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SUMMARY 
 

Protein kinases are enzymes that regulate the biological activity of target proteins by 

phosphorylation of specific amino acids with ATP as the source of phosphate, thereby inducing 

a conformational change from an inactive to an active form of the target protein. Depending on 

the substrate, protein kinases can be classified into serine-threonine kinases and tyrosine 

kinases. According to their cellular location, both classes can be further divided into receptor 

kinases (located in the cell membrane) or cytoplasmic kinases (located within the cell). Protein 

kinases are key regulators of cell functions. They direct the activity, localization and other 

functions of many proteins, and serve to orchestrate the activity of almost all cellular processes.  

Overexpression and dysregulation of protein kinases frequently characterize the pathogenesis 

of many cancers and other diseases. As a result, increasing attention has been directed towards 

the identification of novel kinase inhibitors for cancer therapy.  

The research group where I worked synthesized a wide library of pyrazolo[3,4-d]pyrimidines 

which  represent a promising class of compounds capable of inhibiting several oncogenic 

kinases. 

The work here performed focuses on the synthesis and biological evaluation of a series of 

pyrazolo[3,4-d]pyrimidine derivatives as inhibitors of the serine-threonine kinase SGK1, and 

the tyrosine kinases Fyn and Src. 

SGKs are implicated in a huge variety of cellular processes, such as cell stress, survival, 

proliferation and transport of ions, nutrients and amino acids. Among these kinases, SGK1 has 

demonstrated to be involved in cancer development and resistance, and in the metabolic 

syndrome, a pathological state mainly characterized by hypertension, obesity and diabetes. In 

this context, an in silico screening of our pyrazolo[3,4-d]pyrimidines has been performed with 

the aim to find new SGK1 inhibitors. One of these compounds, SI113, has been widely 

investigated and several biological studies have further demonstrated its promising activity on 

different type of tumors. 

 

 



7 
 

N

N N
N

HN

N
H

HO

SI113

 

 

The main project which I carried out during my PhD study is based on the synthesis of a library 

of SI113 analogues. This new pyrazolo[3,4-d]pyrimidines potential SGK1 inhibitors are 

characterized by different anilino- and amino- groups in C4 and are decorated in C6 with polar 

chains, i.e. ethanolamine, diethanolamine, ethylene glycol and ethylenediamine. (Chapter 5). 

The Src family kinases are non-receptor tyrosine kinases and regulate cell growth, 

differentiation, migration, adhesion and apoptosis.  

Fyn belongs to the Src family kinases and it is physiologically involved in several transduction 

pathways in the brain and in the peripheral immune system. To date, the implication of Fyn in 

cancers has become more evident and its abnormal activity has been shown to be related into 

severe central nervous system pathologies such as Alzheimer’s and Parkinson’s diseases. 

In this context the structures of the second set of compounds, which I synthesized during my 

PhD, are related to the in-house Fyn inhibitor SI308. From previously published studies on the 

first generation of Fyn inhibitors, SI308 was reported as the most potent compound, 

demonstrating both antiproliferative activity on cancer cell lines and the ability to inhibit protein 

Tau phosphorylation in a cellular model of Alzheimer’s disease.  
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The new generation of SI308 related compounds present a methyl group in C6 and a 

(substituted) phenyl ring in C3. (Chapter 6). 
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Preliminary screening, using enzymatic assays, demonstrates that some of the novel compounds 

are active and therefore suitable for further in vitro studies. Subsequent in vitro data will aid in 

the design of future compounds. 

The hyperactivation of c-Src, the prototype member of Src family kinases, has been proved to 

be closely connected with the development and progression of several tumor types. 

Furthermore, previous data on another in-house compound SI306, which is a Src inhibitor, 

reported promising results on an in vivo xenograft model of neuroblastoma.  
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To further study its biological activity, SI306 was re-synthesized and additional experiments 

were performed on in vitro models. Testing of this compound on on three neuroblastoma cell 

lines characterized by a different MYCN status, (HTLA-230 and SK-N-BE-2C with MYCN 

amplification and SH-SY-5Y without MYCN amplification), further confirmed the activity of 

SI306, providing increased support for the inhibition of Src as a valid approach for 

neuroblastoma treatment. (Chapter 7). 

I performed additional in vitro studies, on the three previously cited in-house pyrazolo[3,4-

d]pyrimidines, SI113, SI308 and SI306, using patient derived glioblastoma multiforme (GBM) 

cell lines. This substantial work was undertaken during a research fellowship period performed 

in collaboration with the School of Pharmacy at the University of Nottingham (United 

Kingdom). Kinase inhibitor activity has been evaluated on series of patient derived GBM cell 

lines isolated from both the central tumor core (GCE28) and from the invasive margin of the 

tumor (GIN28 and GIN8). The use of such phenotypically relevant in vitro models represents 

an important step for GBM drug development and screening. The results gathered using these 

relevant cell models further demonstrate the anti-cancer activity of the pyrazolo[3,4-

d]pyrimidine compounds. Moreover, the investigation of different combinations of our 
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inhibitors reveals that synergy can be achieved, and this finding has additional implications for 

potentially overcoming GBM drug resistance. Additionally, to overcome the low water 

solubility of our lead compound (SI306), polymers formulations of SI306 were prepared using 

a miniaturized screening process based on inkjet printing technology. The observed activity of 

our compounds in vitro, together with the application of a successful formulation, highlight that 

our kinase inhibitors are attractive candidates for the treatment of GBM. (Chapter 8). 

Finally, during my research period in Nottingham, I also had the opportunity to test a set of our 

pyrazolo[3,4-d]pyrimidines on bacteria. This project is supported by many studies, highlighting 

prokaryotic protein kinases as potential targets for truly novel antibiotics. Additionally, in 

literature a number of pyrazolo[3,4-d]pyrimidine derivatives showing interesting activity 

against bacterial proliferation are reported. 

For these reasons a representative number of pyrazolo[3,4-d]pyrimidines, presenting different 

substituents in position N1, C4 and C6 has been chosen to be tested  on the Gram positive 

bacteria S. aureus, and the Gram negative bacteria E. coli in order to obtain the widest 

information about the structure-activity relationship (SAR). The combination of pyrazolo[3,4-

d]pyrimidines with the antibiotics β-lactam ampicillin and the aminoglycoside kanamycin has 

been included in the assays in order to hypothesize a possible mechanism of action. 

The results obtained represents a first step in the exploration of a potential dual activity of 

pyrazolo[3,4-d]pyrimidines in the context of bacterial infections in oncologic patients. 

(Chapter 9). 
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CHAPTER 1 

Protein kinases family 

The large family of protein kinases catalyzes the transfer of the γ-phosphate group of ATP onto 

substrate residues. This enzymatic phosphorylation produces a signal transduction which 

terminally leads to a biological response. Protein kinases regulate signalling pathways and 

cellular processes that mediate metabolism, transcription, cell-cycle progression, 

differentiation, cytoskeleton arrangement, cell movement, apoptosis, intercellular 

communication, neuronal and immunological functions1. 

Approximately 2% of all human genes correspond to protein kinase genes (total 518) which are 

responsible for carrying out these numerous biochemical processes (Fig.1)2. 

Protein kinases require ATP, the substrate protein and an essential bivalent metal ion (Mg2+ or 

Mn2+) to catalyze the following reaction:  

 

MgATP1− + protein – OH →  protein − OPO32− + MgADP + H+ 

 

The phosphate group is transferred on tyrosine, serine or threonine residues present on protein 

substrates. Many studies demonstrated that this reaction possesses an extraordinary catalytic 

power. In fact, it is reasonable to think that the alkoxide of serine or threonine or the phenolate 

of tyrosine, formed by the metal ion interaction, are more potent nucleophiles than the 

corresponding alcoholic or phenolic forms and, thus, may enhance phosphoryl group transfer.  

The eukaryotic protein kinases are a large superfamily of homologous proteins. Depending on 

their ability to phosphorylate serine, threonine, or tyrosine residues, the superfamily members 

are subdivided in two main groups:  

- Serine-threonine protein kinases (STKs). 

- Tyrosine kinases (TKs). 

The catalytic domain (Fig.2), a conserved region of approximately 200-250 amino acids, 

structurally consists of two lobes, the N-terminal lobe and the C-terminal lobe. 

The first is composed of a β-sheet and a single α-helix (the “C-helix”) which interacts with the 

ATP phosphate groups. The C-terminal lobe comprises the substrate-binding sites for ATP and 

peptides3. 
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Fig.1. Human protein kinases. (From Cell Signaling Technology®). 
 

It is predominantly α-helical and includes the activation loop (A-loop), a segment typically 

containing tyrosine, serine or threonine residues that can be phosphorylated. 

The A-loop non-phosphorylated state prevents the substrate binding. On the contrary, the 

phosphorylation of the A-loop increases the enzymatic activity.  

In the catalytic domain there are key residues extremely important for the interaction with ATP. 

Asp184, a strictly conserved residue, interacts with the essential Mg2+ ion, which chelates the 

β and  phosphates of ATP. The chelation of this metal may position the terminal phosphate for 
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the direct transfer to the hydroxyl acceptor. Another key residue is Lys72, which interacts with 

α and β phosphates of ATP, giving additional stabilization and facilitating the phosphoryl group 

transfer without influencing ATP binding4.  

In addition to the catalytic domain, the structure of protein kinases includes other well 

characterized domains such as Src homology 2 (SH2) and 3 (SH3) domains in cytoplasmic 

TKs. Typically, these domains mediate inter- and intramolecular interactions among protein 

kinases, thus playing an important role in their functional regulation1. 

 

 
 

Fig.2. Protein kinases catalytic domain. 

 

Since overexpression, dysregulation and mutations of protein kinases play essential roles in the 

pathogenesis of many diseases, including autoimmune, cardiovascular, inflammatory, and 

nervous system disorders, as well as cancer, this family of enzymes has become one of the most 

important drug targets. 

To date, 49 small molecule protein kinase inhibitors have been approved by Food and Drug 

Administration (FDA)5 and 212 are currently  in clinical trials worldwide6. 

Most of the currently approved protein kinase inhibitors are directed toward the treatment of 

cancer and represent a valid alternative from conventional chemotherapy7.  

In conclusion, kinase inhibitor research is swiftly expanding, and the scientific progress in 

preclinical target validation, medicinal chemistry and computational technologies means this 

field appears likely to continue along this rapid growth trajectory. 
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1.1 Serine-threonine kinases  

STKs play a pivotal role in cellular homeostasis and signaling through their ability to regulate 

the activation of transcription factors, cell cycle regulators, and a wide array of cytoplasmic and 

nuclear effectors8. 

STKs can be classified into six large groups: 

- AGC (cAMP-dependent protein kinase/protein kinase G/protein kinase C extended 

family). This group includes more than 60 protein kinases in the human genome, 

classified into 14 families. They are cytoplasmic kinases that are regulated by secondary 

messengers such as cyclic-AMP or lipids. This group includes PKA, Akt and SGK 

(Serum- and glucocorticoid-regulated kinase)9.  

- CaMK (Ca2+/calmodulin-dependent protein kinases). This group is mainly 

characterized by Ca2+/calmodulin activity modulation. Most of the members of this 

group exhibit activation by the binding of Ca2+ or calmodulin to a small domain C-

terminal to the catalytic domain10. 

- CMGC (CDK, MAP kinase, glycogen synthase kinase, and CDK-like). This group 

includes mitogen-activated protein kinases (MAPKs)11. 

- STE (homologues of STE11 and STE20). 

- CK1 (casein kinase-1). 

- TKL (tyrosine kinase like). This group includes the receptor STKs and is one of the 

most recently discovered kinase group. 

STKs can also be divided depending on their cell location in receptor STKs and cytoplasmic 

STKs. 

Receptor STKs group includes the transforming growth factor-β (TGFβ) receptors and activin 

receptors. TGFβ receptors exist as heterodimers of type I and type II receptors and the ligand 

binding domain is located in the type II receptor. Upon ligand-receptor binding, the type I 

receptors are recruited to the complex and are phosphorylated by the type II receptor. 

Phosphorylation allows receptor I to propagate the signal to downstream substrates. This 

process of ligand dependent type I receptor activation and substrate phosphorylation is 

regulated at different levels (Fig.3)12. 
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Fig. 3. Receptor STKs. 

 

Cytoplasmic STKs are the largest and more studied class of STKs. They comprise many 

members including Raf, MEK and MAPK which are involved in the Ras-MAPK signalling 

cascade, a signal transduction pathway very important for the regulation of cell life. The 

activation element of this pathway is the binding of the extracellular mitogen to the membrane 

ligand. This leads to Ras (a GTPase) activation and the subsequent activation of Raf, MEK, 

MAPK and other downstream substrates. The cross-talk of all these pathways creates a wide 

and intricate network of communications in the cell, allowing the fine regulation of 

physiological functions. 

STKs have been implicated in human cancer13. Moreover, many high-throughput strategies 

have been exploited to evaluate the involvement of STKs in the initiation and progression of 

cancer either by searching for activating mutations or by identifying misregulated expression 

in gene profiling experiments14. 

 

 

1.2 Tyrosine kinases  

TKs are a subclass of protein kinases which selectively phosphorylate the OH group on tyrosine 

residues in target proteins. Upon activation, TKs regulate many key processes in cell, such as 

growth, survival, organ morphogenesis, neovascularization, and tissue repair and 

regeneration15. 
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Similarly to STKs, TKs can be subdivided in two main classes: 

- Transmembrane receptor TKs (RTKs). 

- Cytoplasmic or non-receptor TKs. 

The family members of RTKs are subdivided in 20 subclasses (Alk, Axl, Ddr, EGFR, Eph, FGFR, 

Insr, Met, Musk, PDGFR, Ptk7, Ret, Ror, Ros1, Ryk, Tie, Trk, VEGFR, AATYK) and are constituted 

by an extracellular portion that works as a receptor and an intracellular portion endowed with 

catalytic activity. The activation of RTKs requires the non-covalent association between two 

monomers to form a dimer16. This dimerization is triggered by the binding of extra-cellular 

factors to the extracellular portion of the kinase and in turn is responsible for the enhancement 

of intrinsic catalytic activity- accomplished by autophosphorylation on tyrosine residues- and 

the creation of binding sites to recruit downstream signaling proteins (Fig.4).  

 

 

Fig.4. Transmembrane receptor TKs. 

 

The ligands, for example the growth factors, by binding to the extracellular domain, lead to 

conformational changes that induce and stabilize receptor dimerization and lead to an increased 

kinase activity and autophosphorylation of tyrosine residues.  

One way to effectively block signaling from RTK is the inhibition of its catalytic activity using 

small-molecule inhibitors. Examples of approved RTK inhibitors include imatinib, originally 

born as Bcr-Abl inhibitor, but also active on the RTK c-Kit, for the treatment of gastrointestinal 

stromal tumors with mutant c-Kit, gefitinib and erlotinib, for treatment of non-small cell lung 

cancers with mutant epidermal growth factor receptor (EGFR), pazopanib, targeting vascular 

endothelial growth factor receptor 2 (VEGFR2) /platelet-derived growth factor (PDGFR) /c-

kit, and crizotinib, targeting Alk/Met17.  
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The family of cytoplasmic TKs include 10 subfamilies (Abl, Ack, Csk, Fak, Fes, Frk, Jak, Src, 

Tec, Syn), indirectly regulated by extra-cellular signals (Fig.5). Some cytoplasmic TKs are 

anchored to the cell membrane through amino-terminal modifications, such as myristoylation 

or palmitoylation. Besides the catalytic domain, they possess domains that mediate protein-

protein, protein-lipid, and protein-DNA interactions. The most commonly found protein-

protein interaction domains in cytoplasmic TKs are SH2 and SH3 domains. The structures of 

TKs in the active state are all very similar, despite the fact that they have different substrate 

specificities and different mechanisms of control. Structural biology has revealed several 

different mechanisms of self-regulation. In most cases, the position of C-helix and/or the A-

loop is involved, and very often regions outside the kinase domain fold back to block the 

binding sites or cause conformational changes in order to inactivate the kinase. Many of these 

mechanisms are shared by kinases from distinct TKs subgroups and also with non-tyrosine 

kinases18. 

In general, phosphorylation of tyrosine residues in the A-loop of cytoplasmatic TKs leads to an 

increase the in enzymatic activity. A-loop phosphorylation occurs via trans-

autophosphorylation or phosphorylation by a different cytoplasmic TK. On the other hand, 

phosphorylation of tyrosine residues outside of the A-loop can negatively regulate kinase 

activity15.  

 

Fig.5. Cytoplasmatic TKs. 

 

Medicinal chemistry research has led to the development of many TK inhibitors (TKI).  

In 2001, the first TKI drug imatinib was rapidly approved by the FDA and opened up new 

research opportunities for cancer treatment. Until 2018 a total of more than 20 kinds of TKI 
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have been approved by the FDA19 and by European Medicines Agency (EMA). These drugs 

have high selectivity, high efficacy, low side effects, are easy to prepare, and have many 

advantages in the treatment of different cancers (including chronic myeloid leukemia, non-

small cell lung cancer, renal cell carcinoma) than the traditional cytotoxic antineoplastic 

agents20. Some TKIs have become the first-line drug for the treatment of specific malignancies. 
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CHAPTER 2 

SGK1 

 

2.1 SGK family kinases 

The SGK family consists of three separate but highly homologous isoforms (SGK1, SGK2, and 

SGK3) encoded by three different genes21. SGKs are cytoplasmatic STKs belonging to the AGC 

family. Accordingly, they display structural and functional similarities with others AGC family 

members such as Akt, PKC and S6K1–3 (Ribosomal S6 Kinase). Structurally, SGKs consist of 

three domains: an N-terminal variable region, a catalytic domain, and the C-terminal tail22. For 

each SGK isoforms, several variants have been identified. All SGK isoforms have at least two 

key regulatory sites, a serine in the C-terminal hydrophobic domain and a threonine in the A- 

loop of the catalytic domain, both of which require phosphorylation for the complete activation. 

Each SGKs is able to produce multiple splice variants. SGK1 has four distinct variants which 

all differ in the N-terminal region, two of which contain an ER motif and are rapidly degraded 

via the 26S proteasome. Both SGK2 and SGK3 produce two variants, with SGK3 containing a 

PX domain in the N-terminal region23 (Fig.6). 

To become functional, SGK family members require activation by phosphorylation, which is 

accomplished through a signaling cascade involving the 3-phosphoinositide kinase (PI3K) 

pathway. Once activated, SGKs becomes potent regulators of metabolism, transport, 

transcription, and activity of different enzymes and thus participate in the regulation of diverse 

functions such as epithelial transport, excitability, cell proliferation, and apoptosis24. The most 

studied isoform is SGK1 for its implication in cancer and in the metabolic syndrome25,26, a very 

common pathologic state characterized by hypertension, obesity and diabetes. 
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Fig.6. SGK isoforms and variants. 

 

2.2 SGK1 structure and functions  

In 1993, the ubiquitously expressed27 SGK1 has been discovered in rat mammary tumor cells, 

as a gene transcriptionally responsive to serum and glucocorticoids28. Later the human SGK1 

has been identified as a gene up-regulated by cell shrinkage29. SGK1 regulates diverse effects 

of extracellular agonists by phosphorylating regulatory proteins that control cellular processes 

such as ion transport and growth27. 

Within its catalytic domain, SGK1 is 54% homologous to Akt, and both kinases share the same 

phosphorylation consensus motif (RXRXXS/T)25. 

 
SGK1 

 
SGK2 

 
SGK3 

                     N-terminal               Catalytic         C-terminal 

Activation Loop 

 
Hydrophobic Motif 
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The X-ray crystallographic structure of inactive SGK1 (pdb entry:2R5T), reported by Zhao and 

coworkers30, reveals that SGK1 is composed of two lobes, a N-terminal lobe featuring mainly 

anti-parallel β-strands and a C-terminal lobe comprising α-helices and loops (Fig.7). The A-

loop containing the catalytic element DFG motif is present in the C-lobe. The DFG motif is 

responsible for positioning the molecule of ATP for the phosphorylation. In Akt and generally 

in AGC kinases, the A-loop is connected to the N-lobe through the C-helix31. However, in 

SGK1 the C-helix is not present, which makes SGK1 different from other AGC family 

members. 

 

 

Fig.7. SGK1 kinase domain in complex with AMP–PNP and Mg2+. 

 

 

2.3 SGK1 regulation and activation  

SGK1 transcription is up-regulated by a multitude of different stimuli, growth factors, the p53 

tumour suppressor protein, and various cellular stressors such as ischemic injury, heat shock 

and ultraviolet stress27. Once expressed, SGK1 can be activated by insulin, insulin-like growth 

factor 1 (IGF1), hepatic growth factor (HGF), follicle stimulating hormone (FSH), thrombin 

and corticosterone32. SGK1 activators also include PI3K and 3-phosphoinositide-dependent 

kinase (PDK1). PI3K induce mammalian target of rapamycin mTOR complex-2 (mTORC2) to 
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phosphorylate SGK1 hydrophobic motif (H-motif) on Ser422. Then PDK1 binds to the H-motif 

of SGK1, at the level of phospho-Ser422, and further phosphorylates the protein at Thr256 33 

(Fig.8). SGK1 is regulated by multiple protein kinases including also the cyclic AMP-

dependent protein kinase (PKA)34 and interleukin-2 (IL-2)  a cytokine essential for lymphocytic 

survival and function35. Moreover SGK1 is considered a convergence point in peptide and 

steroid hormone regulation of epithelial Na+ channel (ENaC)  mediated Na+ transport36.  

 

 

Fig.8. SGK1 regulation and activation by mTORC2 and PDK1 phosphorylation. 

 

 

2.4 SGK1 targets 

Specific SGK1 targets are N-myc down-regulated genes (NDRG) 1 and 2. Other SGK1 targets 

are shared by other kinases including SGK and Akt isoforms27. SGK1 influences a variety of 

enzymes including ubiquitin ligase NEDD4-2, inducible nitric oxide synthase (iNOS), the 

STKs WNK4 and MAPK1, mitogen-activated protein kinase/ERK kinase kinase 3 (MEKK3), 

stress-activated kinase (SEK1), B-Raf kinase, glycogen synthase kinase 3 (GSK3), p53-

ubiquitinating mouse double minutes 2 (MDM2)37. SGK1 up-regulates transcription factors 

such as CREB, AP-1 and Nuclear factor κB (NF-κB). On the other hand, SGK1 phosphorylates 

and thus activates NDRG1, which in turn down-regulates NF-κB signaling38. SGK1 is a 

powerful regulator of several ion channels including ENaC, voltage-gated Na+ channel SCN5A, 

renal outer medullary K+ channel ROMK1 and voltage-gated K+ channels39. 
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2.5 SGK1 and cancer                                                                                                     

Over time, growing and impressive evidence has been accumulated, linking SGK1 to the cell 

survival, de-differentiation, cell cycle control, regulation of caspases, response to chemical, 

mechanical and oxidative injury in cancer models as well as to the control of mitotic stability. 

Much evidence shows that SGK1 is over-expressed and/or activated in a variety of tumors such 

as breast25, ovarian40, prostate41, non-small cell lung cancer42 and glioblastoma multiforme 

(GBM)43. Recently, SGK1 expression has been described as related to events of invasiveness 

and metastasization44,45. Moreover, many contributions to the literature demonstrate that SGK1 

can mediate chemo-and radio-resistance during the treatment of various human tumors, both in 

vitro and in vivo46. 

Taken together, all the evidence points to SGK1 as a key element in the development and/or 

progression of human cancer (Fig.9). 

 

 

Fig.9. SGK1 involvement in cancer. 

 
 
2.5.1 SGK1 and prostate cancer   

The majority of prostate cancers express the androgen receptor (AR) and rely on androgens for 

growth and survival. For this reason, patients with prostate cancers generally undergo androgen 

deprivation therapy with chemical and/or surgical castration as a primary intervention. In this 
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context, Sherk et al. demonstrated that the SGK1 gene is an androgen-regulated target gene in 

cellular models of prostate cancer. Importantly, RNAi mediated knockdown of SGK1 

expression attenuates androgen-mediated growth of the prostate cancer cell line LNCaP47.  

Szmulewitz et al., investigating in SGK1 and glucocorticoid receptor (GR) implication in 

prostate cancer, reported that SGK1 expression is high in most untreated prostate cancers and 

declines with androgen deprivation. Moreover, GR expression increased with androgen 

deprivation, potentially providing a mechanism for the maintenance of androgen pathway 

signalling in these tumors48. 

Unfortunately, due to acquired resistance to AR-directed therapy the prognosis of patients 

presenting castrate-resistant prostate cancer (CRPC) remains very poor. GR and AR share 

several transcriptional targets, including the anti-apoptotic genes SGK1. Because GR 

expression increases in a subset of primary prostate cancer cells (PCa) following androgen 

deprivation therapy, Isikbay et al. decided to investigate the GR activation contribution to AR-

directed therapy resistance. Increased GR-regulated SGK1 expression appears, at least in part, 

to mediate enhanced PCa cell survival. Therefore, GR and/or SGK1 inhibition may be useful 

adjuncts to AR blockade for treating CRPC49.  Recently, Liu et al. investigated the effects of 

the competitive SGK1 inhibitor GSK650394 on PCa cell lines and on PC3 xenografts models 

demonstrating that SGK1 inhibition exhibits significant antitumour effects in vitro and in vivo50.  

 

2.5.2 SGK1 and colon cancer   

In 2009 published work demonstrate that SGK1 deficiency counteracts the development of 

colonic tumors, an effect at least in part due to up-regulation of proapoptotic transcription factor 

FOXO3a which in turn stimulates transcription of the Bcl2-interacting mediator BIM51. 

By RNA silencing of SGK1 on RKO human colon carcinoma cell line, Amato et al. 

demonstrated that SGK1 affects mitotic stability through regulation of Ran-specific binding 

protein 1(RANBP1) expression and enhances taxol sensitivity in RKO cell lines52. In 2015, the 

same research group, decided to test the pyrazolo[3,4-d]pyrimidine SI113 which previously 

demonstrated specificity for SGK1 in enzymatic assays. The compound possesses 

antiproliferative activity on colon cancer cells and potentiate cell sensitivity to paclitaxel53.  

Liang et al. developed a novel analog of GSK650394 (previously reported in the field of 

prostate cancer), called QGY-5-114-A, and further evaluated its effects on colorectal cancer 

(CRC) cells and tumor growth both in vitro and in vivo. QGY-5-114-A showed a lower IC50 



24 
 

value compared to its analogue. Moreover, QGY-5-114-A inhibits CRC cell proliferation and 

migration in vitro and decreases colonic tumor growth in vivo54. 

Recently another work demonstrated strong SGK1 implication in CRC. In particular, 

knockdown of long non-coding RNA XIST inhibited doxorubicin resistance in CRC cells by 

upregulation of miR-124 and downregulation of SGK155. 

 

2.5.3 SGK1 and endometrial, cervical and ovarian cancer  

Endometrial cancer is often characterized by PI3K/Akt pathway deregulation, implicating a 

possible SGK1 involvement in the pathogenesis. In this context, Conza et al.  successfully 

demonstrated that SGK1 expression is increased in tissue specimens from neoplastic 

endometrium. Moreover, the previously cited SGK1 inhibitor SI11353 induced autophagy, 

apoptosis, and endoplasmic reticulum  stress in endometrial cancer cells56.  

Furthermore, D’Antona et al. reported in vitro data obtained in ovarian carcinoma cell lines and 

in vivo data from ovarian carcinoma xenografts in nude mice. Their results indicated that SI113 

inhibits cancer cell proliferation, potentiates the effects of paclitaxel-based chemotherapy, 

counteracts the development of paclitaxel resistance, and restores sensitivity to paclitaxel in 

paclitaxel-resistant A2780 ovarian cancer cells40. 

A recent study reported by Wang et al. highlights the role of SGK1 in promoting cervical cancer 

cell survival by an anti-ROS mechanism. Mechanistically, SGK1 activation exerts antioxidant 

effect through induction of c-JUN-dependent nuclear factor E2-related factor 2 (Nrf2) 

expression and activity. Importantly, they find out that inhibition of SGK1 confers vulnerability 

to melatonin as a pro-oxidant, resulting in ROS over-accumulation and consequently enhanced 

cell cytotoxicity. They further demonstrate that the combined use of the previously reported 

SGK1 inhibitor GSK650394 and melatonin yields substantial regression of cervical tumors in 

vivo57. 

 

2.5.4 SGK1 and breast cancer   

Increased SGK1 expression represents one mechanism which cause Akt inhibitor resistance in 

breast cancer. For this reason, SGK1 inhibitors or dual Akt/SGK1 inhibitors could be useful for 

treating Akt-resistant cancer cells possessing elevated SGK158.   
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Salis et al., investigating in the cytotoxic effect of fluvastatin on MCF-7 breast cancer cells, 

suggested that the  drug antiproliferative activity may be related to the decreased levels of SGK1 

and caveolin-1 (CAV1)59.  

Later, another research group, demonstrated that in breast cancer cells resistant to PI3Kα 

inhibitors, targeting SGK1 restores the antitumoral effects of PI3Kα inhibition60. 

