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Abstract States of a generic quantum field theory on a curved spacetime are considered which satisfy

the KMS condition with respect to an evolution associated with a complete (Killing) vector field. It is

shown that at any point where the vector field is spacelike, such states cannot satisfy a certain microlocal

condition which is weaker than the microlocal spectrum condition in the case of asymptotically free fields.

1 Introduction

In the standard framework of quantum statistical mechanics [3] the observables of a quantum
system are described by the self-adjoint elements of a non-commutative C∗-algebra A with a
unit element 1. A time-evolution is described by a one-parameter group of ∗-automorphisms
{αt}t∈R acting on A that is (weakly) continuous in t. Together, A and {αt}t∈R form a C∗-
dynamical system. In this framework, a state ω on A is described by a linear functional which is
normalized, ω(1) = 1, and positive, ω(A∗A) ≥ 0 (A ∈ A). The evaluation of ω on an observable
A ∈ A, denoted ω(A) ≡ 〈A〉ω , is interpreted as the expectation value.

The class of all states on a C∗-dynamical system is very large and it is known from examples
that there are states that correspond to unphysical scenarios like infinite energy densities or infi-
nite pressures. For this reason it is essential to select a class of simple states that do correspond
to physically realistic configuations of a system. A particularly important class is furnished by
states which describe systems in equilibrium with a thermal bath at a fixed temperature. Such
states are characterized by a very small number of parameters, like their temperature and chem-
ical potential. Thus, for such states, the expectation values of physically relevant observables
are functions of these parameters, and furthermore, relations between different expectation val-
ues are described by equations of thermodynamical (thermostatic) nature. Prime examples of
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equilibrium states are the well-known Gibbs states [11], which are used to model the canonical
ensemble of quantum particles at fixed temperature in a box. A generalization of Gibbs states is
the class of states that satisfy the Kubo-Martin-Schwinger (KMS) condition [12] with respect to
the system’s time-evolution {αt}t∈R (see Definition 2.1). States which satisfy the KMS condition
are called KMS states, and they can also be defined for more general settings, where e.g. A may
be a more general ∗-algebra than a C∗-algebra.

The KMS condition is so versatile that it can be used to characterize equilibrium states for
non-relativistic or relativistic quantum field theories both on flat and curved spacetimes. In
this letter we are interested in analyzing KMS states for relativistic quantum field theories on
a (possibly curved) spacetime M with spacetime metric g. In this case, the simplest concept of
time-evolution, generalizing the time-translations on Minkowski spacetime, is tied to spacetimes
with a smooth Killing vector field χ, which generates a one-parametric group of isometries for
the spacetime metric. In order to interpret the group of isometries as time-translations, it
is natural to assume that χ is everywhere timelike, so the spacetime is stationary. However,
it is interesting to notice that it is not uncommon for spacetimes to admit isometry groups
generated by Killing vector fields which are timelike in some regions of spacetime and spacelike
in other regions. The most prominent example is furnished by the rotating Kerr black hole
[29], whose outer horizon is the bifurcate Killing horizon of a Killing vector field that is timelike
just outside of the outer horizon, but which becomes spacelike far away from and inside of the
black hole region. This prompts the obvious question if global KMS states with respect to the
corresponding one-parameter evolution exist in such cases.

As will be outlined in Section 3 a well-defined quasifree KMS state with respect to spacelike
translations can be constructed for free Fermi fields1 on flat spacetime, however, we will see that
the obtained state is not admissible in a sense to be discussed below (see Section 2 for the full
definition).2 In particular, the state will not be of Hadamard type. For free bosonic fields on
Minkowski spacetime the very same construction does not lead to the definition of a well posed
two-point function of a state because of infrared divergences. For general quantum field theories
on Minkowski spacetime, satisfying locality and translation invariance, it follows from the work
of Trebels [27] that a vacuum state cannot be a KMS state for the flow of a Killing field χ in
regions where χ is spacelike. (This can happen when χ is timelike, e.g. in the Unruh effect, cf.
[30].)

