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Abstract This paper introduces the Internally Positive Representation of linear sys-
tems with multiple time-varying state delays. The technique, previously introduced
for the undelayed case, aims at building a positive representation of systems whose
dynamics is, in general, indefinite in sign. As a consequence, stability criteria for
positive time-delay systems can be exploited to analyze the stability of the original
system. As a result, an easy-to-check sufficient condition for the delay-independent
stability is provided, that is compared with some well known conditions available
in the literature.

1 Introduction

Positive linear systems have been extensively studied in the last decades due to their
well known properties and applications [6, 18]. More recently, several works on
positive linear time-delay systems appeared in the literature, some of them provid-
ing insightful stability results [1, 12, 15, 17, 16, 23, 19]. To exploit the properties of
positive systems also for not necessarily positive systems, an useful tool has recently
been developed in the linear undelayed case: the Internally Positive Representation
(IPR). The technique, introduced in the discrete-time framework in [8, 9, 4] and in
the continuous-time one in [2, 3], aims at constructing internally positive represen-
tations of systems whose dynamics is indefinite in sign. The method presented in
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[2], although very easy and straightforward, can produce in some cases an unsta-
ble positive system even if the original system is stable. Later works on the IPR
focused on this issue, showing how to construct IPRs whose stability properties are
equivalent to those of the original system [3].

As is typical in Systems and Control, one usually tries to extend to the more gen-
eral case what is well known in the particular one: to this end, the main part of this
paper focuses on the extension of the IPR construction method to linear continu-
ous time-delay systems, in the general case of multiple time-varying delays. Then,
a stability analysis follows, leading to the conclusion that only delay systems that
are stable for any set of delays, constant or time-varying, can admit a stable IPR.
As a result, an easy-to-check sufficient condition for the delay-independent stabil-
ity of the original system is provided, whose efficacy with respect to other similar
sufficient conditions available in the literature is tested by numerical examples.

This paper is organized as follows: in Section 2, the Internally Positive Represen-
tation for linear systems with multiple time-varying delays is introduced. Section 3
reports a discussion on the stability properties of IPRs and presents the new stability
condition. In Section 4 the condition is compared with similar existing results, and
in Section 5 an illustrative example is reported. Conclusions follow.

Notations. R+ is the set of nonnegative real numbers. C− and C+ are the open
left-half and right-half complex planes, respectively. Rn

+ is the nonnegative orthant
of Rn. Rm×n

+ is the cone of positive m× n matrices. In is the n× n identity matrix.
ℜ(z) and ℑ(z) are the real and imaginary parts of a complex number z, respectively.
C ([a,b],Rn) denotes the Banach space of all continuous functions on [a,b] with
values in Rn, endowed with the uniform convergence norm ‖ · ‖∞. A ∈ Rn×n is said
to be Metzler if all its off-diagonal elements are nonnegative. d(A) denotes the diag-
onal matrix extracted from A. σ(A) and α(A) denote the spectrum and the spectral
abscissa of A, respectively. A is said to be stable or Hurwitz if σ(A)⊂C− or, equiv-
alently, if α(A) < 0. L p

1 and L p
1,+ are the sets of locally integrable functions with

values in Rp and Rp
+, respectively. Finally, m= {1,2, . . . ,m} and m0 = {0,1, . . . ,m}.

2 Internally Positive Representation of Delay Systems

2.1 Internally positive delay systems

Let S =
{
{Ak}m

0 ,B,C,D
}

n,p,q denote a continuous-time delay system, with possibly
time-varying delays, having the following form

ẋ(t) = A0x(t)+
m

∑
k=1

Akx(t−δk(t))+Bu(t),

y(t) =Cx(t)+Du(t),

t ≥ t0,

x(t) = φ(t− t0), t ∈ [t0−δ , t0],

(1)
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where u(t) ∈ Rp is the input, with u ∈ L p
1 , y(t) ∈ Rq is the output, x(t) ∈ Rn is

the system variable and φ ∈ C ([−δ ,0],Rn) is a pre-shape function (initial state).
δk : R→ R+ are time-delays, which are bounded continuous functions

0≤ δk(t)≤ δ , ∀t ≥ t0. (2)

B ∈ Rn×p, C ∈ Rq×n, D ∈ Rq×p, and Ak ∈ Rn×n, for k ∈ m0. It is well known that
the delay differential equation in (1) admits a unique solution satisfying a given
initial condition φ (see e.g. [13]). Throughout the paper, the solution x(t) and the
corresponding output trajectory y(t) associated to a system S will be denoted as(

x(t),y(t)
)
= ΦS

(
t, t0,φ ,u

)
. (3)

Following [14, 17], an internally positive linear delay system is defined as follows.

Definition 1 A delay system S =
{
{Ak}m

0 ,B,C,D
}

n,p,q is said to be internally posi-
tive if {

φ ∈ C ([−δ ,0],Rn
+)

u ∈L p
1,+

}
⇒

{
x(t) ∈ Rn

+,

y(t) ∈ Rq
+,
∀t ≥ t0

}
. (4)

Stated informally, S is internally positive if nonnegative initial states and input
functions produce nonnegative state and output trajectories. The following result
gives necessary and sufficient conditions to fulfill Definition 1 (see [12, 23]).

