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Within the framework of fðRÞ ¼ Rþ αR2 gravity, we study realistic models of neutron stars, using
equations of state compatible with the LIGO constraints, i.e., APR4, MPA1, SLy, and WW1. By
numerically solving modified Tolman-Oppenheimer-Volkoff equations, we investigate the mass-radius
relation in both metric and torsional fðRÞ ¼ Rþ αR2 gravity models. In particular, we observe that torsion
effects decrease the compactness and total mass of neutron star with respect to the general relativity
predictions, therefore mimicking the effects of a repulsive massive field. The opposite occurs in the metric
theory, where mass and compactness increase with α, thus inducing an excess of mass that overtakes the
standard general relativity limit. We also find that the sign of α must be reversed whether one considers the
metric theory (positive) or torsion (negative) to avoid blowing up solutions. This could draw an easy test to
either confirm or discard one or the other theory by determining the sign of parameter α.
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I. INTRODUCTION

Compact objects, such as neutron stars (NSs), are
astrophysical objects that can be described by general
relativity (GR). These relativistic stars are natural labora-
tories for studying the behavior of high-density nuclear
matter using an appropriate equation of state (EOS), which
relates the pressure and density of degenerate matter. This
allows one to obtain the mass-radius relation, M-R, and
other macroscopic properties such as the tidal deformability
and the stellar momentum of inertia [1].
Since the internal structure of a NS cannot be reproduced

in the laboratory because of the extreme conditions in which
it operates, only theoretical models can be formulated where
there are a very large number of EOS candidates. The
astrophysical measurements of the macroscopic properties
of NSs are very useful because they allow us to understand
what can be realistic EOS. In fact, they can provide
information on whether the EOS is soft or stiff and what
is the pressure several times the density of nuclear saturation
[2–5]. Therefore, measuring the mass value of a NS could
help us to describe matter at extreme gravity regimes.
Einstein’s theory describes accurately the physical prop-

erties that govern the stability of NSs where Chandrasekhar,
considering degenerate matter, fixed a theoretical upper

limit of 1.44 M⊙ so that the stability of a nonrotating
degenerate star is conserved [6]. Instead, as confirmed by
several astrophysical observations, there exist binary sys-
tems with NSs having mass values that violate this limit,
allowing larger masses [7–12].
To study these observational evidences, as already done in

some previous works, developed in metric formalism [13–
18], extended theories of gravity [19,20] can be used, in
particular fðRÞ gravity, i.e., a class of Lagrangians consid-
ering a generic function of the Ricci curvature scalar. The
primary objective is to obtain theM-R relation for aNS that
allowsone,givenanEOS, toderivethemaximummassvalue.
From a cosmological point of view, fðRÞ theories, beside

addressing in a straightforward way the inflationary para-
digm [21], could be useful in view of problems like the
accelerated expansion of the Universe (the dark energy
issue), confirmed by several observations [22–27], and the
problem of the formation of large-scale structures, called
dark matter. Unlike the standard concordance Lambda cold
dark matter (ΛCDM) model [28–30], similar results can be
obtained without considering dark components but extend-
ing the gravitational sector at infrared scales [19,31–38].
Specifically, fðRÞ gravity is acquiring a growing interest
because it allows a good description of gravitating
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structures without nonbaryonic dark matter: extra degrees
of freedom of gravitational field can be dealt as effective
scalar fields contributing to the structure formation and
stability [39,40]. In this perspective, it is possible to unify
the cosmic acceleration [31,41], the early-time inflation
[21,42], thus leading to a complete picture of the evolution
of the Universe [33,43–48] and large-scale structures
therein [49–52]. However, the dark side and the fðRÞ
descriptions are, in some sense, equivalent at large scale so
one needs an experimentum crucis capable of discriminat-
ing among the two competing pictures. Discovering new
particles out of the Standard Model or addressing gravi-
tational phenomena that escape from the GR description
could be an approach to fix this challenging issue.
Observing exotic stars modeled by some alternative theory
of gravity could be a goal in this perspective.
In this paper, we derive the M-R diagram, using

realistic EOS compatible with the LIGO constraints [53]
for a fðRÞ ¼ Rþ αR2 Lagrangian, using two different
approaches: the purely metric theory and a theory with
torsion that allows one to introduce the spin degrees of
freedom in GR [54]. In our specific model, the torsion field
is due to the nonlinearity of fðRÞ. Here the mass-energy is
the source of curvature and the spin is the source of torsion.
In this way, torsion contributions could provide additional
information for compact stars in extreme gravity regimes.
The goal of this paper is to obtain realisticM-R relation

by solving numerically a modified system of equations,
derived from Tolman-Oppenheimer-Volkoff (TOV) [55]
equations, and compare results with the LIGO constraints.
Specifically, we shall consider quadratic corrections to the
Ricci scalar and discuss models with and without torsion
comparing them with GR.
The paper is organized as follows. In Sec. II we derive

the TOV equations for fðRÞ gravity in the metric and
torsion formalism. Section III is devoted to the problems
related to the numerical aspects of TOV equations in fðRÞ
gravity. In Sec. IV we derive the numerical solutions of
stellar structure equations and compare the results of the
M-R relations. Discussion and conclusions are given
in Sec. V.