Recently, an integrated siRNA screen, performed by Ma et al., identified SGK1 as essential for 

Src-induced transformation of mammary epithelial cells. Accordingly, they find that Src 

positively regulates SGK1 expression in triple negative breast cancer cells, which exhibit a 

prominent signalling network governed by Src family kinases. Promising results demonstrated 

that the combined inhibition of Src and SGK1 reduces colony formation and xenograft growth 

more effectively than either treatment alone61. 

 

2.5.5 SGK1 and hepatocellular carcinoma  

Analysis of gene expression in human hepatocellular carcinoma (HCC) cells demonstrates that 

SGK1 and Akt are equally overexpressed when compared with normal human hepatocytes, 

suggesting that both kinases might have roles in hepatocellular dysregulation62.  

In 2016, Salis et al. correlated the activity of fluvastatin in reducing human hepatocellular 

carcinoma (Hep3B) cell migration with the expression of some genes, including SGK163. 

Talarico et al. demonstrated that SI113, previously cited for its activity in inducing cell death 

in colon carcinoma and endometrial cancer cells53,56, also inhibits tumour growth in HCC 

models in vitro and in vivo. In details, proteome-wide biochemical studies confirmed that SI113 

down-regulates the abundance of proteins downstream of SGK1 with established roles in 

neoplastic transformation. Consistent with knock-down and over-expressing cellular models 

for SGK1, SI113 potentiated and synergized with radiotherapy in tumor killing. Furthermore  

no short-term toxicity induced by SI113 was observed in treated animals during in vivo 

experiments64. In conclusion, SGK1 inhibition can be effective in hepatic cancer therapy, either 

alone or in combination with radiotherapy. 

 

2.5.6 SGK1 and glioblastoma multiforme 

Talarico et al. found that SGK1 expression is correlated with high-grade glial tumors in a cohort 

of GBM patients. Accordingly, they decided to expand the analysis of SI113 efficacy in GBM 

cellular models demonstrating that SI113 produces a dramatic decrease in cell viability by 
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inducing apoptosis in GBM cell lines. They demonstrated that the SGK1 inhibitor enhances the 

effects of ionizing radiations in the induction of cell death and distortion of cell cycle 

progression. Indeed, SI113 synergizes with oxidative stress, the primary mechanism of the 

radio-dependent tumor killing, and modulates the autophagic response and the reticulum 

stress43.  

Additionally, the same research group investigated on the combined effects of 64CuCl2 

(association between copper levels and cancer deregulation has been established in the last few 

years) and SI113 on human GBM cell lines with variable p53 expression. They demonstrate 

that 64CuCl2 is able to induce a time and dose dependent modulation of cell viability in highly 

malignant gliomas and the co-treatment with SI113 leads to an additive/synergistic effects in 

terms of cell death65. 

GBM-stem-like cells (GBM-SCs) are known to be enriched in hypoxic niches which probably 

contribute to drugs resistance. Kulkarni et al. identified new genetic targets for GBM-SC using 

an unbiased pooled shRNA screening approach. SGK1, in addition to other potential targets, 

was validated as key essential protein in multiple GBM-SCs66. 

Very recently, Matteoni and colleagues employed GBM cell lines, either established or primary 

(neurospheres), and used a Reverse-Phase Protein Arrays (RPPA) platform to assess the effect 

of SI113 in this aggressive brain tumor. They demonstrated that SI113 strongly affected the 

PI3K/mTOR pathway, evoking a pro-survival autophagic response in neurospheres. For this 

reason, the association of SI113 with an autophagy inhibitor has been further investigate. Data 

showed that the combination of SI113 with the antimalarial drug quinacrine, induced a strong 

synergistic effect in inhibiting GBM growth in all the tested cells. RPPA clearly identified the 

molecular pathways influenced by SI113 in GBM cells, highlighting their vulnerability when 

the drug was administered in association with autophagy inhibitors67. 

 

 

2.6 SGK1 and the metabolic syndrome  

Metabolic syndrome is a pathological state mainly characterized by hypertension, obesity and 

diabetes. SGK1 plays a key role in the hypertensive effects induced by glucocorticoids39.  

In humans  a specific  variant of SGK1 gene is associated with moderately enhanced blood 

pressure and with insulin-sensitivity of blood pressure increase68. Additionally, the same SGK1 

gene variant is correlate to an increased body mass index. Accordingly, the SGK1 gene variant 



27 
 

is more prevalent in patients with type II diabetes than in individuals without family history of 

diabetes69. These evidences implicate the involvement of SGK1 in metabolic syndrome 

pathophysiology (Fig.10).  

 

Fig.10. SGK1 in metabolic syndrome. 

 

 

2.6.1 SGK1 and blood pressure 

SGK1 plays a key role in blood pressure control due to its influence on renal salt excretion and 

salt intake70. Accordingly, induction of hyperinsulinemia in mice by pretreatment with a high-

fructose diet sensitizes arterial blood pressure to high-salt intake in wild type (wt) but not SGK1 

deficient mice. Thus SGK1 mediates the salt-sensitizing effect of hyperinsulinism on blood 

pressure24. Moreover, the activity of SGK family members is essential for ENaC-mediated Na+ 

transport. It has been confirmed that expression of normal SGK over endogenous levels results 

in a potentiated natriferic response to ADH, suggesting that the enzyme is a rate-limiting step 

for the hormone response36. 

 

2.6.2 SGK1 in obesity and diabetes  

SGK1 is involved in obesity development71 which leads to insulin resistance and ultimately 

impair insulin release causing type II diabetes. The mechanisms which causes insulin resistance 

in obese individuals include intracellular lipid-induced inhibition of insulin-stimulated insulin-

receptor substrate (IRS)-1 tyrosine phosphorylation, resulting in reduced IRS-1-associated 

PI3K activity and subsequent decrease of insulin-stimulated glucose transporter type 4 
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(GLUT4) activity72. SGK1 promotes the development of obesity at least partially by stimulation 

of the Na+ coupled glucose transporter (SGLT1), which accelerates the intestinal uptake of 

glucose. As a consequence, an excessive amount of insulin is released causing an enhancement 

of fat deposition, with subsequent decrease of plasma glucose concentration, which triggers 

repeated glucose uptake and thus obesity. Conversely, obesity could be counteracted by 

inhibitors of SGLT1. In diabetes mellitus, the excessive plasma glucose concentrations could, 

at least in part, upregulate intestinal SGK1 expression and the enhanced SGK1-dependent 

stimulation of SGLT1 could contribute to the maintenance of obesity73. 
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CHAPTER 3 

Src family kinases 
 

Src family kinases (SFKs) counts eleven members: Src, Fyn, Yes, Fgr, Blk, Hck, Lck, Lyn, Frk, 

Srm and Brk. They regulate multiple signal transduction pathways involved in growth, 

proliferation, differentiation, migration, metabolism, and apoptosis by interaction with a diverse 

array of molecules, including growth factor receptors, cell-cell adhesion receptors, integrins 

and steroid hormone74. 

The prototypical member of this family is c-Src, the first discovered oncogene. In the early 

1900s, Rous described a transforming factor present in tissue of sarcoma bearing chickens that 

drove the formation of tumors in normal chickens. Injection of a tissue homogenate made from 

tumor-bearing chickens allowed for transmission of this factor. This tissue factor was later 

known as the Rous Sarcoma Virus (containing v-Src). In 1979, J. Michael Bishop and Harold 

Varmus discovered that normal cellular Src (c-Src) had the potential to be altered in a manner 

that allowed it to drive a cancerous phenotype. Their work in elucidating the mechanism of 

malignant transformation won them the Nobel Prize in medicine in 1989 and opened the field 

of oncogenesis75. Subsequent proteomic studies led to the identification of other members of 

the entire family of these proteins including Fyn, Src, Yes, Fgf, Lyn, Hck, Blk, Lck, and Yrk76. 

Among them, Src, Yes, Fyn, and Yrk are ubiquitously expressed in mammals, while the 

expression pattern of the other members is restricted to specific tissues77. 

Since they have been discovered, many studies have correlates SFKs as cellular oncogenes. 

Furthermore, evidence suggests that SFKs play roles in cancer cell invasion and metastasis. 

 
 
3.1 c-Src kinase  

Human c-Src is a 535 amino acids protein and has a structure that shares common features with 

the other SFK members. Indeed all SFKs present a conserved domain organization that includes 

a N-terminal SH4 domain, followed by a “unique” region, SH2, SH3, a poly-proline type II 

(PPII) domain, a catalytic domain (called SH1) and finally a short C-terminal tail (Fig.11). 
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Fig.11. Schematic presentation of c-Src structure. 

 

The SH4 domain which is always myristoylated and sometimes palmitoylated78, is the membrane-

targeting region that allows the association between the protein and the inner surface of the cell 

membrane. The “unique” region, comprising about 70 amino acids, is the most divergent 

domain among SFK members providing functional specificity.  

The two highly conserved domain SH2 and SH3 regulate Src activity. SH2 presents a central 

three-stranded β-sheet with a single helix packed against each side; this structure leads to the 

formation of two recognition pockets. SH3 domain, instead, consists of five antiparallel β-

strands and two loops that bind the PPII domain. The PPII domain is characterized by proline-

rich sequences that adopt a helical conformation in complex with the SH3 domain, binding with 

aromatic amino acid side chains on the SH3 surface. The catalytic domain SH1, responsible for 

the kinase activity, presents a bilobal structure (a small N-terminal lobe and a large C-terminal 

lobe) which forms the ATP and substrate binding site at the interlobe cleft. In the C-terminal 

lobe is located the positive regulatory site A-loop, where the Tyr419 is the key residue. A 

flexible chain, called the “hinge region”, connects N- and C- lobes. 

Src exists in two forms: a closed, inactive conformation and an open and active one. There are 

two key elements that regulate the Src conformation: the amino acids Tyr419 and Tyr530. 

When Tyr419 is phosphorylated and Tyr530 dephosphorylated, Src is in the active state, while, 

when Tyr419 is dephosphorylated and Tyr530 phosphorylated, the kinase is in the inactive 

state. The inactive enzyme is forced in a closed conformation by intramolecular contacts among 

the SH2 and SH3 domains and the catalytic site. 

The activation of Src occurs displacing regulatory subunit SH3 and SH2 domains from the 

kinase domain. This permits Tyr419 autophosphorylation. In particular, several extracellular 

molecules can activate Src binding receptors, such as growth factor receptors, integrins and  

other adhesion receptors, guanosine phosphate binding-coupled receptors (GPCRs), cytokine 

receptors and ion channels. Src, in response to these extracellular signals, becomes activated 
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and phosphorylates various downstream targets, regulating multiple signal transduction 

pathways, including Ras/Raf, RhoGAP, PI3K/Akt pathways and many others (Fig.12). 

 

                                        

Fig.12. Schematic representation of Src signalling pathway. 

 

3.1.1. Src and cancer  

Src is the most studied member of the Src family kinases (SFKs), both in cancer and in other 

pathologies. An increased Src activity is found transiently in almost every aspect of a normal 

cell life in response to different physiological conditions, including mitogenesis, proliferation, 

survival, adhesion and motility, all of them deregulated during cancer progression79.  

High expression of Src have been detected in several cancers and are generally correlated to a 

poor prognosis with respect to overall survival. Moreover, recent studies suggest that Src could 

be associated with the development of acquired drug resistance80,81.  

 

3.1.1.1 Src and brain cancer 

Src is a key downstream intermediate of growth factor receptors frequently overexpressed in 

brain tumors, including EGFR and PDGFR, involved, in association with focal adhesion kinase 

(Fak), in cytoskeletal-linked cell survival and migration82. 
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Initial studies have found elevated Src activity in GBM compared with normal brain samples, 

and have revealed its oncogenic properties for brain tumors83. In preclinical models of GBM, 

genetic and pharmacologic blockade of Src resulted effective in inhibiting cell proliferation and 

invasion84,85. 

More specifically a pyrazolo[3,4-d]pyrimidine derivative, called SI306, selected for its 

favorable activity against Src, was tested in vitro and in vivo on GBM cell lines. In vivo, 

combination treatment with SI306 and radiotherapy was strongly active in reducing U-87 

xenograft growth with respect to control and single treatments86. 

Moreover a recent study highlights the capability of SI306 to increase the intracellular 

accumulation of Rho123, and to enhance the efficacy of paclitaxel in P-glycoprotein (P-gp) 

overexpressing GBM cells87. 

It has been reported that c-Src also plays a key role in the differentiation, adhesion, and survival 

of  neuroblastoma (NB) cells, due to its hyperactivation rather than overexpression88. Src was 

also hypothesized to have an oncogenic role in the progression of aggressive NB forms89. 

Inhibiting its catalytic activity with small molecule inhibitors has been recently reported as a 

potential approach to the treatment of NB90. In particular, some pyrazolo[3,4-d]pyrimidine 

derivatives, including the previously reported SI306, resulted also active in the inhibition of 

neuroblastoma cell proliferation showing in vivo activity in xenograft model using SH-SY-5Y 

cells91,92. 

Sikkema et al. identified a panel of tyrosine kinase associated with pediatric brain tumors such 

as medulloblastoma, astrocytoma, and ependymoma. The researchers found high SFK activity 

in these tumors, as established by high levels of phosphorylation, in comparison with normal 

tissues. This observation suggests that Src could have a key role in the development of 

medulloblastoma. It has been reported that some pyrazolo[3,4-d]pyrimidines reduced the 

growth rate of medulloblastoma cells by inhibiting Src in a mouse model93.  

Recently a proteomic and phosphoproteomic analyses identify aberrant ERBB4-Src signaling 

as a specific hallmark in group 4 medulloblastoma (the most prevalent biological subtype, 

comprising approximately 40% of all medulloblastoma patients with 80% of 5-year survival 

when treated with standard therapy)94.  
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3.2 Fyn kinase  

Fyn is a member of the SFKs originally identified in 1986 as Syn or Slk, in normal and polyoma 

virus transformed cells95. Fyn is localized to the inner layer of the cell membrane to which it is 

attached in its myristoilated or  palmitoilated form96.  

There are three isoforms of Fyn (1, 2 and 3, also called FynT, FynB and FynΔ7, respectively) 

which are encoded by the Fyn gene, located on chromosome 6q21. The first 2 variants are 

known to have biological activity, while for the third, although it has been shown to have 

functional mRNA in an expression system, no biological effect has been reported97.  

FynT is expressed in cells of hematopoietic origin, while FynB shows more ubiquitous 

expression with higher levels observed in the brain. These 2 variants differ exclusively within 

a sequence of about 50 amino acids located at the end of the SH2 domain and the beginning of 

the SH1 domains, and this difference may account for their distinct biochemical activities, 

which may dictate functional differences of Fyn variants in normal cells98. 

 

3.2.1 Fyn structure  

Fyn is a 59 KDa non-receptor TK that, similar to other SFKs, consists of SH domains that 

include an N-terminal SH4 domain followed by the domains SH3 and SH2 and a C-terminal 

SH1 kinase domain (Fig.13). The three first SH domains are shared between the SFKs76, whiles 

SH4 is a 14-carbon myristoyl sequence on the N-terminal end of the molecule unique to 

individual members of the SFKs99 and it is this domain that associates the molecule with cell 

membranes. Myristoylation that occurs on glycine residue 2 and palmitoylation at cysteine 

residues 3 and 6 allow Fyn to attach to plasma membrane and lipid rafts96.  

Fig.13. Schematic representation of Fyn structure. 
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Fyn is characterized also by a common regulatory mechanism with the other SFKs. Indeed, the 

activation or inhibition of kinase activity depends on intramolecular interactions between SH2 

and SH3 with the kinase domain and on phosphorylation/dephosphorylation of two critical 

tyrosine residues (Tyr420 situated in the A-loop and Tyr531 situated in the C-terminal region). 

 

3.2.2 Fyn functions  

Fyn has different molecular functions, including regulation of cell growth, survival, adhesion, 

cytoskeletal remodeling and  motility (Fig.14)100. 

In the central nervous system (CNS), Fyn exerts an important role in brain development. In 

fact, Fyn is involved in axon-glial signal transduction, oligodendrocyte maturation and 

myelination101; it also stimulates the synthesis of abundant myelin associated oligodendrocytic 

basic protein, thus influencing oligodendroglial morphology, and it is implicated in synapse 

formation and post-synaptic excitatory transmission102. Moreover, Fyn was found to be implied 

in T-cell development, homoeostasis, activation and to have a critical role in thymocyte 

development together with Lck kinase, which is another member of the SFKs103.  

 

 

Fig.14. Fyn mediates signals from cell surface receptors to several critical growth and motility pathways. 
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Due to its many physiological roles, an aberrant expression of Fyn kinase or a dysregulation 

of its activity is involved in the development and progression of different pathological 

conditions.        

 

3.2.3 Fyn and cancer  

Similar to most SFKs, Fyn signaling affects multiple tumor-related properties in a number of 

cancer types. Fyn overexpression results in the promotion of antiapoptotic activity of Akt100. 

Firstly, in 1988, Kawakami and colleagues demonstrated that Fyn overexpression induces 

morphologic transformation and anchorage-independent growth in NIH 3T3 cells. Furthermore, 

even if a relatively low frequency, Fyn acquires properties of a dominant-acting oncogene 

capable of inducing a complete tumorigenic phenotype104. 

Fyn, through phosphorylation of Cas, is involved in matrix rigidity, which is important in cell 

motility and spreading, matrix remodelling and anchorage independency. All these processes, 

if altered, promote cancer and metastasis formation (Fig.15).  

In fact, an increased matrix rigidity leads to tissue disorganization and malignant 

transformation105.  

 

 

 

Fig.15. Fyn involvement in cancer. 
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Enhanced expression and/or activation of Fyn has been observed in various cancers, in 

particular melanoma, glioblastoma, prostate and breast cancers106, 100.   

Several studies on different cancers have recently demonstrated the importance of Fyn in 

promoting resistance to anti-cancer agents107,98,108,109. Further evidence to support the 

involvement of Fyn in anti-cancer drug resistance comes from a study on myelogenous 

leukemia in which increased expression of Fyn was shown to be associated with tumor growth 

and resistance to imatinib in K562 cell lines110. These studies show that Fyn plays a critical role 

in the development, progression and resistance to anti-cancer drugs in solid and hematologic 

tumors. 

 

3.2.3.1 Fyn and breast cancer 

It has been demonstrated that some breast cancer cell lines express elevated levels of Fyn. 

Enhanced metastasis formation promoted by Fyn is facilitates by a cell transformation program, 

known as epithelial to mesenchymal transition (EMT), characterized by loss of cell adhesion, 

repression of E-cadherin expression, and increased cell mobility.  

Moreover it has been reported that Fyn expression in breast cancer cells is associated with poor 

survival  of patients and increased neoangiogenesis, correlated with c-Met and Fak kinases 

upregulation111.  

Elias et al. showed that Fyn is upregulated in tamoxifen-resistant breast cancer cell lines and 

plays a critical role in the resistance mechanism. Further, the cellular localization of Fyn within 

cancer cells of primary estrogen receptor positive (ER+) breast tumor tissue may serve as a 

prognostic marker98.  

Recently, it has been demonstrated a pivotal role of Fyn through signal transducer and activator 

of transcription 5 (STAT5)/ NOTCH2 signaling node in maintaining the features of basal type 

(the most aggressive and highly metastatic) breast cancer112. Besides, Mi et al. demonstrated 

that miR-381 overexpression increased doxorubicin sensitivity and enhanced doxorubicin-

induced apoptosis in breast cancer cells by targeting Fyn gene. Therefore, miR-381/Fyn/MAPK 

pathway may be applied as a novel target to overcome doxorubicin resistance in breast cancer 

patients113. 
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3.2.3.2 Fyn and prostate cancer  

Fyn activity in prostate cancer is perhaps more relevant than that of other SFKs. Accordingly, 

Posadas et al. demonstrated that overexpressed Fyn in prostate cancer interacts with Fak and 

paxillin (PXN), that are regulators of cell morphology and motility. In addition, data highlight 

a greater Fyn expression, and not of others SFKs, in prostate cancer compared to normal 

tissue114. 

Few years later, the same research group demonstrated that Fyn is strongly up-regulated also in 

human neuroendocrine prostate cancer (NEPC) tissues and xenografts, as well as cells derived 

from a NEPC transgenic mouse model115. 

Furthermore, performing in vitro and in vivo experiments, Jensen and colleagues showed that 

Fyn is an important molecule in the HGF/Met signaling pathway that contributes to prostate 

cancer metastases. Consistently, reduced Fyn expression results in impaired cancer cell growth 

and motility, key events in the metastatic process116. 

 

3.2.3.3 Fyn and melanoma 

Huang and colleagues reported that Fyn, is selectively activated among SFKs, in a murine 

melanoma cell line characterized by a high metastatic potential. Significant tyrosine 

phosphorylation of cortactin (a cytoplasmatic protein promoting polymerization and 

rearrangement of the actin cytoskeleton and involved in cell migration) induces complex 

formation between activated Fyn and cortactin in cell membranes. The authors demonstrated 

that cortactin is a specific substrate of Fyn in integrin-mediated signalling processes regulating 

metastatic potential117. Recently, Fyn has been identified as a melanoma biomarker which 

contributes to the tumor development118. 

 

3.2.3.4 Fyn and brain tumors  

Regarding brain tumors, Fyn gene, together with other genes involved in brain development 

and neural differentiation, is strongly enriched in astrocytoma, a common and lethal human 

malignancy. 

In 2010, Lu et al. demonstrated that the pan-SFK inhibitor dasatinib inhibits invasion, promotes 

tumor regression, and induces apoptosis in vivo, significantly prolonging mice survival in an 

orthotopic GBM model. This study elucidates a mechanism linking EGFR signalling with Fyn 
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and Src activation to promote tumor progression and invasion and provides the rationale for 

combined anti-EGFR and anti-SFK targeted therapies119. 

Lewis-Tuffin and colleagues observed that Fyn knockdown reduced the growth and migration 

of glioma cell lines and was associated with reduced phosphorylation of cell motility-associated 

molecules such as catenin or Cas120. 

In a glioblastoma cell line model, Zhang et al. demonstrated that Fyn plays an important role 

in oncogenic activities of AMP-activated protein kinase (AMPK) signaling by antagonizing the 

tumor suppressor function of AMPK through the activation of PIKE-A, a molecule that impairs 

the functions of AMPK121. 

Recently, Comba et al. confirmed that Fyn expression positively correlates with GBM cell 

aggressiveness. The histopathological evaluation of gliomas indicates that the loss of Fyn 

reduced malignant features such as pseudopalisades, necrosis, and hypervascularization. This 

study indicates an important role for Fyn in modulating many glioma cellular processes and its 

relevance as a novel regulator of GBM behaviour and therapy response122. 

 

3.2.4 Fyn and Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive form of dementia that interferes with memory, 

thinking, and behavior. It is characterized by a gradual loss of neurons, particularly in the cortex 

and hippocampus. Pathologically, AD is characterized by the presence of extracellular neuritic 

plaques containing the β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of 

hyperphosphorylated Tau protein in the brain123. 

Fyn plays a key role in the development and progression of AD, being involved in the synaptic 

toxicity and cognitive impairments produced by Aβ oligomers and promoting the formation of 

neurofibrillary tangles by phosphorylating Tau protein124. In fact, Fyn kinase, Aβ and Tau 

protein have been even referred to as the “toxic triad” of AD. 

Recently, deeper understanding of Aβ physiology has led to the recognition of distinct neuronal 

signaling pathways linking Aβ to synaptotoxicity and neurodegeneration. Preclinical studies 

demonstrated that soluble assemblies of Aβ, termed Aβ oligomers (Aβo), bind the receptor 

Cellular Prion Protein (PrPC) on the neuronal cell surface with high affinity, initiating a 

pathologic cascade converging on Fyn. This mechanism leads to acute changes in N-methyl-D-

aspartate receptor (NMDA) receptor trafficking, and persistent activation of Pyk2 and eEF2. 

Therefore, targeting specific signaling pathways involving Aβ, including Fyn, rather than 
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directly target Aβ, represents an innovative strategy to explore125 (Fig.16). In conclusion Fyn 

is an attractive target for AD therapeutics, not only based on its activation by Aβ via PrPC, but 

also due to its interaction with tau, uniquely linking the two key pathologies in AD.  

 

 

Fig.16. Aβo bind PrPC to activate Fyn kinase. 

 

 

3.2.5 Fyn and Parkinson’s disease 

Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized by the death 

of dopaminergic neurons within the nigrostriatal tract. Intracytoplasmic inclusions rich in 

misfolded α-synuclein (αSyn) are the major histopathological characteristic of PD. Various 

studies implicate chronic, microglia-mediated sterile neuroinflammation as a crucial 

contributing factor in the progression of PD126. 

In 2001 two different research groups simultaneously reported that Fyn phosphorylates αSyn. 

Consistently, phosphorylation by Fyn on αSyn Tyr125 was inhibited by the SFK inhibitor 

PP2127,128. 

Additionally, Fyn activation plays an upstream regulatory role in evoking proinflammatory 

signalling following both acute and chronic states of microglia stimulation. Fyn serves as a 

major upstream regulator of proinflammatory signalling involving PKC, MAPK, and NFκB126. 

For these reasons, Fyn could be exploited as a target in the development of novel 

antineuroinflammatory drug candidates for treating PD129. 
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Therapy with levodopa is the first treatment of choice for PD. However, its long-term use causes 

levodopa-induced dyskinesia (LID). Recently, Sanz-Blasco et al. found that mice lacking Fyn 

displayed reduced LID compared to wt control mice. Administration of saracatinib, an inhibitor 

of Fyn activity, also significantly reduced LID in dyskinetic wt mice. These results support that 

Fyn has a pivoltal role in the molecular pathways affected during the development of LID and 

identify Fyn as a novel potential therapeutic target for the control of LID in PD130.  
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CHAPTER 4 

Protein kinases inhibitors 
 

Overexpression, dysregulation and mutations of protein kinases play essential roles in the 

pathogenesis of many diseases. As a result, increasing attention has been directed towards the 

identification of novel kinase inhibitors as treatment of various types of human diseases.  

The interest in protein kinase inhibitors started to increase since the approval of imatinib 

(Gleevec®) in 2001 for the treatment of Philadelphia-chromosome-positive (Ph+) chronic  

myeloid leukemia (CML)131.  

Categorized by binding modes, kinase inhibitors can be grouped into two classes: irreversible 

and reversible. The latter can be further classified on the basis of the protein region they interact 

with in: 

- kinase domain inhibitors. This group includes the majority of inhibitors and are defined 

as ATP-competitive inhibitors. They can be further classified on type I and type II 

(Fig.17). Type I inhibitors target the ATP-binding site in the active open conformation. 

Type II inhibitors target the ATP-binding site of the enzyme in the inactive closed 

conformation and also occupy the adjacent hydrophobic pocket I (sometimes defined as 

allosteric pocket) that is only accessible when the kinase is in an inactivated form132; 

- allosteric inhibitors. They can be classified as type III which bind the allosteric pocket 

near the catalytic site or as type IV which interact with a different allosteric pocket far 

from the catalytic site (Fig.17). They act by inducing conformational changes to 

modulate the enzymatic activity. This type of inhibitors could be useful to overcome 

clinically acquired resistance mutations to the first generation of ATP-competitive 

kinase inhibitors5; 

- bisubstrate and bivalent inhibitors, defined as type V, exhibit more than one of the 

binding modes described above133. 
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Fig.17. Kinase structure and different types of kinase inhibitors binding modes. 

 

The dominant dogma that the kinase domain was too conserved to enable selective inhibition 

by small molecules was challenged in the late 1980s when the first examples of selective kinase 

inhibitors against the EGFR were reported134. Since then, a large number of kinase inhibitors 

of various structural features and inhibition profiles have been identified. 

I will discuss below the few SGK1 inhibitors reported in the literature and some examples of 

the large class of SFKs inhibitors focusing on their activity toward the kinases Src and Fyn. 

 

 

4.1 SGK1 inhibitors   

Despite SGK1 validated role and significance, only a few selective and potent SGK1 inhibitors 

have been described so far. 

In 2008, Sherk et al. reported the first selective SGK1 inhibitor, developed by 

GlaxoSmithKline, the pyrrolo-pyridine GSK650394 147. Initially, this compound demonstrated 

to be able to stop cell growth in different prostate cancer cell lines. Successively, compound 1 

showed a synergic effect with cisplatin in the treatment of head and neck tumors in in vivo 

assays135.  

Very recently, Wang et al. demonstrated that the combined use of GSK650394 1 and melatonin 

yields substantial regression of cervical tumors in vivo57. However,  GSK650394 is equally 

active on SGK1 and SGK2, moreover, is only about 30 times more selective for SGK1 than  for  

other  targets  such  as  Akt,  Rho-associated  protein  kinase, and Janus kinase isoforms (Jak1, 

Jak3)46. 
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The  second  oldest  SGK1  inhibitor reported in the literature is the benzohydrazide derivative 

2, named EMD638683, by Ackermann et al.136 Originally described as an inhibitor of the 

SGK1-dependent metabolic effects, it has been further evaluated in experimental models of 

colon cancer. The compound showed to induce apoptosis and modulate radiation-dependent 

effects, at least at very low dose-rate (3Gy). Also, EMD63868 was able to  prevent the 

chemically-induced  colon  carcinogenesis in vivo,  in  accordance  with  the  murine  knock-

out model for SGK1137.  

