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Abstract 18 

Global climate change has increased the frequency and intensity of extreme heat anomalies 19 

and consequent mass coral bleaching events. Long term dynamics of hard coral cover, 20 

bioconstruction potential, carbonate deposition, and reef accretion were monitored over a 20-year 21 

period on Maldivian coral reefs in order to investigate the effects of high-temperature anomalies on 22 

coral reef accretion and their recovery potential. Changes experienced by shallow reefs between 23 

1997 and 2017 were evaluated by considering five different bioconstructional guilds and the 24 

BioConstruction Potential index (BCP), a proxy for the constructional capacity of reefs. 25 

Abnormally high temperatures in 1998 and 2016 led to severe coral bleaching and consequent 26 

mortality, especially of the primary builders. Renewed carbonate deposition was not documented 27 

until 2-3 years after the bleaching, and 6-9 years passed until constratal (i.e., low relief) growth was 28 

achieved. Finally, 14-16 years were required to reach accretion rates high enough to ensure 29 

superstratal (i.e., high relief) growth. Coral mortality in the Maldives during the 2016 bleaching 30 

event was lower than in 1998, and the initial recovery was faster and occurred via a different 31 

trajectory than in 1998. Rising levels of anthropogenic carbon emissions are predicted to accelerate 32 

sea level rise and trigger severe coral bleaching events at least twice per decade, a frequency that 33 

will 1) prevent coral recovery, 2) nullify reef accretion, and, consequently 3) result in the drowning 34 

of Maldivian reefs under the worst climate projections. 35 

  36 
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Introduction 37 

Coral reefs are ecologically and economically important ecosystems that host ca. 35% of all 38 

species living in the oceans, and support the livelihood of an estimated half billion people globally, 39 

typically through fishing and tourism (Knowlton et al. 2010). These “rainforests of the sea” protect 40 

shores from storms and coastal settlements from flooding and erosion (Harris et al. 2018), and 41 

provide social, economic and cultural services with an estimated value of over USD $1 trillion 42 

globally (Heron et al. 2017 and references therein). Coral reefs result from the dynamic equilibrium 43 

between bioconstruction and erosion (Glynn and Manzello 2015). Bioconstruction is predominantly 44 

undertaken by hermatypic scleractinian corals, though coralline algae are additional contributors; 45 

collectively, these major framework builders of shallow-water tropical coral reefs deposit a calcium 46 

carbonate (CaCO3) structure that persists after their death (Hamylton et al. 2017). The carbonate 47 

budget has often been identified as a key metric for assessing reef health, as it is indicative of the 48 

capacity of reefs to maintain physical 3-dimensional structures and vertical accretion (Januchowski-49 

Hartley et al. 2017; Perry and Morgan 2017a). Mass mortality of bioconstructors following major 50 

disturbances may stop or hamper the process of bioconstruction and facilitate erosion of carbonate 51 

structures (Bianchi 2001). 52 

Reef accretion results from vertical growth of the coral-algal framework and is mainly 53 

controlled by the rate of sea level rise (Grigg 1998). “Keep-up” reefs are typically observed as 54 

shallow, frame-building communities because their accretion rate tracks sea level rise. “Catch-up” 55 

reefs begin as shallow reefs, become deeper as the rate of sea level rise exceeds the accretion rate, 56 

but then grow upwards to avoid drowning. “Give-up” reefs are those that drowned because the 57 

accretion rates lagged behind the rate of sea level rise (Neumann and Macintyre 1985). From a 58 

geological point of view, a reef dies when its rate of accretion becomes lower than its rate of 59 

erosion, so that it cannot match the rate of sea level rise (Riegl 2001; Perry and Smithers 2010).  60 
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According to their accretion rate, reefs can develop following two main mechanisms (Gili et 61 

al. 1995): i) superstratal growth, where reef builders collectively project decimetres to metres above 62 

the substratum creating a topographic high relief; or ii) constratal growth, where vertical accretion 63 

occurs at a similar rate to sediment accumulation, so that reef relief is low, projecting centimetres 64 

only above the substratum. The ability to exhibit superstratal growth depends on the abundance of 65 

individual taxa, types of growth forms (branching corals contributing mainly) and colony size. On 66 

the contrary, constratal framework development is promoted by an abundance of encrusting 67 

organisms and secondary frame-builders (Insalaco 1998).  68 

Global increases in seawater temperature have triggered extensive coral bleaching and mass 69 

mortality events across most tropical regions (Baker et al. 2008). Bleaching is a stress response that 70 

implies the loss of photosynthetically active dinoflagellate algae (zooxanthellae) from their 71 

hermatypic coral hosts and results in reduced calcium carbonate accretion (Gates et al. 1992; 72 

Wooldridge 2017). While corals can recover from moderate bleaching, severe or prolonged 73 

bleaching is often lethal. Anthropogenic carbon emissions have caused a 1°C increase in global 74 

surface temperature since pre-industrial times (Hoegh-Guldberg et al. 2007), which increased the 75 

likelihood of bleaching events (Baird and Marshall 2002). Thermal stress on corals has also been 76 

magnified by strong ENSO (El Niño - Southern Oscillation) events (Glynn and De Weerdt 1991; 77 