II. TOLMAN-OPPENHEIMER-VOLKOFF
EQUATIONS IN f ðRÞ GRAVITY

A. The metric theory

In the metric formulation, the action for fðRÞ gravity (in
units for G ¼ c ¼ 1) is given by

A ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðRÞ þ Lmatter�; ð1Þ

where fðRÞ is a function of the scalar curvature R, g is
determinant of the metric tensor gij and Lmatter is the matter
Lagrangian. Varying the action (1) with respect to the
metric tensor gij, one gets the field equations:

f0ðRÞRij −
1

2
fðRÞgij − ð∇i∇j − gij□Þf0ðRÞ ¼ 8πΣij: ð2Þ

In Eqs. (2), Rij is the Ricci tensor, f0ðRÞ denotes the
derivative of fðRÞ with respect to the scalar curvature,

Σij ¼ −2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgij is the energy-momentum tensor of

matter and □ ¼ 1ffiffiffiffi−gp ∂
∂xj ð

ffiffiffiffiffiffi−gp
gij ∂

∂xiÞ indicates the covariant
d’Alembert operator. Here we adopt the signature
ðþ;−;−;−Þ.
In order to describe stellar objects, we assume that the

metric is static and spherically symmetric of the form

ds2 ¼ e2ψdt2 − e2λdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ
where ψ and λ are functions depending only on the radial
coordinate r. We assume that the interior of the star matter
is described by a perfect fluid, with energy-momentum
tensor Σij ¼ diagðe2ψρ; e2λp; r2p; r2psin2θÞ, where ρ ¼
ρðrÞ and p ¼ pðrÞ are the matter density and pressure,
respectively.
By a direct calculation, it is possible to show that field

Eqs. (2), evaluated in the metric (3), are equivalent to a set
of equations consisting of the TOV equations for fðRÞ
gravity and a continuity equation given by the contracted
Bianchi identity∇iΣij ¼ 0. Specifically, the TOVequations
for fðRÞ gravity are

dλ
dr

¼ e2λ½r2ð16πρþ fðRÞÞ − f0ðRÞðr2Rþ 2Þ� þ 2R2
rf000ðRÞr2 þ 2rf00ðRÞ½rRr;r þ 2Rr� þ 2f0ðRÞ

2r½2f0ðRÞ þ rRrf00ðRÞ�
; ð4Þ

dψ
dr

¼ e2λ½r2ð16πp − fðRÞÞ þ f0ðRÞðr2Rþ 2Þ� − 2ð2rf00ðRÞRr þ f0ðRÞÞ
2r½2f0ðRÞ þ rRrf00ðRÞ�

; ð5Þ

while the continuity equation is

dp
dr

¼ −ðρþ pÞ dψ
dr

: ð6Þ

Here Rr and Rr;r denote, respectively, the first and second
derivative of RðrÞ with respect to radial coordinate r. In
order to solve numerically Eqs. (4)–(6), we can consider the
scalar curvature R as an independent dynamical field. In
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doing this, we need an additional equation which is directly
obtained from the definition of scalar curvature:

R¼2e−2λ
�
ψ2
r−ψ rλrþψ r;rþ

2ψ r

r
−
2λr
r
þ 1

r2
−
e2λ

r2

�
: ð7Þ

Indeed, inserting the content of Eqs. (4)–(6) into (7), we get
the dynamical equation for R:

d2R
dr2

¼ Rr

�
λr þ

1

r

�

þ f0ðRÞ
f00ðRÞ

�
1

r

�
3ψ r − λr þ

2

r

�
− e2λ

�
R
2
þ 2

r2

��

−
R2
rf000ðRÞ
f00ðRÞ : ð8Þ

Finally, the numerical solution of the resulting dynamical
equations relies on the assignment of a suitable EOS,
p ¼ pðρÞ, relating pressure and density inside the star, as
well as of initial data (i.e., values of the fields at the center
of the star).

B. The theory with torsion

In fðRÞ gravity with torsion, the gravitational and
dynamical fields are pairs (g, Γ) consisting of a pseudo-
Riemannian metric g and a metric compatible linear
connection Γ with nonvanishing torsion.
The corresponding field equations are obtained by

varying the action functional (1) independently with respect
to the metric and the connection. It is worth noticing that
now R refers to the scalar curvature associated with the
dynamical connection Γ.
Moreover, we recall that any metric compatible linear

connection Γ may be decomposed as the sum

Γij
h ¼ Γ̃ij

h − Kij
h; ð9Þ

where Γ̃ij
h is the Levi-Civita connection associated with the

given metric g and Kij
h denotes the contorsion tensor,

related to the torsion tensor Tij
h ¼ Γij

h − Γji
h by the

relation [56]

Kij
h ¼ 1

2
ð−Tij

h þ Tj
h
i − Th

ijÞ: ð10Þ

The contorsion tensor (10) verifies the antisymmetry
propertyKi

j h ¼ −Ki
h j and, together with the metric tensor

g, identifies the actual degrees of freedom of the theory.
Making use of Eqs. (9) and (10), we can decompose the

Ricci and the scalar curvature of the dynamical connection,
respectively, as

Rij ¼ R̃ij þ ∇̃jKhi
h − ∇̃hKji

h þ Kji
pKhp

h − Khi
pKjp

h

ð11Þ
and

R ¼ R̃þ ∇̃jKh
jh − ∇̃hKj

jh þ Kj
jpKhp

h − Kh
jpKjp

h;

ð12Þ

where R̃ij and R̃ are the Ricci and the scalar curvature of the
Levi-Civita connection induced by the metric g.
In the absence of matter spin density, variations of (1)

yield the field equations [57–61]

f0ðRÞRij −
1

2
fðRÞgij ¼ 8πΣij ð13Þ

and

Tij
h ¼ 1

2f0ðRÞ
∂f0ðRÞ
∂xp ðδpj δhi − δpi δ

h
j Þ; ð14Þ

where Σij denotes again the energy-momentum tensor of
matter and the nonlinearity of the gravitational Lagrangian
function fðRÞ becomes a source of torsion.
Now, by inserting Eqs. (11) and (14) into Eqs. (13), it is

possible to show that the whole set of field equations
evaluated in the metric (3) is equivalent to the system
formed by the following two TOV equations:

