different values of SNR. In tSVD, the number of
retained SVD components for the reconstruction of the cross–power spectrum
is always higher than for the time–series reconstruction, showing that less
regularization is needed for the first one. For the Tikhonov method, λ∗S is always
smaller than λ∗x, showing that less regularization is needed for the cross–power
spectrum reconstruction.

7. Discussion and future work

Motivated by an analysis pipeline which is largely used for connectivity studies in
the M/EEG community, in this article we have considered the problem of whether,
in a two–step approach to the reconstruction of the cross–power spectrum of an
unobservable signal, one should set the regularization parameter differently than what
one would do for the reconstruction of the signal itself.

First, making use of filter factor analysis, we obtained an explicit expression for
the reconstruction error for the cross–power spectrum under the two–step approach.
This formula is the analogous of the well–known formula for the reconstruction error
in linear inverse problems, and holds in general. Then, under additional hypotheses
of a white Gaussian signal and white Gaussian noise, we proved that the optimal
values coincide for tSVD, while in the Tikhonov method the optimal value for the
cross–spectrum is at most half the optimal value for the signal, thus proving also that
the answer actually depends on the inverse method. We speculate that such difference
may be partly due to the fact that, with white Gaussian signals, the error in estimating
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Figure 4. Reconstruction errors for the cross–spectrum reconstruction as a
function of the SNR for tSVD (blue) and for the Tikhonov method (red), for
the two–step (solid line) and for the one–step (dotted line) approach. For both
methods the one–step approach provides a better reconstruction of the cross–
power spectrum.

the cross–power spectrum involves the square of the filter factors; for tSVD, where
filter factors can only be 0 or 1, the components corresponding to the largest singular
values will possibly be weighted by a 1, and when the filter is squared for the cross–
spectrum, the largest component will still be weighted by a 1. For Tikhonov, where
filter factors range in the interval [0, 1], the components corresponding to the largest
singular values will be weighted by a factor lower than one, and when such factor is
squared it becomes even smaller; therefore, in order not to filter excessively the largest
components, a smaller regularization parameter is needed.

The results of Section 4 are in line with the results of [21], which showed
empirically that the optimal estimate of connectivity is obtained with a regularization
parameter smaller than the one providing the optimal estimate of the power spectrum,
i.e. of the signal strength. Quantitatively, the recommendation in [21] was to use a
parameter two orders of magnitude lower, while our main theorem for the Tikhonov
method guarantees λ∗S < λ∗x/2.

Theorems 1, 2 and 3 have been obtained under the somewhat unrealistic
assumption that the signal is a white–noise Gaussian process. While this is an
important limitation with respect to the applications, preliminary numerical results
indicate that the optimal value for the cross–spectrum is further reduced by the
presence of a temporal structure in the signal: in the numerical simulation in Section
6 we observed that, with interacting, oscillatory signals, the optimal values in tSVD
no longer coincide, and λ∗S in the Tikhonov method is approximately two orders of
magnitude smaller than λ∗X, in line with the mentioned results in [21]. In any case,
future work will be devoted to investigating in detail the effect of a more plausible
temporal structure of the input waveforms.

In addition, our results so far only concern the cross–power spectrum; future work
will investigate the impact of the regularization parameter on the estimated value
of the connectivity measure, such as Imaginary part of Coherency, Partial Directed
Coherence and Granger causality.
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Finally, as we point out in Section 5, our results suggest that the two–step ap-
proach to estimation of the cross–power spectrum, and more in general of brain func-
tional connectivity, might be sub–optimal. This idea is in line with literature on the
topic [24, 8, 14, 32, 39, 40]. Indeed, by looking at the filter factors obtained by the
two–step approach, and comparing them to the filter factors one would get with a
one–step approach to estimation of the power spectrum, we expect a better behaviour
for this second option. Newly presented methods such as PSIICOS [32] present one–
step approaches to the estimation of connectivity that benefit from this fact. Future
work will be devoted to investigating more thoroughly this alternative approach.
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