Brown et al. 2013).  78 

Bleaching episodes worldwide have resulted in catastrophic losses of coral cover and have 79 

changed coral community composition and structure, thus leading to decline in biodiversity (Baker 80 

et al. 2008; Richardson et al. 2018). High-temperature events have increased in frequency, severity 81 

and geographic extent since the 1980s (Heron et al. 2016; Hughes et al. 2018) and three pan-tropical 82 

global bleaching episodes affected virtually all reefs in the world, in 1997-1998, 2010 and 2014-83 

2016. The 1997-1998 El Niño devastated reefs throughout the Indian Ocean (Plass-Johnson et al. 84 

2015; Donner et al. 2017). The Maldives were among the most affected countries, with 60-100% 85 
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coral mortality reported, depending on species and locality (Bianchi et al. 2006). The 2010 86 

bleaching event spanned from the western Indian Ocean to the Caribbean and was particularly 87 

devastating in Southeast Asia (Guest et al. 2012; Alemu and Clement 2014), but not in the Maldives 88 

(Morri et al. 2015). Beginning in the middle of 2014, water temperatures rose enough to trigger 89 

wide-scale bleaching in the Atlantic, Pacific, and Indian oceans, which continued into 2015 and 90 

extended to the southern hemisphere in 2016 (Eakin et al. 2016). The 2014-2016 El Niño heating 91 

event was unprecedented in duration and magnitude (hottest temperatures on record); 72% of the 92 

World Heritage-listed reefs bleached (Heron et al. 2017). Coral mortality has been among the worst 93 

ever observed (Hughes et al. 2017b), and even remote and pristine reefs that experience minimal 94 

human degradation were severely affected (Hughes et al. 2017a). Also the Maldives have been 95 

hugely impacted during this third global bleaching event (Muir et al. 2017; Perry and Morgan 96 

2017b). 97 

Long-term monitoring studies are necessary to understand trends in marine ecosystems and 98 

their response to human disturbances (Ellingsen et al. 2017; Gatti et al. 2017). Historical data series 99 

are essential for defining recovery rates and providing baselines against which change can be 100 

assessed (Edmunds and Elahi 2007; Mumby et al. 2007; Gatti et al. 2015; Januchowski-Hartley et 101 

al. 2017; Osborne et al. 2017; Porter and Schleyer 2017). Unfortunately, uninterrupted, decadal-102 

scale datasets are rare for marine ecosystems, making it difficult to determine the extent and rate at 103 

which global climate change is currently impacting the world‟s oceans. This study analyzes a 20-104 

year coral reef data series (1997-2017) in the Maldives, encompassing the three El Niño events in 105 

1998, 2010 and 2016. Since 1997, annual investigations of coral reef state have been conducted 106 

during April-May (Bianchi et al. 2009). This allows us to compare the state of coral reefs before, 107 

during and after these bleaching events and document subsequent recovery.  108 

The main aims of this study were to i) compare the three bleaching events in terms of coral 109 

mortality and recovery, ii) investigate relationships between reef bioconstruction potential 110 
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(measured using the recently proposed BioConstruction Potential index BCP (Bianchi et al. 2017), 111 

carbonate deposition and reef accretion to make conjectures about the capacity of Maldivian reefs to 112 

cope with sea level rise, and iii) explore the relationship between bioconstructor diversity and reef 113 

accretion. 114 

 115 

Materials and methods 116 

Study area and field activity 117 

The Maldives, comprised of 27 atolls and ca. 1120 islands, form the central part of the 118 

Laccadive-Maldives-Chagos ridge in the central Indian Ocean, stretching in a north-south direction 119 

from about 7°07‟ N to 0°40‟ S in latitude and 72°33‟ E to 73°45‟ E in longitude.  120 

Between 1997 and 2017, scientific cruises took place in April-May of each year, when eight 121 

sites were surveyed across the atolls of Ari, Felidhoo, Gaafu Alifu (Suvadiva), North Malé, South 122 

Malé, Rasdhoo, Thoddoo. Four were ocean reef sites, i.e. ocean-facing sides (fore reefs) of the atoll 123 

rims, and four were lagoon reef sites, i.e. lagoon patch reefs or lagoon-facing sides (back reefs) of 124 

the atoll rim (Lasagna et al. 2008, 2014). The cruise route differed slightly from year to year. In 125 

total, 172 sites were surveyed, some of them revisited over the years. The position of each site was 126 

recorded using a GPS. At each site, all data (described in more detail below) were collected by 127 

SCUBA diving at depths between 4 and 6 m.  128 

 129 

Sea Surface Temperature (SST) 130 

Sea surface temperature (SST) data were obtained from the US National Oceanic and 131 