dλ
dr

¼
e2λ½r2ð16πρþ fðRÞÞ − f0ðRÞðr2Rþ 2Þ� þ 2R2

rf000ðRÞr2 þ 2r2f00ðRÞ½Rr;r þ 2Rr
r − 3f00ðRÞR2

r
4f0ðRÞ � þ 2f0ðRÞ

2r½2f0ðRÞ þ rRrf00ðRÞ�
; ð15Þ

dψ
dr

¼
e2λ½r2ð16πp − fðRÞÞ þ f0ðRÞðr2Rþ 2Þ� − 2rf00ðRÞRr½2þ 3f00ðRÞrRr

4f0ðRÞ � − 2f0ðRÞ
2r½2f0ðRÞ þ rRrf00ðRÞ�

; ð16Þ

together with the continuity equation

dp
dr

¼ −ðρþ pÞ dψ
dr

; ð17Þ

which also holds in the present case [62,63].
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Also in the torsional case, we consider the scalar
curvature R as an independent dynamical variable, intro-
ducing a consequent additional equation derived from the
very definition of R itself. In fact, inserting Eqs. (10) and
(14) into (12), evaluating all in the metric (3) and making
use of Eqs. (15) and (16), we obtain the evolution equation:

d2R
dr2

¼ Rr

�
λr þ

1

r

�
−
2f0ðRÞ
f00ðRÞ

�
1

r

�
3ψ r − λr þ

2

r

�

− e2λ
�
R
2
þ 2

r2

��
− R2

r

�
f000ðRÞ
f00ðRÞ þ

3f00ðRÞ
2f0ðRÞ

þ 3ψ r

Rr
þ 9

rRr

�
: ð18Þ

Again, in order to be solved, the set of dynamical
equations (15)–(18) for the unknowns R, λ, ψ , p and ρ
must be completed by an EOS and initial data.

C. The f ðRÞ=R+αR2 model

We consider here the specific form of fðRÞ:
fðRÞ ¼ Rþ αR2; ð19Þ

where α is the coupling parameter of the quadratic
curvature correction. This model is specially suitable to
account for cosmological inflation, where higher-order
curvature terms naturally lead to cosmic accelerated
expansion. The quadratic term emerges in strong gravity
regimes, while at Solar System scales and, more in general,
in the weak field regime, the linear term predominates.
This statement can be easily demonstrated because any

analytic fðRÞ model, in the weak field limit, presents a
Yukawa-like correction in the gravitational potential except
for fðRÞ ¼ R where only the Newtonian potential is
recovered. As shown in [64,65], such a correction is
relevant at very large scales (e.g., at galactic scales and
beyond [39]) with respect to the Solar System and does not
affect classical experimental constraints of GR. As a
consequence, R2 terms are relevant only in the strong field
regime.
Since the interior of a NS could present energy con-

ditions in some sense similar to those early Universe [15],
the model (19) is particularly suitable for our consider-
ations. In this model, Eqs. (4), (5) and (8) take the
explicit form

dλ
dr

¼ e2λ½16πr2ρ − 2 − αRðr2Rþ 4Þ� þ 4αðr2Rr;r þ 2rRr þ RÞ þ 2

4r½1þ αð2Rþ rRrÞ�
; ð20Þ

dψ
dr

¼ e2λ½16πr2pþ 2þ αRðr2Rþ 4Þ� − 4αð2rRr þ RÞ − 2

4r½1þ αð2Rþ rRrÞ�
; ð21Þ

d2R
dr2

¼ Rr

�
λr þ

1

r

�
þ 1þ 2αR

2α

�
1

r

�
3ψ r − λr þ

2

r

�
− e2λ

�
R
2
þ 2

r2

��
; ð22Þ

while Eqs. (15), (16) and (18) become, respectively,

dλ
dr

¼
e2λ½16πr2ρ − 2 − αRðr2Rþ 4Þ� þ 4α½r2Rr;r þ 2rRr þ R − 3αr2R2

r
2ð1þ2αRÞ� þ 2

4r½1þ αð2Rþ rRrÞ�
; ð23Þ

dψ
dr

¼
e2λ½16πr2pþ 2þ αRðr2Rþ 4Þ� − 4α½2rRr þ Rþ 3αr2R2

r
2ð1þ2αRÞ� − 2

4r½1þ αð2Rþ rRrÞ�
; ð24Þ

d2R
dr2

¼ Rr

�
λr þ

1

r

�
−
1þ 2αR

α

�
1

r

�
3ψ r − λr þ

2

r

�
− e2λ

�
R
2
þ 2

r2

��
− R2

r

�
3α

1þ 2αR
þ 3ψ r

Rr
þ 9

rRr

�
: ð25Þ

Clearly the torsion contributions emerge in the second
system. In the next section, we shall discuss numerical
solutions for the interior space-time of spherically sym-
metric NS in both metric and torsional fðRÞ ¼ Rþ αR2

gravity. Our aim is to compare the solutions of the above

two systems of differential equations in order to point out
the torsion contribution with respect to the purely metric
one.
In view of this, it is worth noticing that, in vacuo, fðRÞ ¼

Rþ αR2 gravity with torsion amounts to GR [57,61].
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Therefore, under the assumption of spherical symmetry, in
the case with torsion, the space-time outside the star has to
coincide with the Schwarzschild one. In order to compare
the two models, it is then reasonable and consistent
assuming the external Schwarzschild solution as the
space-time outside the star also in the case of purely metric
theory. It is worth noticing that the Schwarzschild external
solution is actually a vacuum solution for purely metric
fðRÞ ¼ Rþ αR2 gravity as demonstrated in [66,67].
Therefore, viable interior solutions, at the boundary,

have to match the external Schwarzschild solution. In this
regard, we recall that junction conditions for fðRÞ gravity
have been studied in [68] for the purely metric formulation
and in [62,63,69] for the theory with torsion. Referring the
reader to [68,69] for more details, we assume the following
junction conditions at the stellar radius:

λ ∈ C0; ψ ∈ C1; R ∈ C1

in the purely metric case; ð26Þ

λ ∈ C0; ψ ∈ C1;
dR
dr

∈ C0

in the torsional case: ð27Þ

Outside the star λ, ψ and R refer to the corresponding
Schwarzschild quantities. Equations (26) and (27) are the
conditions at the stellar radius to be satisfied by the
numerical solutions we shall investigate in the next
sections.