In the setting of curved spacetimes, for the particular case of the Kerr spacetime and a free
quantized scalar field, satisfying the covariant Klein-Gordon equation, Kay and Wald invoked
a superradiance property to argue that Killing field invariant Hadamard states do not exist
[17]. For a class of states which satisfy the KMS condition they note that the superradiance

1Throughout this paper we will call a theory free when the dynamical fields satisfy a linear field equation.
2A very general statement on the inconsistency of the KMS condition for spacelike translations is made in

[2], but there appears to be an error in the proof of Lemma 3.6 of that reference concerning entire holomorphic
functions of exponential type. The statement in [2] would rule out the aforementioned Fermi field KMS states for
spacelike translations on the even part of the Fermi field algebra; however the result in Sec. 3 shows they exist.
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assumption may be dropped. Indeed, implicitly they have shown that for a quantized Klein-
Gordon field on any globally hyperbolic spacetime with a Killing field χ that becomes spacelike
there can be no quasifree KMS states satisfying additional regularity conditions (see the corollary
to Lemma 6.2 and the first two paragraphs of Section 6.4 in loc.cit.).3

In this regard, it is worth noting that the microlocal spectrum condition, a generalization of
the Hadamard condition, is by now recognized to be an unavoidable requirement for states of
quantum fields to be viewed as physically realistic[5, 8, 7, 30]. Moreover, KMS states for linear
quantum fields on a stationary spacetime, where the corresponding Killing vector field is every-
where timelike, have been shown to fulfill the microlocal spectrum condition [20]. The existence
of KMS states for quantized linear fields on stationary spacetimes has also been established, see
[24] and references cited therein.

In this note we show that KMS states cannot be admissible in the neighborhood of points
where the vector field χ is spacelike. No particular form of field equation needs to be assumed for
the quantum field, i.e. the argument is model-independent. The term “admissible”, defined in
Sec. 2, is closely related to the microlocal spectrum condition and for free fields it is equivalent to
it. Neither the regularity conditions on the KMS state used in [17], nor the global hyperbolicity
of M nor the Killing property of χ are required in our proof.

To motivate the admissibility condition that we shall impose on states of a quantum field on
a curved spacetime in Sec. 2, let us first briefly recall here the microlocal spectrum condition
in its simplest form, i.e. for a scalar quantum field φ. The spacetime M is assumed to be
time-oriented and globally hyperbolic. The ∗-algebra A of observables is generated by the set
{φ(f) | f ∈ D(M)} formed by quantum field operators smeared with smooth test functions.
A state ω on A is determined by the n-point functions wω

n(f1, . . . , fn) = ω(φ(f1) · · · φ(fn))
(fj ∈ D(M)) which, by definition, are (or rather, extend to) distributions in D(Mn). The
microlocal spectrum condition for a state ω is a condition of the form WF(wω

n) ⊂ Γn on the
wave front sets of the distributions wω

n . We refer to [15] for the concept of wave front set for
distributions on a manifold, and to [5] for the definition of the sets Γn in the microlocal spectrum
condition. Informally, this condition imposes an upper bound on the allowed singularities of the
n-point functions.

The microlocal spectrum condition is motivated by the work of Radzikowski [19], who showed
that for a free scalar field the Hadamard condition [17, 30] on the two-point function wω

2 is
equivalent to the microlocal condition4

WF(wω
2 ) =

{

(x,−k;x′, k′) ∈ T ∗M × T ∗M \ {0} | (x′, k′) ∈ N
− ,

(x, k) ∼ (x′, k′)
}

, (1)

3We are grateful to an anonymous referee for pointing out this implicit result.
4 Here, 0 denotes the zero section in T ∗M×T ∗M . Writing (x, k) for an element in T ∗M means that k ∈ T ∗

xM ,
i.e. x denotes the point in the base manifold M at which the cotangent vector k is “affixed”.
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where N− is the set of past-directed lightlike co-vectors of M , i.e. g−1(k′) is a lightlike vector
and k(v) < 0 for any future pointing tangent vector v of M at x.5 Furthermore, (x, k) ∼ (x′, k′)
means that x and x′ are joined by a null geodesic γ and g−1(k) and g−1(k′) are tangent to γ and
coincide up to parallel transport along γ. Analogous statements have been proved for other types
of quantized fields that are subject to linear hyperbolic field equations [21]. Moreover, for such
fields, (1) is equivalent to the 2-point part of the microlocal spectrum condition, WF(wω