Atmosphere Administration (NOAA) for the period 1997-2017 (data can be found at 132 

http://coralreefwatch.noaa.gov/vs/gauges/maldives.php) and calibrated by linear regression using 133 

discontinuous field data from our own archives (many of which were collected contemporaneously 134 

with the biological data). Two regional bleaching thresholds can be identified in the Maldives: 135 

http://coralreefwatch.noaa.gov/vs/gauges/maldives.php
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30.9°C for severe bleaching events that may cause widespread mortality, and 30.5°C for moderate 136 

bleaching events that have no wide-scale effects on Maldivian coral reefs (Morri et al. 2015, and 137 

references therein; NOAA 2016; Perry and Morgan 2017a). Mean and maximum SSTs were 138 

considered and compared to the known bleaching thresholds in the study area.  139 

 140 

Data collection and management 141 

Coral reef communities and bioconstructional guilds 142 

Composition of reef communities was described using 17 benthic categories (Morri et al. 143 

2010, 2015), comprised of 14 “lumped” levels of classification of sessile organisms (combining 144 

taxa with similar growth-forms) and 3 abiotic components: branching Acropora, digitate Acropora, 145 

tabular Acropora, branching coral, foliose coral, massive coral, encrusting coral, Fungiidae, 146 

Tubastrea micranthus, Heliopora coerulea, Millepora, large clam (mostly Tridacna), coralline 147 

algae, soft-bodied organism (i.e. soft coral, whip- and wire-coral, sea fan, fleshy algae, sponge, 148 

tunicate), dead coral/coral rock, coral rubble, and sand. For each of these benthic categories, the 149 

percent substratum cover was visually estimated by the plain view technique of Wilson et al. 150 

(2007), with divers hovering 1-2 m above the benthos over an area of about 20 m
2
, in three replicate 151 

spots at each of the eight reefs at each sampling time. The observers were always the same during 152 

surveys from 1997 to 2013, while new observers trained by the former estimated cover values from 153 

2014 to 2017.  154 

Total hard coral cover (HCC) was obtained summing up the cover of the 11 categories of hard 155 

coral listed above. Acropora cover (AC) was obtained summing up the cover of the 3 categories of 156 

Acropora. The overall yearly means of HCC and AC were computed irrespective of reef type and 157 

site to describe the general trend of hard corals in the Maldivian reefs during the last twenty years.  158 

To assess bioconstruction potential of a reef, five bioconstructional guilds (Fagerstrom 1991; 159 

Bianchi et al. 2017) were considered (Figure 1). The first guild is composed of primary builders, 160 
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those organisms that build the reef framework and therefore assure significant reef accretion thanks 161 

to their superstratal growth; this guild was comprised of the three Acropora categories, branching 162 

coral, foliose coral, Tubastrea micranthus, Heliopora coerulea, and Millepora. The second guild 163 

includes secondary builders, which provide calcareous material to fill in the framework, and 164 

included massive coral, Fungiidae, and large clam. The third guild is made by “binders,” which are 165 

encrusting coral and coralline algae that consolidate the reef structure. The fourth guild is formed by 166 

“bafflers,” soft-bodied organisms that, although not actively participating in reef bioconstruction, 167 

help to retain sediment within the reef. Finally, the fifth category includes abiotic components that 168 

did not contribute to bioconstruction. Change in cover of the different bioconstructional guilds was 169 

compared over time, with a particular emphasis on the two main bleaching events (1998 and 2016). 170 

In particular, cover values were compared, in both ocean and lagoon reefs, in three distinct periods: 171 

i) pre-bleaching years: 1998 (the surveys were carried out in April, one month before the bleaching-172 

inducing high-temperature spike) and 2015; ii) bleaching years: 1999 and 2016; and iii) post-173 

bleaching years: 2000 and 2017. 174 

One-way ANOVAs were performed to test for differences in substratum cover of each 175 

bioconstructional guild among pre-bleaching, bleaching and post-bleaching years over the two main 176 

bleaching events of 1998 and 2016, either in ocean or lagoon reefs. Prior to analysis, homogeneity 177 

of variances was tested by Levene‟s test. In the case of not homogeneous variances, ANOVA was, 178 

nevertheless, used after setting α = 0.01 in order to compensate for the increased likelihood of Type 179 

I error (Underwood 1997). The results showing significant changes were subjected to post-hoc 180 

Tukey‟s test. Student t-tests, all with 22 degrees of freedom, were used to compare lagoon and 181 

ocean reef cover data in the same year, and to compare cover data in pre-bleaching, bleaching and 182 

post-bleaching years in the two reef types. 183 

The BioConstruction Potential index BCP (Bianchi et al. 2017) was devised using equation 1: 184 

n 185 

BCP = Σ (siCi%) × 100
-1

        (equation 1) 186 



9 

 

i=1 
187 

where n is the number of bioconstructional guilds (5, in this case), si is an importance score 188 

assigned to the i
th

 guild, and Ci% is the percent cover of the i
th

 guild. The value of si is 3 for the 189 

primary builders, 2 for the secondary builders, 1 for the binders, 0 for the bafflers, and -1 for the 190 

abiotic components, according to their relative role in structuring the reef framework. Therefore, 191 

BCP ranges theoretically from 3, in the unrealistic case of 100% cover by primary constructors, to -192 