III. NUMERICAL ASPECTS OF THE TOV
EQUATIONS IN f ðRÞ=R+αR2 GRAVITY

The TOVequations presented in Sec. II, together with an
EOS, form a closed system of equations that can be solved
numerically once a suitable set of initial conditions are
provided. The EOS accounts for the behavior of the matter
fields in the NS at the nuclear level. However, it also
dominates the NS macroscopic properties as the total mass
M, radius RS and compactness C ¼ M=RS . The total
mass M and the radius RS may vary significantly depend-
ing on the state of matter in the NS interior where
C ≈ ½0.02; 0.25�, C ¼ 0.5 being the black hole solution.
On the other hand, the knowledge of the macroscopic
properties provides a direct insight to understand the
particle interactions, energy transport and state of the
matter in the NS core. Until recently, there were placed
only vague constraints on the EOS of NSs from electro-
magnetic observations [70]. The recent LIGO-Virgo binary
neutron star observation has significantly clarified the state
of art concerning the EOS physics. The largest accuracy of
the gravitational wave channel in relation to the electro-
magnetic observations allowed to rule out stiffer solutions
(less compact) thus reducing significantly the number of
astrophysically relevant EOS. In this section, we discuss

some aspects of the numerical solution of TOVequations in
the metric and torsional fðRÞ, formulations described
above, for four EOS compatible with the recent LIGO
constraints: APR4, MPA1, SLy, and WFF1 [71–74],
accurately described the piecewise polytropic fits provided
in [75].
Then, to solve numerically the TOV equations, we use a

dimensionless version of them by rescaling our physical
variables as

r → r=rg; R → R=r2g; p → P=P0; ρ → ρ=ρ0;

ð28Þ

where

rg ¼ GM⊙=c2; P0 ¼ M⊙c2=r3g; ρ0 ¼ M⊙=r3g;

ð29Þ
andM⊙ is the mass of the sun, rg is the gravitational radius
(≃1.5 km), G Newton’s gravitational constant and c the
speed of light. The two systems of differential equations
shown in Sec. II C take the following form:

p0 ¼ f1ðρ; p;ψ 0; rÞ; λ0 ¼ f2ðλ; R; R0; R00; ρ; rÞ;
ψ 0 ¼ f3ðλ; R; R0; p; rÞ; R00 ¼ f4ðλ; λ0;ψ 0; R; R0; ρ; rÞ;
p ¼ f5ðρÞ; ð30Þ
where the primed variables denote radial derivatives.
Therefore, we are left to setup five initial conditions
(ICs) for the variables fpð0Þ; λð0Þ;ψð0Þ; Rð0Þ; R0ð0Þg to
complete the numerical scheme. ICs are chosen at the
center of the star r ¼ 0 in order to preserve regularity, thus
preventing the generation of large gradients that may lead
to numerical instabilities. Mathematically, this involves that
any expansion around the NS center must have a zero first
derivative. In particular, the scalar curvature at the NS
center may be expanded as

Rðr → 0Þ ≈ Rð0Þ þ R0ð0Þrþ 1

2
R00ð0Þr2; ð31Þ

where regularity involves R0ð0Þ ¼ 0. Pressure and density
at the center ρð0Þ ¼ ρc and pð0Þ ¼ pc are given by the
EOS so they only depend on the type of fluid under
consideration. For the metric potential λ, it is natural to fix
λð0Þ ¼ 0, analogously to what happens in Newtonian
gravity, where the λðrÞ and ψðrÞ variables are matched
to the mðrÞ mass of the system by

e2λðrÞ ¼
�
1 − 2

mðrÞ
r

�
−1
; e2ψðrÞ ¼

�
1 − 2

mðrÞ
r

�
:

ð32Þ

Notice that the variable ψðrÞ does not enter directly in
our system of differential equations which implies that
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ψð0Þ can be defined up to any arbitrary constant. Therefore
we adjust ψð0Þ conveniently to match (i) the internal
solutions with the external Schwarzschild solution at the
stellar radius RS and (ii) to obtain asymptotically the
Oðr−1Þ profile as

λðr → ∞Þ ≈M
r
; ψðr → ∞Þ ≈ −

M
r

and

ρðr → ∞Þ ¼ 0; pðr → ∞Þ ¼ 0: ð33Þ

The star radius is ideally defined where the pressure pðRSÞ≈
0 though, in practice, and for numerical reasons, it is suffi-
cient to set a ground value ϵ as pðRSÞ=pc ≤ ϵ ∼ 10−10.
The fulfillment of Eqs. (33) requires one to find an

optimal choice for the Ricci scalar Rc ¼ Rð0Þ. In general,
this is achieved by shooting the central value Rc within
some sufficiently large range ½Rmin