2 ) ⊂ Γ2

[26], and for any fields satisfying canonical commutation or anti-commutation relations, it is
equivalent to the full microlocal spectrum condition [22]. The microlocal spectrum condition
has also been generalized to encompass the extended algebra of Wick polynomials of free fields on
flat and curved spacetimes [5] and the use of microlocal techniques has opened up the possibility
of a local covariant perturbative construction of interacting field theories on curved spacetimes
[4, 13, 14]. In [8] it has been shown that the microlocal spectrum condition is not only sufficient,
but also necessary for a state to be well-defined on the extended algebra of Wick polynomials.
In the light of these results, demanding that states satisfy the microlocal spectrum condition
can surely be viewed as non-negotiable in local covariant quantum field theory.

Worth noting is the equality in (1): the specification of WF(wω
2 ) is a restriction both from

“above” and “below”, which is stronger than the condition WF(wω
2 ) ⊂ Γ2. The admissibility

condition that we shall impose in Sec. 2 is in fact a lower bound on WF(wω
2 ), namely that

it contains all lightlike co-vector pairs (x,−k;x, k) with (x, k) ∈ N−. This condition follows
from (1), so it holds for free fields. More generally it is a local and covariant remnant of the
Lorentz covariance of the spectrum condition familiar from quantum field theory in Minkowski
spacetime.

In the following section we will delineate the precise assumptions and present the proof.

2 Result

We consider a spacetime (M,g), where M is a four dimensional, oriented and time-oriented,
smooth manifold and g is a Lorentzian metric of signature (−,+,+,+). An additional as-
sumption could be that (M,g) is globally hyperbolic, but our proof below does not require it.
Furthermore, we consider a non-commutative ∗-algebra A generated by a unit element 1 and
“smeared quantum field operators” φ(F ) where F stands for any smooth, compactly supported
section of a given complex vector bundle E over M of some finite dimension N .6 We denote
by Γ the action of a fibrewise anti-linear involution on E and we also assume that it induces
a continuous map Γ : D(E) → D(E), where D(E) denotes the space of smooth, compactly
supported sections of E, equipped in the usual manner with the D-topology. For simplicity we
also impose φ(F )∗ = φ(ΓF ).

We also assume that E admits a complete smooth vector field V which projects down to a

5Using index notation, g−1(k) reads gµνkν , and k(v) reads kµv
µ.

6 The φ(F ) need not be represented as operators on some Hilbert space, but may well be elements of an
“abstract” algebra.
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smooth, complete vector field χ on (M,g). These vector fields generate one-parameter groups
of diffeomorphisms, {ηt}t∈R on E and {τt}t∈R on M . Furthermore, we assume that Γ commutes
with ηt and that the diffeomorphism groups induce a one-parametric evolution group of ∗-
automorphisms {αt}t∈R on A by

αt(φ(F )) := φ(Ψt(F )), Ψt(F ) := η−t ◦ F ◦ τt.

Then A together with {αt}t∈R is a ∗-algebraic dynamical system. For our discussion it is not
necessary to be more specific than this. In particular, we don’t assume any field equations to be
fulfilled by the φ(F ). The hypotheses we are imposing are completely general and are satisfied
by various free or interacting fermionic or bosonic fields.

Consider a state ω on A, i.e. a linear functional on A → C which is positive (ω(A∗A) ≥ 0
for all A ∈ A) and normalized (ω(1) = 1). Let us write the associated two-point function as

wω
2 (F,F

′) := ω(φ(F )φ(F ′)).

We assume that the map
(F,F ′) 7→ wω

2 (F,F
′)

gives rise to a distribution over compactly supported smooth sections7 D(E)⊗D(E) of the outer
product bundle E ⊠ E over M ×M (see e.g. [20] Sec.3.3 for a definition).

Below, it will turn out useful to consider a Hilbert space-valued distribution associated
with the two-point function wω

2 which is obtained by the GNS construction (see e.g. [9] for a
description of the GNS representation of a unital ∗-algebra associated with a state). For the
sake of self-containedness, we describe how that Hilbert space-valued distribution is obtained.
The positivity of the state implies that

wω
2 (ΓF,F ) ≥ 0,

so that wω
2 defines a semi-definite sesquilinear form on D(E) by (F,F ′) 7→ wω

2 (ΓF,F
′). The

sections F ∈ D(E) with wω
2 (ΓF,F ) = 0 form a linear spaceK, by the Cauchy-Schwarz inequality.