1, when only abiotic components are present and no bioconstruction is possible, the reef thus being 193 

prone to erosion and drowning. 194 

 195 

Carbonate deposition and reef accretion  196 

To estimate carbonate deposition rates in coral reefs, we used equation (2) proposed by Perry 197 

and Morgan (2017a): 198 

CaCO3 = 0.428 HCC – 5.3376        (equation 2) 199 

where CaCO3 is the net budget of carbonate deposition in kg CaCO3 m
−2

 a
−1

 and HCC is the total 200 

hard coral cover in %. 201 

To estimate reef accretion rates we used the two equations proposed by Perry and Morgan 202 

(2017a) based on total hard coral cover (equation 3) and Acropora cover (equation 4):  203 

PA = 0.3089HCC – 0.5827         (equation 3) 204 

PA = 0.3089AC – 0.5827         (equation 4) 205 

where PA is the reef accretion rate in mm a
−1

, HCC and AC are the total hard coral cover and 206 

Acropora cover, respectively, in %. 207 

Linear regressions were performed on a total of 480 observations to test relationships 208 

between: i) the BCP index and the net carbonate deposition rate, ii) the BCP index and the reef 209 

accretion rate considering HCC, and iii) the BCP index and the reef accretion rate considering only 210 

AC. 211 

 212 
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Diversity of constructors 213 

The Shannon-Wiener index (H‟) was used to measure the diversity of bioconstructors in the 214 

reefs, applying the following equation (5): 215 

n 216 

H‟ = -Σ pilnpi          (equation 5) 217 
i=1 

218 

where n is the number of categories of bioconstructors considered (13 in our case within primary 219 

builders, secondary builders, and binders); pi is the cover (%) of the i
th

 category and ln is the natural 220 

logarithm. 221 

 222 

Results  223 

Sea Surface Temperature (SST) 224 

Mean SST increased by ~ 0.25°C from 1997 to 2017. Peaks in maximum SST coincided with 225 

the known bleaching episodes that hit the Maldives during the investigated period (Figure 2a). Only 226 

the two heat anomalies of 1998 and 2016 exceeded the severe regional bleaching threshold, whilst 227 

the temperature in 2003, 2007 and 2010 exceeded only the moderate bleaching threshold and had no 228 

evident impact on the overall reef recovery pattern after the mass mortality of 1998. In 1998 the 229 

bleaching started at the beginning of May, whilst in 2016 it started in late March, and then the 230 

temperature persisted at levels above the severe bleaching threshold for nearly two months in both 231 

events.  232 

Hard coral and Acropora cover 233 

HCC, which dropped to less than 10% after the 1998 bleaching, returned to pre-bleaching 234 

values of about 55% only by 2014 (Figure 2b). The formerly dominant branching and tabular 235 

Acropora species completely disappeared in 1999, and recovered to nearly the half of the value of 236 

1998 by 2014. In 2016, branching and tabular corals died once again following the new bleaching, 237 

leading to mean HCC and AC values around 20% and less than 5%, respectively. Most of the 238 
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massive corals survived, showing only partial mortality. Already in 2017 reefs started to recover, 239 

reaching mean HCC values of around 30%; however, there were no evident sign of recovery for 240 

Acropora during our survey of May 2017. 241 

 242 

Bioconstruction potential, carbonate deposition and reef accretion  243 

Maldivian reefs in the pre-bleaching years (1998 and 2015) were dominated by primary 244 

builders: their cover was greater in ocean than in lagoon reefs in 1998 (t = -9.55, p<0.001) but 245 

exhibited no difference in 2015 (t = 0.59, p = 0.59) (Figure 3). In ocean reefs, primary builders 246 

showed higher cover in 1998 than in 2015 (t = 3.12, p < 0.01). Cover of binders was significantly 247 

lower in ocean compared to lagoon reefs in 1998 (t = 35.1, p < 0.001), but similar in both reef 248 

systems in 2015 (t = 0.93, p = 0.36). Both in lagoon and ocean reefs binders were more abundant in 249 

2015 than in 1998 (t = -2.33, p<0.05; t = -5.05, p<0.001, respectively). In 1998, there were almost 250 

no abiotic components on ocean reefs, while covering over 20% in lagoon reefs (t = 22.3, p<0.001). 251 

In 2015, abiotic cover in ocean reefs increased significantly (t = -3.48, p<0.01) and was similar to 252 

the cover in lagoon reefs. In general, the difference between ocean and lagoon reefs was much more 253 

pronounced in 1998 than in 2015. 254 

In the aftermath of the two bleaching episodes, reefs were dominated by abiotic components, 255 

which showed higher cover in ocean reefs compared to lagoon reefs after the 1998 bleaching event 256 

(t = -7.10, p<0.001 in 1999; t = -8.69, p<0.001 in 2000), but much higher in lagoon reefs after the 257 

2016 bleaching (t = 4.32, p<0.001). Following the bleaching 1998, primary builders almost 258 

disappeared in 1999 in both reef types (Table 1a), but were significantly higher in lagoon compared 259 

to ocean reefs (t = 7.74, p<0.001). In 2016, their cover in both reef systems declined significantly to 260 