c ; Rmax
c �, containing the

true value Rc. Then Rc is found by applying bijection root-
finding methods until Eqs. (33) are satisfied up to numeri-
cal tolerance. Unfortunately, the existence of such Rc
strongly depends on the particular form of the fðRÞ model,
giving rise to ghosts in case of an ill-defined configuration
of the model parameters. This is true for both metric and
torsional ðRþ αR2Þ theories discussed in this work. Then
we choose the sign of α to be the one that better matches the
junction conditions at the surface of the star (26) and (27)
for the metric and torsional theory, respectively. As we
evince in the following sections, the only choices that
reproduce not blowing up solutions are α > 0 for the metric
case and α < 0 for the torsion one. Unfortunately, these
choices generate some typical tachyonic oscillations due to
a bad behaved f00ðRÞ and that we could not remove
numerically. This effect was also reported in [76] and it
shows an oscillatory behavior, in the form of a damped
sinusoid outside the star, even in the minimally perturbed
scenario with α ≪ 1. These oscillations grow as the value
of α increases and they are as well propagated to our metric
potentials λðrÞ and ψðrÞ. This inserts some ambiguity in
defining the asymptotic conditions (33) for large r since the
oscillations are not totally vanished when the numerical
noise begins to dominate the solution (for r ∼ 100). To
overcome this issue and to reduce the amplitude of the
oscillations, we restrict our analysis to small values of
α ∈ ½0.001; 0.1�. As this is anyway consistent with current
observational tests, in doing so, we are not discarding any
relevant astrophysical scenario and this fact allows us to set
Rc ≈ RGR. This hypothesis is shown to have a minimal
impact in theM-R diagrams as we will discuss throughout
the next sections. Moreover, the assumption of a
Schwarzschild-type solution outside the star allows us to
smooth out these oscillations and to recover a good
fulfillment of the junction conditions. According to the
above positions, we justify the choice of α > 0 for the
metric theory and α < 0 for the torsional one.

Finally, the two systems of ordinary differential equa-
tions are solved by using an eighth-order Runge-Kutta with
adaptive step-size and high-stiffness control methods
implemented in the Wolfram Mathematica package [77].
These methods regulate the discretization step size by
estimating the error of the Runge-Kutta method point by
point ensuring the numerical convergence of the solution
step by step. The stiffness control methods use polynomial
extrapolation on the short regimes where the gradients
become too large. We have found these methods essential
to ensure the accuracy of the solutions in the torsional
formulation.

IV. NUMERICAL SOLUTIONS

We compute theM-R diagrams for metric and torsional
formulations of fðRÞ ¼ Rþ αR2 gravity. Due to the
numerical limitations found throughout our analysis, we
restrict jαj ∈ ½0; 0.1�, where α is required to be positive for
the purely metric theory and negative in the theory with
torsion to avoid blowing up solutions [76]. These values are
anyway consistent with Solar System tests of GR [76,78].
Such tests fix light constraints on the form fðRÞ ≲ 10−6

rather than on the parameter α, thus being translated as
Rþ jαjR2 ≲ 10−6. Bearing in mind that curvatures them-
selves are expected to be small, this leaves the parameter α
rather unconstrained. Other tests as Eöt-Wash laboratory
experiment set α ≲ 10−10 m2. On the contrary, there exist
alternative observational space-based constraints coming
from the Gravity Probe B experiment [79] or the obser-
vation of the binary pulsar PSR J0737-3039 [80,81] that set
α≲ ½5 × 1011; 2.3 × 1015� m2. Therefore, the discrepancies
among the several experiments do not set tight bounds on
the value of α, and our choice seems to be compatible with
existing data.

A. Purely metric theory

The solutions of the TOVequations for the purely metric
fðRÞ ¼ Rþ αR2 model are illustrated in Fig. 1. The
pressure at the center of the star pc drops quickly until
it eventually gets equal to zero, thus defining the radius of
the star RS. This radius is used as our reference point to
compute the total mass M by means of Eq. (32). The
numerical system exhibits some dissipative oscillations
about the Ricci scalar R and the metric potential λ.
These oscillations naturally arise from the harmonic form
of the Ricci scalar RðrÞ equation in vacuum [76], for a
nonoptimal choice of the Ricci scalar Rc at the center of the
star, and where optimal choice is here defined as that
matching the Schwarzschild junction conditions at the
stellar radius. Unfortunately, such a choice becomes
increasingly difficult as α tends to zero since the system
of equations become also stiffer [82]. Generally speaking,
this may appear to be counterintuitive, since α → 0
should exactly recover the GR space-time. However the
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asymptotic approach to α → 0 of the Ricci scalar equa-
tions (22)–(25) are ill defined. This is clear if, for instance,
one reexpresses (22) as

R00 ¼ −
e2λð8πðρ − 3pÞ þ RÞ

6α
− R0

�
−λ0 þ ψ 0 þ 2

r

�
: ð34Þ

Notice that the numerator of the first term is exactly zero in
GR and that ideally approaches to zero faster than linear
order in α. However, this is not so exact when dealing with
numerical uncertainties, where the same factor may behave
as a ∼0=0 solution for α ≪ 1, thus requiring much more
precision on the estimation of central value Rc. To over-
come this issue, we have set Rð0Þ ¼ RGR ¼ 8πð3pc − ρcÞ
to the GR value. Though this seems apparently an arbitrary
choice, we notice that, for α≲ 1, the solution must be close
to GR so the value cannot be further to that of GR. This is
self-evident from Fig. 2, where, in the right plot, we
illustrate the variations on the pressure pðrÞ and the
Ricci scalar RðrÞ for different choices of the central value
Rc ¼ fRGRc

; 0.2RGRc
; 2RGRc

g. Then, notice that the effect
of varying Rc on the radius R for such small values of α is

about ∼2% considering the maximum and minimum
choices of Rc. This variation is then compared with the
uncertainty arising from the definition of the star radiusRS
to be the place where the pressure drops by a factor ϵ. Then,
in the left plot, we show that the impact of relaxing this
value to ϵ ∼ 10−9 would generate an uncertainty of about
4%, thus larger than the one from varying Rc.
In Fig. 3, we show the behavior of the metric potentials

λðrÞ and ψðrÞ and the derivatives R0ðrÞ and ψ 0ðrÞ paying
special attention to (i) the junction conditions at the
NS boundary and (ii) their profiles as r → ∞. We show
the full numerical solution (blue line), its corresponding
Schwarzschild solution (orange line) given by Eqs. (32)
withM ¼ 1.43 M⊙ and the result of fitting the exterior data
to the same Schwarzschild-like ansatz in order to quantify
the agreement with the Schwarzschild solution outside
the star and which results in a NS with total mass
M ¼ 1.40 M⊙. The good agreement between the three
lines confirms that the solution is well approximated by the
Schwarzschild solution right outside the star radius better
than ∼2%. This good match is also extended to their
derivatives, thus globally satisfying the necessary junction