We denote the equivalence classes in D(E)/K by [F ] and we complete this quotient space to a
Hilbert space H using the inner product

〈[F ], [F ′]〉 := wω
2 (ΓF,F

′).

It will be convenient to consider the H-valued map D(E) → H defined by F 7→ [F ], which we
will write as

F 7→ φ(F )Ω.

7Here we really mean D(E ⊠ E), which is the completion of D(E) ⊗ D(E) in the (unique) locally convex
topology derived from the (nuclear) test-function topology on D(E).
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For good reason, this is reminiscent of the GNS representation; φ(F ) is the representer of φ(F )
in the GNS representation and Ω is the GNS vector. We note that

〈φ(F )Ω,φ(F ′)Ω〉 = wω
2 (ΓF,F

′)

and that the map F 7→ φ(F )Ω is an H-valued distribution, because wω
2 is a distribution; see

[26] for details.

Definition 2.1. A state ω on A satisfies the KMS condition with respect to {αt}t∈R at inverse
temperature β if, for every A,B ∈ A the function

t 7→ ω(Aαt(B)) (t ∈ R)

has a continuous and bounded extension to the closed strip

Sβ = {t = t+ is ∈ C | 0 ≤ s ≤ β , t ∈ R}

which is analytic in the open interior of Sβ and satisfies

ω(Aαt+iβ(B)) = ω(αt(B)A) (t ∈ R) .

The state ω is then called a KMS state at inverse temperature β with respect to the one-
parametric evolution group {αt}t∈R. (Cf. e.g. [18] and references cited there; the KMS condition
carries over from the C∗-algebra setting in an obvious way to states and continuous automor-
phism groups on more general unital ∗-algebras.)

One can show that KMS states are necessarily invariant under all the αt. This invariance is
typically incompatible with the dynamics of the field, unless the evolution τt is given by isometries
of the spacetime, i.e. χ is a Killing field. For our result, however, this Killing property will not
be required.

If ω is a KMS state at inverse temperature β, then the 2-point function satisfies properties
analogous to those listed in Def. 2.1, in particular wω

2 is invariant under the action of ηt and τt
in the sense that

wω
2 (Ψt(F ),Ψt(F

′)) = wω
2 (F,F

′)

and the KMS condition implies that for any F,F ′ ∈ D(E) the map

t 7→ wω
2 (F,Ψt(F

′))

has a bounded and continuous extension to the strip Sβ, analytic in the interior, such that

wω
2 (F,Ψt+iβ(F

′)) = wω
2 (Ψt(F

′), F ) (t ∈ R) .

Definition 2.2. We say that a state ω on A is admissible at x ∈M if

WF(φ(.)Ω) ∩ T ∗
xM ⊃ N

−
x ,

where N−
x = N− ∩ T ∗

xM and N− ⊂ T ∗M is the set of past-directed lightlike co-vectors. We call
ω admissible if it is admissible at all x ∈M , or equivalently when

WF(wω
2 ) ⊃

{

(x,−k;x, k) | (x, k) ∈ N
−
}

.
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We note that WF(φ(.)Ω) is the wave front set of the Hilbert space-valued distribution F 7→
φ(F )Ω, cf. [26]. The equivalence in the definition follows from Prop. 6.1 of [26]. As discussed
in the Introduction, for the quantized Klein-Gordon field the microlocal spectrum condition at
the level of 2-point functions implies this admissibility condition (cf. eqn. (1)) and this holds
also for other types of quantized fields that are subject to a linear hyperbolic equation, like the
Dirac field and the vector potential [21].

Our admissibility condition can even be expected for many reasonable interacting theories.
Indeed, let us suppose that the theory is asymptotically free in the sense that at every point
x ∈M the state ω has a short-distance scaling limit ωx at x [9], such that the scaling limit state
ωx is the vacuum state of a free quantized field on TxM ≃ Minkowski spacetime. Combining
Prop. A.2 of [23] (see also Prop. 2.8 of [21], cf. also [28]) for scaling limits of distributions with
the results of [26] we find in this case

WF(φ(.)Ω) ⊃ {(x, k) | (0, k) ∈ WF(φ0(.)Ωx)} ⊃ N
− ∩ T ∗

xM.

where φ0 refers to the scaling limit quantum field. Taking the union over all x ∈M we conclude
that ω is admissible.