<20% (Table 1b). Secondary builders halved their cover during both events in ocean reefs, whilst 261 

no change in cover was detected in lagoon reefs during both bleaching events (Table 1a, b). Binders 262 

declined in 1999 in lagoon reefs (Table 1a) and disappeared in 2016 in both reef types (Table 1b). 263 
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Bafflers increased their cover values in lagoon reefs in 1999 (Table 1a), showing higher cover than 264 

in ocean reefs (t = 6.12, p<0.001), whilst no change in cover was detected in both ocean and lagoon 265 

reefs in the second bleaching event (Table 1b).  266 

The post-bleaching reef composition showed different trends following the 1998 and 2016 267 

bleaching events. After 1998, there was a significant recovery of binders in both the lagoon and 268 

ocean reefs already by 2000 (Table 1a), where they reached higher cover compared to ocean reefs 269 

(t = 32.16; p < 0.001). After the 2016 bleaching, primary builders in lagoon reefs continued to 270 

decline significantly (Table 1b) and showed cover values lower than in ocean reefs (t = -1.87; 271 

p < 0.05), while decreasing only slightly in ocean reefs and staying above the 2000 post-bleaching 272 

values (t = -2.6; p < 0.01) (Figure 3). Cover of secondary builders and binders recovered to pre-273 

bleaching values by 2017 in ocean reefs (Table 1b) and became the dominant reef builders, 274 

especially in the ocean reefs (t = 3.54, p<0.01; t = -2.65, p<0.05, respectively). 275 

The BCP was positively and highly correlated with both carbonate deposition rate and reef 276 

accretion rate considering total HCC, with extremely small error terms; correlation was slightly 277 

lower, and error terms larger, for AC-only accretion rate (Figure 4).  278 

After the bleaching event of 1998, all shallow reefs exhibited net erosion, i.e., negative BCP 279 

values (Figure 5). It took two years for the lagoon reefs and three years for the ocean reefs to re-280 

initiate positive carbonate deposition, and this was mainly due to binders and bafflers that retained 281 

sediments; the few primary and secondary builders could not yet ensure positive bioconstruction. 282 

Attainment of constratal growth (BCP between 0 and 1) required six years (lagoon reefs) or nine 283 

years (ocean reefs). However, BCP values lower than 1 indicate reefs with few primary builders. 284 

Values of BCP greater than 1 (corresponding to hard coral cover >50% in the Maldives), are 285 

indicative of superstratal growth due to the relatively high cover of primary builders. Maldivian 286 

reefs attained BCP > 1 in 1997-1998 and again after 2012 (lagoon reefs) or 2014 (ocean reefs), 287 

fourteen to sixteen years after the first severe bleaching event, respectively. During the bleaching 288 
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episode of 2016, both lagoon and ocean reefs fell to negative BCP values indicative of no 289 

bioconstruction, but a low level of carbonate deposition by binders and bafflers restrained erosion. 290 

In 2017 BCP declined further in lagoon reefs, leading to a net erosive budget, whereas ocean reefs 291 

resumed constratal growth. 292 

These changes in carbonate deposition have driven major reductions in reef growth during 293 

both severe bleaching events. In the pre-bleaching years (1998 and 2015), reef accretion of 294 

Maldivian reefs ranged between 12.1 and 18.9 mm a
−1

 depending on reef type (Figure 5). After the 295 

1998 bleaching, accretion of reefs was null and then started slowly to recover in the following 296 

years. During the 2016 event, reef accretion declined to values lower than 3.6 mm a
−1

; in the post-297 

bleaching year it showed some recovery in ocean reefs, while values in lagoon reefs continued to 298 

decline.  299 

 300 

Diversity of the constructors 301 

Diversity of the bioconstructors showed different temporal trajectories comparing lagoon and 302 

ocean reefs. In the lagoon reefs, the two severe bleaching events followed similar trajectories, with 303 

four distinct phases (Figure 6): i) decline in bioconstructor diversity in pre-bleaching years (1997-304 

1998 and 2014-2015), probably due to early mortality through thermal stress before mass bleaching 305 

became evident; ii) sudden and dramatic reduction in BCP, with no further reduction in diversity, in 306 

the bleaching years; iii) increase in bioconstructor diversity in the post-bleaching years; iv) gradual 307 

increase in BCP. In the ocean reefs, the four phases were not equally obvious, and trajectories of 308 

change differed in response to the two bleaching events. 309 

 310 

Discussion 311 

Among the three pan-tropical global bleaching episodes (Heron et al. 2016) only those of 312 

1997-1998 and 2015-2016 caused high mortality on coral reefs in the Maldives, whilst the 313 
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bleaching of 2010 had only minor consequences (Guest et al. 2012). The dominant Acropora corals 314 

nearly disappeared during both 1998 and 2016, as they are typically highly susceptible to thermal 315 

stress (Loya et al. 2001; Baker et al. 2008; Guest et al. 2012; Pratchett et al. 2013). On the contrary, 316 

massive corals experienced mostly partial colony mortality (Bianchi et al. 2003), as similarly 317 

observed in other Maldivian atolls (Perry and Morgan 2017b) and in the nearby Chagos 318 