FIG. 1. Solutions of the TOVequations for GR (blue line) and purely metric Rþ αR2 with α ¼ 0.05 (orange line), using the SLy EOS.
All the plotted quantities show small deviations with respect to GR. Note the asymptotic decay of the metric potentials λ and ψ as
r → ∞. Our choice of α explains the oscillatory behavior as reported in [76].
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FIG. 2. Profiles for the pressure P (left) and the Ricci scalar R (right) corresponding to Rc ¼ fRGRc
; 0.2RGRc

; 2RGRc
g for the

fðRÞ ¼ Rþ αR2 model with α ¼ 0.1. In the enlarged plot for the pressure, the grid lines fix two possible values for the radius of the star
RS that depend on to the accuracy chosen in defining its position as pðRSÞ=pc ≤ f10−9; 10−10g providing a relative difference of about
4%. Complementary, on the right-hand side plot we show the R ¼ 0 point for different choices of the central value Rc. Notice that on the
latter the effects of choosing one or another Rc contribute in total about the ∼2% between 0.2RGRc

and 2RGRc
choices, thus this error

being smaller than our error estimate in defining RS.

FIG. 3. Results of our analysis with α ¼ 0.05 for λ and ψ (left plots) and the derivatives for R0 and ψ 0 (right plots) for the exact
numerical solution (blue line); the Schwarzschild solution (orange line) with massM ¼ 1.43M⊙; a Schwarzschild fit (green line) to the
numerical data outside the star, that is, with R > 11.6 km. We note that, for α small and averaging out all the oscillations, all physical
quantities reproduce rather well the Schwarzschild solution outside the star, while matching as well the junction conditions (26). From
the fitted results we get M ¼ 1.40M⊙, thus very close to the theoretical one.
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conditions of Eqs. (26) once the oscillations are averaged
out. On the other hand, since the oscillations do not appear
on ψðrÞ, we choose this quantity more appropriate to define
the NS mass M.
Finally, in Fig. 4, we show the M-R diagrams for the

four EOS considered in this work. For each choice of the
central density ρc, we get a different estimate of the radius
RS and the total mass M. We loop over ρc until
dM=dR ¼ 0, which defines the unstable branch, i.e.,
the point at which the NS is expected to collapse to a
black hole and that provides the maximum allowed mass
Mmax for the given EOS. Note that for all the EOS
considered, the total mass tends to increase with respect
to GR as in [18,82,83]. This is because gravity becomes
stronger, thus allowing more massive systems. Indeed, in
the fðRÞ ¼ Rþ αR2 scenario, Newton’s gravitational con-
stant G is replaced by

G → Geff ¼
G

f0ðRÞ ¼
G

1þ 2αR
: ð35Þ

The combined conditions of α > 0 and R < 0 imply then
Geff > G, thus generating a more attractive gravity.

B. Theory with torsion

We repeat the analysis for the torsional fðRÞ ¼ Rþ αR2

theory. Although further models have been also considered
in the literature, the numerical complexity of torsional
equations makes difficult a full exploration of other kinds
of fðRÞ functions. This issue becomes more relevant when
considering the torsional theory with spin [58], where spin
gradients add higher-order derivatives to our system of
equations that increase the stiffness of the numerical
system. We plan to extend our study in the presence of
spin matter in a forthcoming paper. Then, in Fig. 5, we
show the results we obtained for the theory with torsion,
using the same range for jαj as in the metric case but
choosing α < 0. In this scenario, we see that the general
trend predicts a decreasing of the total mass of the NS,
independently of the EOS considered. This could be related
with the fact that the stable branch of the solutions, given by
the sign of α, is reversed with respect to the purely metric

FIG. 4. M-R relations obtained within the purely metric formalism with α ¼ f0; 0.001; 0.01; 0.05; 0.1g for the four EOS considered
in this work. Note the general increase of the total mass as the quadratic term takes larger values, thus favoring the formation of more
massive objects than in standard GR.
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case to avoid ghosts. However, estimates for the total mass
and radius are still compatible with the astrophysical
observations [4], thus not allowing us to rule out any of
the models studied here. On the other hand, if we further
increase jαj, the errors generated by Eq. (25) and propa-
gated to the total mass M and the total radius RS become
too large. Therefore, we restrict our analysis to jαj ≤ 0.1. In
Fig. 6 we repeat the same Schwarzschild-based tests
adopted for the metric formalism for α ¼ 0.05. In this
case, the total mass M ¼ 1.37M⊙ is slightly diminished
with respect to the metric case. Notice that the
Schwarzschild solution is as well verified at the star radius
Rs, where the metric λðrÞ is clearly C0 and ψðrÞ still
preserves the C1 condition. Outside the star, and once the
oscillations are vanished, the metric functions λ and ψ still
preserve the 1=r decay.
Finally, in Fig. 7 we compare the different predictions

obtained in the purely metric and the torsional formulation,
respectively, for α ¼ 0.1. Note that, in the theory with
torsion, though the total mass of the NS decreases, while
it increases with respect to the metric case, the relative
deviations, in absolute value, with respect to GR seem to be

larger than in the metric case. This is caused by the effective
repulsion generated by the extra torsional terms [see
Eq. (25)] which induce a partial screening of the gravita-
tional field that prevents to reach NS masses as large as in
standard GR. This is explicitly shown in Table I, where we
show thevariation of themaximummassMmax, radiusRmax
and compactness C for the purely metric and torsional
theories, respectively, corresponding to the points in the
M-R diagrams where dM=dR ¼ 0. Note that whereas the
purely metric formulation tends to more massive and
compact NSs, the opposite occurs when considering torsion.
Specifically, as the quadratic term in the curvature increases,
the effects of torsion counterbalance the increase of total
mass. This can be intuitively derived by using the same
reasoning as in (35) with α < 0 and R < 0, implying
Geff < G and thus generating a less attractive gravity.
The stability of the solutions can be checked adopting

the so-called Regge-Wheeler-Zerilli formalism [84,85]. As
discussed in [86], perturbations in fðRÞ gravity models can
be dealt with by taking into account odd-type metric
perturbations and stability of geodesic motion around the
solution. In that case, a charged spherically symmetric