Theorem. Consider a KMS state ω at inverse temperature β with respect to the evolution

induced by the complete smooth vector field V on E with projection χ on M . If χ is spacelike at

a point x ∈M , then ω is not admissible at the point x.

For quantum fields satisfying a linear hyperbolic equation, the proof of this statement is actually
contained in the proof of Thm. 5.1 of [20] (the assumption made in this reference that the Killing
vector field is timelike does not enter in the proof). However, here we give a different proof.

Proof. Since every β-KMS state is invariant under the evolution Ψt, there is a strongly contin-
uous unitary group U(t) = eitH on H, generated by a self-adjoint operator H, such that

eitHφ(F )Ω = φ(Ψt(F ))Ω

for all F ∈ D(E). Moreover, due to the β-KMS condition, the map

t 7→ eitHφ(F )Ω

is bounded and continuous on the strip Sβ/2 and holomorphic on the interior ([18] Prop. 8.14.2).
Now consider a coordinate system (ξ,O) which contains x and is adapted to τt. This means

that for any point y ∈ O with ξ(y) = (y0, y1, y2, y3) we have

ξ(τty) = (y0, y1 + t, y2, y3), for all t ∈ R such that τty ∈ O.

Shrinking O if necessary we may also introduce a frame {e1, . . . , eN} for E on O such that
Ψt(ej) = ej for each j = 1, . . . , N at all points where both sides are defined. (We may first
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choose such a frame on the hypersurface y1 = 0 and then use the evolution Ψt to extend it.)
For each j = 1, . . . , N we consider the H-valued distribution Gj on (0, β/2) × O defined by

Gj(η, f) = e−ηHφ(fej)Ω,

where f is in D(O). Gj is seen to satisfy (∂y + i∂η)Gj = 0, so it is holomorphic in y + iη, and
its boundary value as η → 0 is the distribution f 7→ φ(fej)Ω. Although Gj is not a smooth
function, we can still conclude as in Thm. 2.8 of [26] that

WF(φ(.ej)Ω) ∩ T
∗
xM ⊂ {(x, k) ∈ T ∗M | k(χ) ≥ 0} ;

in fact, the proof of Thm. 2.8 of [26] can be seen by inspection to generalize to the case that
the Gj( . ) are distributions analytic in y + iη, on observing that |Gj(η, y, f)| ≤ C||f ||m for a
Sobolev norm of sufficiently high degree m, for all f(y0, y2, y3) supported in a fixed compact set
and a constant C > 0, uniformly in (η, y). (See also Thm. 8.1.6 of [15].)

Combining the components φ(.ej)Ω of the distribution φ(.)Ω we find (cf. [21])

WF(φ(.)Ω) ∩ T ∗
xM ⊂

N
⋃

j=1

WF(φ(.ej)Ω) ∩ T
∗
xM ⊂ {(x, k) ∈ T ∗M | k(χ) ≥ 0}.

However, when χ is spacelike at x, there is a dual null vector k at x such that k(χ) < 0, so we
cannot have N− ⊂ WF(φ(.)Ω), i.e. ω cannot be admissible at x.

3 The case of Fermi fields on flat spacetime

In this section we shall discuss the existence of KMS states for Fermi fields with respect to
spacelike translations in a four dimensional Minkowski spacetime. The state we shall obtain will
however be inadmissible in the sense of Section 2.

In order to construct the desired KMS state for free Fermi fields we need just consider the
two-point function, because we choose the state to be quasi-free. This two-point function can be
explicitly constructed as follows. Consider a free Dirac field ψ on Minkowski spacetime.8 The
two-point function of a KMS state ω with respect to spacelike translations along the direction
determined by the normalised spatial vector ej and implemented by the one parameter group
of ∗−automorphisms αs(ψ(x)) = ψ(x − sej) can be constructed out of the anticommutator
function S(x, y) = ω(ψ(x)ψ†(y)) + ω(ψ†(y)ψ(x)) which defines the CAR relations. Since S
is a translation-invariant Schwartz distribution we can consider its Fourier transform Ŝ and
multipliying it with the corresponding Fermi factors we obtain