Archipelago (Sheppard et al. 2008, 2017).  319 

Total hard coral cover is the most commonly used indicator of reef health but may not be a 320 

sufficient predictor of reef growth potential (Lasagna et al. 2010a, and references therein). The BCP 321 

index (Bianchi et al. 2017), which is based on cover values of bioconstructional guilds, illustrates 322 

shifts from superstratal to constratal accretion and to erosive state. Integrating the BCP index with 323 

the equations developed by Perry and Morgan (2017a) allowed transforming our cover data into a 324 

proxy for carbonate deposition and reef accretion. Superstratal growth in the Maldives was 325 

normally assured by the canopy of large and fast-growing Acropora corals (Morri et al. 1995; 326 

Lasagna et al. 2010b). Contrarily to what observed by Perry and Morgan (2017a), Acropora cover 327 

did not result a strong predictor of reef accretion in our study. Thus, we used total hard coral cover 328 

(which anyway also includes Acropora corals) to estimate reef accretion through the predictive 329 

equation of Perry and Morgan (2017a). 330 

After both mass bleaching events, all lagoon and most of the ocean Maldivian reefs shifted 331 

from a net accretion to a net erosive state. After the 1998 bleaching event, the coral communities 332 

took around 16 years to recover the constructional capacity of the pre-bleaching year (Pisapia et al. 333 

2016; Bianchi et al. 2017). Recovery started with a low coral carbonate production that maintained 334 

reefs in a long phase of virtually no bioconstruction (from 5 to 9 years in lagoon and ocean reefs, 335 

respectively); recovery then passed through a period of constratal accretion, in which the reef grew 336 

at a rate of about 3.6-9.5 mm a
-1

, after which high accretion rates resulted in the return to the 337 

original 3D-structure in all reefs. The new severe bleaching event of 2016 pushed Maldivian reefs 338 



15 

 

into a no bioconstruction state once again. In the Great Barrier Reef, past exposure to bleaching in 339 

1998 did not lessen the severity of bleaching in 2016 (Hughes et al. 2017b), whereas in the 340 

Maldives, mortality rate in 2016 was lower than in 1998. Our data suggested that after both events 341 

high diversity of constructors was an essential trigger for enhancing bioconstruction, as underlined 342 

by previous studies elsewhere (Benzoni et al. 2003; van Woesik, 2017), but lagoon and ocean reefs 343 

showed inconsistent temporal trends of the relationship between BCP and diversity (Figure 6). 344 

Lagoon reefs had a predictable and consistent pattern during and after both bleaching events, with a 345 

four-phase cycle that resembles the adaptive cycle described by Holling (2001). In both ocean and 346 

lagoon reefs, a higher spatial variability in bioconstructor diversity was apparent in 2015, at the 347 

beginning of the last bleaching event, and might be interpreted as an early symptom of stress 348 

(Warwick and Clarke 1993).  349 

Bleaching is likely to become a chronic stressor in the coming decades (Hughes et al. 2018), 350 

implying repeated coral mortality, reduced reef accretion and risk of drowning following sea level 351 

rise (Perry et al. 2018). In the Maldives, constratal accretion, regained 6-9 years after the severe 352 

bleaching of 1998, seems enough for reefs to keep-up with the ongoing yearly mean sea level rise of 353 

2 mm. According to the Intergovernmental Panel on Climate Change (IPCC 2013), such a rate of 354 

sea level rise can be maintained under the most optimistic scenario (Heron et al. 2017), 355 

corresponding to low carbon dioxide (CO2) emissions and a Representative Concentration Pathways 356 

RCP = 2.6 (van Vuuren et al. 2011). However, sea surface temperature increase is likely to exceed 357 

coral tolerance limits in the next decades (Heron et al. 2017). Models suggest that the majority of 358 

coral reefs will not survive the most pessimistic scenarios predicted for global warming (Frieler et 359 

al. 2013; Perry et al. 2018). The worst IPCC scenario envisages 10 mm a
−1

 of sea level rise (Heron 360 

et al. 2017) with a RCP = 8.5 (IPCC 2014); expert judgement by several scientists underlines model 361 

uncertainty, leading to an even more pessimistic, but precautionary, prediction of a mean yearly sea 362 

level rise of 20 mm (Melillo et al. 2014). A foreseen global temperature increase of up to 5-6 ºC by 363 
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the year 2100 (https://sos.noaa.gov/Datasets/dataset.php?id=438) would cause two severe bleaching 364 

events per decade (Hughes et al. 2018), a frequency that prevents recovery of Maldivian coral reefs 365 

(Table 2). Under this scenario, more than 80% of coral reefs will be degraded by 2040 (Heron et al. 366 

2017): Maldivian reefs will not have sufficient time to recover prior to the next severe bleaching 367 

and will therefore experience drowning and extinction of stenothermal species (Bay et al. 2017). 368 

Large-scale bleaching two years in a row have already been documented for the first time in 2014-369 

2015 in Hawaii and in the Florida Keys, and in 2016-2017 on the Great Barrier Reef (Warner et al. 370 