Recently, Schmid et al. demonstrated that compound 2 decreases the viability of  

rhabdomyosarcoma cells, and enhances the effects of the cytotoxic drug doxorubicin leading to 

reduced migration and decreased cell proliferation138. However, 2 shows  poor  cell  

permeability,  and  it  also has an inhibitory effect on PKA,  mitogen-  and  stress-activated  

protein  kinase  1  (MSK1),  protein  kinase  C-related kinase (PRK2), and other SGK 

isoforms137.  
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Besides, Sanofi has patented several sulphonamide derivatives of pyrazolo-pyrazines which 

showed an inhibitory activity on SGK1. In particular, compound 3 has shown an IC50 value of 

1 nM in enzymatic assays on SGK1139. 
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Furthermore, Bezzerides et al. identified a novel class of SGK1 inhibitors among which 

5377051 4 has been identified as the lead compound. Compound 4 selectively inhibits SGK1 

in cultured cardiomyocytes and inhibits phosphorylation of a SGK1-specific target as well as 

proliferation in the prostate cancer cell line LNCaP. Finally, 5377051 can reverse SGK1’s 

effects on Nav1.5 (predominant cardiac voltage-dependent sodium channel subtype) and 

shorten the action potential duration in induced pluripotent stem cell (iPSC)-derived 

cardiomyocytes from a patient with a gain-of-function mutation in Nav1.5 (long QT3 

syndrome). This data suggest that SGK1 inhibitors warrant further investigation in the treatment 

of cardiac arrhythmias140.  
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Schenone et al. synthesized the pyrazolo[3,4-d]pyrimidine SI113 5 presenting high selectivity, 

in comparison with Akt1, for inhibiting SGK1 kinase activity by competing with ATP for the 

binding domain. In detail, a dose dependent curve of SI113-dependent SGK1 and Akt1  

inhibition showed that the inhibition of the SGK1 activity occurred with an IC50 value of 600 

nM, with a 100-fold selectivity compared to Akt1141. Similarly, the molecule was significantly 

less effective in the inhibition of other SI113-targeted substrates, toward which the molecules 

was originally developed e.g.  Abl  and Src53. 
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Subsequently, several biological studies have demonstrated a promising activity of SI113 on 

different type of tumors. In fact, this compound is able to generate cell cycle delay in cancer 

cells, with G0–G1 accumulation, thus hindering growth capabilities in several human cancer 

cell lines, in vitro and in vivo53,43,64, also strengthening the effects of radiotherapy and oxidative 

stress, by inducing autophagic cell death56,43. SI113 is also able to influence the expression of 

stemness genes and synergize with mitotic spindle poisons in restraining GBM cell growth in 

vitro and in vivo142.  In addition, a more in‐depth analysis of the effect of SI113 on human GBM 

cells reveals that this compound induces, mainly in primary GBM cells growing as 

neurospheres, downregulation of mTOR activity and upregulation of AMPKα and acetyl-CoA 

carboxylase alpha phosphorylation, all markers that indicate the stimulation of an autophagic 

cellular response that can be either cytotoxic or cytoprotective67.  Moreover a recent work 

presenting in vitro data obtained in ovarian carcinoma cell lines and in vivo data from ovarian 

carcinoma xenografts in nude mice indicates that SI113 inhibits cancer cell proliferation, 

potentiates the effects of paclitaxel-based chemotherapy, counteracts the development of 

paclitaxel resistance, and restores sensitivity to paclitaxel in paclitaxel-resistant A2780 ovarian 

cancer cells40. 

Very recently, an inhibitory effect of SI113 on cell migration, invading, and EMT has been 

highlighted by Abbruzzese et al. In fact, GBM, hepatocarcinoma and colorectal carcinoma cell 

lines, when exposed to SI113, showed a remarkable subversion of the cytoskeletal architecture 

characterized by F-actin destabilization, phospho-Fak delocalization, and tubulin 

depolimerization. These results were definitely concordant in attributing to SI113 a key role in 

hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain 

performing a phase I clinical trial to employ this drug in associative cancer therapy143. 

Very recent studies conducted on the natural compound trans-resveratrol 6 (RSV) demonstrate, 

by a series of molecular docking experiments, that this compound directly interacts with SGK1 
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showing an increased affinity for the phosphorylated forms, compared with the un-

phosphorylated kinase. It has been confirmed that RSV inhibits SGK1 kinase activity in a dose-

dependent manner, showing a Ki value of 50 µM in an enzymatic assay. In addition, the 

compound was able to inhibit the SGK1 associated kinase activity in a cell free in vitro systems 

as well as in intact cells using as substrates both specific target peptides and endogenous 

proteins like MDM2144. 
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Summarizing, SGK1 inhibition could be a potential therapeutic approach, either alone or 

combined with traditional strategies, not only for cancer, but also for arrythmia and metabolic 

syndrome.  However further pharmacological investigations are needed to advance clinical 

trials of SGK1-targeted therapies. 

 

 

4.2 SFKs inhibitors 

Due to the huge number of physiological and pathological processes in which SFKs are implied, 

the search for small molecules targeting these kinases constitutes a growing field of study. SFKs 

inhibitors endowed with selectivity toward a specific member of this family would be useful 

for their therapeutic potential in the treatment of tumors, brain diseases and infections. 

Moreover, a selective inhibition of these kinase family members would allow a better 

comprehension of all the different biological roles in which such enzymes are involved and 

which have not yet been fully understood. In any case, due to the high level of similarity among 

SFKs, most of the inhibitors show activity toward multiple members of the family and usually 

also toward other kinases.  

The pyrazolo[3,4- d]pyrimidine based compounds PP1 7 and PP2 8 are two of the oldest and 

most famous SFKs ligands145. Reported by Pfizer in 1996, they can be considered the 



47 
 

representative compounds of a large class of derivatives; PP1 inhibits Lck, Fyn, c-Src and Hck 

and was later found to be also active on EGFR, c-Kit and Abl, thus resulting the first reported 

c-Src/Abl dual kinase inhibitor146. Even if they have not been developed as therapeutic agents 

because of their poor biopharmaceutical property, these compounds remain the references for 

the synthesis of new compounds targeting SFKs. On the other hand, their activities on cancers 

are still investigated as demonstrated by many articles. For example, Kong et al. showed that 

compound 8 efficiently reduced cervical cancer cell proliferation trough the inhibition of Src 

and EGFR activity147.  
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The potent SFKs inhibitor Dasatinib 9, (BMS-354825, Sprycel™), a thiazole-carboxamide 

derivative synthesized by Bristol-Myers Squibb, is the first dual Src/Abl inhibitor used for CML 

therapy, also useful to overcome several imatinib-resistances, with the exception of the T315I 

mutation. At the moment is studied in clinical trials for the treatment of non‐Hodgkin′s 

lymphoma, metastatic breast cancer, prostate cancer, and other tumors148.  

Dasatinib is a type I inhibitor and shows IC50 values in the subnanomolar range for SFK 

members in particular of 0.5 and 1 nM for Src and Abl, respectively149. However, when Li et 

al. performed an enzymatic and phosphoproteomic characterization of dasatinib action in non-

small-cell lung carcinoma (NSCLC), they identified nearly 40 different kinase targets of 

dasatinib. These include SFK members (Lyn, Src, Fyn, Lck and Yes), other non-receptor TKs 

and RTKs150. Furthermore, using drug-resistant gatekeeper mutants, they showed that 

particularly Src and Fyn, as well as EGFR, are relevant targets for dasatinib action, getting 

additional insight both in dasatinib action and in Fyn involvement in this particular 

malignancy150,101. 
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Another well-known pan-SFKs inhibitor endowed with anticancer activity is the anilino-

quinazoline saracatinib (AZD0530) 10 which is active on c-Src, Lck, Yes, Lyn, Fyn, Fgr, Blk 

and Abl in the low nanomolar range151. Originally developed by AstraZeneca for various types 

of cancer, the compound showed promising data, inhibiting tumor growth in different 

xenografts models. Moreover 10 resulted orally available, displaying excellent pharmacokinetic 

parameters in animals, with good aqueous solubility and moderate binding to plasma 

proteins151,152. Unfortunately, several clinical trials on this compound as anticancer agent 

stopped on Phase 2 for lack of efficacy. 

Interestingly, due to its activity on Fyn (IC50 value of 410 nM), saracatinib is currently  studied 

in clinical trials for the treatment of Alzheimer and Parkinson diseases125,130.  

(https://clinicaltrials.gov/ct2/results?cond=&term=saracatinib&cntry=&state=&city=&dist=)  
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The 7-alkoxy-3-quinolinecarbonitrile derivative Bosutinib 11, called also SKI-606, is an orally 

potent SFKs and Abl inhibitor reported by Boschelli et al. in Wyeth Pharmaceuticals153. 

Bosutinib showed an IC50 of 1.2 nM in an enzymatic assay and an IC50 of 100 nM on Src cell 

proliferation.  Regarding Fyn, bosutinib showed an IC50 value of 410 nM153. 

The clinical efficacy of bosutinib in CML has been supported by several clinical trials and 

finally, the compound has been approved by FDA and EMA for the treatment of CML patients 

resistant to prior therapies. Bosutinib is also investigated for its application in solid tumors, 
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such as breast, prostatic, pancreatic, lung and cervical cancers. Phase I data showed that 

bosutinib is generally well tolerated with predominantly gastrointestinal adverse effects 

(NCT00195260)154. 

Luo et al., through the use of bosutinib, explored the function of Fyn kinase in signaling events 

during sperm–egg interactions, sperm incorporation, and meiosis II. They demonstrate that 

suppression of Fyn signaling prior to fertilization caused disruption of the functional polarity 

of the oocyte155. 
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4.2.1 Src inhibitors 

PH006 12 is an ATP-competitive Src inhibitor, which selectively inhibits c-Src with an IC50 of 

0.38 μM among a panel of 14 TKs. Compound 12 potently reduces Src activity, resulting in 

inhibition of cell proliferation, migration, and invasion in human breast cancer cells and in 

animal models156. 
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Huang et al. reported some purine derivatives, with potent and selective inhibitory activity 

against c-Src. These inhibitors were discovered by adopting a strategy that integrated focused 

combinatorial library design, virtual screening, chemical synthesis, and bioassays. Thirty-two 

compounds were synthesized and showed inhibitory activity against c-Src with IC50 values 
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ranging from 3.14 to 0.02 μM. Among these, compound 13 was identified as the most potent 

and selective agent (IC50 of 20 nM). Interestingly, it is 100-fold and 300-fold less potent against 

Kit and c-Abl, respectively and possesses weak inhibitory effect on many other kinases, with 

IC50 values of above 10 μM157. 
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KXO1 14 (tirbanibulin or KX2-391), synthesized by Kinex Pharmaceuticals is one of the few 

examples of type III inhibitors. It is a highly selective non-ATP Src inhibitor with an IC50 value 

of 20 nM158. 

Compound 14 inhibits Src, catalyzes trans-phosphorylation of Fak, Shc, PXN as well as Src 

kinase autophosphorylation, while it does not have any effect on PDGFR, EGFR, Jak1, Jak2 

and Lck. However, it also showes effects on non-Src driving cells, suggesting that it may have 

other molecular targets159. Photoaffinity labeling of KXO1 identified tubulin as another target 

of KXO1, and further study showed that KXO1 could inhibit tubulin polymerization in a low 

nanomolar range. KX01 has shown activity against various types of cancers, including TNBC 

(triple negative breast cancer), ER+ breast cancer, and mucinous ovarian cancer, both in vitro 

and in vivo160. Studies have demonstrated the effectiveness of 14 in various solid and 

hematological tumor types, as well as its low toxicity with good bioavability161. It is currently 

being tested in several clinical trials for different tumors and for actinic keratosis. 

(https://clinicaltrials.gov/ct2/results?cond=&term=KX2391&cntry1=&state1=&recrs=) 
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Moroco and coworkers discovered a new c-Src inhibitor using a screening on a kinase-biased 

library with the aim of finding selective inhibitors of the Src/Fak complex versus c-Src alone. 

This approach led to the identification the aminopyrimidinyl carbamate compound 15, WH-4-

124-2, with nanomolar activity for c-Src. Molecular docking studies indicate that WH-4-124-2 

may preferentially inhibits the DFG-out conformation of the kinase catalytic site162. 
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Bisubstrate or bivalent inhibitor are, as reported above, molecules which interact both with the 

ATP and protein substrate-binding sites. This different kind of inhibition may represent a 

promising strategy for the identification of kinase inhibitors with increased potency and 

selectivity. However, in the literature there are few examples where the potency and selectivity 

advantages are completely realized163. In this context, Brandvold et al. have developed a 

modular approach to bisubstrate inhibition of TKs. Their strategy utilizes a promiscuous ATP-

competitive inhibitor that is then linked to a peptide derived from known substrates for the 

target kinase. They applied the methodology to c-Src and identified a highly selective 

bisubstrate inhibitor for this target, compound 16, which showed a Kd value of 0.28 nM. In 

addition, they developed a novel screening methodology to identify non-ATP-competitive 

inhibitors of c-Src and discovered one of the most potent non-ATP-competitive inhibitor 

reported to date, compound 17164. 
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4.2.2 Fyn inhibitors  

Many different kinase inhibitors, such as the previously reported PP1, PP2, dasatinib, 

saracatinib and bosutinb, have been identified for Fyn. Unfortunately, due to the strict similarity 

of SFK members in their catalytic domains, these inhibitors are not selective for this kinase. 

Some other interesting examples of compound endowed with Fyn inhibitory activity are 

reported below. 

Derivative 18, AP23464 is a purine compound developed by Ariad, which targets c-Src with 

picomolar affinity (450 pM). The compound showed also notable activity against Abl, Fyn, 

Yes, Lck, Lyn, EGFR, FGFR, PDGFR, C-Kit, b-Raf, all kinases characterized by a small 

gatekeeper residue165,132.  
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Moy et al. synthesized compound 19, classified as type II inhibitor, which exhibits nanomolar 

inhibitory activity against multiple kinases. The compound bears a pyrazolo[1,5-a]pyrimidine 

core linked to a tetramethylpiperidine-1-oxyl radical that, possessing a very slow electronic 

relaxation time and prolonged radical stability, is able to be used in the NMR spectroscopy of 

the complex with the enzyme. This derivative is particularly active on VEGFR2 (IC50 = 3.3 

nM), Abl (IC50 = 5 nM) and on SFKs, including Fyn (5 nM). Since the compound is very active 

and endowed with paramagnetic properties, it could represent a useful tool in a screen for non-

ATP site binders166. 
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Bamborough et al. at GlaxoSmithKline tested more than 500 compounds against a panel of 

over 200 protein kinases chosen to represent the kinase inhibitor space. This important study 

has led to the identification of hits against new kinases and to the expansion of the inhibition 

profiles of several literature compounds. A detailed analysis of the data through the use of 

affinity fingerprints gave interesting indications for biological target selection, the choice of 

tool compounds for target validation, lead discovery and optimization. These results show how 

broad cross-profiling can provide important insights to assist kinase drug discovery. Regarding 

Fyn inhibitors, they found that the bis-anilinopyrimidine 20 potently inhibits also Fyn with an 

IC50 value of 0.4 nM167.  

 

H
N

OH2N

N

N

HN OH

20  



54 
 

Wyeth researchers synthesized a series of 2-alkenyl thieno[2,3-b]pyridine carbonitriles, bearing 

a thieno-pyridine core isoster to the quinolinic one of bosutinib, as potent inhibitors of PKCθ, 

a STK espressed in lymphocytes and mast cells and involved in the inflammatory response. In 

the screening to assess compounds selectivity, they found that the most active derivatives also 

inhibited SFKs. Interestingly, compound 21 possessed an IC50 value of 25 nM for Fyn and 

comparable inhibition also versus Hck and Lck, while the IC50 value for c-Src was significantly 

higher (330 nM)168. 
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A thiazole derivatives family of compounds structurally related to dasatinib 9, bearing 2-

aminoheteroaryl groups has been reported as potent and orally active SFK inhibitors. Among 

these, compound 22 resulted one of the most interesting derivatives, possessing IC50 values of 

1-2 nM for all SFKs, including Fyn, and excellent selectivity against receptor TKs and SFKs169. 
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Several phenolic compounds are Fyn inhibitors. An example is rosmarinic acid (RosA) 23, the 

ester of caffeic acid with 3,4-dihydroxyphenyl lactic acid. It is a natural polyphenol antioxidant 

carboxylic acid found in many Lamiaceae herbs, including Salvia officinalis and Rosmarinus 

officinalis and is responsible for antiinfective, antiinflammatory and antioxidative effects of 

these plants. Jelic et al., using immunochemical and in silico methods, discovered that RosA is 

a Fyn inhibitor (IC50 value of 1.3 μM)170. Recently, this compound has been studied for its 

potential use in the treatment of AD. The researchers strongly supported the hypothesis that 
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RosA attenuates Aβ-induced excess production of ROS (Reactive Oxygen Species) by 

inhibiting nuclear exclusion of Nrf2 in the Akt/GSK-3β/Fyn pathway. These results suggest 

that RosA can be a promising candidate for neuroprotective treatment of AD171. 
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In 2015 Tintori et al.  synthesized a new library of pyrazolo[3,4-d]pyrimidines derivatives 

among which compound  24 demonstrated a Ki value of 70 nM on Fyn.  Furthermore 24 was 

found able to inhibit the phosphorylation of the Tau protein in an Alzheimer’s model cell line 

and showed antiproliferative activities against different cancer cell lines124. Recently compound 

24, called SI308, has been studied in the context of lymphoid malignancies development and 

showed inhibition values in the sub-micromolar range also for the related kinases Lyn and 

Blk172. 
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CHAPTER 5 

Synthesis of pyrazolo[3,4-d]pyrimidines as 

potential SGK1 inhibitors 

 

5.1 Background  

My research group synthesized a large library of 4-amino substituted pyrazolo[3,4-

d]pyrimidines 25, bearing an alkylphenyl chain in N1, which resulted active as ATP-

competitive Src and/or Abl inhibitors, with IC50 values in the nanomolar range in enzymatic 

assays and a potent antiproliferative and proapoptotic activity toward different cancer cell 

lines173,174. 

As previously reported, SGK1 is emerging as an essential and non-redundant target in medicinal 

chemistry. For this reason, an in silico screening was recently conducted in collaboration with 

the University of Magna Graecia of Catanzaro, to assess if some members of the in-house 

library were also active on SGK1 and Akt through an ATP competitive mechanism. This study 

allowed us to identify different pyrazolo[3,4-d]pyrimidines endowed with a good activity 

toward SGK1. In particular, the compound called SI113, 5, already reported in chapter 4, is 

effective in inhibiting SGK1 with an IC50 value of 600 nM, while being much less effective on 

Akt1, Abl and Src.  
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Surprisingly, Akt1, which has been previously cited because of its high homology whit SGK1, 

was inhibited by SI113 with an IC50 value of 50 μM, which implies a selectivity on SGK1 with 

respect to Akt1 of almost 100 folds. Docking studies explain that this selectivity is probably 

due to a better fitting of SI113 into the larger lipophilic area of the ATP binding domain present 

in SGK1, which leads the molecule to a planar conformation. This conformation is not allowed 

in the Akt1 catalytic site141 (Fig.18).  

 

Fig.18. Binding mode of SI113 into SGK1 (A) and Akt1 (B). The SGK1 binding conformation of SI113 is flat, 

whereas in Akt1 the flat conformation of SI113 is not allowed due to the restricted lipophilic area present in 

Akt1. 

 

5.1.1 SI113 anticancer activity  

As it was previously reported, in the last five years, many in vitro and in vivo biological studies 

have been performed on SI113 demonstrating its strong anticancer activity.  

Initially, our group reported that SI113 induces cell death in various malignant cell lines, 

including MCF-7 breast carcinoma, A-172 malignant glioma and RKO colon carcinoma and 

synergizes with paclitaxel in induction of apoptosis53. Further studies highlighted the capability 

of this SGK1 inhibitor to  induce autophagy, apoptosis, and endoplasmic reticulum stress in 

endometrial cancer cells43. Very recently, using GBM, HCC and colorectal carcinoma cell lines, 

an inhibitory effect of SI113 on cell migration, invading, and EMT has been recognized. In 

addition, cancer cells, when exposed to this compound, showed a remarkable subversion of the 

cytoskeletal architecture, characterized by F-actin destabilization, phospho-Fak delocalization, 
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and tubulin depolimerization. Therefore, the results confirm a key role for SI113 in hindering 

cancer cell malignancy143. 

 

5.1.1.1 SI113 activity on HCC 

Regarding HCC, in vitro data obtained in HepG2 and HuH-7 cell lines, as well as in vivo data 

from HCC xenografts in NOD/SCID mice, indicated that SI113 inhibits liver cancer cell 

proliferation, induces apoptosis and necrosis and potentiates the effects of radiotherapy, 

mimicking some of the effects of SGK1 knock-down. More specifically, the analysis of tumor 

volume and weight in the in vivo assays demonstrates that SI113 arrests tumor growth. 

Histology demonstrates high levels of necrosis in tumors from treated animals (Fig.19). 

Interestingly, no signs of toxicity were observed by histological examination of the livers from 

S113-treated mice, nor did the mice show signs of generally adverse side effects64. 

 

 

Fig.19. SI113 tumor suppressive activity in HCC xenograft models. 

 

5.1.1.2 SI113 activity on GBM 

This compound also showed very interesting results on GBM. In fact, an initial work on GBM 

cell lines, presented evidences that SGK1 plays an important role in GBM cell survival response 

to radiation and oxidative stress. SI113-dependent SGK1 inhibition demonstrated to counteract 

the activation of survival mechanisms and to enhance the cell death in response to radiation and 
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oxidative stress. Besides that, SI113 was also able to enhance cytotoxic autophagy which leads 

the cells exposed to radiation to an irreversible death fate43. Subsequently, SI113 demonstrated 

to promote theranostic effects induced by 64CuCl2 in GBM cells65. Later it has been found that 

the association between SI113 and selected spindle poisons such as microtubule-destabilizing 

agent vincristine (VCR) and the microtubule-stabilizing agents epothilone A (EPO-A), 

generated a synergistic cytotoxic effect in GBM cells, drastically reducing their viability and 

clonogenic capabilities in vitro as well as inhibiting tumor growth in vivo. In particular, SI113 

and VCR cooperate in restraining the growth of ADF glioblastoma cells xenografts in 

immunocompromised mice142. Recently, with the aim to explore in depth the pharmacological 

ability of SI113 in interfering with major signal transduction pathways in either established or 

primary (neurospheres) GBM cells, a RPPA platform has been performed upon 114 protein 

factors whose post-translational modifications are associated with activation or repression of 

specific signal transduction cascades. Data demonstrated that SI113 strongly affected the 

PI3K/mTOR pathway, evoking a pro-survival autophagic response in neurospheres. Therefore, 

the use of SI113 coupled with autophagy inhibitors is strongly recommended for a maximum 

efficiency. Indeed, the association of SI113 with quinacrine, an autophagy inhibitor, induced a 

remarkable synergistic effect in inhibiting GBM growth properties in all the cells tested, 

including neurospheres (Fig.20). 

 

 

Fig.20. Clonogenic Assay. A) T98G GBM cell line. B) GBM3-Luc anchorage-independent neurospheres. 
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5.1.1.3 SI113 activity on ovarian cancer  

Very recently, a study carried by D’Antona and colleagues demonstrated that SI113 can be 

helpful in inhibiting the development of paclitaxel resistance in human ovarian cancer cells and 

can restore paclitaxel sensitivity in cells that are resistant to this drug.   

In more details, in vitro data obtained using ovarian carcinoma cell lines indicate that the SGK1 

inhibitor SI113 inhibits cancer cell proliferation, potentiates the effects of paclitaxel-based 

chemotherapy, counteracts the development of paclitaxel resistance, and restores paclitaxel 

sensitivity in paclitaxel-resistant A2780 ovarian cancer cells. The in vitro results have been 

corroborated by preclinical studies of xenografts generated in nude mice through the 

implantation of paclitaxel-resistant human ovarian cancer cells. The compound SI113 

synergizes with paclitaxel in the treatment of tumors derived from xenografted ovarian cancer 

cells40. 

 

 

5.2 Project 

On the basis of these interesting results, we decided to expand the synthesis of a new generation 

of SI113 derivatives and start a lead optimization study with the aim to find new SGK1 

inhibitors. Initially, Prof. Alcaro’s group at the University Magna Graecia of Catanzaro, 

performed an in silico study on a virtual library of compounds of feasible synthesis. Then the 

compounds which showed the best docking scores have been selected for the synthesis. 

In this new set of SGK1 inhibitors, the N1 phenylvinyl group has been maintained and the 

effects of substitutions on the N1 side chain phenyl ring and on C4 and C6 positions have been 

explored. 

 

 

5.3 Results and discussion 

During my PhD I mainly worked on the design and subsequent synthesis of a new library of 

potential SGK1 inhibitors 26a-t (Table 1) and 27a-h (Table 2). All compounds 26a-t (Table 

1) present the double bond in the N1 side chain, since this feature seems essential for the activity 

of compounds toward SGK1.  
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Table 1. Structure of potential SGK1 inhibitors synthesized. 
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cpd R R1 X 

26a NHCH2CH2C6H5 N(CH2CH2OH)2 H 

26b NHCH2CH2C6H5 NHCH2CH2NH2 H 

26c NHCH2CH2C6H5 OCH2CH2OH H 

26d NHCH2C6H5 4-morpholinyl H 

26e NHCH2C6H4-4F 4-morpholinyl H 

26f NHCH2C6H4-4Cl NHCH2CH2OH H 

26g NHCH2C6H4-4Cl N(CH2CH2OH)2 H 

26h NHC6H4-4Cl OC4H9 H 

26i NHC6H4-4Cl NHCH2CH2OH H 

26j NHC6H4-4Cl N(CH2CH2OH)2 H 

26k NHCH2C6H4-3F NHCH2CH2OH F 

26l NHCH2C6H4-3F N(CH2CH2OH)2 F 

 26m NHC6H5 N(CH2CH2OH)2 F 

26n NHC6H4-3Cl NHCH2CH2OH Cl 

26o NHC6H4-3Cl N(CH2CH2OH)2 Cl 

26p NHC6H4-3Cl NHCH2CH2OH Br 

26q 4-morpholinyl NHCH2CH2OH H 

26r 4-morpholinyl N(CH2CH2OH)2 H 

26s 4-morpholinyl NHCH2CH2NH2 H 

26t 4-morpholinyl             OCH2CH2OH H 
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Furthermore, all compounds, with the exception of 26h, are decorated in C6 with different polar 

groups to obtain a second generation of compounds endowed with an improved solubility 

compared to SI113. Besides, the butyl-ether derivate 26h is an unexpected by-product, obtained 

in the last step of route 1 (reported below), which has been characterized and included into the 

set sent for biological assays, in order to extend structure-activity relationship (SAR) 

evaluations. Different amino substituents have been introduced in C4. Indeed, besides the 

phenylethylamino chain, already present in SI113, we introduced differently substituted 

anilines and benzylamines. Furthermore, a small set of morpholino derivatives 26q-t has been 

synthesized. 

Due to the presence of the double bound on N1 side chain, also intermediates 27a-h (Table 2) 

have been included into the set of final compounds to be tested in the enzymatic assay. 

 

Table 2. Structure of intermediates 27a-h. 
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Cpd R X 

27a NHC6H4-4Cl H 

27b NHCH2C6H4-4Cl H 

27c NHCH2CH2C6H5 H 

27d NHCH2C6H4-3F F 

 27e NHC6H5 F 

27f NHC6H4-3Cl Cl 

27g NHC6H4-3Cl Br 

27h 4-morpholinyl H 
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Finally, the scale-up synthesis of SI113 has been performed to obtain a large amount (about 3 

grams) of compound for further biological assays. 

 

5.3.1 Chemistry  

The synthesis has been performed through a multi-step approach, which has as key 

intermediates compounds 33 a-d. Then two different routes have been followed to obtain the 

desired compounds 26a-c, 26f-t and SI113 5 (route 1) or 26d,e (route 2). 