ŵω+
2

(k) =
Ŝ(k)

e−βkj + 1
, ŵω−

2
(k) =

Ŝ(k)

e+βkj + 1
,

8We refer to [23] for details about the quantization of Dirac fields and for the form of the distribution S

implementing the CAR.
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where kj = 〈k, ej〉. The functions e±izkj (e∓βkj + 1)
−1

are smooth, bounded functions on R
4 for

every Im(z) ∈ [0, β], furthermore, they are positive for z = 0, hence also ŵω±
2

(k) are Schwartz
distributions. Furthermore, their inverse Fourier transforms define the two-point functions of a
quasi-free state ω(ψ(x)ψ†(y)) = wω+

2
(x − y) and ω(ψ†(y)ψ(x)) = wω−

2
(x − y). This state is a

KMS state with respect translations along the direction ej at inverse temperature β, however it
cannot be a Hadamard state as proved in Section 2.

For quantized bosonic fields on Minkowski spacetime fulfilling a linear hyperbolic field equa-
tion, a similar procedure cannot be applied. Actually, if one tries to construct the relevant
two-point functions of extremal KMS states multiplying the commutator function with the
appropriate Bose factor in the Fourier domain along the lines of [6], some divergences are en-
countered. These divergences are due to the fact that the Bose factor with respect to spacelike
translations is not locally integrable in momentum space.

4 Summary and Outlook

We have shown that for quantum fields on curved spacetimes obeying minimal assumptions, a
microlocal admissibility condition for the 2-point function of a state is locally incompatible with
the KMS condition with respect to a spacelike evolution group. For free or asymptotically free
fields this implies an incompatibility with the microlocal spectrum condition, which is stronger.

As indicated, there are examples of spacetimes that are considered to be of physical relevance,
such as the rotating Kerr black hole spacetimes, possessing Killing vector fields which are timelike
in some (accessible) region of spacetime and spacelike in other (accessible) regions. Therefore,
quantum field states that fulfill the admissibility condition can only satisfy the KMS condition
in the regions of spacetime where the Killing vector field of the evolution group is not spacelike.
There are examples for such behaviour already in Minkowski spacetime: By the Bisognano-
Wichmann Theorem [1], the vacuum state of any Wightman-type quantum field theory restricts
to a KMS state at inverse temperature 2π with respect to the action of a one parametric group
of Lorentz boosts on the algebra of field operators localized in the Rindler wedge region W
of spacetime containing all boost trajectories such that the associated Killing vector field is
timelike and future-directed. On the algebra of the causal complement −W of that region, the
vacuum state restricts to a KMS-state at inverse temperature −2π with respect to the same
one-parametric group of Lorentz boosts. In the (open) complement of W ∪ −W in Minkowski
spacetime, the trajectories of the one-parametric group of Lorentz boosts are spacelike, and the
vacuum state has no KMS-like properties in restriction to operators localized in that complement
region. A completely analogous situation occurs for quantum fields on the Schwarzschild-Kruskal
spacetime [16, 17, 25]. In the case of the Kerr rotating black hole spacetime, where the Killing
vector field in the exterior of the black hole region changes between timelike and spacelike, it
is still possible that there exist quantum field states that fulfill the admissibility and microlocal
spectrum condition and have KMS-like properties in the region where the Killing vector field is
timelike (a local generalization of the KMS condition has been given, see e.g. [10] and references
cited there). Our method of proof does a priori not rule out the possibility of quantum field
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states that fulfill the admissibility and microlocal spectrum condition and the KMS condition
with respect to an evolution group with a lightlike Killing vector field, and it would be interesting
to investigate that possibility further.
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[27] Trebels, S.: Über die geometrische Wirkung modularer Automorphismen: Analyse in
Algebraischer Quantenfeldtheorie. PhD Thesis, Dept. of Physics, University of Göttingen
(1997)

[28] Verch, R.: Wavefront sets in algebraic quantum field theory. Commun. Math. Phys. 205,
337-367 (1999)

[29] Wald, R.M.: General Relativity. University of Chicago Press (1984)

[30] Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermody-
namics. University of Chicago Press (1995)

12


	1 Introduction
	2 Result
	3 The case of Fermi fields on flat spacetime
	4 Summary and Outlook