FIG. 5. AnalogousM-R relations to those of Fig. 4 but here obtained within the torsional formalism. The effect of the torsion tends to
decrease the total mass of the NS, contrary to what occurs in the purely metric case. This is dominantly caused by a sign flip on the α-
dependent part of Eq. (25) with respect to Eq. (22), which actually acts as a repulsive term.

P. FEOLA et al. PHYS. REV. D 101, 044037 (2020)

044037-10



black hole was considered and stability was strictly
dependent on the value of parameters as the black hole
mass, the cosmological constant and the electric charge. In
the present case, the leading parameter is α, which
determines the stability of solution M − R. According to
the values reported in Figs. 4, 5, and 7, both for metric and
torsional case, our numerical solutions result stable against
perturbations. Specifically, the stability region is given by
dM=dR ¼ 0, which determines the maximal stable con-
figuration as discussed above.
An important remark is in order at this point to justify the

result. According to the Regge, Wheeler [84], and Zerilli
[85] formalism, metric perturbations can be decomposed
according to their transformation properties under two-
dimensional rotations. These authors, originally, took into
account perturbations of the Schwarzschild metric in GR;
however, as shown in [86], the formalism depends on the
properties of spherical symmetry and then can be easily
applied to fðRÞ gravity.
If we denote the perturbed metric for a static spherically

symmetric space-time as gμν ¼ g0μν þ hμν, the tensor hμν

represents small perturbations with respect to the back-
ground. Under two-dimensional rotations, htt, htr and hrr
transform as scalars, hta and hra transform as vectors and
hab transforms as a tensor (a, b are either θ or ϕ). Any
scalar quantity Φ can be expressed as spherical harmonics
Ylmðθ;ϕÞ:

Φðt; r; θ;ϕÞ ¼
X
l;m

Φlmðt; rÞYlmðθ;φÞ: ð36Þ

In spherical symmetry, the solution is independent of the
indexm; therefore, this subscript can be omitted and we can
take into account only the index l, which represents the
multipole number arising from the separation of angular
variables by the expansion into spherical harmonics, that is,

Δθ;ϕYlðθ;ϕÞ ¼ −lðlþ 1ÞYlðθ;ϕÞ: ð37Þ

Any vector Va can be decomposed into a divergence part
and a divergence-free part as follows:

FIG. 6. Results of the analysis in the torsional case with α ¼ 0.05. We show the metric potentials λ and ψ (left plots) and the derivatives
for ψ 0 and R0 (right plots) for the exact numerical solution (blue line), the Schwarzschild solution (orange line) and a Schwarzschild fit
(green line) to the numerical data outside the star, that is with R > 11.6 km. Notice that once the oscillations are averaged out, all the
distributions satisfy (up to numerical accuracy) the junction conditions.

MASS-RADIUS RELATION FOR NEUTRON STARS IN … PHYS. REV. D 101, 044037 (2020)

044037-11



Vaðt; r; θ;ϕÞ ¼ ∇aΦ1 þ Eb
a∇bΦ2; ð38Þ

where Φ1 and Φ2 are two scalars and Eab ≡ ffiffiffiffiffiffiffiffiffi
det γ

p
ϵab.

Here γab is the two-dimensional metric on the sphere and
ϵab is the totally antisymmetric tensor with ϵθφ ¼ 1; ∇a is
the covariant derivative with respect to γab. Since Va is a
two-component vector, it is completely specified byΦ1 and
Φ2. Then we can apply the decomposition (36) to Φ1 and
Φ2 to decompose the vector quantity Va into spherical
harmonics. The variables related to Eab are (axial) odd-type
modes and the others are (polar) even-type modes. This
decomposition is useful because, in the linearized equations
of motion (or equivalently, in the second-order action) for
hμν, odd-type and even-type perturbations are completely
decoupled. This fact is due to the invariance of the
background metric under parity transformations.
Therefore, one can study odd-type and even-type pertur-
bations separately. The difference between the two families
is their parity. Under the parity operator π a spherical
harmonic with index l transforms as ð−1Þl. The polar
perturbations transform, under parity, in the same way. On
the other hand, the axial perturbations transform as

ð−1Þlþ1. Using the Regge-Wheeler formalism, metric
perturbations can be written as

htt ¼ 0; htr ¼ 0; hrr ¼ 0; ð39Þ

hta ¼
X
l;m

h0;lmðt; rÞEab∂bYlmðθ;φÞ; ð40Þ

hra ¼
X
l;m

h1;lmðt; rÞEab∂bYlmðθ;φÞ; ð41Þ

hab ¼
1

2

X
l;m

h2;lmðt; rÞ½Ea
c∇c∇bYlmðθ;φÞ

þ Eb
c∇c∇aYlmðθ;φÞ�: ð42Þ

From the gauge transformation xμ → xμ þ ξμ, where ξμ are
infinitesimal, we can show that not all the metric perturba-
tions are physical and some of them can be set to vanish.
We can consider the transformation