The first step is the reaction between hydrazine monohydrate and styrene oxide or para-

substitued styrene oxides 28a-d which afforded intermediates 29a-d. The treatment of 

intermediates 29a-d with ethyl(ethoxymethylene)cyanoacetate at 80 °C in anhydrous toluene 

for 8 h gave 30a-d in excellent yields. Compounds 30a-d were reacted with benzoyl 

isothiocyanate in anhydrous THF, leading to the formation of 31a-d. Then, 31a-d were cyclized 

by treatment with sodium hydroxide (2M) and precipitated with glacial acetic acid, to give 

derivatives 32a-d. These compounds were methylated on the C6 sulphur atom with methyl 

iodide at reflux for 12 h in anhydrous THF, leading to derivates 33a-d (Scheme 1). 
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Scheme 1: Preparation of intermediates 33a-d. 
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33a: X = H
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33c: X = Cl
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O
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X

28a: X= H
28b: X= F
28c: X= Cl
28d: X= Br

NH2NH2 .H2O
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For the synthesis of compounds 27a-h, intermediates 33a-d were reacted with the Vilsmeier 

complex (POCl3/DMF, 1:1) at reflux for 8 h in anhydrous chloroform, in order to obtain 34a-

d.  The latter were reacted with different amines in opportune conditions, giving derivatives 

35a-h. Compounds 35a-h were dehydrohalogenated by refluxing with aqueous NaOH (3.3 M) 

to give the corresponding N1-unsaturated derivatives 27a-h (Scheme 2).  
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Scheme 2: Preparation of intermediates 27a-h. 
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33a: X = H
33b: X = F
33c: X = Cl
33d: X = Br

34a: X = H
34b: X = F
34c: X = Cl
34d: X = Br

35a: X = H,  R = NHCH2CH2C6H5
35b: X = H,  R = NHCH2C6H4-4Cl
35c: X = H,  R = NHC6H4-4Cl
35d: X = F,  R = NHCH2C6H4-3F
35e: X = F,  R = NHC6H6
35f: X = Cl,  R = NHC6H4-3Cl
35g: X = Br, R = NHC6H4-3Cl
35h: X = H,  R =  4-morpholinyl

27a: X = H,  R = NHCH2CH2C6H5
27b: X = H,  R = NHCH2C6H4-4Cl
27c: X = H,  R = NHC6H4-4Cl
27d: X = F,  R = NHCH2C6H4-3F
27e: X = F,  R = NHC6H6
27f: X = Cl,  R = NHC6H4-3Cl
27g: X = Br, R = NHC6H4-3Cl
27h: X = H,  R =  4-morpholinyl

X

CHCl3, 
reflux, 8h

 
 

 

Then, all compounds 27a-h were oxidized by reaction with meta-chloroperoxybenzoic acid 

(mCPBA) in chloroform at room temperature for 6h, giving compounds 36a-h. Finally, the 

sulfone group was displaced by reaction with ethanolamine or diethanolamine, affording the 

final compounds 26a-c, 26f, g, 26i-t and SI113 5 (Scheme 3). 
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Scheme 3: Preparation of final compounds 26a-c, 26f, g, 26i-t and SI113 

 

N
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S
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N

S
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SI113 and 
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X

27a: X = H,  R = NHCH2CH2C6H5
27b: X = H,  R = NHCH2C6H4-4Cl
27c: X = H,  R = NHC6H4-4Cl
27d: X = F,  R = NHCH2C6H4-3F
27e: X = F,  R = NHC6H6
27f: X = Cl,  R = NHC6H4-3Cl
27g: X = Br, R = NHC6H4-3Cl
27h: X = H,  R =  4-morpholinyl

36a: X = H,  R = NHCH2CH2C6H5
36b: X = H,  R = NHCH2C6H4-4Cl
36c: X = H,  R = NHC6H4-4Cl
36d: X = F,  R = NHCH2C6H4-3F
36e: X = F,  R = NHC6H6
36f: X = Cl,  R = NHC6H4-3Cl
36g: X = Br, R = NHC6H4-3Cl
36h: X = H,  R =  4-morpholinyl

26a: X = H,    R = NHCH2CH2C6H5,   R1 = N(CH2CH2OH)2
26b: X = H,    R = NHCH2CH2C6H5,   R

1 = NHCH2CH2NH2

26c: X = H,    R = NHCH2CH2C6H5,   R
1 = OCH2CH2OH

26f: X = H,     R = NHCH2C6H4-4Cl,   R1 = NHCH2CH2OH

26g: X = H,    R = NHCH2C6H4-4Cl,   R1 = N(CH2CH2OH)2  
26i: X = H,     R = NHC6H4-4Cl,          R1 = NHCH2CH2OH
26j: X = H,     R = NHC6H4-4Cl,          R1 = N(CH2CH2OH)2 
26k: X = F,    R = NHCH2C6H4-3F,     R1 = NHCH2CH2OH 
26l: X = F,     R = NHCH2C6H4-3F,     R1 = N(CH2CH2OH)2
26m: X = F,   R = NHC6H5,                      R

1 = N(CH2CH2OH)2       
26n: X = Cl,   R = NHC6H4-3Cl,          R1 = NHCH2CH2OH
26o: X = Cl,   R = NHC6H4-3Cl,          R1 = N(CH2CH2OH)2
26p: X = Br,   R = NHC6H4-3Cl,          R1 = NHCH2CH2OH
26q: X = H,    R =  4-morpholinyl,        R1 = NHCH2CH2OH

26r: X = H,     R =  4-morpholinyl,        R1 = N(CH2CH2OH)2
26s: X = H,    R =  4-morpholinyl,         R1 = NHCH2CH2NH2

26t: X = H,     R =  4-morpholinyl,         R1 = OCH2CH2OH

Method A: Appropriate amine, DMSO/n-butanol, or DMSO, or an. DMF, 90 °C, 12 h (to obtain 
26a,b, f,g, i-s and SI113). 
Method B: HOCH2CH2OH, NaH, an DMF, 1h, rt (to obtain 26c and 26t).

SI113: X = H,   R = NHCH2CH2C6H5,    R
1 = NHCH2CH2OH
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It is interesting to report that during the first attempt to obtain compound 26j, we observed the 

formation of a by-product. We characterized it, and we disclosed that it was the buthylether 

derivate 26h (Scheme 4). For a better understanding, we repeated this reaction different times, 

and we observed that prolonging the reaction time, in the same conditions of solvent and 

temperature, the conversion of 26h in 26j was complete. To avoid the formation of this by-

product, we removed n-butanol and used only DMSO as a solvent for the synthesis of other 

diethanolamine derivatives. This problem never appeared during the synthesis of ethanolamine 

derivatives.  

 

Scheme 4: Conditions of reaction affording the synthesis of compound 26j and the by-product 26h. 
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To obtain compounds 26d,e, (route 2) intermediate 33a was first oxidized with mCPBA, giving 

the sulfone derivative 37. Then, the latter was reacted with morpholine in DMSO affording 

compound 38, which in turn was chlorinated in C4 and on the N1 side chain with the Vilsmeier 

complex. The obtained intermediate 39 was reacted with the appropriate amines, affording 40a 

and 40b. These intermediates were finally dehydrohalogenated in basic conditions to obtain the 

desired compounds 26d and 26e (Scheme 5). This route allows to introduce the variability in 

C4 just in the pre-final step, minimizing the number of steps needed to obtain the desired 

compounds 26d,e. Differently, for the synthesis of compounds 26a-c and 26f-t, we had first to 

functionalize the C4 position, and then to introduce the C6 amino alcohol chain, in order to 

prevent the chlorination of the primary alcohol by the Vilsmeier complex.  
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Scheme 5: Preparation of final compounds 26d,e. 
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5.3.2 Biology 

Preliminary enzymatic assays on SGK1 have been performed by Prof. Perrotti’s group at the 

University Magna Graecia of Catanzaro. To date, a set of ten compounds which includes 26d, 

i, o, e, n, j, q, h, l and 27d, has been tested on SGK1, at a concentration of 600 nM, which is 

the IC50 value of SI113. The assay was performed incubating the enzyme, the inhibitor, the 

peptide substrate and [γ32P]ATP. To determine the kinase activity in presence of different 

inhibitors, the radioactivity expressed in count per minute (CPM) was measured using a 

scintillation counter.  SI113 has been used as the reference compound.  

As it is shown in graph (Fig.21), the majority of compounds show an activity similar to SI113. 

Interestingly, the buthylether derivate 26h, which was not planned to be synthesized, showed 

to have an activity slightly better than the lead compound SI113.  
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Therefore, it will be interesting to compare 26h activities both on kinase and cell assays to 

establish how much the presence of the lipophilic chain can affect the permeability into the 

cells. Moreover, compound 26n and the morpholino-derivative 26q resulted about three folds 

more active on the enzyme compared to SI113. 

The lower inhibitory activity performed by intermediate 27d let us think that probably a bulky 

group is necessary on the C6 position for the correct collocation and consequent inhibition of 

the enzyme. 

 

Fig.21. Activity of compounds 26d, i, o, e, n, j, q, h, l and 27d on SGK1. 

 

 

5.4 Conclusions  

In conclusion, the SGK1 inhibitor, SI113 which is endowed with a strong anticancer activity, 

has been identified using a multidisciplinary approach based on association of molecular 

modeling, organic synthesis, molecular biology, cell biology and pharmacological skills.  

Thanks to this study, during my PhD course I synthesized a new library of 28 SI113 derivatives 

endowed with a potential activity on inhibiting SGK1.  
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Among them, ten compounds have been tested until now on the isolate enzyme SGK1 and the 

biological assays on the other derivatives are still in progress. Anyway, the first results are 

already very interesting: indeed, three compounds (26n, q, h) resulted more active than the lead 

compound SI113. In particular, the most active compound 26q resulted about 3-fold more 

active than S1113 on SGK1. These preliminary results have brought me to the synthesis of new 

set of morpholino derivative 26r-t.  

Moreover, a scale-up synthesis for SI113 was also performed with the aim to submit this 

interesting compound to other in vitro and in vivo assays. Further results on SI113 and 

derivatives will orient future work. 
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CHAPTER 6 

Synthesis of pyrazolo[3,4-d]pyrimidines as 

potential Fyn inhibitors 

 

6.1 Background  

Because of the involvement of Fyn in different tauopathies and tumors, the design and synthesis 

of Fyn inhibitors represent an expanding field of research. 

Molecular modeling studies, performed in collaboration with the University of Siena, were 

combined with organic synthesis with the aim of developing novel Fyn kinase inhibitors. A 

docking study was employed with the purpose of identifying novel ATP-competitive Fyn 

kinase inhibitors. An in-house library of pyrazolo[3,4-d]pyrimidines 41 was chosen for this 

purpose, using the experimental pose of the known active ligands PP1 7 and PP2 8, selected as 

the reference compounds. Pyrazolo[3,4-d]pyrimidines were virtually screened against the 

active site of Fyn and then tested in an enzymatic assay towards this kinase. Derivative 42 

emerged as the most active compound with a Ki of 0.9 μM on Fyn. An increase in the in vitro 

binding affinity of such compound toward Fyn was then rapidly obtained by the synthesis of a 

small family of analogues. Among these new compounds, the best Fyn inhibitor resulted to be 

the previously cited SI308 24, having a Ki value of  70 nM124. Then SI308 was also tested against 

a panel of kinases including other SFK members (Hck, Blk, Fgr, Fyn, Src, Lck, Lyn, and Yes), 

TKs (Abl, EGFR, IGF1R, Jak2, PDGFR, KDR), as well as some STKs. This compound proved 

to be more efficient against SFK members than towards the other investigated kinases, 

confirming such a compound as a useful probe to study the SFK functions. Furthermore, a high 

activity against Abl was also detected, as expected because of the high structural similarity 

between Abl and SFKs. 
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6.1.1 Anticancer activity of SI308 

Compound SI308 and derivatives were then evaluated for their antiproliferative activity on the 

human CML cell line K562. Interestingly, SI308 inhibited cell viability with an IC50 value in 

the submicromolar range. Moreover, the antiproliferative effect of SI308 was evaluated through 

cell cycle analysis (Fig.22). 

 

 

Fig.22. Analysis of the cell cycle distribution of K562 cells after treatment with increasing concentrations of 

SI308. 
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Notably, the treatment with 0.1 μM of SI308 induced apoptosis in about 50% of treated K562 

cells. Compounds SI308 was also tested on early hematopoietic progenitor cells (CD34+) from 

Ph+ CML patients who developed resistance to both imatinib mesylate and dasatinib. The 

percentage of apoptotic CD34+ after imatinib treatment was found equal to control, confirming 

drug resistance. By contrast, SI308 increased apoptotic levels to 35%. It is important to note 

that this compound, when tested in human normal fibroblasts, did not show any sign of cell 

toxicity. Furthermore, compound SI308 was also evaluated on two solid human tumor cell lines, 

MDA-MD-231 (human breast cancer cell line) and U87 (human GBM cell line). These cell 

lines, treated with SI308, showed similar response profiles, with a significant difference in cell 

growth starting from 20 h after treatment with respect to control cells, and a more evident 

inhibition of cell viability from 70 h after treatment. U87 cells resulted particularly responsive 

showing IC50 values of 0.074 µM (Fig.23)124. 

 

 

            

Fig.23. In the graph, a representative growth profile (with SD) obtained with U87 cells treated with 0.1 (green 

line) and 1 μM (blue line) SI308 with respect to control cells (red line) are shown. 

 

                                                                       

6.1.2 SI308 activity on AD model 

In AD, Fyn mediates the phosphorylation of Tau protein on the Tyr18 residue, an early and 

crucial step in the disease progression125. For this reason, SI308 was also evaluated for its ability 

to inhibit the Fyn mediated phosphorylation of residue Tyr18 of Tau in a cellular model of AD. 

To this aim, neuroblastoma SH-SY-5Y cells were differentiated to mature neurons with the 

administration of retinoic acid, followed by brain derived neurotrophic factor, neuregulin β1, 
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nerve growth factor, and vitamin D3 treatment. Once differentiated, SH-SY-5Y cells were 

treated175 with amyloid beta 1–42 (Aβ42) oligomer/protofibril in order to induce AD-like 

neurotoxicity176. The compound significantly affected amyloid beta 1-42 (Aβ42) induced 

Tyr18-Tau phosphorylation in a dose dependent manner. Moreover, the inhibitory activity of 

SI308 resulted constant over time, being effective up to 6 h after compound administration124. 

 

 

6.2 Project 

On the basis of these interesting results, we decided to expand the SAR of this inhibitor and 

planned the synthesis of a new generation of SI308 derivatives. Since the introduction of a 

methyl group in C6 was not yet explored, we thought to evaluate the effect of this new feature. 

In fact, sometimes the presence or absence of a small group as a methyl can contribute to a 

significant change on the activity.  

Furthermore, as emerged in the previous studies, a substituent on the para position of the C3 

phenyl ring may contribute to enhance the activity. For this reason, the evaluation of para 

substituted and unsubstituted phenyl ring on C3 has been assessed.  

 

 

6.3 Results and discussion 

In this context during my PhD course, I planned the synthesis of the small set of SI308 

derivatives 43a-c. The final compounds mainly differ from the lead compound SI308 for the 

presence of a methyl group in C6.  
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6.3.1 Chemistry  

For the synthesis of Fyn inhibitors 43a-c, a three-component one-pot synthesis was performed, 

since it was faster, cheaper and more efficient in term of yield than the corresponding step-by-

step route. Sodium hydride was added in small batches to a solution of malononitrile in dry 

THF precooled at 0/5 °C; after 30 min, the suitable acyl chloride was added and the solution 

stirred at room temperature for 2-12 h. Then dimethylsulfate was added, and the solution was 

refluxed for 3-6 h. Finally, 2-hydrazino-1-phenylethanol 29a (previously reported in Scheme 

1) dissolved in dry THF was added and the reaction was refluxed for 4 h to afford intermediates 

44a-c, then purified by flash chromatography. Intermediates 44a-c were cyclized by reaction 

with acetonitrile in the presence of sodium ethoxide at reflux for 8 h, affording the derivatives 

45a-c. The latter were reacted with thionyl chloride in dry CH2Cl2 at room temperature for 12 

h under nitrogen atmosphere to give the final compounds 43a-c (Scheme 6). 

 

Scheme 6: preparation of final compounds 43a-c. 
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6.3.2 Biology 

Enzymatic assay on isolated kinases have been performed by Dr Maga’s group of the Institute 

Genetic Molecular of Pavia (Italy). Since the high homology among kinase members, 
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compounds have been tested on Fyn, Abl and Src (the main targets of the in-house pyrazolo[3,4-

d]pyrimidine library) (Table 3). Kinase assays were performed in the presence of active, 

recombinant Fyn/Abl/Src, the specific peptide substrate and [γ32P]ATP. Compounds 43a,c 

have been tested only on Fyn because of their low solubility. Therefore, their percentage of 

inhibition on Fyn has to be considered as a preliminary data which deserve a further evaluation 

using appropriate formulations that make these compounds more soluble. 

 

Table 3. Percentage of inhibition of Fyn, Abl and Src of 43a-c compared to SI308. 

 

 

 
                                  

 

 

 

 

 

aKi value expressed as nM 
b ND = Not Determined 

c NA = Not Active 

 

6.4 Conclusions 

This work led to the synthesis of new Fyn inhibitors. The compounds have been obtained 

through a multistep approach.  Compounds 43a-c have been already tested on Fyn and also on 

Abl and Src, other two cytoplasmic TKs. Unfortunately, these molecules are less active than 

the first generation in-house inhibitor SI308. Nevertheless, compounds 43b,c maintained a 

certain activity in inhibiting Fyn and 10 µM. Since the main issue related to these compounds 

seems to be the poor solubility, it would be interesting to develop formulations of these 

compounds to overcome this problem. Recently, the group has already used this approach for 

other in-house compounds with excellent results177. 

 

 

Cpd % inhibition of Fyn % inhibition of Abl % inhibition of Src 

 10 µM  1 µM  10 µM  1 µM 10 µM  1 µM 

SI308 99 70a 81 NDb 98 ND 

43a NAc NA ND ND ND ND 

43b 42 NA 24 NA 24 24 

43c 51 16 ND ND ND ND 
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CHAPTER 7 

Synthesis of the pyrazolo[3,4-d]pyrimidine SI306 

and subsequent evaluation in NB cell lines 

 

7.1 Background  

NB is a childhood solid tumor originating from progenitor cells of the sympathetic nervous 

system and accounts for 15% of deaths from pediatric cancer178. It is characterized by a plethora 

of biological behaviors which range from tumors which regress or differentiate spontaneously 

into ganglioneuromas to highly aggressive forms which are frequently fatal. High-risk NB is 

characterized by metastatic disease and/or amplification of the MYCN proto-oncogene that is 

a biomarker still used today to stratify the disease risk179. Current treatment for high-risk NB 

patients includes intensive and toxic chemotherapy followed by surgical resection, 

myeloablation and autologous stem cell rescue, radiation, and intensive immunotherapy180. 

Although most high-risk patients initially respond to chemotherapy, the majority of them 

relapse and succumb to the therapy-resistant disease181. Recently, it has been shown that c-Src 

inhibitors exhibit strong anti-proliferative and pro-apoptotic effects toward several cancer cell 

lines, including NB182. Starting from the crystallographic complex of an in-house pyrazolo[3,4-

d]pyrimidine derivative and c-Src, an efficient optimization study was performed to obtain new 

c-Src inhibitors endowed with a better activity and pharmacokinetic profile. Among them, 

compound 46, called SI306, resulted one of the most promising for development against NB92. 
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7.1.1 SI306 activity on NB in vitro and in vivo studies 

In this context, our previous studies demonstrated that 72 h treatment with SI306 markedly 

affected the proliferation of SH-SY-5Y neuroblastoma cells by inhibiting the spheroid 

formation. Moreover, this effect was concentration-dependent, and the compound showed an 

IC50 value of 0.34 μM92.  

In addition, SI306 exposure led to a dose-dependent accumulation of SH-SY-5Y cells in the G1 

phase of cell cycle (Fig.24) and a progressive induction of apoptosis.  

 

Fig.24. Analysis of the cell cycle distribution of SH-SY-5Y cells after treatment with increasing concentrations 

of SI306. The percentage of cells in each phase of cell cycle was evaluated by cytofluorimetric analysis of DNA 

content. 

 

The anticancer activity of SI306 was confirmed by in vivo studies using a xenograft mouse 

model. Mice were inoculated with SH-SY-5Y NB cells and, starting from the appearance of a 

visible tumor mass, were treated daily with 50 mg/kg SI306. Tumor volume was evaluated at 

regular intervals and interestingly, SI306 has been found to reduce the tumor volume by 50% 

in treated mice in comparison with placebo treated mice. Moreover, the observed reduction in 

tumor volume was associated with a significantly compromised angiogenesis, further 

demonstrated by a three-dimensional in vitro sprouting assay on endothelial cells. Notably, after 

treatments mice did not show any sign of toxicity. 
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7.2 Project                                                                                                                         

In order to further investigate the potential of SI306 as a promising compound able to counteract 

NB growth, I started to collaborate with Professor Domenicotti’s group (Department of 

Experimental Medicine of the University of Genova) which has been involved for many years 

in the study of molecular mechanisms underlying chemoresistance in NB.  

For the realisation of this project, carried out during my PhD course, first, I synthesized 

compound SI306 and then I performed the biological assays for this inhibitor on three human 

NB cell lines characterized by a different MYCN status: HTLA-230 and SK-N-BE-2C with 

MYCN amplification and SH-SY-5Y without MYCN amplification. 

 

7.3 Results and discussion 

7.3.1 Chemistry      

Preparation of compound 32a has been previously described in scheme 1. Alkylation with 4-

(2-chloroethyl)morpholine at position C6 in the presence of NaOH in anhydrous DMF and 

absolute ethanol at reflux for 6 hours gave compound 47. This intermediate was treated with 

the Vilsmeier complex (POCl3/DMF, 1:1) in CHCl3 at reflux for 8 h to obtain the halogenated 

derivative 48. Finally, the reaction of 48 with m-bromoaniline in ethanol for 4h at reflux, 

afforded the desired compound SI306 (Scheme 7). 
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Scheme 7: preparation of compound SI306. 
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7.3.2 Biology                                                                                                                   

In order to investigate if the anticancer effect of SI306 on NB cells can be influenced by a 

different MYCN status, HTLA-230, SK-N-BE-2C and SH-SY-5Y cells were treated with 

increasing concentrations (0.1-20 μM) of the drug for 72 hrs. As shown in graphs (Fig.25), 

SI306 differently affected the viability of three NB cell lines. In detail, SI306 exerted a 

cytotoxic effect on HTLA-230 cells already at 1 M (Fig.25A), while it was able to affect the 

viability of both SK-N-BE-2C and SH-SY-5Y starting from 7μM concentration (Fig.25 B and 

C).  

Notably, the IC50 value was similar for MYCN-amplified NB cells (IC50=11.83 for HTLA-230 

and 12.62 for SK-N-BE-2C) and it was higher by 30% than the IC50 calculated in non amplified 

SH-SY-5Y cells (IC50=8.47). 

In addition, a 20 M concentration, the maximal dose used in these experiments, was more 

cytotoxic for SH-SY-5Y cells, with a reduction of viability by 90%, in comparison with HTLA-

230 and SK-N-BE-2C, whose cell viability was reduced by 70% (Fig.25). 
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Fig.25. Effects of SI306 on NB cell viability. Cell viability was evaluated by MTT assay in HTLA-230 (A), 

SK-N-BE-2C (B) and SH-SY-5Y (C) cells exposed to increasing concentrations (0.1 - 20 μM) of  SI306 for 

72 h. The graph summarizes quantitative data of the means ± S.E.M. of three independent experiments.  

*p<0.05 vs Ctr cells; **p< 0.01 vs Ctr cells; ***p< 0.001 vs Ctr cells. 

 

7.4 Materials and methods  

7.4.1 Cell lines and treatments                                                                                   

NB cell lines were kindly provided by Dr. Raffaghello L. (G Gaslini Institute, Genoa, Italy). 

NB cells were tested for mycoplasma contamination (Mycoplasma Reagent Set; Euroclone 

s.p.a, Pavia, Italy) and were cultured in RPMI1640 media (Euroclone) supplemented with 10% 

fetal bovine serum (FBS; Euroclone), 2 mM glutamine (Euroclone), 1% penicillin/streptomycin 

(Euroclone), 1% sodium pyruvate (Sigma), and 1% of aminoacid solution (Sigma). NB cells 

were treated for 72 h with SI306 doses ranging from 0.1 to 20 M. The stock solution of SI306 
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prepared in DMSO and pilot experiments demonstrated that the final DMSO concentrations did 

not alter cell viability. 

7.4.2 Viability assay 

Cell viability was evaluated by using the dimethylthiazolyl-2-5-diphenyltetrazolium bromide 

(MTT; Sigma) staining. Cells were seeded into 96 well plates (Corning) and then treated with 

SI306. After 72 hours, NB cells were incubated with 0.5 mg/ml MTT for 3 h at 37°C. After 

incubation, the supernatant was discarded, insoluble formazan precipitates were dissolved in 

HCl (0.1 N in isopropanol) and the absorbance at 570/630 nm was recorded using a microplate 

reader (EL-808; BioTek Instruments Inc., Winooski, VT, USA). 

 

7.5 Conclusions  

The results obtained from the biological studies carried out in NB cell lines displaying a 

different status of MYCN confirm the anticancer activity of SI306 further supporting its role as 

a promising candidate for NB treatment and encouraging the search for new SI306 derivatives.  
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CHAPTER 8 

Polymer-carried pyrazolo[3,4-d]pyrimidine kinase 

inhibitors as feasible treatments against GBM 

recurrence 

 
8.1 Background  

8.1.1 Glioblastoma multiforme                                                                                           

GBM is the most common, malignant and aggressive primary brain tumor in adults, mainly due 

to its rapid proliferation and ability to penetrate and diffusely infiltrate healthy brain 

parenchyma (Fig.26). Standard of care treatment currently involves a combination of surgery, 

radiotherapy and chemotherapy183. Yet, despite this multimodal treatment, the median survival 

remains poor at less than 15 months184. Problems with existing treatment approaches include:  

- increased resistance to chemotherapeutic drugs caused by the heterogeneity of the tumor 

micro-environment and subsequent variation in tumor sub-clones,  

- inability or impairment of drugs to cross the blood-brain barrier (BBB), 

- lack of penetration of locally delivered therapeutic agents deep into the brain 

parenchyma beyond the resection cavity at sufficient therapeutic concentrations to 

therapeutically target residual tumor cells185,186. 

It is important to note that the residual cells at the tumor margin are responsible for 85% of 

GBMs that locally relapse after maximal safe surgical resection followed by the standard 

combination protocol of temozolomide and radiotherapy187. For these reasons, superior and 

more innovative treatment methods are necessary to eradicate invasive tumor cells which 

remain beyond the resection cavity lining post-surgery, and to block or impair GBM recurrence, 

which is inevitable with current treatment methods. 
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Fig.26. Schematic presentation of cell’s ability to penetrate and diffusely infiltrate healthy brain parenchyma in 

GBM. 

 

 

8.1.2 Use of kinase inhibitors in GBM 

The implication of kinases in GBM pathogenesis and drug resistance has led to the evaluation 

of small molecule kinase inhibitors as possible treatment options188,189. Crucially, kinase 

inhibitors, acting specifically on molecular targets, are supposed to reduce off- site toxicity 

during antitumor treatments190.  

As previously reported, deregulated SFK signaling can induce multiple pro-tumorigenic effects 

in glioma biology, including reduced apoptosis, increased angiogenesis, and increased 

proliferation120,191,122. Furthermore, evidence suggests that SFKs play roles in cancer cell 

invasion and metastasis192,193. Preclinical data confirmed that Src kinase, which is in general 

frequently overexpressed in brain tumors85, plays a key role in GBM proliferation and 

invasion194, leading the way for the use of Src inhibitors in clinical studies. Fyn, as it was widely 

discussed in chapter 3, has also been reported to be an effector of oncogenic signaling in GBM 

patients. In 2009, Lu et al. demonstrated that persistent EGFR signaling activated both Fyn and 

Src to increase GBM invasion and tumor survival in vivo119. More recently, Comba et al. 

reported the correlation of Fyn expression with malignant features of GBM tumors, including 

pseudopalisades, necrosis, and hypervascularization122. 
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In 2013, the broad spectrum SFK inhibitor dasatinib 9 was proposed as a therapeutic option in 

recurrent GBM192. Dasatinib was well tolerated in clinical trials but failed to improve the overall 

survival either as a monotherapy or in combination therapy for GBM patients195,196. This result 

can be attributed to dasatinib susceptibility to cellular efflux by transporters and subsequent 

poor accumulation in brain tissue197.  

 

8.1.3 Water solubility enhancement of pyrazolo[3,4-d]pyrimidines using an 

inkjet printing technology 

The pyrazolo[3,4-d]pyrimidines are readily soluble in DMSO and other organic solvents, but 

the limited solubility in water adversely affects their bioavailability and efficacy. Thus, in order 

to avoid the use of toxic organic solvents for in vitro and in vivo tests, as well as to develop oral 

formulations, several strategies have been sought to improve the aqueous solubility and 

pharmacokinetics of pyrazolo[3,4-d]pyrimidine derivatives, including formation of complexes 

with cyclodextrins198, encapsulation into liposomes199, formulation with albumin into 

nanoparticles200 and synthesis of prodrug derivatives201.  Additionally, a simple and promising 

methods is represented by the preparation of an amorphous solid dispersion, where the 

compound is molecularly dispersed in an inert carrier, typically a hydrophilic polymer202, such 

that the resulting stabilized amorphous compound shows a higher water solubility than the 

crystal form203.  