2016). To cope with 20 mm annual sea level rise, coral reefs would have to reach a BCP value of 3, 371 

which would be gained only with the rather unrealistic situation of 100 % cover of primary builders. 372 

The COP21 Paris agreement set the goal of holding the increase in the global average mean 373 

temperature to well below 2 °C above preindustrial levels, but called for efforts to limit that 374 

increase to 1.5 °C (UNFCCC 2015). Even with this optimistic assumption of warming, two-thirds 375 

of reefs worldwide will disappear (Frieler et al. 2013). Climate-related loss of reef ecosystem 376 

services will total US$ 500 billion per year or more by 2100, with the greatest impacts felt by 377 

people who rely on reefs for their daily subsistence (Heron et al. 2017). Local anthropogenic 378 

impacts may exacerbate the effects of climate change (Nepote et al. 2016; Brown et al. 2017; Prouty 379 

et al. 2017). Reducing local threats to corals could make coral reef ecosystems more resilient to 380 

rising ocean temperatures and help reducing coral reef decline globally (Sheppard et al. 2017; 381 

Shaver et al. 2018), favouring high recruitment and recruit survival rates (Cardini et al. 2012; 382 

Shlesinger and Loya 2016). Long-term series of data remain the most effective tool to validate 383 

predictive models and evaluate temporal patterns, and should be a priority for reef scientists and 384 

managers alike (Bianchi et al. 2017; Osborne et al. 2017). Attention should be focused on the 385 

preservation of bioconstructional capacity to ensure continued accretion of coral reefs: our 386 

BioConstruction Potential index would be of help in this respect. 387 

 388 

https://sos.noaa.gov/Datasets/dataset.php?id=438
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Figure captions and Table headings 624 

Figure 1. The five bioconstructional guilds considered in the present study, with some examples of 625 

benthic categories for each guild: a) primary builders, including tabular Acropora (i), coral 626 

branching (ii), and Tubastrea micranthus (iii); b) secondary builders, including massive coral (i), 627 

Fungiidae (ii), and large clam such as Tridacna (iii); c) binders, which include encrusting coral (i, 628 

ii) and coralline algae (iii); d) bafflers, including soft-coral (i), sea fan (ii) and erect sponge (iii); e) 629 

abiotic components such as dead coral/coral rock (i), coral rubble (ii), and sand (iii). 630 

 631 

Figure 2. Twenty-year trends (1997-2017) of sea surface temperature (SST) and percentage cover of 632 

hard corals in the Maldives. a) Yearly maximum (red continuous line) and mean (dotted black line) 633 

SST. Sun icons indicate years with known bleaching episodes for the study area, distinguished in 634 

moderate (i.e., causing little mortality) and severe (i.e., causing mass mortality) events (from Morri 635 

et al. 2015 and references therein; NOAA 2016). The threshold temperatures triggering moderate 636 

and severe bleaching events are also reported (according to Perry and Morgan, 2017a and present 637 

data). b) Mean (± standard error) hard coral (HCC) and Acropora (AC) cover (in %) in the 638 

Maldives. Bold values on the x axis correspond to years when bleaching events have been reported 639 

for the Maldives. 640 

 641 

Figure 3. Mean (+ standard error) percent substratum cover (%) of primary builders, secondary 642 

builders, binders, bafflers, and abiotic components in lagoon and ocean reefs over the two severe 643 

bleaching events: 1998 (top row) and 2016 (bottom row). For the former bleaching event, which 644 

began in May of 1998, data from the year 1998 collected in April were considered as pre-bleaching 645 

values, data from 1999 as during-bleaching, and data from 2000 as post-bleaching. For the latter 646 

bleaching event, data from 2015 and 2017 are considered as pre- and post-bleaching values, 647 
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respectively. Differences between lagoon and ocean reefs were tested using student t-tests 648 

(* = p<0.01, ** = p<0.001). 649 

 650 

Figure 4. Linear regressions showing the relationships between: a) BioConstruction Potential index 651 

(BCP) and net carbonate deposition rate (kg CaCO3 m
−2

 a
−1

); b) BCP and reef accretion rate 652 

(mm a
−1

) considering total hard coral cover (HCC); c) BCP and reef accretion rate (mm a
−1

) 653 

considering Acropora cover (AC) only. Equations of the models and R
2
 values are reported. The 654 

95% bootstrapped confidence intervals are represented by the grey zones in all panels. 655 

 656 

Figure 5: Trend of the mean values (± standard error) of BioConstruction Potential index (BCP), on 657 

shallow (4-6 m) lagoon and ocean reefs in the Maldives, 1997-2017. Negative values of BCP imply 658 

no bioconstruction, values between 0 and 1 depict reefs capable of constratal growth only, values 659 

greater than 1 are indicative of superstratal growth (see text). Values of reef accretion (mm a
−1

) are 660 

indicated in correspondence with each threshold of the BCP. The threshold to pass from a net 661 

positive to a net negative carbonate budget (in term of CaCO3 deposition) and the threshold of the 662 

null accretion are also reported, which correspond to reefs prone to erosion. Bold values on the x 663 

axis correspond to years when bleaching events have been reported for the Maldives.  664 