ξt ¼ ξr ¼ 0; ξa ¼
X
lm

Λlmðt; rÞEa
b∇bYlm; ð43Þ

FIG. 7. M-R relations for α ¼ 0.1 in GR (blue line), metric (green line) and torsion (orange line) for the four EOS considered in this
work. The torsion contributions tend to decrease the total mass of the system.
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where Λlm can always set h2;lm to vanish (Regge-Wheeler
gauge). By this procedure, Λlm is completely fixed and
there are no remaining gauge degrees of freedom.
According to this result, the only relevant perturbations
are the odd ones. See also [87] for details.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the existence of realistic
NSs in the context of the fðRÞ ¼ Rþ αR2 theory both in
purely metric and torsional formulations. The main results
concern the computation of the M-R diagrams resulting
from the two different theoretical frameworks considered.
Matter fields have been represented by static and spheri-
cally symmetric perfect fluids where the EOS have been
chosen to agree with the recent LIGO-Virgo constraints
[53]. The parameter α has been restricted to be smaller than
jαj ≤ 0.1 to avoid unrealistically large oscillations (see e.g.,
[76]) on our metric potentials and therefore ensuring (i) the
fulfillment of junction conditions and (ii) the accurate
recovery of the Schwarzschild solution far from the source.
These two requirements single out four of the five initial
conditions: pð0Þ, λð0Þ, ψð0Þ and R0ð0Þ, while Rð0Þ remains
free. Rð0Þ is ideally defined by choosing this parameter in
such a way to match the junction conditions (26) and (27).
However, the oscillatory behavior of some solutions for
r → ∞ prevents from finding a unique value for Rð0Þ. To
overcome this issue, we have set Rð0Þ ¼ RGR identical to

the GR value. This assumption have been shown to be valid
for small α, the estimates of the NS radius being only
mildly dependent on the Rð0Þ choice, but this is no longer
true for α≳ 1.
However, a general consideration is in order at this point

to justify the assumption Rð0Þ ¼ RGR. Let us consider the
trace of field equations in metric

f0ðRÞR − 2fðRÞ þ 3□f0ðRÞ ¼ 8πΣ ð44Þ

and in torsion case

f0ðRÞR − 2fðRÞ ¼ 8πΣ: ð45Þ

Substituting fðRÞ ¼ Rþ αR2, we have, in the metric case,

6□R − R ¼ 8πΣ ð46Þ

and, in the torsion case,

R ¼ −8πΣ: ð47Þ

For the metric picture, it is reasonable to suppose that, at the
center of the star, □R ≃ 0 because one can assume a
constant central density without remarkable variations and
gradients [88]. For the torsion picture, we recover exactly
the trace of GR. According to these results, the assumption

TABLE I. Parameters of neutron stars for the EOS considered in this work for the α values for the (19) models in
the metric formalism and in a torsion theory. The case α ¼ 0 is the standard GR.Mmax andRmax are the maximum
values of mass and radius, respectively. The superscripts stand for the (M) metric formalism and (T) torsional
formalism, where CðMÞ and CðTÞ refer to the compactness Mmax=Rmax.

EOS jαj MðMÞ
max M⊙ RðMÞ

max Km CðMÞ M⊙=Km MðTÞ
max M⊙ RðTÞ

max Km CðTÞ M⊙=Km

WWF1 0 2.13 9.29 0.23 2.13 9.29 0.23
0.001 2.13 9.29 0.23 2.13 9.29 0.23
0.01 2.14 9.28 0.23 2.11 9.30 0.23
0.05 2.19 9.21 0.24 2.06 9.28 0.22
0.1 2.20 9.24 0.24 2.02 9.31 0.21

APR4 0 2.19 9.88 0.22 2.19 9.88 0.22
0.001 2.19 9.91 0.22 2.19 9.88 0.22
0.01 2.20 9.88 0.22 2.18 9.91 0.22
0.05 2.23 9.85 0.23 2.13 9.91 0.21
0.1 2.24 9.92 0.23 2.10 9.91 0.21

SLy 0 2.05 9.97 0.20 2.05 9.97 0.20
0.001 2.05 9.94 0.20 2.05 9.94 0.20
0.01 2.06 9.97 0.21 2.04 9.98 0.20
0.05 2.08 9.94 0.21 2.00 9.96 0.20
0.1 2.10 10.02 0.21 1.98 9.98 0.20

MPA1 0 2.45 11.28 0.22 2.45 11.28 0.22
0.001 2.45 11.30 0.22 2.45 11.26 0.22
0.01 2.47 11.26 0.22 2.44 11.30 0.22
0.05 2.50 11.28 0.22 2.40 11.26 0.21
0.1 2.51 11.30 0.22 2.37 11.26 0.21
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Rð0Þ ¼ RGR, besides the above numerical considerations,
is fully justified.
In the purely metric theory, the obtained results show a

progressive increasing of the total mass as jαj increases, for
all four EOS considered. This allows for higher masses and
more compact NSs than in GR. This absolute increasing of
the mass and compactness could be also reproduced by
assuming softer EOS in GR, consistent with the recent
observations [53]. In the case with torsion, the NS mass
tends to decrease for all the EOS considered. This could be
related with the fact that the stable branch of the solutions is
flipped with respect to the purely metric case to ensure the
stability of the numerical system. The physical existence of
such solutions could help us to describe NSs compact or
not, based on astrophysical observations, choosing the
appropriate theory by simply constraining whether α is
positive or negative. In the torsional framework, the
differences in the M-R predictions with respect to GR
are larger than those obtained in the purely metric case. As
a consequence, the allowed intervals on α are poles apart
from the two theories. Moreover, the theory with torsion
would seem to describe less compact NSs. This would

allow one to obtain solutions that could be reproduced
using EOS with stiff matter in the limit of GR.
Unfortunately, this is in disagreement with the recent
LIGO-Virgo discoveries [53]. What comes to the rescue
is that given the current accuracy of electromagnetic
observations, we cannot deny the NS observations yet
because the differences with the GR are still too small.
However, this issues could be addressed by next-generation
gravitational wave detectors (3G) [89–91], where the
opportunity to test results presented in this work could
be realistic.
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