Accordingly, a new miniaturized screening process, based on an inkjet printing technology, 

have been developed by Sanna et al. to evaluate pyrazolo[3,4-d]pyrimidines water solubility 

enhancement into hydrophilic polymer carriers177.  

This formulation strategy, which is briefly summarized in figure 27, can be used to increase the 

water solubility of pyrazolo[3,4-d]pyrimidine derivatives, requiring only a few micrograms of 

compounds, in a manner that does not compromise potency, and thus provides a viable approach 

for development of oral formulations. 
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Fig.27. i. Highthroughput dispensing of DMSO drug solutions by an inkjet 2D printer; ii. Sequential addition of             

polymeric aqueous solutions and evaporation of water and DMSO; iii. Resuspension with water of the dry solid 

dispersions; iv. Evaluation of the apparent-solubility of the drugs in water from the polymeric matrixes via 

multiwell-reader UV-vis analysis; and v. Cytotoxicity assay of the hit formulations. 

 

 

8.2 Project 

During my visiting research fellowship period at the School of Pharmacy in Nottingham, under 

the supervision of Prof. Cameron Alexander, I had the opportunity to focus my research on the 

biological activity of a set of in house kinase inhibitors on a range of patient-derived GBM cell 

lines and to explore an appropriate formulation method. 

In particular, I selected three pyrazolo[3,4-d]pyrimidines, SI113, SI308 and SI306 (Fig.28) 

which are inhibitors of SGK1141, Fyn124 and Src92, respectively, and have also demonstrated  

anticancer effects on different commercial (established) GBM cell lines124,86,67.  Importantly, 

most commercial GBM cell lines have historically been derived from the core region of tumors, 

which does not allow a realistic, phenotypically accurate representation of the infiltrative cells 

which, due to their difficult surgical removing, ultimately result in GBM recurrence185. 
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Fig.28. Structures of in-house kinase inhibitors SI306, SI308 and SI113 and their activity towards SGK1, Fyn 

and Src. 

 

This time the three selected kinase inhibitors have been tested on a series of patient derived 

GBM cell lines isolated from both the central tumor core (GCE28) and from the invasive margin 

of the tumor (GIN28 and GIN8), kindly provided by Dr. Rahman at the Medical School in 

Nottingham. 

In vitro studies on invasive margin derived cells represent an important step in the discovery 

and development of drugs for the treatment of GBM, as these cells, which are associated with 

disease reoccurrence, are one the most relevant targets for pharmacotherapy.  

Furthermore, the anticancer effects of our kinase inhibitors have been explored in mono- and 

combination-therapy. Finally, since our compounds can be considered in Biopharmaceutical 

Classification System (BCS) class II204, demonstrating good permeability205 (indicating a good 

probability of BBB permeation) but limited water solubility, I performed a formulation study, 

applying the innovative inkjet printing technology to generate solid dispersions of our lead 

compound in inert hydrophilic polymeric carriers.  

 

 

8.3 Results and discussion  

8.3.1 Preliminary cytotoxic evaluation   

In vitro data demonstrated that the tested kinase inhibitors were cytotoxic, implicating Src, Fyn 

and SGK1 kinases as valid targets in the tested GBM cell lines. SI306 (Src inhibitor) was 

demonstrated to be the most potent compound with IC50 values of 11.2, 7.7 and 7.2 µM on the 
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GIN8, GIN28 and GCE28 cell lines, respectively. Compound SI113 (SGK1 inhibitor) exhibited 

a potency comparable to that of SI306 on the GIN8 line but was 1.9-fold and 1.5-fold less potent 

on GIN28 and GCE28 cells. The least potent compound was shown to be SI308 (Fyn inhibitor), 

with IC50 values 4.9-fold, 6.5-fold and 6.6-fold higher than the most potent compound (SI306) 

on GIN8, GIN28, and GCE28 cells, respectively (Table 4). However, despite being the least 

potent compound in monotherapy, SI308 demonstrated a promising application in synergistic 

combination-therapy with a Src inhibitor, as described later. 

 

Table 4. IC50 values of kinase inhibitors on GBM cells. Data represent the mean of three independent 

experiments ± S.E.M. 

 

 

cpd 
GIN8 

IC50 (µM) 

GIN28 

IC50 (µM) 

GCE28 

IC50 (µM) 

SI306 11.2 ± 3.8 7.7 ± 1.6 7.2 ± 2.0 

SI308 54.7 ± 6.3 49.8 ± 4.2 47.6 ± 6.9 

SI113 10.5 ± 3.5 14.4 ± 2.8 10.7 ± 1.2 

 

 

 

8.3.2 Apoptosis investigation 

After the confirmation of compound cytotoxicity, we next investigated the effect of our 

derivatives on caspases-3/7 to determine if cell death was apoptotic in nature206. 

Data in figure 29 demonstrates that at a cytotoxic concentration (12.5 µM), SI113 and SI306 

induced a significant increase in caspase-3/7 activation in all GBM cell lines tested, with the 

exception of SI113 in the GIN28 line.  

Staurosporine (10.0 μM), a known inducer of apoptosis207, was also tested as a reference 

compound. It elicits significant increase in caspase activation at similar or lower levels than 

those of the kinase inhibitors. It can be noted that SI306 induces higher levels of effector 

caspase activation compared to SI113, a result that reflects the IC50 data (Table 4), which 

together indicate that SI306 is the most active compound we tested against these cell lines. 
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Fig.29. Effect of kinase inhibitors on levels of activated effector caspases-3/7 on GBM. 

Data represents mean ± S.E.M. (n=3). Statistical significance was determined via 

Two-way Anova followed by Dunnett's multiple comparisons test. 

 

To further confirm the apoptotic death induced by SI306, the nuclear morphology and 

permeability was investigated by fluorescence microscopy using Hoechst 33342 (Ho) and 

propidium iodide (PI) double staining (Fig.30). Cells treated with SI306 at 12.5 µM exhibit 

signs of chromatid condensation, nuclear fragmentation and the presence of apoptotic bodies, 

which are well known pro-apoptotic features. SI306 treatment did not induce nuclear membrane 

permeability, as shown by PI negative staining (Fig.30), or nuclear swelling, indicators of 

necrotic cell death and caused by ethanol (EtOH) (Fig.30), a known inducer of necrosis208. 

These observations, taken together with the effective caspase activation, indicate that SI306 

induces GBM cell death via an apoptotic mechanism. 
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Fig.30. Ho/PI staining of nuclei. Effect of SI306 kinase inhibitor on apoptotic features of cellular nuclei. Scale 

bar indicates 30 µm.  Images are representative of 3 sets of independent images. White arrows indicate the 

presence of apoptotic nuclei (chromatid condensation, apoptotic bodies). 

 

8.3.3 Combination study 

Previous evidence indicates that targeting more than one kinase may be beneficial in cancer 

treatment. This can offer the opportunity to achieve a synergistic effect and to overcome the 

development of resistance209,210. Therefore, we have investigated our novel compounds as 

combination therapies in order to assess if synergistic activity can be achieved. The median-

effect algorithm based on the widely used method established by Chou and Talalay211 was 

employed to calculate the combination index (CI) as outlined in the materials and methods 

section. The CI equation was used to generate CI values, which categorize the compound-

compound combinations as synergistic, additive or antagonistic. Interestingly, the combination 

of SI308 with either SI306 or SI113 was determined to generate synergistic effects, SI308 

having been demonstrated to be the least potent compound in monotherapy (Fig.31).  

On the contrary, SI113 and SI306 co-therapy exhibited only additive action. Therefore, the 

observed effects suggest that a co-inhibition of the Fyn kinase and SGK1 or Src kinases can 

provide a synergistic action that cannot be achieved via inhibiting SGK1 and Src together. Of 
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further note is the observation that in the GIN8 line, co-therapy with SI113 and SI308 produced 

an antagonistic effect despite synergy being observed in the GIN28 and GCE28 lines with this 

combination; the reasons for this remain unclear, however, patient genetic variation may play 

a role (GIN28 and GCE28 lines are derived from the same patient, and the GIN8 line from a 

separate patient). Taken together, the evidence for synergistic action with our compounds may 

promote the adoption of combination therapies in the field of kinase inhibitors for the treatment 

of resistant GBM. 

 

Combination Index Values 

 SI306 + SI308 SI113 + SI308 SI113 + SI306 

GIN8 0.53 1.13 0.99 

GIN28 0.76 0.57 0.90 

GCE28 0.88 0.46 0.97 

 

Fig.31. Combination index values. Each CI value was calculated, and a heat map generated on the basis of 

three independent IC50 experiments (n=3). 

 

 

8.3.4 SI306 formulation 

The promising in vitro data highlights pyrazolo[3,4-d]pyrimidine kinase inhibitors as potential 

therapies for eradicating invasive GBM cell lines. To further investigate the possibility of the 

development of these derivatives for clinical application, the formulation of our lead compound 

SI306 has been evaluated. To overcome the water solubility limitation of SI306, which may 

affect further in vivo studies and future oral administration routes, I performed a preliminary 

formulation screening process based on 2D inkjet printing, building on an approach previously 

validated by our group177,212,213. Different commercial polymers (PEG8000, PEG20000, 

Synergy 
(< 0.9) 

Additive effect 
 (0.9 – 1.1) 

Antagonism 
(> 1.1) 
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Pluronic F-68, Tween 80, PVPVA) were combined with SI306 (at a “drug”/polymer ratio of 

10/90% w/w) and the apparent-solubility (ΔA%) value of each formulation was calculated in 

order to identify the polymers able to solubilise our lead compound. Data demonstrated that 

two surfactants (Pluronic F-68 and Tween 80) and the amphiphilic co-polymer PVPVA showed 

notably higher ΔA% average values compared to the highly hydrophilic homopolymers 

(PEG8000-20000) (Fig.32). 

 

 

Fig.32. ΔA% average of SI306-polymer formulation ranked according to their water apparent-solubility 

enhancement (high ΔA% is related with a high compound water solubility). Samples were diluted until the final 

concentration of 100 µg/mL and 900 µg/mL for SI306 and the polymers, respectively. 

 

These results suggest that solubilization of the hydrophobic compound SI306 is due to 

associative interactions between hydrophobic blocks in Pluronic F-68, Tween 80 and PVPVA 

and the lipophilic regions in SI306177. Dynamic Light Scattering (DLS) measurements were 

performed on the formulation of SI306 with the three candidate polymers Pluronic F-68, Tween 

80 and PVPVA (Fig.33) in order to evaluate the particulate nature of the drug-polymer 

assemblies. 
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Fig.33. DLS traces in PBS of SI306 as a formulation. Light scattering measurements were collected on 

suspensions prepared with a final concentration of 5 µg/mL. 

 

As can be observed from figure 33, all the formulations produced well-defined nanoaggregates, 

characterised by a single monomodal and monodispersed population with sizes ranging from 

180 to 200 nm. The absence of a second peak or species related to aggregation confirmed the 

quality of the nanoformulation obtained, due to the interactions between the small molecules 

and the different polymers. The amphiphilic nature of the macromolecules facilitated the 

interactions with the hydrophobic active compounds leading to an improvement of the self-

assembly properties.  

To further validate the water solubility enhancement, we performed a cytotoxicity assay using 

a concentration of 5 µg/mL (8.7 µM) of SI306 either dissolved in DMSO or printed into the 

selected polymers at a “drug”/polymer ratio of 10/90% w/w. Negative control, polymers alone 

and SI306 suspended in cell culture medium DMEM (to highlight SI306 poor water solubility 

and consequent in vitro inactivity) had no effect on cell viability. On the contrary, formulated 

SI306 resuspended in DMEM and SI306 dissolved in DMSO treatments had comparable 

cytotoxic effects on all GBM cell lines (Fig.34). Therefore, the described SI306 formulations 

can successfully increase the apparent water solubility of the inhibitor without affecting its 

potency, and this provides a further step into the development of our lead compound. 
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Fig.34. The compounds formulated with the selected best polymers were then tested against the patients derived 

GBM cell lines and the potency compared to the compounds solubilized in 1% DMSO. Data represents mean ± 

S.D. 

 

 

8.4 Materials and methods  

8.4.1 Chemicals 

Polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA), Tween 80, Pluronic F-68 and DMSO 

were purchased from SIGMA Aldrich and the latter used as a common solvent to dissolve all 

the printable materials. Synthesis of pyrazolo[3,4-d]pyrimidines kinase inhibitors were 

performed by our research group92,124,205. Synthesis of SI113 and SI306 has been previously 

reported in scheme 3 and scheme 7 respectively. 

 

8.4.2 Formulation 

8.4.2.1 Printing 

The drug solutions were dispensed into 96-well plate, via a piezoelectric inkjet printer 

(Sciflexarray S5, Scienion) using a 90 µm orifice nozzle. The droplet size was controlled by 

the values of the voltage and electrical pulse. A fixed amount of drug (20 µg) was dispensed 
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for each well, by adjusting the number of drops. The number of drops per spot were selected in 

such way that the volume aspired delivered by the nozzle (max 10 µL) at the beginning of a run 

was sufficient to print the whole print pattern. In a routine experiment DMSO solution (10 

mg/mL) droplets with nominal volumes ranging from 250-280 pL, were dispensed at a 300 Hz 

jetting frequency by adjusting the voltage and pulse between 98-105 Volt (Voltage) and 45-55 

µs (Pulse) respectively. The nozzle was washed with DMF, in between each printing cycle, as 

part of the automated printing-washing loop. DMSO was chosen for its high evaporation point 

that avoids nozzle blockage and its ability to dissolve the selected drug. SI306 and polymer 

solutions were prepared by dissolving the desired amount of compound in DMSO and, 

separately, the polymers in deionized (DI) water.  

 

8.4.2.2 Dynamic Light Scattering  

DLS measurements were conducted in triplicate using a Malvern Zetasizer Nano ZS at 25 oC 

(scattering angle 173o, laser of 633 nm) or a Viscotek 802 DLS with a laser wavelength of 830 

nm at 20 ⁰C. Formulations were prepared as above at 5 µg/mL (with respect to drug) in PBS. 

Data was analyzed using OmniSIZE software. A minimum of 10 measurements were collected 

per sample. 

 

8.4.2.3 UV screening 
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Fig.35. UV-vis spectra of SI306 (concentration 100 μg/mL) and selected commercial polymers (concentration 

900 μg/mL) in PBS. We already demonstrated that solutions of in-house pyrazolo[3,4-d]pyrimidines in DMSO 

absorb in the UV region177. 

 

 

 

Fig.36.UV-vis spectra of SI306-polymer formulations in PBS (100 μg/mL of SI306 and 900 μg/mL of polymer). 

 

8.4.2.4 ΔA% determination 

ΔA% was calculated according the following equation177: 

 

  100%
0

0 



A

AA
A  

 

Where: 

A0 is the absorbance of the polymer solutions in water (used as blank), 

A is the absorbance of the aqueous solutions of drug/polymer blends. 

No signal was observed from the presence of water-insoluble SI306 (Fig.35).  

 

In Table 5 the ΔA% is reported for every SI306-polymer formulation. 
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Table 5. ΔA% of SI306 and polymers. Absorbance has been measured at λ = 308 nm 

 

  

 PEG8000 PEG20000 Tween80 
Pluronic 

F68 
PVPVA 

ΔA% 584.5179 555.3168 4251.295 2857.245 2312.342 

 

 

8.4.3 Biology 

8.4.3.1 Cell lines 

GIN8 (Glioma INvasive margin cells) isolated from medial front invasive margin, GIN28 

isolated from 5-ALA fluorescence invasive margin and GCE28 (Glioma Contrast Enhanced 

core cells) isolated from central enhanced core region by Dr. Smith and Dr. Rahman, were used 

at passage range of 15-30 to maintain consistent cell performance . The samples were paraffin-

embedded and sectioned by the Queen’s Medical Centre Histopathology Department. Cell lines 

were cultured in Dulbecco's Modified Eagle Medium (DMEM; Sigma-Aldrich) supplemented 

with 10% HyClone™ Bovine Growth Serum (BGS; GE Healthcare), 1g/L glucose and 2 mM 

L-glutamine (Sigma-Aldrich) at 37°C with 5% CO2.  

  

8.4.3.2 Metabolic activity 

Cells were seeded at a density of 1 x 104 cells per well in 96 well plates (Corning) for 24 hours 

prior to assaying. Dosing of cells was initiated by removing culture medium, washing cells with 

phosphate buffered saline (PBS; Sigma-Aldrich) and the application of 100 µL per well of 

treatment for 48 hours. Treatments were applied to cells in phenol red free DMEM (Thermo-

Fisher) containing 10% BGS. Pyrazolo[3,4-d]pyrimidine-based kinase inhibitors were dosed at 

concentrations of 0.1 – 100.0 µM for determination of their half maximal inhibitory 

concentration (IC50) values, and at 5 µg/ml for evaluation of SI306 activity in formulations.  

Additionally, to study the cytocompatibility of the DMSO concentration used to dissolve free 

drugs, medium containing 1% (v/v) DMSO was applied to cells. Cells were also treated with 

0.1% (v/v) Triton-X 100 and DMEM with 10% BGS for 48 h for use as positive and negative 

controls, respectively. Following this treatment, cells were washed with PBS and incubated 

with 100 µl 10% PrestoBlue™ Cell Viability Reagent diluted in medium per well for 1 h. 
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Solution fluorescence was then measured at 560/600 nm λexcitation/ λemission (λex/λem), and 

relative metabolic activity calculated by setting the values of the negative control as 100% and 

the positive control (0.1% Triton X-100) as 0%.  

 

8.4.3.3 Detection of activated caspase-3/7 

The CellEvent caspase-3/7 green detection reagent (Thermo Fisher Scientific) was employed 

to evaluate the levels of activated caspase-3 or -7. After exposure to the drug solutions, 150 μL 

of 2% (v/v) CellEvent probe in PBS was applied per well for 30 min at 37 °C. Staurosporine 

was used at 10 μM as the apoptotic control. Fluorescent intensity was measured at 502/530 nm 

(λex/λem) and normalized to the untreated control (set as a value of 1). 

 

8.4.3.4 Hoechst 33342/Propidium Iodide microscopy 

Integrity of the nuclear membrane and nuclear fragmentation was measured by PI (Thermo 

Fisher Scientific) uptake. To do so, 6 × 104 GIN28 and GCE28 cells per well were seeded in 

24-well plates (Corning) and cultured for 24h. Following this, the treatment solutions, including 

selected kinase inhibitors or 100% ice cold ethanol were applied for 48h. Treatments were then 

aspirated, and the cells were washed with PBS, followed by the addition of 1 μM Hoechst 33342 

(Thermo Fisher Scientific) in PBS for 5 min and then 0.1 mg/mL of PI in PBS (final 

concentration ∼2 μg/mL PI). The cells were incubated for another 5 min, after which the 

solution was removed, and the cells were washed with PBS. Cells were then imaged on an 

inverted Nikon Eclipse TE 300 microscope using a DAPI filter (357/447 nm; excitation/ 

emission) for detection of the Hoechst signal and the RFP filter (531/593 nm; 

excitation/emission) for the PI signal. 

 

8.4.3.5 Statistical analysis 

Dose-response curve fitting was performed using non-linear regression analysis to enable IC50 

determination (GraphPad prism, version 7.03). Statistical analysis was performed by one-way 

ANOVA with Dunnett’s multiple comparison post hoc test using GraphPad prism. 

 

8.4.3.6 Determination of combination index values 

CI values were determined according to a widely used method established by Chou and 

Talalay211. Briefly, in order to determine each CI value, the following cytotoxicity studied were 
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conducted: (1) SI113 as a single compound, (2) SI308 as a single compound, (3) SI306 as a 

single compound, (4) S306 + SI308 combination, (5) SI113 + SI308 combination and (6) SI113 

+ SI306 combination. Compounds were applied in combination at a molar ratio of 1:1 and dosed 

with a range of 0.1 – 100.0 µM per compound. IC50 values were then calculated from each study 

and used in the following equation to determine CI values; 

 

 

   

Where DCA represents the IC50 values of drug A in combination with drug B, and DSA the IC50 

of drug A as a single compound. Similarly, DCB represents the IC50 values of drug B in 

combination with drug A, and DSB the IC50 of drug B as a single compound. Based on this 

method, CI values are indicative of strong synergism (<0.7), synergism (0.7-0.9), additive effect 

(0.9-1.1), antagonism (1.1-3.3), or strong antagonism (>3.3)214. Microsoft Excel was then 

employed to produce a tricolor system based on these values, where antagonism is represented 

by red, additive effect by yellow, and synergism by green. 

 

 

8.5 Conclusions  

In conclusion, I have evaluated the potency of our pyrazolo[3,4-d]pyrimidines active as specific 

kinase inhibitors against patient derived cell lines from the invasive region and core of GBM, 

identifying the Src inhibitor SI306 as a lead compound. SI306 possesses an IC50 in the low 

micromolar range on all the three GBM cell lines tested in this work, and demonstrates the 

ability to induce apoptotic death. A combination study, using the Chou and Talalay method, 

has also been assessed and showed that, based on patient genetic variations, our kinase 

inhibitors possess a synergistic effect that could positively influence the success of GBM 

treatment. Lastly, a polymer formulation strategy involving the novel 2D inkjet printing 

technology was explored as a strategy to enhance SI306 water solubility. In vitro results 

illustrated that printing 5 µg/mL of our lead compound into dispersions of Pluronic F-68, Tween 

80 or PVPVA at a level of 90% is a successful formulation method, resulting in a comparable 

potency to SI306 dissolved in DMSO. Accordingly, this methodology provides a viable 

approach for the development of oral formulations of our in-house kinase inhibitors. 



100 
 

Furthermore, since some of the chosen polymers, such as the Pluronic family, have been shown 

to facilitate transport across the BBB, a next challenge could be the selection of the best polymer 

for in vivo GBM studies.  

Overall, these results encourage in vivo studies and promote polymer-carried pyrazolo[3,4-

d]pyrimidine kinase inhibitors as oral feasible treatments against GBM recurrence. 
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CHAPTER 9 

Evaluation of pyrazolo[3,4-d]pyrimidines against 

bacterial infections 
 

9.1 Background 

The increasing emergence of bacterial strains resistant to currently available antibiotics has 

created medical needs for antibacterial therapy that remain unmet today215. It is broadly 

accepted that new-class agents represent unique and valuable opportunities to achieve 

significant advances against bacterial resistance, because they should not be as susceptible to  

preexisting mechanisms of resistance, as seen with established antibacterial classes216. 

One new strategy is the pursuit of novel compounds that target microbial signaling cascades 

that are relatively overlooked by traditional methods of antibiotic development. Protein 

phosphorylation by bacterial kinases is one such process that has been garnering attention 

within the past decade as a potential target for truly novel antibiotics217. 

Differently from eukaryotic kinases which have been widely studied as pharmaceutical target, 

prokaryotic protein kinases have just begun to be investigated as potentially novel antibiotic 

targets. 

Since the discovery of protein kinase n1 (Pkn1), a bacterial serine/threonine kinase with high 

structural homology to eukaryotic protein kinases218, genomic studies have shown eukaryotic-

like serine/threonine kinases (eSTKs) to be near ubiquitous in bacteria219. 

Specifically, many important Gram positive pathogens have transmembrane eSTKs, the 

penicillin-binding protein and serine/threonine kinase-associated (PASTA) kinases which play 

central roles in processes ranging from metabolism and basic bacterial physiology to regulation 

of virulence and lactam antibiotic susceptibility. As such, efforts are being put to identify small 

molecule inhibitors of the PASTA kinases220,221,222, which are of particular interest due to their 

role in regulating resistance to β-lactam antibiotics. Very recently, the Akt kinase inhibitor, 

GSK690693 49223, and other imidazopyridine aminofurazan derivatives demonstrated to 

increase the sensitivity to lactams, in a dose-dependent manner, of the pathogen Listeria 

monocytogenes various by inhibiting the PASTA kinase PrkA224.  
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Besides the evident efforts in finding prokaryotic kinase inhibitors as possible new antibacterial 

agents, in literature are reported also a great number of pyrazolo[3,4-d]pyrimidine derivatives 

showing interesting activity against bacterial proliferation225,226,227. For example, in 2003, Ali 

A. et al. described how some pyrazolo[3,4-d]pyrimidin-4-ones 50 inhibit Staphylococcus 

aureus (S. aureus) DNA polymerase III and the growth of several other Gram positive bacteria 

in culture228. Later, other different compounds characterized by a pyrazolo[3,4-d]pyrimidine 

core have been reported  to show an appreciable antibacterial activity229. However, the 

mechanism of action by which these compounds exert their antibacterial activity has not yet 

been clarified.  

 

HN

N N
H

N

O

N
HR1, R2

50  

 

9.2 Project 

In this context, we were interested in exploring possible antibacterial activity in our molecules, 

since they possess activity as kinase inhibitors and have a pyrazolo[3,4-d]pyrimidine structure.  

During my research period spent at the University of Nottingham, with the collaboration of 

Professor Alan Huett’s research group of the Faculty of Medicine & Health Sciences, I had the 

opportunity to take this interesting challenge, by testing a set of our pyrazolo[3,4-d]pyrimidines 

on the Gram positive bacteria S. aureus, and the Gram negative bacteria Escherichia coli (E. 

coli). A representative number of pyrazolo[3,4-d]pyrimidines, presenting different substituents 
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in position N1, C4 and C6 (Fig.37) has been chosen to be evaluated as antibacterial agents, in 

order to obtain the widest information about the SAR. 

 

N

N N
N

HN

5 SI113

N
H

HO

N

N N
N

HN

26h

O

N

N N
N

N

26q

N
H

HO

N

N N
N

HN

Cl O

Cl

Br

51

N

N N
N

HN

Cl52

Cl

S

N

N N
N

HN

Cl53

Cl

S

N

N N
N

HN

54

S

N

N N
N

HN

S
N

O

OH HCl

55  

           

Fig.37. Structure of pyrazolo[3,4-d]pyrimidines tested on S. aureus and E. coli. 

 

The first attempts allowed the identification of the most promising compounds that we 

subsequently chose for a deeper investigation in order to hypnotize a possible mechanism of 

action. 

Inspired by research literature, we decided to try the combination with a well-known β-lactam 

antibiotic (ampicillin) to determine a variation on bacteria lactam sensitivity induced by a 

possible inhibition of the prokaryotic kinases PASTA. In fact, if our compounds inhibit the 

PASTA kinases, an enhancement of ampicillin activity should be observed.  
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To further validate our speculation, a combination with an antibiotic acting with a different 

mechanism, the aminoglycoside kanamycin which act by interfering with bacteria protein 

synthesis, has been included in the assays as the negative control. 

 

9.3 Results and discussion 

Initially the in vitro effects on S. aureus and on  E. coli growth of the eight selected 

pyrazolo[3,4-d]pyrimidines has been evaluate at four different concentrations (200 µg/mL, 100 

µg/mL, 50 µg/mL, 25 µg/mL). In this first attempt four compounds (SI113, 51, 52, 55) have 

been individuated for their bacteriostatic activity, concentration dependent, as it is shown in 

graphs (Fig.38).  

Interestingly, those compounds resulted more active on the Gram negative E. coli, leading to a 

remarkable decrease on bacteria growth. In particular, compound 52 was able to halve the 

bacterial growth of E. coli at the lowest concentration of 25 µg/mL. Regarding S. aureus the 

results are less exciting, but anyway the highest concentrations of all compounds showed a 

considerable effect on bacteria growth. 

Another interesting fact to report is that among the most active compound tested, SI113 and 55 

have been previously reported and studied for their anticancer activity in vitro and in vivo92,40. 

In this field is interesting to note that a possible antitumor/antibacterial dual activity of our 

kinase inhibitors could lead to multiple advantages such as a reduced drug administration in 

oncologic patients. In fact, bacterial infections during chemotherapy represent a serious 

complication for cancer patients which have lower resistance to infections230. 
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Fig.38. Dose-dependent growth inhibitions of E. coli XL-1 (left) and S. aureus Newman (right) in the presence 

of compound SI113 (A1), 51 (B1), 52 (C1) and 55 (D1) at increasing concentrations (25 µg/mL, 50 µg/mL, 

100 µg/mL, 200 µg/mL). Error bars indicate S.E.M. OD: optical density. 

 

 



106 
 

Then, each compound has been tested at the two lowest concentrations in association whit 0.2 

µg/mL of either ampicillin or kanamycin. Again, the best results were obtained in the assays 

performed on E. coli. as it is shown in graphs (Fig.39): all compounds were able to enhance the 

activity of both antibiotics even at the lowest concentrations. In particular, compounds 51, 52 

and 55 at 50 µg/mL, completely eradicate the bacteria E. coli in combination with kanamycin. 

As already noted, the compounds are less potent on the Gram positive bacteria tested. However, 

the data reported do not allow a clear understanding of this result. Considering also that the 

concentration of ampicillin used for the experiment was high, this part of the work needs to be 

revisited. 