 665 

Figure 6. Diagrams showing values of BioConstruction Potential index (BCP) and diversity of 666 

bioconstructors (expressed by the Shannon-Wiener index H' applied to 13 bioconstructor 667 

categories) in lagoon and ocean reefs from 1997 to 2017. Smaller numbers are individual replicates, 668 

bold numbers are year centroids. Recovery patterns from the two severe bleaching events are 669 

illustrated by the time trajectories of year centroids in the periods 1997-2013 (light purple) and 670 

2014-2017 (dark pink). 671 

 672 
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Table 1. Results of 1-way ANOVAs on the five bioconstructional guilds among the three years of 673 

the first severe bleaching event (a; 1998, 1999, and 2000) and the second severe bleaching event (b; 674 

2015, 2016, and 2017), in lagoon and ocean reefs. Significant values are in bold, * = p < 0.01; 675 

** = p < 0.001. 676 

 677 

Table 2. Maldivian reef status under different predicted scenarios of yearly sea level rise and 678 

bleaching frequencies; bad status may imply reef drowning. 
1
 = the optimistic scenario, which 679 

predicts a yearly mean sea level rise of 2 mm, corresponds to a Representative Concentration 680 

Pathways RCP = 2.6 (IPCC, 2013); the IPCC worst scenario, which predicts 10 mm a
−1

 of sea level 681 

rise, corresponds to RCP = 8.5 (IPCC, 2013); the most pessimistic and precautionary scenario 682 

predicts a mean yearly sea level rise of 20 mm (Melillo et al. 2014). 
2
 = predicted bleaching 683 

frequencies in the best scenario (every 15 years), intermediate scenario (every 10 years), and worst 684 

scenario, where a bleaching event every 5 years is expected (Heron et al. 2017). 685 

  686 
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Table 1. 687 

a) 
 Primary 

builders 

Secondary 

builders 

Binders Bafflers Abiotic 

components 

LAGOON df SS p SS p SS p SS p SS p 

Between groups 2 18185.1 <0.001 35.389 0.012 1314.06 <0.001 725.056 <0.001 16368.2 <0.001 
Within groups 33 193.25  116.167  34.25  124.5  414  

Total 35 18378.3  151.556  1348.31  849.556  16782.2  

Levene‟s test  p<0.001  p<0.001  p=0.689  p<0.001  p=0.036  

Tukey‟s pairwise  1998>1999** 

1998>2000** 

 1998>1999** 

1998<2000** 

1999<2000** 

1998<1999** 

1999>2000** 

1998<1999** 

1998<2000** 

1999>2000** 

OCEAN df SS p SS p SS p SS p SS p 

Between groups 2 40422.7 <0.001 2525.17 <0.001 106.167 <0.001 219.556 0.004 54014.1 <0.001 
Within groups 33 499.51  835.583  20.583  565.667  127.583  

Total 35 40922.2  3360.75  126.75  785.222  54141.6  

Levene‟s test  p<0.001  p<0.001  p=0.492  p<0.01  p<0.001  

Tukey‟s pairwise  1998>1999** 

1998>2000** 

1998>1999** 

1998>2000** 

1998<1999* 

1998<2000** 

1999<2000** 

1998<2000** 1998<1999** 

1998<2000** 

1999>2000** 

b) 
 Primary 

builders 

Secondary 

builders 

Binders Bafflers Abiotic 

components 

LAGOON df SS p SS p SS p SS p SS p 

Between groups 2 13436.2 <0.001 22.722 0.848 1905.56 <0.001 92.389 0.457 23521.7 <0.001 
Within groups 33 5883.33  2254.83  1836.33  1900.5  6848.5  

Total 35 19319.6  2277.56  3741.89  1992.89  30370.2  

Levene‟s test  p<0.01  p=0.173  p<0.001  p=0.593  p=0.118  

Tukey‟s pairwise  2015>2016**  

2015>2017** 

2016>2017* 

 2015>2016** 

2015>2017* 

 2015<2016** 

2015<2017** 

OCEAN df SS p SS p SS p SS p SS p 

Between groups 2 6274.06 0.002 3856.06 0.004 1458 <0.001 228.389 0.076 15251.7 <0.001 
Within groups 33 13974.5  9707.5  1735  1353.25  9912.17  

Total 35 20248.6  13563.6  3193  1581.64  25163.9  

Levene‟s test  p<0.001  p<0.01  p<0.001  p=0.019  p=0.314  

Tukey‟s pairwise  2015>2016** 

2015>2017** 

2015>2016* 

2016<2017* 

2015>2016** 

2016<2017** 

 2015<2016** 

2015<2017* 

2016>2017* 

  688 
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Table 2. 689 

  yearly sea level rise
1
 

  2 mm 10 mm 20 mm 

bleaching 

frequency
2
 

15 years GOOD QUESTIONABLE BAD 

10 years GOOD BAD BAD 

5 years QUESTIONABLE BAD BAD 
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Figure 1 692 
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Figure 2 694 
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Figure 3 697 
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Figure 4 701 
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Figure 6 706 