The results obtained, showing more activity on Gram negative bacteria, and the positive results 

with the kanamycin combination, suggest that an antibiotic effect through the inhibition of 

PASTA kinases is probably unlikely. In any case, it is too early and the data are not complete 

enough to exclude the possibility of our compounds interacting with PASTA kinases. 
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Fig.39. Dose-dependent growth inhibitions of E. coli XL-1 (left) and S. aureus Newman (right) in the presence 
of 0.2 µg/mL of kanamycin or ampicillin and increasing concentrations (25 µg/mL and 50 µg/mL) of 
compounds 113 (A2), 51 (B2), 52(C2) and 55 (D2). Error bars indicate S.E.M. OD: optical density. 
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9.4 Materials and methods  

Broth microdilution assays were performed according to the guidelines of the National 

Committee for Clinical Laboratory Standards (NCCLS), except that our drug stock solutions 

(20 mg/ml) were prepared in DMSO instead of in Mueller-Hinton broth (MHB).  

Initially, the preinoculum of E. coli XL-1 and S. aureus Newman in Mueller-Hinton (MH) were 

grown at 37°C, shaking at 245 rpm for 12–14h; then the culture of each strain was adjusted 

appropriately by spectrophotometry at 600 nm to provide 105 colony-forming unit  (CFU) ml-

1 in fresh MH (2x); 100μl aliquots of these cell suspensions were mixed with 100 μl of drug 

solution in PBS at different drug concentrations (200 μg/mL, 100 μg/mL, 50 μg/mL, 25 μg/mL) 

in a 96 well plate and incubated at 37°C in an orbital shaker (245rpm for 14h). For the 

combination experiment, the procedure was the same except that 0.2 μg/mL of either 

kanamycin or ampicillin were added to the wells containing 25 and 50 μg/mL of each 

compound. 

The growth kinetics of each microorganism was determined by triplicate measuring absorbance 

at 600nm in a Epoch 2 microplate reader (BioTek). The controls were (1) culture media, (2) 

culture media plus bacteria, (3) culture media plus bacteria with 2% of DMSO, (equivalent to 

the amount of DMSO in the 200 μg/ml concentration of drugs), (4) culture media plus 0.2 

μg/mL of ampicillin, (5) culture media plus 0.2 μg/mL of kanamycin, (6) culture media plus 

bacteria and Gentamicin. Values given are averages from three independent cultures in 

triplicate ± S.E.M. 

 

 

9.5 Conclusions 

A preliminary study in antimicrobic context, performed on pyrazolo[3,4-d]pyrimidines active 

as kinase inhibitors and potential anticancer drugs, has been developed in collaboration with 

Professor Alan Huett’s research group at the Faculty of Medicine & Health Sciences of 

Nottingham University. 

Four pyrazolo[3,4-d]pyrimidines has been identified for their bacteriostatic activity in particular 

against the Gram negative bacteria E. coli. A subsequent study has allowed to highlight a 

favourable combination with kanamycin and ampicillin. In fact, the association with 0.2 μg/mL 

of antibiotics (which alone resulted not active) with 50 μg/mL of our compounds almost 
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completely eradicate E. coli growth. However, the limited amount of data collected from these 

preliminary experiments doesn’t allow to establish neither a SAR evaluation nor a possible 

mechanism of actions. Nevertheless, we obtained promising results that needs to be further 

explored, with the aim to highlight a very useful dual activity of pyrazolo[3,4-d]pyrimidines in 

the context of bacterial infections in oncologic patients.   

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



110 
 

CHAPTER 10 

Experimental section 
 

  
Starting materials were purchased from Aldrich-Italia (Milan, Italy) and Alfa Aesar 

(Lancashire, UK). Melting points were determined with a Büchi 530 apparatus and are 

uncorrected. IR spectra were measured in KBr with a Perkin-Elmer 398 spectrophotometer. 1H 

NMR spectra were recorded in a (CD3)2SO or CDCl3 solution on a Varian Gemini 200 (200 

MHz) instrument. Chemical shifts are reported as δ (ppm) relative to TMS as the internal 

standard, J in Hz. 1H patterns are described using the following abbreviations: s = singlet, d = 

doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, m = multiplet, and br = broad. TLC 

was carried out using Merck TLC plates silica gel 60 F254. Chromatographic purifications were 

performed on columns packed with silica gel 60 Å, 220-440 mesh particle size, 35-75 µM, or 

using, for flash technique, the instrument Isolera™ One Biotage that works with cartridge 

Biotage® SNAP Ultra packed with Biotage® HP-Sphere™ spherical silica. Analyses for C, H, 

N, and S were effectuated with Thermo Scientific Flash 2000 within ± 0.4% of the theoretical 

value. All target compounds possessed a purity of ≥ 95% as verified by elemental analyses by 

comparison with the theoretical values. 
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General procedure for the synthesis of compounds 29a-d 

 

29a-d

29a: X = H
29b: X = F
29c: X = Cl
29d: X = Br

H
N

NH2

OH

X

 
                                                                                                         

Styrene oxide or para-substitued styrene oxides 28a-d (0.17 mol) were added to hydrazine 

monohydrate (30 mL, 0.60 mol) heated at 100 °C. The solutions were heated for 30 min at 100 

°C and the excess of hydrazine was removed under reduced pressure. The obtained oils were 

purified by bulb to bulb distillation under high vacuum to obtain the pure products as pale 

yellow oils.  

 

1-Hydrazino-2-phenylethanol 29a                                                                                                            

Bp: 155-158 °C/0.6 mmHg.  

Yield: 82%.  

MW:152.19.  

                                                                                                                           

2-(4-Fluorophenyl)-1-hydrazinoethanol 29b                                                                                            

Bp: 175-178 °C/0.6 mmHg.  

Yield: 85%.  

MW: 170.18 

                                                                                                                                             

2-(4-Clorophenyl)-1-hydrazinoethanol 29c                                                                                                                    

Bp: 170-175 °C/0.6 mmHg.  

Yield: 80%.   

MW: 186.64 

 

2-(4-Bromophenyl)-1-hydrazinoethanol 29d                                                                                                                      

Bp: 175-180 °C/0.6 mmHg. 
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Yield: 60%. 

MW: 231.09. 

 

                         General procedure for the synthesis of compounds 30a-d  

 

                                                                      

N
NH2N

OH
30a-d

EtO

O

X

30a: X = H
30b: X = F
30c: X = Cl
30d: X = Br  

 

A solution of appropriate intermediates 29a-d (122.5 mmol) and ethyl(ethoxymethylene)- 

cyanoacetate (20.40 g, 122.5 mmol) in anhydrous toluene (140 mL) was heated at 80 °C for 8 

h. The solution was concentrated under reduced pressure to half of the volume and allowed to 

cool to room temperature. The yellow pale solids obtained were filtered and recrystallized from 

toluene to obtain the desired compounds 30a-d.   

 

Ethyl 5-amino-1-(2-phenylethyl)-1H-pyrazole-4-carboxylate 30a 

Mp: 136-137 °C.  

Yield: 54%.  

MW: 275.30.   

Anal. calcd. for C14H17N3O3: C 61.08, H 6.22, N 15.26; found C 61.07, H 6.22, N 15.31.      
1H NMR: δ 1.33 (t, J = 7.0 Hz, 3H, CH3), 3.53 (br s, 1H, OH), 3.92-4.20 (m, 2H, CH2N), 4.25 

(q, J = 7.0 Hz, 2H, CH2O), 5.02-5.13 (m, 1H, CHO), 5.30 (br s, 2H, NH2), 7.23-7.42 (m, 5H 

Ar), 7.58 (s, 1H, H-3).  

IR cm-1: 3470-330 (NH2), 3300-3000 (OH), 1685 (CO).  

 

Ethyl 5-Amino-1-[2-(4-fluorophenyl)-2-hydroxyethyl]-1H-pyrazole-4-carboxylate 30b   

Yield: 70%. 

Mp: 163-164 °C. 



113 
 

MW: 293.29.   

Anal. calcd. for C14H16N3O3F: C 57.33, H 5.50, N 14.33; found: C 57.31, H 5.31, N 14.25.      
1H NMR: δ 1.33 (t, J = 7.0 Hz, 3H, CH3), 3.73 (br s, 1H, OH), 3.90-4.15 (m, 2H, CH2N), 4.29 

(q, J = 7.0 Hz, 2H, CH2O), 5.01–5.18 (m, 1H, CHO), 5.36 (br s, 2H, NH2), 7.03–7.40 (m, 4H 

Ar), 7.55 (s, 1H, H-3). IR cm-1: 3448, 3446 (NH2), 3300–3000 (OH), 1685 (CO).    

 

Ethyl 5-amino-1-[2-(4-chlorophenyl)-2-hydroxyethyl]-1H-pyrazole-4-carboxylate 30c   

Yield: 75%.  

Mp: 168-169 °C.  

MW: 309.75.   

Anal. calcd. for C14H16N3O3Cl: C 54.29, H 5.21, N 13.57; found: C 54.27, H 5.16, N 13.48.   
1H NMR: δ 1.38 (t, J = 7.0 Hz, 3H, CH3), 3.56 (br s, 1H, OH), 3.91-4.19 (m, 2H, CH2N), 4.28 

(q, J = 7.0 Hz, 2H, CH2O), 5.05-5.18 (m, 1H, CHO), 5.33 (br s, 2H, NH2), 7.25-7.46 (m, 4H 

Ar), 7.59 (s, 1H, H-3). IR cm-1: 3412, 3291 (NH2), 3219-3100 (OH), 1685 (CO). 

 

Ethyl 5-amino-1-[2-(4-bromophenyl)-2-hydroxyethyl]-1H-pyrazole-4-carboxylate 30d  

Yield: 65%.  

Mp: 164-165 °C.  

MW: 354.20. 

Anal. calcd. for C14H16N3O3Br: C 47.47, H 4.55, N 11.87; found: C 47.55, H 4.75, N 12.03.  
1H NMR: δ 1.28 (t, J = 7.0 Hz, 3H, CH3), 3.86-4.13 (m, 2H, CH2N), 4.21 (q, J = 7.2 Hz, 2H, 

CH2O), 5.03-5.12 (m, 1H, CHO), 7.15-7.24 and 7.37-7.47 (m, 4H Ar), 7.55 (s, 1H, H-3).  

IR cm-1: 3411, 3291 (NH2), 3157-2900 (OH), 1685 (CO). 
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General procedure for the synthesis of compounds 31a-d 

 

N
NHN

OH
31a-d

EtO

O

N
H

SC6H5

O X

31a: X = H
31b: X = F
31c: X = Cl
31d: X = Br  

 

A solution of 30a-d (15.0 mmol) and benzoyl isothiocyanate (2.2 mL, 16.5 mmol) in anhydrous 

THF (30 mL) was refluxed for 8 h. The solvent was evaporated under reduced pressure, and 

the crudes were crystallized as white solids by adding diethyl ether (30 mL). Compound 31c 

was used as a crude in the subsequent step.  

 

1-(2-Hydroxy-2-phenylethyl)-6-(methylthio)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-

4-one 31a  

Mp: 170-172 °C.  

Yield: 96 %.  

MW: 438.50   

Anal. calcd. for C22H22N4O4S: C 60.26, H 5.06, N 12.78, S 7.31; found: C 60.22, H 5.20, N 

12.95, S 7.04.   
1H NMR: δ 1.29 (t, J = 7.0 Hz, 3H, CH3), 3.97-4.20 (m, 5H, 2CH2 + OH), 4.58-4.68 (m, 1H, 

CHO), 7.05-7.98 (m, 10H Ar), 8.02 (s, 1H, H-3), 8.70 (s, 1H, NH), 12.05 (s, 1H, NH).  

IR cm-1: 3221 (NH), 3190-2940 (OH), 1708 (COOEt), 1671 (CO).  

 

1-[2-(4-Fluorophenyl)-2-hydroxyethyl]-6-(methylthio)-1,5-dihydro-4H-pyrazolo[3,4-

d]pyrimidin-4-one 31b  

Mp: 129-130 °C.  

Yield: 85%. 

MW: 456.49.   
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Anal. calcd. for C22H21N4O4SF: C 57.88, H 4.64, N 12.27, S 7.02; found: C 57.99, H 4.70, N 

12.41, S 7.19.   
1H NMR: δ 1.31 (t, J = 7.0 Hz, 3H, CH3), 4.10-4.38 (m, 5H, 2CH2 + OH), 5.25-5.38 (m, 1H, 

CHO), 7.00-7.90 (m, 9H Ar), 8.05 (s, 1H, H-3), 9.36 (s, 1H, NH), 12.16 (s, 1H, NH).  

IR cm-1: 3444, 3261 (NH), 3190-2940 (OH), 1683 (CO).    

 

1-[2-(4-Bromophenyl)-2-hydroxyethyl]-6-(methylthio)-1,5-dihydro-4H-pyrazolo[3,4-

d]pyrimidin-4-one 31d     

Mp: 159-161 °C.  

Yield: 60%.  

MW: 532.43.  

Anal. calcd. for C22H21N4O4SBr: C 51.89, H 4.54, N 10.52, S 6.02; found: C 51.99, H 4.64, N 

10.41, S 6.19.   
1H NMR: δ 1.35 (t, J = 7.0 Hz, 3H, CH3), 4.26-4.40 (m, 5H, 2CH2 + OH), 5.20-5.30 (m, 1H, 

CHO), 7.30-7.98 (m, 9H Ar), 8.09 (s, 1H, H-3), 9.39 (s, 1H, NH), 12.15 (s, 1H, NH).   

 

 

General procedure for the synthesis of compounds 32a-d 

 

HN

N N
N

S

O

H

32a-d OH

X

32a: X = H
32b: X = F
32c: X = Cl
32d: X = Br  

 

A solution of 31a-d (14.0 mmol) in aqueous 2M NaOH (60 mL) was refluxed for 10 min and 

successively diluted with H2O (40 mL). The solution was acidified with glacial acetic acid 

cooling with an ice bath. After 12 h of standing in a refrigerator, the crystallized solids were 

filtered and recrystallized from absolute ethanol to give  white solids.  
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1-(2-Hydroxy-2-phenylethyl)-6-thinoxo-1,5,6,7-tetrahydro-4H-pyrazolo[3,4-d]pyrimidin-

4-one 32a 

Mp: 263-265 °C.  

Yields: 63%. 

MW: 288.32.   

Anal. calcd. for C13H12N4O2S: C 54.15, H 4.20, N 19.43, S 11.12; found: C 54.28, H 4.27, N 

19.70, S 11.03.  
1H NMR: δ 4.15-4.72 (m, 2H, CH2N), 4.85-5.00 (m, 1H, CHO), 5.66 (br s, 1H, OH), 7.20-7.51 

(m, 5H Ar), 8.02 (s, 1H, H-3), 12.20 (s, 1H, NH), 13.40 (s, 1H, NH).  

IR cm-1: 3362 (NH), 3142-2773 (OH), 1681 (CO).  

 

1-[2-(4-Fluorophenyl)-2-hydroxyethyl]-6-thioxo-1,3a,5,6,7,7a-hexahydro-4H-

pyrazolo[3,4-d]pyrimidin-4one 32b  

Mp: 252-253 °C.  

Yield: 75%.  

MW: 306.17   

Anal. calcd. for C13H11N4O2SF: C 50.97, H 3.62, N 18.29, S 10.47; found: C  51.08, H 4.00, N 

18.12, S 10.22.   
1H NMR: δ 4.15-4.28 and 4.52-4.60 (2 m, 2H, CH2N), 4.88-5.00 (m, 1H, CHO), 5.69 (s, 1H, 

OH), 7.12-7.29 and 7.40-7.52 (2m, 4H, Ar), 7.98 (s, 1H, H-3), 12.20 (s, 1H, NH), 13.36 (s, 1H, 

NH).  

IR cm-1: 3315, 3200 (NH), 3320, 2500 (OH), 1670 (CO).   

 

1-[2-(4-Chlorophenyl)-2-hydroxyethyl]-6-thioxo-1,3a,5,6,7,7a-hexahydro-4H-

pyrazolo[3,4-d]pyrimidin-4one 32c                                                                                                                                    

Mp: 249-250 °C.  

Yield: 70%.  

MW: 322.81.   

Anal. calcd. for C13H11N4ClO2S: C 48.37, H 3.44, N 17.36, S 9.55; found: C 48.12, H 3.23, N 

17.55, S 9.87.   
1H NMR: δ 4.13-4.65 ( m, 2H, CH2N), 4.84-5.00 (m, 1H, CHO), 5.71 (br s, 1H, OH), 7.30-7.51 

(m, 4H Ar), 7.97 (s, 1H, H-3), 12.19 (s, 1H, NH), 13.38 (s, 1H, NH).  
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IR cm-1: 3390, 3220 (NH), 3100−2700 (OH), 1675 (CO).  

 

1-[2-(4-Bromophenyl)-2-hydroxyethyl]-6-thioxo-1,3a,5,6,7,7a-hexahydro-4H-

pyrazolo[3,4-d]pyrimidin-4-one 32d                                                                                                                      

Mp: 258-260 °C.  

Yield: 60%.  

MW: 369.27.   

Anal. calcd. for C13H11N4BrO2S: C 42.29, H 3.55, N 15.16, S 8.65; found: C 42.12, H 3.23, N 

15.55, S 9.17.   
1H NMR: δ 4.20-4.28 and 4.90-92 (2m, 2H, CH2N), 4.58 (t, 1H, CHO), 5.73 (br s, 1H, OH), 

7.39-7.59 (m, 4H, Ar), 7.99 (s, 1H, H-3), 12.23 (s, 1H, NH), 13.39 (s, 1H, NH). 

 

 

General procedure for the synthesis of compounds 33a-d 

 

HN

N N
N

O

S

33a-d OH

X

33a: X = H
33b: X = F
33c: X = Cl
33d: X = Br  

  

A solution of 32a-d (6.9 mmol) and CH3I (3.0 mL, 48.6 mmol) in anhydrous THF (150 mL) 

was refluxed for 12 h. The solvent was evaporated under reduced pressure, and the crudes were 

crystallized by adding diethyl ether (50 mL).  

 

1-(2-Hydroxy-2-phenylethyl)-6-(methylsulfanyl)-1,5-dihydro-4H-pyrazolo[3,4-

d]pyrimidin-4-one 33a  

Mp: 208-209 °C. 

Yield: 85 %.  

MW: 302.35   
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Anal. calcd. for C14H14N4O2S: C 55.61, H 4.67, N 18.53, S 10.61; found: C 55.46, H 4.34, N 

18.71, S 10.31.   
1H NMR: δ 2.52 (s, 3H, SCH3), 4.27-4.50 (m, 2H, CH2N), 5.04-5.18 (m, 1H, CHO), 5.68 (d, 

1H, OH), 7.20-7.42 (m, 5H Ar), 7.97 (s, 1H, H-3).  

IR cm-1: 3544 (NH), 1678 (CO).  

 

1-[2-(4-Fluorophenyl)-2-hydroxyethyl]-6-(methylsulfanyl)-1,5-dihydro-4H-pyrazolo[3,4-

d]pyrimidin-4-one 33b  

Mp: 217-218 °C.  

Yield: 72%.  

MW: 320.34.  

Anal. calcd. for C14H13N4O2SF: C 52.49, H 4.09, N 17.49, S 10.01; found: C 52.19, H 4.29, N 

17.31, S 9.85.   
1H NMR: δ 2.51 (s, 3H, CH3S), 4.24-4.50 (m, 2H, CH2N), 4.55 (br s, 1H, OH), 5.00-5.15 (m, 

1H, CHO), 7.02-7.30 (m, 4H Ar), 7.96 (s, 1H, H-3), 12.33 (s, 1H, NH).  

IR cm-1: 3418 (NH), 3120-2850 (OH), 1668 (CO).  

  

1-[2-(4-Chlorophenyl)-2-hydroxyethyl]-6-(methylsulfanyl)-1,5-dihydro-4H-pyrazolo[3,4-

d]pyrimidin-4-one 33c                                                                                                                                                                                    

Mp: 210-211 °C.  

Yield: 70%.  

MW: 338.81.  

Anal. calcd. for C14H13N4ClO2: C 49.93, H 3.9, N 16.69; found: C 49.68, H 4.03, N 16.51.  
1H NMR: δ 2.84 (s, 3H, CH3S), 4.22−4.48 (m, 2H, CH2N), 4.94−5.16 (m, 1H, CHO), 5.76 (d, 

1H, OH), 7.07−7.22 (m, 4H Ar), 7.94 (s, 1H, H-3), 12.32 (s, 1H, NH).  

IR cm-1: 3427 (NH), 3120−2850 (OH), 1667 (CO).   

 

1-[2-(4-Bromophenyl)-2-hydroxyethyl]-6-(methylsulfanyl)-1,5-dihydro-4H-pyrazolo[3,4- 

d]pyrimidin-4-one 33d                                                                                                                                                                                      

Mp: 214-216°C.  

Yield: 50%. 

MW: 381.25  
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Anal. calcd. for C14H13N4BrO2S: C 44.11, H 3.44, N 14.70, S 8.41; found: C 44.05, H 3.95, N 

17.31, S 7.95.   
1H NMR, δ 2.50 (s, 3H, CH3S), 4.32−4.42 (m, 2H, CH2N), 5.05 (m, 1H, CHO), 5.76 (br s, 1H, 

OH), 7.17−7.49 (m, 4H Ar), 7.97 (s, 1H, H-3), 12.37 (s, 1H, NH).  

                                  

 

General procedure for the synthesis of compounds 34a-d 

 

N

N N
N

S

Cl

Cl34a-d

X

34a: X = H
34b: X = F
34c: X = Cl
34d: X = Br  

 

The Vilsmeier complex, previously prepared from POCl3 (1.2 mL, 8.0 mmol) and anhydrous 

dimethylformamide (DMF) (1.1 mL, 8.0 mmol) was added to a suspension of 33a-d (2.0 mmol) 

in CHCl3 (15 mL). The mixture was refluxed for 8 h. The solution was washed with H2O (2 × 

20 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The crude oils were 

purified by flash chromatography using the instrument Isolera™ One Biotage, (cartridge 

Biotage® SNAP Ultra packed with Biotage® HP-Sphere™), using a mixture of petroleum ether 

(bp 40-60 °C)/diethyl ether (9:1) as the eluant, to afford the pure products as white solids.   

 

4-Chloro-1-(2-chloro-2-phenylethyl)-6-(methylthio)-1H-pyrazolo[3,4-d]pyrimidine 34a 

Mp: 95-96 °C.  

Yield: 88%.  

MW: 339.24.   

Anal. calcd. for C14H12N4SCl2: C 49.57, H 3.57, N 16.52, S 9.45; found: C 49.92, H 3.44, N 

16.89, S 9.40.   
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1H NMR: δ 2.62 (s, 3H, CH3S), 4.77-5.05 (m, 2H, CH2N), 5.45-5.56 (m, 1H, CHCl), 7.29-7.46 

(m, 5H Ar), 8.02 (s, 1H, H-3).   

 

4-Chloro-1-[2-chloro-2-(4-fluorophenyl)ethyl]-6-(methylthio)-1H-pyrazolo[3,4-

d]pyrimidine 34b      

Mp:136-137°C.  

Yield:70%.  

MW: 357.23   

Anal. calcd. for C14H11N4Cl2FS: C 47.07, H 3.10, N 15.68, S 8.98; found: C 47.17, H 3.35, N 

15.50, S 8.69.   
1HNMR: δ 2.65 (s, 3H, CH3S), 4.74-5.03 (m, 2H, CH2N), 5.42-5.54 (m, 1H, CHCl), 6.96-7.08 

and 7.29-7.44 (2 m, 4H, Ar), 8.03 (s, 1H, H-3).    

                                                                                                                                                 

4-Chloro-1-[2-chloro-2-(4-chlorophenyl)ethyl]-6-(methylthio)-1H-pyrazolo[3,4-

d]pyrimidine 34c                      

Mp: 142−143 °C.  

Yield: 60%.  

MW:373.69.   

Anal. calcd. for C14H11N4Cl3S: C 45.55, H 2.97, N 14.99, S 8.58; found: C 44.99, H 3.21, N 

14.82, S 8.45.   
1H NMR: δ 2.63 (s, 3H, CH3S), 4.79−5.00 (m, 2H, CH2N), 5.42−5.53 (m, 1H, CHCl), 7.25−7.42 

(m, 4H Ar), 8.05 (s, 1H, H-3).   

  

4-Chloro-1-[2-chloro-2-(4-bromophenyl)ethyl]-6-(methylthio)-1H-pyrazolo[3,4-

d]pyrimidine 34d                      

Mp: 123-125°C.  

Yield: 55%.  

MW: 420.15.  

Anal. calcd. for C14H11N4Cl2BrS: C 40.02, H 3.12, N 13.34, S 7.63; found: C 40.99, H 3.21, N 

14.02, S 8.45.   
1H NMR: δ 2.50 (s, 3H, CH3S), 4.04−4.53 (m, 2H, CH2N), 5.69−5.73 (m, 1H, CHCl), 7.15−7.52 

(m, 4H, Ar), 8.10 (s, 1H, H-3). 
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General procedure for the synthesis of compounds 35a,b,d,h 

 

N

N N
N

S

R

Cl35a,b,d,h

X

35a: X = H,  R = NHCH2CH2C6H5
35b: X = H,  R = NHCH2C6H4-4Cl
35d: X = F,  R = NHCH2C6H4-3F
35h: X = H,  R =  4-morpholinyl  

 

The appropriate amine (12.0 mmol) was added to a solution of 34a,b (3.0 mmol) in anhydrous  

toluene (10 mL), and the reaction mixture was stirred at room temperature for 24 h. Water (50 

mL) was added and the mixture was extracted with toluene (3 x 40 mL). Then the organic phase 

was washed with brine (50 mL), dried (MgSO4) and evaporated under reduced pressure. To 

obtain pure compounds 35a,b,h the crudes were purified by column chromatography (silica 

gel, 200-425 mesh), using a mixture of diethyl ether/petroleum ether (bp 40−60 °C) (3:7) as the 

eluant. 

To obtain the desired product 35d, the residue oil was crystallized by adding petroleum ether 

(bp 40-60 °C) (10 mL).  

 

1-(2-Chloro-2-phenylethyl)-6-(methylthio)-N-(2-phenylethyl)-1H-pyrazolo[3,4-

d]pyrimidin-4-amine 35a   

Mp: 73-74°C.  

Yield: 78%.  

MW: 423.96.  

Anal. calcd. for C22H22N5SCl: C 62.33, H 5.23, N 16.52, S 7.56; found: C 62.40, H 5.24, N 

16.40, S 7.43.   
1H NMR: δ 2.59 (s, 3H, CH3), 2.98 (q, J = 6.0, 2H, CH2Ar), 3.87 (q, J = 6.0, 2H, CH2NH), 

4.70-4.95 (m, 2H, CH2N), 5.30 (br s, 1H, NH, disappears with D2O), 5.50-5.60 (m, 1H, CHCl), 

7.19-7.48 (m, 10H Ar), 7.73 (s, 1H, H-3).  

IR cm-1: 3445 (NH). 
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N-(4-chlorobenzyl)-1-(2-chloro-2-phenylethyl)-6-(methylthio)-1H-pyrazol[3,4-

d]pyrimidin-4-amine 35b  

Mp: 126-127°C.  

Yield: 75 %.  

MW: 444.38.  

Anal. calcd. for C21H19N5SCl2: C 56.76, H 4.31, N 15.76, S 7.22; found: C 56.81, H 4.45, N 

16.40, S 7.29.   
1H NMR: δ 2.51 (s, 3H, CH3S), 4.62-4.87 (m, 4H, CH2N +CH2Ar), 5.40-5.52 (m, 1H, CHCl), 

7.09-7.48 (m, 9H Ar), 7.65 (s, 1H, H-3).  

IR cm-1: 3240 (NH).  

 

1-[2-Chloro-2-(4-fluorophenyl)ethyl]-N-(3-fluorobenzyl)-6-(methylsulfanyl)-1H-

pyrazolo[3,4-d]pyrimidin-4-amine 35d 

Mp: 119-121 °C.  

Yield: 68%.  

MW: 445.91.                                                                                                                 

Anal. calcd. for C21H18F2N5S: C 56.56, H 4.07, N 15.71, S 7.19; found: C 56.67, H 4.35, N 

15.58, S 6.00.   
1H NMR: δ 2.59 (s, 3H, CH3S), 4.05-4.54 (m, 4H, CH2N + CH2Ar), 5.05-5.28 (m, 1H, CHCl), 

7.65-7.83 (m, 8H Ar), 8.30 (s, 1H, H-3). 

 

1-(2-Chloro-2-phenylethyl)-6-(methylthio)-4-morpholin-4-yl-1H-pyrazolo[3,4-

d]pyrimidine 35h 

Mp: 116-117 °C.  

Yield: 75%.  

MW: 389.90.                                                                                                                          

Anal. calcd. for C18H20N5OSCl: C 55.45, H 5.17, N 17.96, S 8.22; found: C 55.48, H 5.32, N 

18.19, S 8.09.     
1H NMR: δ 2.57 (s, 3H, CH3), 3.77-3.87 and 3.89-3.98 (2m, 8H, 4CH2morph.), 4.71-4.98 (m, 

2H, CH2N), 5.51-5.61 (m, 1H, CHCl), 7.26-7.49 (m, 5H Ar), 7.82 (s, 1H, H-3). 
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General procedure for the synthesis of compounds 35c,e-g 

 

N

N N
N

S

R

Cl
35c,e-g

X

35c: X = H,  R = NHC6H4-4Cl
35e: X = F,  R = NHC6H6
35f: X = Cl,  R = NHC6H4-3Cl
35g: X = Br, R = NHC6H4-3Cl 

 

The suitable aniline (1.3 mmol) was slowly added to a suspension of 34a-d (0.9 mmol) in 

absolute ethanol (6.5 mL) and the mixture was refluxed for 5 h. The solution was washed with 

NaOH 1M (7 mL), H2O (2 x 15 mL), dried (MgSO4), filtered, and concentrated under reduced 

pressure. Compounds 35c,e-g were crystallized with petroleum ether (bp 40-60 °C)/diethyl 

ether (1:1) and a solid was obtained.  Then, compounds 35c,e-g were  purified by column 

chromatography (silica gel, 100 mesh) using DCM/n-hexane (9:1) as the eluant, to afford the 

pure products as white solids.  

 

N-(4-chlorophenyl)-1-(2-chloro-2-phenylethyl)-6-(methylsulfanyl)-1H-pyrazolo[3,4-

d]pyrimidin-4-amine 35c  

Mp: 226-228 °C.  

Yield: 75 %.  

MW: 430.35   

Anal. calcd. for C20H17Cl2N5S: C 55.82, H 3.98, N 16.27, S 7.45 found: C 55.98, H 4.16, N 

16.18, S 7.26.   
1H NMR: δ 2.42 (s, 3H, CH3), 4.62-4.84 (m, 2H, CH2N), 5.54-5.68 (m, 1H, CHCl), 7.03-8.12 

(m, 9H Ar), 8.16 (s, 1H, H-3), 10.16 (s, 1H, NH).  

 

1-[2-Chloro-2-(4-fluorophenyl)ethyl]-N-phenyl-6-(methylsulfanyl)-1H-pyrazolo[3,4-

d]pyrimidin-4-amine 35e  

Mp: 69-72 °C.  
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Yield: 60%.  

MW: 413.90.  

Anal. calcd. for C20H17N5ClFS: C 58.04, H 4.14, N 16.92, S 7.75; found: C 57.93, H 4.40, N 

16.53, S 6.53.   
1H NMR: δ 2.54 (s, 3H, CH3S), 4.63-5.05 (m, 2H, CH2N), 5.75 (t, 1H, CHCl), 7.13-7.81 (m, 

9H, 9 Ar), 8.10 (s, 1H, H-3), 10.16 (s, 1H, NH). 

 

1-[2-Chloro-2-(4-chlorophenyl)ethyl]-N-(3-chlorophenyl)-6-(methylsulfanyl)-1H-

pyrazolo[3,4-d]pyrimidin4-amine 35f 

Mp: 254-255 °C.  

Yield: 78%.  

MW: 464.80.   

Anal. calcd. for C20H16Cl3N5S: C 51.68, H 3.47, N 15.07, S 6.90, found: C 51.52, H 3.51, N 

15.02, S 7.01. 
1H NMR: δ 2.54 (s, 3H, SCH3), 4.63-4.84 (m, 2H, CH2N), 5.30-5.50 (m, 1H, CHCl), 6.79-7.51 

(m, 9H, 8 Ar + H-3).  

 

1-[2-(4-Bromophenyl)-2-chloroethyl]-N-(3-chlorophenyl)-6-(methylsulfanyl)-1H-

pyrazolo[3,4-d]pyrimidin4-amine 35g 

Mp: 203-205 °C. 

Yield: 60%. 

MW: 509.25.   

Anal. calcd. for C20H16BrCl2N5S: C 47.17, H 3.17, N 13.75, S 6.30; found: C 47.28, H 3.50, N 

13.38, S 6.01. 
1H NMR: δ 2.57 (s, 3H, SCH3), 4.70-4.89(m, 2H, CH2N), 5.38-5.50 (m, 1H, CHCl), 7.09-7.81 

(m, 8H, 8 Ar), 8,08 (s,1H, H-3).  
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General procedure for the synthesis of compounds 27a-h 

 

N

N N
N

S

R

27a-h

27a: X = H,  R = NHCH2CH2C6H5
27b: X = H,  R = NHCH2C6H4-4Cl
27c: X = H,  R = NHC6H4-4Cl
27d: X = F,  R = NHCH2C6H4-3F
27e: X = F,  R = NHC6H6
27f: X = Cl,  R = NHC6H4-3Cl
27g: X = Br, R = NHC6H4-3Cl
27h: X = H,  R =  4-morpholinyl

X  

 

A solution of NaOH (0.28 g, 7.0 mmol) in water (2.1 mL) was added to a suspension of 35a-h 

(0.9 mmol) in 95% ethanol (10 mL) and the mixture was refluxed for 5 h. After cooling, a white 

solid crystallized, then it was filtered and recrystallized from absolute ethanol to give a white 

solid.  

 

6-(Methylthio)-N-(2-phenyletheyl)-1-(2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidin-4-

amine  27a 

Mp: 121-122 °C.  

Yields: 65%.  

MW: 387.50.  

Anal. calcd. for C22H21N5S: C 68.19, H 5.46, N 18.07, S 8.28; found: C 68.42, H 5.24, N 18.09, 

S 8.00.   
1H NMR: δ 2.68 (s, 3H, CH3S), 3.04 (t, 2H, CH2Ar), 3.91 (q, 2H, CH2N), 5.50 (br s, 1H, NH), 

7.23-7.55 (m, 11H, 10H Ar + =CHAr), 7.85 (s, 1H, H-3), 7.99 (d, Jtrans = 14.6, 1H, NCH=).  

IR cm-1: 3232 (NH), 1659 (C=C). 

 

N-(4-Chlorobenzyl)-6-(methylthio)-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-4-

amine 27b 

Mp: 165-167 °C.  

Yields: 94%.  

MW: 407.92.  

Anal. calcd. for C21H18N5SCl: C 62.33, H 5.23, N 16.52, S 7.56; found: C 62.29, H 5.03, N 

16.78, S 7.80.   
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1H NMR: δ 2.65 (s, 3H, SCH3), 4.85 (d, J= 8.0, 2H, NHCH2), 7.34-7.44 and 7.50-7.55 (2m, 

10H, 9H Ar + =CHAr), 7.92 (d, J = 8.8, 1H, NCH=), 8.00 (s, 1H, H-3). 

 

N-(4-Chlorophenyl)-6-(methylthio)-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-4-

amine 27c 

Mp: 121-123 °C.  

Yields: 71%.   

MW: 393.89.  

Anal. calcd. for C20H16ClN5S: C 60.98, H 4.09, N 17.78, S 8.14; found: C 60.74, H 4.00, N 

17.59, S 6.22.   
1H NMR: δ 2.60 (s, 3H, SCH3), 7.38-7.82 (m, 10H, 9H Ar + =CHAr), 8.00 (d, 1H, Jtrans = 13.8 

Hz, NCH=), 8.30 (s, 1H, H-3), 10.32 (br s, 1H, NH).  

 

N-(3-Fluorobenzyl)-1-[2-(4-fluorophenyl)ethenyl]-6-(methylsulfanyl)-1H-pyrazolo[3,4-

d]pyrimidin-4-amine 27d 

Mp: 168-170 °C.  

Yield: 73%.  

MW: 409.45.   

Anal. calcd. for C21H17F2N5S: C 61.60, H 4.18, N 17.10, S 7.83, found: C 61.50, H 4.49, N 

17.40, S 6.70.   
1H NMR: δ 2.64 (s, 3H, SCH3), 4.86 (d, J = 8.0 Hz, 2H, NHCH2), 7.03-7.51 (m, 10H, 8H Ar + 

CH=CH), 7.93 (s, 1H, H-3).  

 

N-Phenyl-1-[2-(4-fluorophenyl)ethenyl]-6-(methylsulfanyl)-1H-pyrazolo[3,4-

d]pyrimidin-4-amine 27e 

Mp: 187-190 °C.  

Yield: 73%.  

MW: 377.44.  

Anal. calcd. for C20H16FN5S: C 63.64, H 4.27, N 18.55, S 8.50, found: C 63.41, H 3.95, N 

18.51, S 9.07. 
1H NMR: δ 2.67 (s, 3H, SCH3), 6.99-7.52 (m, 11H, 9H Ar + CH=CH), 7.80 (s, 1H, H-3), 7.97 

(s, 1H, NH). 
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N-(3-Chlorophenyl)-1-[(E)-2-(4-chlorophenyl)ethenyl]-6-(methylsulfanyl)-1H-

pyrazolo[3,4-d]pyrimidin-4-amine 27f  

Mp: 176-179 °C.  

Yield: 70 %.  

MW: 428.34.  

Anal. calcd. for C20H15Cl2N5S: C 55.82, H 3.98, N 16.27, S 7.45; found: C 55.96, H 4.16, N 

16.28, S 7.29.   
1H NMR: δ 2.69 (s, 3H, SCH3), 7.28-7.43 (m, 8H, 7H Ar + =CHAr), 7.59 (s,1H, Ar), 7.70 (s, 

1H, H-3), 7.90 (d, 1H, Jtrans = 16 Hz, NCH=). 

 

N-(3-Chlorophenyl)-1-[(E)-2-(4-bromophenyl)ethenyl]-6-(methylsulfanyl)-1H-

pyrazolo[3,4-d]pyrimidin-4-amine 27g  

Mp: 197-200 °C.  

Yield: 40%.  

MW: 472.79.  

Anal. calcd. for C20H15BrClN5S: C 50.81, H 3.20, N 14.81, S 6.75; found: C 50.84, H 3.52, N 

14.53, S 5.00.   
1H NMR: δ 2.68(s, 3H, SCH3), 7.29-7.47 (m, 9H, 8H Ar + =CHAr), 7.78 (s, 1H, H-3), 7.90 (d, 

1H, Jtrans = 16 Hz, NCH=). 

 

6-(Methylthio)-4-morpholin-4-yl-1-(-2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidine 27h 

Mp: 161-162 °C.  

Yield: 75%.  

MW: 353.44.                                                                                                                     

Anal. calcd. for C18H19N5OS: C 61.17, H 5.42, N 19.81, S 9.07; found: C 61.25, H 5.48, N 

19.81, S 8.88.              
1H-NMR: δ 2.63 (s, 3H, CH3S), 3.80-3.89 and 3.91-3.99 (2m, 8H, 4CH2 morph.), 7.21-7.55 

(m, 6H, 5H Ar + CH=), 7.95 (s, 1H, H-3), 8.01 (d, Jtrans = 14.6, 1H, NCH=).                                                                                                   

IR cm-1: 1658 (C=C).  
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General procedure for the synthesis of compounds 36a-h 

 

N

N N
N

S
OO

R

36a-h

X

36a: X = H,  R = NHCH2CH2C6H5
36b: X = H,  R = NHCH2C6H4-4Cl
36c: X = H,  R = NHC6H4-4Cl
36d: X = F,  R = NHCH2C6H4-3F
36e: X = F,  R = NHC6H6
36f: X = Cl,  R = NHC6H4-3Cl
36g: X = Br, R = NHC6H4-3Cl
36h: X = H,  R =  4-morpholinyl

 

 

meta-Chloroperoxybenzoic acid 77% suspension in mineral oil (475 mg, 2.1 mmol) was added 

portion-wise to a suspension of 35a-h (1.1 mmol) in anhydrous CHCl3 (10 mL) at 0 °C. Then 

the mixture was stirred at room temperature for 6 h. The solvent was evaporated under reduced 

pressure and a solid was formed. The solution was washed with NaHCO3 1M (30 mL) till obtain 

a pH ~9, H2O (2 x 15 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. 

Compounds 36a-d and 36h were purified by column chromatography (silica gel, 100 mesh) 

using ethyl acetate/n-hexane (7:3) as the eluant, to afford the pure products as white solids. 

Compounds 36e-g because of their low solubility, were not purified and were used as a crude 

in the subsequent step.  

 

6-(Methylsulfonyl)-N-(2-phenylethyl)-1-(2-phenylvinyl)-1H-pyrazolo-[3,4-d]pyrimidin-4-

amine 36a 

Mp: 138-139 °C.  

Yield: 57%.  

MW: 419.50.  

Anal. calcd. for C22H21N5O2S: C 62.99, H 5.05, N 16.69, S 7.64; found: C 63.00, H 5.01, N 

16.72, S 7.72.   
1H NMR: δ 3.05 (t, J = 6.0, 2H, CH2Ar), 3.40 (s, 3H, SO2CH3), 3.98 (q, J = 6.0, 2H, CH2NH), 

6.18 (br s, 1H, NH), 7.18-7.57 (m, 11H, 10Ar + =CHAr), 8.02 (d, Jtrans = 14.4, 1H, NCH=), 

8.13 (s, 1H, H-3).  

IR cm-1: 3348 (NH), 1713 (C=C), 1298, 1127 (SO2). 
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N-(4-Chlorobenzyl)-6-(methylsulfonyl)-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-

4-amine 36b 

Mp: 194-197 °C.  

Yield: 28%.  

MW: 439.92.  

Anal. calcd. for C21H18N5O2SCl: C 57.33, H 4.12, N 15.92, S 7.29; found: C 57.33, H 4.07, N 

15.68, S 6.80.   
1H NMR: δ 3.41 (s, 3H, SO2CH3), 4.81 (d, J = 5.4 Hz, 2H, CH2), 7.36-7.46 and 7.64-7.70 (2m, 

9H, Ar), 8.08 (d, Jtrans = 16.5, 1H, NCH=), 8.50 (s, 1H, H-3), 9.73 (br s, 1H, NH). 

 

N-(4-Chlorophenyl)-6-(methylsulfonyl)-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-

4-amine 36c  

Mp: 225-227 °C.  

Yield: 57%.  

MW: 425.89   

Anal. calcd. for C20H16ClN5O2S: C 56.40, H 3.79, N 16.44, S 7.53; found: C 56.52, H 3.88, N 

16.27, S 6.23.   
1H NMR: δ 3.48 (s, 3H, SO2CH3), 7.23-7.90 (m, 10H, 9Ar + =CHAr), 7.96 (s, 1H, H-3), 8.10 

(d, 1H, Jtrans = 16 Hz, NCH=), 10.89 (s, 1H, NH).  

 

N-(3-Fluorobenzyl)-1-[2-(4-fluorophenyl)ethenyl]-6-(methylsulfonyl)-1H-pyrazolo[3,4-

d]pyrimidin-4-amine 36d 

Mp: 215-218 °C.  

Yield: 73%.   

MW: 441.45 

Anal. calcd. for C21H17F2N5O2S: C 57.14, H 3.88, N 15.86, S 7.26; found: C 57.42, H 3.90, N 

16.00, S 6.58.   
1H NMR: δ 3.40 (s, 3H, SO2CH3), 4.83 (d, 2H, J = 8 Hz, CH2NH), 7.19-7.73 (m, 9H, 8Ar + 

=CHAr), 8.05 (d, 1H, Jtrans = 16 Hz, NCH=), 8.48(s, 1H, H-3), 9.70 (s , 1H, NH).  

 

6-(Methylsulfonyl)-4-morpholin-4-yl-1-(2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidine 

36h 
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Mp: 215-216 °C.  

Yield: 87%.  

MW: 385.44.                                                                                                                    

Anal. calcd. for C18H19N5O3S: C 56.09, H 4.97, N 18.17, S 8.32; found: C 56.25, H 5.07, N 

17.86, S 8.64. 
1H NMR: 3.41 (s, 3H, SO2CH3), 3.86-3.97 and 4.02-4.16 (2m, 8H, 4CH2 morph.), 7.27-7.59 

(m, 6H, 5Ar + =CHAr), 8.04 (d, Jtrans = 14.4, 1H, NCH=), 8.16 (s, 1H, H-3).                                                                                             

IR cm-1: 1658 (C=C), 1315, 1128 (SO2).                                                                                                                           

 

 

General procedure for the synthesis of compounds SI113 and 26f,i,k,n,p,q 

 

SI113 and
26f,i,k,n,p,q

N

N N
N

R

X

R1

26f: X = H,   R = NHCH2C6H4-4Cl,   R1 = NHCH2CH2OH  

26i: X = H,   R = NHC6H4-4Cl,          R1 = NHCH2CH2OH
26k: X = F,   R = NHCH2C6H4-3F,    R1 = NHCH2CH2OH       
26n: X = Cl,  R = NHC6H4-3Cl,         R1 = NHCH2CH2OH
26p: X = Br,  R = NHC6H4-3Cl,         R1 = NHCH2CH2OH

26q: X = H,   R =  4-morpholinyl,       R1 = NHCH2CH2OH

SI113: X = H,   R = NHCH2CH2C6H5,   R
1 = NHCH2CH2OH

 
 

2-Amminoethanol (0.2 mL, 1.05 mmol) was added to a suspension of 36a-d and 36f-h (0.35 

mmol) in butanol (5.6 mL) and DMSO (1.4 mL) and the mixture was heated at 90 °C for 12 h. 

The solvent was evaporated under reduced pressure. The solution was washed with water (2 x 

15 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The crude brown 

oils were purified by column chromatography (silica gel, 100 mesh) using ethyl acetate/n-

hexane (1:1) as the eluant, to afford the pure products as white solids.  

 

2-({4-[(2-Phenylethyl)amino]-1-(2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidin-6-yl}-

amino)ethanol SI113 

Yield: 65%. 

Mp: 83-84 °C. 

MW: 400.48 

Anal. calcd. for C23H24N6O: C 68.98, H 6.04, N 20.99; found C 68.78, H 6.29, N 20.79. 
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1H NMR: δ 2.99 (t, J = 7.0 Hz, 2H, CH2Ar), 3.62-3.96 (m, 6H, CH2NH + NHCH2CH2OH), 

5.40 (br s, 1H, OH disappears with D2O), 5.61 (br s, 1H, disappears with D2O), 7.18-7.44 (m, 

11H, 10H Ar + =CHAr), 7.75 (s, 1H, H-3), 7.82 (d, Jtrans = 14.4 Hz, 1H, NCH=). 

IR cm-1: 3250-3150 (OH + NH), 1656 (C=C). 

 

2-({4-[(4-Chlorobenzyl)amino]-1-[(E)-2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-6-

yl}amino)ethanol 26f                                                                                                                                              

Mp: 150-152 °C.  

Yield: 30 %.   

MW: 420.89.                                                                                                    

Anal. calcd. for C22H21N6OCl: C 62.78, H 5.03, N 19.97; found: C 62.65, H 5.36, N 19.77.                       
1H NMR: δ 3.30-3.50 (m, 4H, NHCH2CH2OH), 4.68 (d, J = 5.2 Hz, 2H, CH2Ar), 7.16-7.40 and 

7.42-7.59 (2m, 9H, Ar), 7.84 (d, Jtrans = 17.6 Hz, 1H, NCH=), 8.15 (s, 1H, H-3), 8,50 (s, 1H, 

NH).    

 

2-({4-[(4-Chlorophenyl)amino]-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-6-

yl}amino)ethanol 26i 

Mp: 207-210 °C.  

Yield: 57%.   

MW: 406.87.   

Anal. calcd. for C21H19ClN6O: C 61.99, H 4.71, N 20.66; found: C 61.90, H 4.70, N, 20.31.    
1H NMR: δ 3.45-3.50 (m, 2H, CH2NH), 3.61-3.64 (m, 2H, CH2OH), 4.74 (s, 1H, OH), 7.26-

7.82 (m, 9H, Ar), 7.92-7.98 (m, 2H, CH=CH), 8.25 (s, 1H, H-3), 9.80 (s, 1H, NH).  

   

2-({4-[(3-Fluorophenyl)benzilamino]-1-[2-(4-fluorophenyl)vinyl]-1H-pyrazolo[3,4-

d]pyrimidin-6yl}amino)ethanol 26k 

Mp: 215-218 °C.  

Yield: 32%.   

MW: 422.43.  

Anal. calcd. for C22H20F2N6O: C 62.55, H 4.77, N 19.89; found: C 62.76, H 4.72, N 20.10.   
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1H NMR: δ 3.37-3.40 (m, 2H, CH2NH), 3.43-3.48 (m, 2H, CH2OH), 4.69 (s, 1H, OH), 6.80-

7.60 (m, 9H, 8Ar + =CHAr), 7.80 (d, 1H, Jtrans = 16 Hz, NCH=)  8.10 (s, 1H, H-3), 9.20 (s, 1H, 

NH).    

 

2-({4-[(3-Chlorophenyl)amino]-1-[2-(4-chlorophenyl)vinyl]-1H-pyrazolo[3,4-

d]pyrimidin-6yl}amino)ethanol 26n 

Mp: 214-216 °C.  

Yield: 13%.  

MW: 441.31.   

Anal. Calcd. for C21H18Cl2N6O: C 57.15, H 4.11, N 19.04; found: C 57.30, H 4.01, N 19.34.   
1H NMR: δ 3.51-3.60 (m, 2H, CH2NH), 3.43-3.65 (m, 2H, CH2OH), 4.73 (s, 1H, OH), 7.10-

7.61 (m, 9H, 8Ar + =CHAr), 7.90 (d, 1H, Jtrans = 16 Hz, NCH=), 8.26 (s, 1H, H-3), 9.90 (s, 1H, 

NH).   

 

2-({4-[(3-Chlorophenyl)amino]-1-[2-(4-bromophenyl)vinyl]-1H-pyrazolo[3,4-

d]pyrimidin-6yl}amino)ethanol 26p                                                                                                                                      

Mp: 218-220 °C.  

Yield: 13%.  

MW: 484.77.                                                                                                      

Anal. calcd. for C21H18BrClN6O: C 51.92, H 3.73, N 17.30; found: C 51.87, H 3.45, N 17.59.                       
1H NMR: δ 3.20-3.80 (m, 4H, NHCH2CH2OH), 4.80 (s, 1H, OH), 7.00-8.61 (m, 12H, 9Ar + 

CH=CH + H-3), 9.90 (s, 1H, NH). 

 

2-{[4-Morpholin-4-yl-1-(2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidin-6-

yl]amino}ethanol 26q 

Mp: 177-178 °C.  

Yield: 68%.  

MW: 366.42.                                                                                                                    

Anal. calcd. for C19H22N6O2: C 62.28, H 6.05, N 22.94; found: C 62.23, H 6.19, N 23.25.                                      
1H NMR: δ 3.70 ( q, J = 4.0 Hz, 2H, CH2NH), 3.81-3.96 (m, 10H, 4CH2 morph. + CH2OH), 

4.06 (br s, 1H, disappears with D2O), 5.52 (br s, 1H, disappears with D2O), 7.19-7.52 (m, 6H, 
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5H Ar + =CHAr), 7.87 (s, 1H, H-3), 7.88 (d, Jtrans = 14.4 Hz, 1H, NCH=).                                                                                                        

IR cm-1: 3250-3150 (OH + NH), 1656 (C=C).  

                                                                                                                      

 

General procedure for the synthesis of compounds 26a,g,h,j,l,m,o,r 

 

26a,g,h,j,l,m,o,r

N

N N
N

R

X

R1

26a: X = H,  R = NHCH2CH2C6H5,  R1 = N(CH2CH2OH)2
26g: X = H,  R = NHCH2C6H4-4Cl,  R1 = N(CH2CH2OH)2 
26h: X = H,  R = NHCH2C6H4-4Cl,  R1 = OCH2CH2CH2CH3

26j: X = H,  R = NHC6H4-4Cl,          R1 = N(CH2CH2OH)2 

26l: X = F,  R = NHCH2C6H4-3F,     R1 = N(CH2CH2OH)2
26m: X = F,  R = NHC6H5,                   R

1 = N(CH2CH2OH)2       
26o: X = Cl,  R = NHC6H4-3Cl,        R1 = N(CH2CH2OH)2
26r: X = H,  R =  4-morpholinyl,       R1 = N(CH2CH2OH)2  

 

Diethanolamine (0.3 mL, 1.29 mmol) was added to a solution of 36a-f and 36h (0.43 mmol) in 

DMSO (4 mL) and the mixture was heated at 90 °C for 24 h. The solution was washed with 

water (2 x 15 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The crude 

yellow oils were purified by column chromatography (silica gel, 100 mesh) using ethyl 

acetate/n-hexane (6:4) as the eluant, to afford the pure products as white solids. In a first 

attempt, the reaction was performed in the presence of n-butanol (10 mL) and compound 26h 

was isolated as a by-product.   

 

2-({4-[(2-Phenylethyl)amino]-1-(2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidin-6-yl}-

amino)diethanol 26a                                                                                                                                                                      

Mp: 133-134 °C.  

Yield: 12 %.   

MW: 444.53.                                                                                                                                   

Anal.calcd. for C25H28N6O2: C 67.55, H 6.35, N 18.91; found: C 67.56, H 6.39, N 19.20.  
1H NMR: δ 2.96 (t, J = 8.0 Hz, 2H, CH2Ar), 3.58-4.00 (m, 10H, CH2NH + N(CH2CH2OH)2), 

4.82 (br s, 2H, 2OH), 7.24-7.43 and 7.51-7.59 (2m, 11H, 10 H Ar + =CHAr), 7.86 (d, Jtrans = 

16.4 Hz, 1H, NCH=), 8.03 (s, 1H, H-3), 8.18 (t, J = 8 Hz, NH). 
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2-({4-[(4-Chlorobenzyl)amino]-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-6-

yl}amino)diethanol 26g                                                                                                                                                                      

Mp: 144-145 °C.  

Yield: 5 %.  MW: 464.95                                                                                                     

Anal. calcd. for C24H25N6OCl: C 62.00, H 5.42, N 18.08; found: C 61.94, H 5.43, N 17.77.                       
1H NMR: δ 3.81-3.90 (br s, 8H, N(CH2CH2OH)2, 4.70 (s, 2H, CH2Ar), 7.20-7.35 and 7.46-7.48 

(2m, 10H, 9Ar + =CHAr), 7.82 (d, Jtrans = 14.8 Hz, 1H, NCH=), 7.86 (s, 1H, H-3), 7.95 (s, 1H, 

NH). 

 

N-(4-Chlorophenyl)-6-butoxy-1-[2-phenylethenyl]-1H-pyrazolo[3,4-d]pyrimidin-4-amine 

26h 

Mp: 196-199 °C.  

Yield: 30%.  

MW: 419.90.   

Anal. calcd. for C23H22ClN5O: C 65.79, H 5.28, N 16.68; found: C 64.81, H 5.00, N 17.06.   
1H NMR: δ 0.99 (t, 3H, J = 6.3 Hz, CH3), 1.48 (sx, 2H, J = 6.3 Hz, CH3CH2), 1.71 (quint, 2H, 

J = 6.3 Hz, CH2CH2CH2), 4.41 (t, 2H, J = 6.3 Hz, CH2O), 7.28-7-54 (m, 11H, 9Ar + =CHAr + 

H-3), 7.95 (d, 1H, Jtrans = 16 Hz, NCH=).  

 

2-({4-[(4-Chlorophenyl)amino]-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-6-

yl}amino)diethanol 26j 

Mp: 215-217 °C.   

Yield: 7%.  

MW: 450.92.   

Anal. calcd. for C23H23ClN6O2: C 61.26, H 5.14, N 18.64; found: C 61.20, H 4.99, N 18.51.   
1H NMR: δ 3.58-3.84 (m, 8H, N(CH2CH2OH)2), 7.21-7.44, 7.54-7.60 and 7.87-7.92 (3m, 11H, 

9Ar + CH=CH), 8.28 (s, 1H, H-3), 9.96 (s, 1H, NH).  

 

2-({4-[(3-Fluorophenyl)benzilamino]-1-[2-(4-fluorophenyl)vinyl]-1H-pyrazolo[3,4-

d]pyrimidin-6-yl}amino)diethanol 26l 

Mp: 171-173 °C.  

Yield: 28%.  
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MW: 466.48.  

Anal. calcd. for C24H24F2N6O2: C 61.79, H 5.19, N 18.02, found: C 61.62, H 5.04, N 18.00.  
1H NMR: δ 3.55-3.71 (m, 8H, N(CH2CH2OH)2), 4.63-4.78 (m, 2H, 2OH), 7.18-7.40, 7.59-7.62 

and 7.78-8.13 (3m, 12H, 9Ar + CH=CH + H-3), 8.61 (br s, 1H, NH).  

 

2-({4-Phenylamino-1-[2-(4-fluorophenyl)vinyl]-1H-pyrazolo[3,4-d]pyrimidin-6-

yl}amino)diethanol  26m                                                                                                                             

Mp: 200-202 °C.  

Yield: 32%.  

MW: 434.48.                                                                                                    

Anal. calcd. for C23H23FN6O2: C 63.98, H 5.34, N 19.34; found: C 63.66, H 4.72, N 19.27.                         
1H NMR: δ 3.60-4.00 (m, 8H, N(CH2CH2OH)2), 4.80 (s, 2H, OH), 7.05-7.90 (m, 12H, 9Ar + 

CH=CH), 8.25 (s, 1H, H-3), 9.80 (s, 1H, NH).   

 

2-({4-[(3-Chlorophenyl)amino]-1-[2-(4-chlorophenyl)vinyl]-1H-pyrazolo[3,4-

d]pyrimidin-6yl}amino)diethanol 26o 

Mp: 216-219 °C.  

Yield: 10%.  

MW: 485.36. 

Anal. calcd. for C23H22Cl2N6O2: C 56.92, H 4.57, N 17.31.; found: C 56.56, H 4.72, N 17.67.                         
1H NMR: δ 3.76 (m, 8H, N(CH2CH2OH)2), 4.83 (br s, 2H, 2OH), 7.09-7.15, 7.40-7.45 and 

7.59-7.71 (3m, 8H, 7Ar+ =CHAr), 7.95 (d, 1H, Jtrans = 16 Hz, NCH=), 8.28 (s, 1H, H-3), 9.96 

(s, 1H, NH).  

 

2-{[4-(Morpholin-4-yl)-1-(2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidin-6-

yl]amino}diethanol 26r 

Mp: 178-180 °C.  

Yield: 45%.  

MW: 410.47.                                                                                                                   

Anal. calcd. for C21H26N6O3: C 61.45, H 6.38, N 20.47; found: C 61.56, H 6.14, N 21.25.                                     
1H NMR: δ 3.34-3.84(m, 16H, 4CH2 morph. + N(CH2CH2OH)2), 4.90 (br s, 2H, 2OH, 

disappear with D2O), 7.30-7.55(m, 7H, 5Ar + CH=CH), 8.17 (s, 1H, H-3). 
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General procedure for the synthesis of compounds 26b,s 

 

26b,s

N

N N
N

R

X

R1

26b: X = H,  R = NHCH2CH2C6H5,   R
1 = NHCH2CH2NH2

26s: X = H,  R =  4-morpholinyl,        R1 = NHCH2CH2NH2 
                                                                            

Ethylenediamine (1.05 mmol) was added to a suspension of 36a,h in DMF (5 mL). The mixture 

was heated at 90 °C for 12 h. After cooling, water was added (20 mL), and the solution was 

extracted with ethyl acetate (3 x 20 mL); the organic phase was washed with brine (40 mL), 

dried (MgSO4), and evaporated under reduced pressure. White solids were purified by a column 

chromatography with diethyl ether as the eluant.    

 

N6-(2-aminoethyl)-N4-(2-phenylethyl)-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidine-

4,6-diamine  26b                                                                                                                                                                     

Mp: 74-76 °C.  

Yield: 8%.   

MW: 399.49.                                                                                                                     

Anal. calcd. for C23H25N7: C 69.15, H 6.31, N 24.54; found: C 69.07, H 6.40, N 24.21.                                        
1H NMR: δ 2.97 (t, J = 7.2 Hz, 2H, CH2Ar), 3.51 (quint, J = 6.0, 2H, NH2CH2), 3.61 (q, J = 

6.0, 2H, NH2CH2CH2NH), 3.76 (t, J = 7.2, 2H NHCH2CH2Ar), 7.18-7.36 and 7.48-7.50 (2m, 

11H, 10Ar + =CHAr), 7.86-7.89 (m, 2H, H-3 + NCH=), 8.08 (s, 1H, NH). 

 

N-[4-(Morpholin-4-yl)-1-(2-phenylvinyl)-1H-pyrazolo[3,4-d]pyrimidin-6-yl]ethane-1,2-

diamine 26s                 

Mp: 170-173 °C.  

Yield: 20%.  

MW: 365.43.                                                                                                                  
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Anal. calcd. for C19H23N7O: C 62.45, H 6.34, N 26.83; found: C 62.33, H 6.10, N 23.85.                                           
1H NMR: δ 3.20-3.39 (m, 4H, NH2CH2CH2NH), 3.75-3.85 (m, 8H, 4CH2 morph.), 7.26-

8.028(m, 7H, 5H Ar + CH=CH), 8.25 (s, 1H, H-3). 

 

 

General procedure for the synthesis of compounds 26c,t 

 

26c,t

N

N N
N

R

X

R1

26c: X = H,  R = NHCH2CH2C6H5,   R
1 = OCH2CH2OH

26t: X = H,  R =  4-morpholinyl,        R1 = OCH2CH2OH 
 

Ethylene glycol (1.14 mL, 20.6 mmol) and NaH 60% dispersion in mineral oil (91.2 mg, 2.28 

mmol) were added to a suspension of 36a,h (1.14 mmol) in anhydrous DMF (10 mL) precooled 

in an ice-water bath. The mixture was stirred at room temperature 1.5 h. Then the reaction was 

quenched with a 30% acetic acid solution (10 mL) and DMF was removed under reduced 

pressure. The aqueous solution was extracted with ethyl acetate (3 x 20 mL); the organic phase 

was washed with brine (40 mL), dried (MgSO4), and evaporated under reduced pressure. White 

solids were purified by a column chromatography with petroleum ether (bp 40-60 °C)/diethyl 

ether (9:1→ diethyl ether alone) as the eluant to afford the desired compounds as pure solids. 

 

2-({4-[(2-Phenylethyl)amino]-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-6- 

yl}oxy)ethanol 26c 

Mp: 150.5-151.8 °C.  

Yield: 47 %.   

MW: 401.46.  

Anal. calcd. for C23H23N5O2: C 68.81, H 5.77, N 17.44; found: C 68.60, H 5.99, N 17.52.   
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1H NMR: δ 2.86-3.01 (m, 2H, CH2Ar), 3.59-3.80 (m, 4H, CH2NH + CH2O), 4.25, 4.42 (m, 

2H, CH2OH), 4.84 (t, J = 6.3 Hz, 1H, NH), 7.24-7.35 and 7.55-7.58 (2m, 11H, 10 Ar + 

=CHAr), 7.83 (d, Jtrans = 15.7 Hz, 1H, NCH=), 8.17 (s, 1H, H-3), 8.58 (br s, 1H, OH), 9.96 (s, 

1H, NH). 

 

2-({4-[Morpholin-4-yl]-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-6-yl}oxy)ethanol 

26t 

Mp: 187-188 °C.  

Yield: 88%.  

MW: 367.40.                                                                                                                             

Anal. calcd. for C19H21N5O3: C 62.11, H 5.76, N 19.06; found: C 62.13, H 6.19, N  18.25.                                          
1H NMR: δ 3.74-3.91 (m, 10H, 4CH2 morph. + CH2O), 4.36-4.41 (t, 2H, CH2OH), 4.90 (t, 

1H, OH), 7.26-7.63 (m, 6H Ar + =CHAr), 7.93-8.00 (d, Jtrans = 14 Hz, 1H, NCH=), 8.44(s, 

1H, H-3). 

 

 

Synthesis of 1-(2-hydroxy-2-phenylethyl)-6-(methylsulfonyl)-1,5-dihydro-4H-

pyrazolo[3,4-d]pyrimidin-4one 37 

 

N

N N
N

S

OH

37 OH

O O

 

 

meta-Chloroperoxybenzoic acid 77% suspension in mineral oil (4.45 g, 20.0 mmol) was added 

portion-wise to a solution of 33a (3.0 g, 10.0 mmol) in anhydrous DMF (5 mL) and CHCl3 (50 

mL) at 0 °C. Then the mixture was stirred at room temperature for 12 h. The solvent was 

evaporated under reduced pressure, and diethyl ether (20 mL) was added. By standing in a 

refrigerator for 2 h, a white solid was precipitated, which was filtered and recrystallized from 

absolute ethanol.   

                                                                                                                                                                     

Mp: 170-171 °C.  
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Yield: 84%.  

MW: 334.35                                                                                                         

Anal.calcd. for C14H14N4O4S: C 50.29, H 4.22, N 16.76, S 9.59 found: C 50.44, H 4.28, N 

12.90, S 6.50.  
1H NMR: δ 3.69 (s, 3H, SO2CH3), 4.22-4.52 (m, 2H, NCH2), 4.91-5.09 (m, 1H, CHO), 5.60 (br 

s, 1H, OH), 7.09-7.28 (m, 5H, Ar), 8.15 (s, 1H, H-3), 13.20 (br s, 1H, NH).  

IR cm-1: 3540 (NH), 3150-2900 (OH), 1693 (CO).               

 

Synthesis of 1-(2-hydroxy-2-phenylethyl)-6-morpholin-4-yl-1H-pyrazolo[3,4-

d]pyrimidin-4-ol 38  

 

N

N N
N

N

OH

OH

O

38  

 

Morpholine (2.6 mL, 30.0 mmol) was added to a solution of 37 (2.0 g, 6.0 mmol) in DMSO (18 

mL) and the mixture was heated at 100 °C for 3 h. After cooling to room temperature, cold 

water was added; the pale yellow solid was filtered, washed with H2O, and recrystallized from 

absolute ethanol. 

  

Mp: 247-248 °C.  

Yields: 83 %.  

MW: 341.36.  

Anal. calcd. for C17H19N5O3: C 59.81, H 5.61, N 20.52; found: C 59.59, H 5.58, N 20.49.   
1H NMR: δ 3.36-3.49 and 3.51-3.62 (2 m, 8H, 4CH2 morph), 3.99-4.25 (m, 2H, NCH2), 4.90-

5.03 (m, 1H, CHO), 5.50-5.55 (m, 1H, OH), 7.03-7.24 (m, 5H Ar), 7.70 (s, 1H, H-3), 10.75 (br 

s, 1H, NH).  

IR cm-1: 3380, 3168, 3113 (NH + OH), 1702 (CO).  
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Synthesis of 4-chloro-1-(2-chloro-2-phenylethyl)-6-(morpholin-4-yl)-1H-pyrazolo[3,4-

d]pyrimidine 39 

 

N

N N
N

N

Cl

Cl

O

39  

 

The Vilsmeier complex, previously prepared from POCl3 (5.5 mL, 58.6 mmol) and anhydrous  

DMF (4.5 mL, 58.6 mmol) was added to a suspension of 38 (1.0 g, 2.9 mmol) in CHCl3 (30 

mL). The mixture was refluxed for 12 h. The solution was washed with 4M NaOH (2 × 20 mL), 

and with H2O (20 mL), dried (MgSO4) and concentrated under reduced pressure. The crude 

was purified by column chromatography (silica gel, 100 mesh) using a mixture of petroleum 

ether (bp 40-60 °C) /diethyl ether (8:2) as the eluant, to afford the pure product 39 as a yellow 

oil, which was crystallized as a white solid by adding a mixture of petroleum ether (bp 40-60 

°C)/diethyl ether (1:1) and standing in a refrigerator.   

 

Mp: 117-118 °C.  

Yields: 87 %.  

MW: 378.25.  

Anal. calcd. for C 17H17Cl2N5O: C 53.98, H 4.53, N 18.51; found: C 54.05, H 4.77, N 18.35.   
1H NMR: δ 3.47-3.56 and 3.60-3.68 (2 m, 8H, 4CH2 morph), 4.53-4.70 (m, 2H, NCH2), 5.40-

5.50 (m, 1H, CHCl), 7.15-7.38 (m, 5H Ar), 7.73 (s, 1H, H-3).  
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General procedure for the synthesis of compounds 40a,b 

 

N

N N
N

N

R

Cl

O

40a,b

40a: R = NHCH2C6H5 
40b: R = NHCH2C6H4-4F  

 

The appropriate amine (3.5 mmol) was added to a solution of 39 (0.30 g, 0.9 mmol) in 

anhydrous toluene (5 mL) and the mixture was stirred at room temperature for 24 h. The organic 

phase was washed with water (2 x 10 mL), dried (MgSO4) and concentrated under reduced 

pressure. The crude oil 40b was recrystallized by adding diethyl ether. Compound 40a 

crystallized by adding a mixture of CH2Cl2/n-hexane (1:1).  

 

N-Benzyl-1-(2-chloro-2-phenylethyl)-6-morpholin-4-yl-1H-pyrazolo[3,4-d]pyrimidin-4-

amine 40a  

Mp: 90-93 °C.  

Yield: 57%.  

MW: 448.95.   

Anal. calcd. for C24H25ClN6O: C 64.21, H5.61, N 18.72; found: C 64.42, H 5.97, N 18.44.   
1H NMR: δ 3.61-3.81 (m, 8H, 4CH2 morph.), 4.32-4.80 (m, 4H, CH2H + CH2Ar), 5.36-5.54 

(m, 1H, CHCl), 7.17-7.42 (m, 10H Ar), 7.56 (s, 1H, H-3).  

   

1-(2-Chloro-2-phenylethyl)-N-(4-fluorobenzyl)-6-morpholin-4-yl-1H-pyrazolo[3,4-

d]pyrimidin-4-amine  40b 

Mp: 85-88 °C.  

Yield: 62%.  

MW: 466.94.   

Anal. calcd. for C24H24ClFN6O: C 61.73, H 5.18, N 18.00; found: C 61.05, H 5.71, N 17.56.  
1H NMR: δ 2.31-2.61 (m, 8H, 4CH2 morph.), 4.12-4.20 (m, 4H, NCH2 + CH2Ar), 5.04-5.20 (m, 

1H, CHCl), 7.20-7.52 (m, 9H Ar), 7.80 (s, 1H, H-3).    
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General procedure for the synthesis of compounds 26d,e 

 

26d: R = NHCH2C6H5 

26e: R = NHCH2C6H4-4F

N

N N
N

N

R

O

26d,e

 

 

A solution of NaOH (0.14 g, 3.4 mmol) in water (1 mL) was added to a suspension of 

derivatives 40a,b (0.48 mmol) in 95% ethanol (5 mL) and the mixture was refluxed for 10 h. 

After cooling, the white solids were washed with water. Compound 26d was obtained as a white 

pure solid and it did not need further purification. Compound 26e was purified by column 

chromatography (silica gel, 100 mesh) using a mixture of diethyl ether/petroleum ether (bp 40-

60 °C) (7:3) as the eluant, to afford the pure product as white solid.  

 

N-Benzyl-6-morpholin-4-yl-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-4-amine 26d  

Mp: 163-166 °C.  

Yield: 67%.  

MW: 412.48.   

Anal. calcd. for C24H24N6O: C 69.88, H 5.86, N 20.37; found: C 69.68, H 5.72, N 20.35.   
1H NMR: δ 3.80-3.83 (m, 4H, 2CH2N morph.), 3.91-3.93 (m, 4H, 2CH2O morph), 4.81 (d, J = 

5.6 Hz, 2H, CH2Ar), 5.65 (s, 1H, NH), 7.26-7.34 and 7.50-7.54 (2m, 11H, 10 Ar + =CHAr), 

7.78 (s, 1H, H-3), 7.91 (d, 1H, Jtrans = 14.6 Hz, NCH=).  

 

N-(4-Fluorobenzyl)-6-morpholin-4-yl-1-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidin-4-

amine 26e  

Mp: 174-176 °C.  

Yield: 55%.  

MW: 430.47. 

Anal. calcd. for C24H23FN6O: C 66.96, H 5.39, N 19.52; found: C 67.08, H 5.36, N 19.34.   
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1H NMR: δ 3.80-3.83 (m, 4H, CH2N morph.), 3.90-3.93 (m, 4H, CH2O morph.), 4.78 (d, 2H, J 

= 5.6 Hz, CH2 Ar), 5.70 (br s, 1H, NH), 7.03-7.12, 7.26-7.38 and 7.41-7.78 (3m, 10H, 9 Ar + 

=CHAr), 7.78 (s, 1H, H-3), 7.91 (d, 1H, Jtrans = 14.6 Hz, NCH=). 

 

 

General procedure for the synthesis of compounds 44a-c 

 

H2N N
N

OH

NC

44a-c

R

 
44a: R = H
44b: R = CH3
44c: R = Cl  

 

A 60% sodium hydride dispersion in mineral oil (1.21 g, 30.3 mmol) was added in small batches 

to a solution of malonitrile (1.00 g, 15.1 mmol) in dry THF (25 mL) precooled at 0−5 °C. After 

30 min at 0−5 °C, the suitable acyl chloride (15.1 mmol) was added dropwise. The orange 

solution was stirred at room temperature for 2−12 h, then dimethylsulfate (1.75 mL, 18.2 mmol) 

was slowly added and the solution was refluxed for 3−6 h. Finally, 2-hydrazinyl-1-

phenylethanol 7 (4.62 g, 30.2 mmol) dissolved in dry THF (2 mL) was added and the reaction 

was refluxed for 3−6 h. After cooling to room temperature, water (25 mL) and conc. NH3 (5 

mL) were added under stirring. After 15 min, THF was removed under reduced pressure and 

the aqueous phase was extracted with CH2Cl2 (30 mL). Organic phases were washed with water 

(15 mL) and brine (15 mL), dried (Na2SO4), and evaporated under reduced pressure. The crudes 

were purified by flash chromatography using diethyl ether/petroleum ether (bp 40-60 °C) as the 

eluant, with a gradient elution (3:1 → 9:1). 

 

5-Amino-1-(2-hydroxy-2-phenylethyl)-3-phenyl-1H-pyrazole-4-carbonitrile 44a                                                  

Mp: 165-166 °C.  

Yield: 40%.  
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MW: 304.35.                                                                                                                   

Anal. calcd. for C18H16N4O: C 71.04, H 5.30, N 18.41; found: C 70.91, H 5.40, N 18.49.                                                      
1H NMR: δ 3.95-4.23 (m, 2H, CH2), 5.10-5.18 (m, 1H, CH), 7.20-7.37 and 7.79-7.81 (2m, 

10H Ar).                            

IR cm-1: 3560-3240 (OH), 3358, 3350 (NH2), 2204 (CN). 

 

5-Amino-1-(2-hydroxy-2-phenylethyl)-3-(4-methylphenyl)-1H-yrazole-4-carbonitrile 44b                                           

Mp: 172-174 °C.  

Yield: 42%.  

MW: 318.37.                                                                                                                  

Anal. calcd. for C19H18N4O: C 71.68, H 5.70, N 17.60; found: C 71.77, H 5.76, N 17.44.                                                     
1H NMR: δ 2.36 (s, 3H, CH3), 4.00-4.05 and 4.12-4.15 (2m, 2H, CH2), 5.10-5.15 (m, 1H, 

CH), 7.20-7.34 and 7.57-7.91 (2m, 9H Ar).                                                                                                                                                 

IR cm-1: 3400-3200 (OH), 3400, 3322 (NH2), 2221 (CN). 

 

5-Amino-3-(4-chlorophenyl)-1-(2-hydroxy-2-phenylethyl)-1H-pyrazole-4-carbonitrile 

44c                                        

Mp: 173-174 °C.  

Yield: 49%.  

MW: 338.39.                                                                                                                          

Anal. calcd. for C18H15N4OCl: C 63.81, H 4.46, N 16.54; found: C 63.86, H 4.76, N 16.43.                                   
1H NMR: δ 2.99 (brs, 1H, OH), 3.99-4.15 (m, 2H, CH2), 4.85 (brs, 2H, NH2), 5.18-5.22 (m, 

1H, CHOH), 7.37-7.51 and 7.79-7.90 (2m, 9H Ar).                                                                                                                             

IR cm-1: 3450−3100 (OH), 3388, 3322 (NH2), 2223 (CN). 
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General procedure for the synthesis of compounds 45a-c 

 

N

N N
N

OH

NH2

45a-c

R

 
45a: R = H
45b: R = CH3
45c: R = Cl  

 

A solution of sodium ethoxyde (190 mg, 8.25 mmol of sodium in 5 mL of absolute ethanol) 

was added to the suspension of the suitable intermediate 44a-c (1.65 mmol) in acetonitrile (10 

mL). The reaction was refluxed 8 h. Acetonitrile and ethanol were removed under reduced 

pressure. Water (50 mL) was added, and the aqueous phase was extracted with ethyl acetate (3 

x 50 mL). Then the organic phase was washed with brine (70 mL). Brine was in turn extracted 

with ethyl acetate (35 mL) and the organic solution was added to the previously obtained ethyl 

acetate extracts. The organic phase was dried and concentrated under reduced pressure. All 

crudes were purified by column chromatography using diethyl ether/methanol (95:5) as the 

eluant. 

 

2-(4-Amino-6-methyl-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-1-phenylethanol 45a                                   

Mp: 193-194 °C.  

Yield: 41%.  

MW: 345.40                                                                                                              

Anal. calcd. for C20H19N5O: C 69.55, H 5.54, N 20.28; found: C 69.55, H 5.59, N 20.39.                                                  
1H NMR: δ 2.66 (s, 3H, CH3), 4.60-4.77 (m, 2H, CH2), 5.26-5.37 (m, 1H, CHOH), 7.36-7.71 

(m, 10H Ar). 

 

2-[4-Amino-6-methyl-3-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl]-1-

phenylethanol 45b                  

Mp: 175-176 °C.  
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Yield: 25%.  

MW: 359.42                                                                                                                     

Anal. calcd. for C21H21N5O: C 70.17, H 5.89, N 19.48; found: C 70.47, H 6.20, N 19.39.                                               
1H NMR: δ 2.40 and 2.44 (2s, 6H, 2CH3), 4.22-4.37 and 4.35-4.60 (2m, 2H, CH2), 5.20 (br s, 

1H, OH), 5.61-5.69 (m, 1H, CHOH), 6.70 (br s, 2H, NH2), 7.26-7.42 and 7.50-7.60 (2m, 9H 

Ar). 

 

2-[4-Amino-3-(4-chlorophenyl)-6-methyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl]-1-

phenylethanol 45c            

Mp: 176-178 °C.  

Yield: 57%.  

MW: 379.84                                                                                                                 

Anal. calcd. for C20H18N5OCl: C 63.24, H 4.87, N 18.44; found: C 63.23, H 4.57, N 18.27.                                    
1H NMR: δ 2.60 (s, 3H, CH3), 4.59-4.76 (m, 2H, CH2), 5.27-5.32 (m, 1H, CHOH), 5.68 (br s, 

2H, NH2) 7.30-7.45 and 7.50-7.68 (2m, 9H Ar). 

 

 

General procedure for the synthesis of compounds 43a-c 

 

N

N N
N

Cl

NH2

R

43a-c
 
43a: R = H
43b: R = CH3
43c: R = Cl  

 

SOCl2 (220 μL, 3 mmol) was added dropwise to a solution of the suitable intermediate 45a-c 

(0.4 mmol) in dry CH2Cl2 (5 mL), and the reaction was stirred at room temperature for 12 h 

under nitrogen atmosphere. The reaction was cautiously washed with 1N NaOH (2 x 15 mL) 

and then the aqueous phases were extracted twice with CH2Cl2 (2 x 10 mL). Organic phases 
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were washed with brine (30 mL). Brine was in turn extracted with CH2Cl2 (15 mL), and the 

organic solution was added to the previously obtained CH2Cl2 extracts. The organic phase was 

dried (Na2SO4) and concentrated under reduced pressure. All the crudes were purified by 

chromatography using CH2Cl2/methanol as the eluant. 

 

1-(2-Chloro-2-phenylethyl)-6-methyl-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine 

43a                                                       

Mp: 148-150 °C.  

Yield: 19%.  

MW: 363.84                                                                                                                           

Anal. calcd. for C20H18N5Cl: C 66.02, H 4.99, N 19.25; found: C 66.20, H 4.88, N 19.04.                                    
1H NMR: δ 2.47 (s, 3H, CH3), 4.69-4.83 and 4.94-5.10 (2m, 2H, CH2), 5.69-5.80 (m, 1H, 

CHCl), 7.31-7.48 and 7.50-7.72 (2m, 10H Ar). 

 

1-(2-Chloro-2-phenylethyl)-6-methyl-3-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-

4-amine 43b       

Mp: 207-209 °C.  

Yield: 32%.  

MW: 377.87                                                                                                                 

Anal. calcd. for C21H20N5Cl: C 66.75, H 5.33, N 18.53; found: C 66.84, H 5.12, N 18.48.                                      
1H NMR: δ 2.39, 2.45 (2s, 6H, 2CH3), 4.69-4.81 and 4.90-5.07 (2m, 2H, CH2), 5.68-5.78 (m, 

1H, CHCl), 7.34-7.42 and 7.52-7.62 (2m, 9H Ar). 

 

3-(4-Chlorophenyl)-1-(2-chloro-2-phenylethyl)-6-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-

amine 43c                   

Mp: 203-205 °C.  

Yield: 28%.  

MW: 398.29                                                                                                                   

Anal. calcd. for C20H17N5Cl2: C 60.31, H 4.30, N 17.58; found: C 60.50, H 5.50, N 17.80.                                       
1H NMR: δ 2.66 (s, 3H, CH3), 4.70-4.85 and 5.00-5.18 (2m, 2H, CH2), 5.57-5.63 (m, 1H, 

CHCl), 7.30-7.40 and 7.45-7.63 (2m, 9H Ar). 
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Synthesis of 1-(2-hydroxy-2-phenylethyl)-6-((2-morpholinoethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin4(5H)-one 47 

 

HN

N N
N

O

OH

S

N

O

47

 

 

NaOH (0.4 g, 10 mmol) dissolved in absolute ethanol (5 mL) and 4-(2-chloroethyl)morpholine 

(2.24 g, 15 mmol) were added to a solution of intermediates 32a (2.88 g, 10 mmol) in anhydrous 

DMF (5 mL). The solution was refluxed for 6 h. After cooling, the solvent was evaporated 

under reduced pressure, and the crude was poured into cold water. The white solid was filtered, 

washed with water, and recrystallized from absolute ethanol. 

 

Yield: 63%.   

Mp: 201-202 °C.  

MW: 401.48. 

Anal. calcd for C19H23N5O3S: C 56.84, H 5.77, N 17.44, S 7.99, found C 56.68, H 5.55, N 

17.48, S 8.00.                                                                                                                                                                                    
1H NMR: δ 2.36-2.50 (m, 4H, 2CH2N morph.), 3.10-3.40 (m, 4H, CH2S + CH2CH2S), 3.45-

3.56 (m, 4H, 2CH2O morph.), 4.13-4.40 (m, 2H, CH2N), 4.83-5.06 (m, 1H, CHO), 5.55 (d, 1H, 

OH disappears with D2O), 7.10-7.28 (m, 5H Ar), 7.89 (s, 1H, H-3).  

IR cm-1: 3100-2850 (NH + OH), 1664 (CO).  
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Synthesis of 4-(2-((4-chloro-1-(2-chloro-2-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidin-

6yl)thio)ethyl)morpholine  48 

 

N

N N
N

Cl

Cl

S

N

O

48

 

 

The Vilsmeier complex, previously prepared from POCl3 (12.27 g, 80 mmol) and anhydrous 

DMF (5.85 g, 80 mmol) was added to a suspension of intermediate 84c (4.01 g, 10 mmol) in 

CHCl3 (50 mL). The mixture was refluxed for 8 h. The solution was washed with 4 M NaOH 

(2 x 20 mL), then with water (20 mL), dried (MgSO4), and concentrated under reduced pressure. 

The yellow crude oil was crystallized as a brown solid by adding absolute ethanol and standing 

in a refrigerator.  

Yield: 75%. 

Mp: 106-107 °C.  

MW: 438.37.  

Anal. calcd for C19H21N5Cl2OS: C 52.06, H 4.83, N 15.98, S 7.31, found C 52.00, H 4.91, N 

16.01, S 7.52.                                                                                                 
1H NMR: δ 2.81-3.12 (m, 4H, 2CH2N morph.), 3.18-3.81 (m, 4H, CH2S + CH2CH2S), 3.86-

4.10 (m, 4H, 2CH2O morph.), 4.60-4.78 and 5.12-5.30 (2m, 2H, CH2N), 5.36-5.50 (m, 1H, 

CHCl), 7.16-7.50 (m, 5H Ar), 8.00 (s, 1H, H-3).  

 

 

 

 

 

 

 



150 
 

Synthesis of N-(3-bromophenyl)-1-(2-chloro-2-phenylethyl)-6-((2-morpholinoethyl)thio)-

1H-pyrazolo[3,4-d]pyrimidin-4-amine SI306 

 

46, SI306

N

N N
N

HN

Cl

S

N

O

Br

 
  

Yield: 61%  

Mp: 232-233 °C  

MW: 573.94      

Anal. calcd for C25H26N6BrClOS: C 52.32, H 4.57, N 14.64, S 5.59, found C 52.12, H 4.52, N 

14.55, S 5.52.                                                                                                                                                                         
1H NMR: δ 2.90-3.99 (m, 12H, 4CH2 morph. + CH2N + CH2S), 4.63-4.85 and 5.045.21 (2m, 

2H, CH2N pyraz.), 5.55-5.70 (m, 1H, CHCl), 7.03-8.52 (m, 10H, 9 Ar + H-3), 11.33 (s all., 1H, 

NH disappears with D2O).  

IR cm-1: 3450 (NH). 
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