Lemma 1 A delay system S = {{Ak}m
0 ,B,C,D}n,p,q is internally positive if and only

if A0 is Metzler and B, C, D and Ak, for k ∈ m, are nonnegative.

2.2 Positive representation of vectors and matrices

Given a matrix (or vector) M ∈ Rm×n, the symbols M+, M− denote the compo-
nentwise positive and negative parts of M, while |M| stands for its componentwise
absolute value. It follows that M = M+−M− and |M|= M++M−.

Let ∆n = [In − In] ∈Rn×2n. The definitions reported below are taken from [9, 4].

Definition 2 A positive representation of a vector x ∈Rn is any vector x̃ ∈R2n
+ such

that
x = ∆nx̃. (5)

The min-positive representation of a vector x ∈Rn is the positive vector π(x) ∈R2n
+

defined as

π(x) =
[

x+

x−

]
. (6)

The min-positive representation of a matrix M ∈Rm×n is the positive matrix Π(M)∈
R2m×2n
+ defined as

Π(M) =

[
M+ M−

M− M+

]
(7)
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while the min-Metzler representation of a matrix A ∈ Rn×n is the Metzler matrix
Γ (A) ∈ R2n×2n defined as

Γ (A) =
[

d(A)+(A−d(A))+ (A−d(A))−

(A−d(A))− d(A)+(A−d(A))+

]
. (8)

Of course, if d(A) ∈ Rn×n
+ then Γ (A) = Π(A). Moreover, for any x ∈ Rn and

matrices M ∈ Rm×n, A ∈ Rn×n the following properties hold true:

(a) x = ∆nπ(x);
(b) ∆mΠ(M) = M∆n, so that ∆mΠ(M)π(x) = Mx;
(c) ∆nΓ (A) = A∆n, so that ∆nΓ (A)π(x) = Ax.

2.3 Internally Positive Representations

The concept of Internally Positive Representation (IPR) of an arbitrary system has
been introduced in [8, 9, 4], for discrete-time systems, and in [2, 3] for continuous-
time systems. The IPR construction presented in [2] can be extended to the case of
time-varying delays systems by the following definition.

Definition 3 An Internally Positive Representation (IPR) of a delay system S ={
{Ak}m

0 ,B,C,D
}

n,p,q is an internally positive system S̃ =
{
{Ãk}m

0 , B̃,C̃, D̃
}

ñ,p̃,q̃ to-

gether with four transformations {T f
X ,T b

X ,TU ,TY},

T f
X : Rn 7→ Rñ

+, T b
X : Rñ

+ 7→ Rn, TU : Rp 7→ R p̃
+, TY : Rq̃

+ 7→ Rq, (9)

such that ∀t0 ∈R, ∀
(
φ ,u
)
∈ C ([−δ ,0],Rn)×L p

1 , the following implication holds:{
φ̃(τ) = T f

X

(
φ(τ)

)
, ∀τ ∈ [−δ ,0]

ũ(t) = TU
(
u(t)

)
, ∀t ≥ t0

}
=⇒

{
x(t) = T b

X
(
x̃(t)
)
,

y(t) = TY
(
ỹ(t)
)
,
∀t ≥ t0

}
(10)

where (
x(t),y(t)

)
= ΦS

(
t, t0,φ ,u

)
,(

x̃(t), ỹ(t)
)
= ΦS̃

(
t, t0, φ̃ , ũ

)
.

T f
X and T b

X in (9) are the forward and backward state transformations of the IPR,
respectively, while TU and TY are the input and output transformations, respectively.
The implication (10) means that if the (nonnegative) pre-shape function φ̃ of the
IPR is computed as the forward state transformation T f

X of the pre-shape function
φ of the original system, and the (nonnegative) input ũ to the IPR is computed as
the input transformation TU of the input u to the original system, then the state
trajectory of the original system is given by the backward transformation T b

X of the
(nonnegative) state x̃ of the IPR, and the output trajectory y of the original system is
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given by the output transformation TY of the (nonnegative) output ỹ of the IPR. For
consistency, the backward map T b

X must be a left-inverse of the forward map T f
X , i.e.

x = T b
X
(
T f

X (x)
)
, ∀x ∈ Rn.

The following theorem provides a method for the IPR construction of arbitrary
time-varying delays systems.

Theorem 2 Consider a delay system S as in (1), with S =
{
{Ak}m

0 ,B,C,D
}

n,p,q.

An internally positive system S̄ =
{
{Ak}m

0 ,B,C,D
}

2n,2p,2q, with

A0 = Γ (A0), B = Π(B), C = Π(C), D = Π(D), Ak = Π(Ak), k ∈ m,
(11)

together with the four transformations

x̄ = T f
X (x) = π(x), x = T b

X (x̄) = ∆nx̄, (12)
ū = TU (u) = π(u), y = TY (ȳ) = ∆qȳ, (13)

is an IPR of S.

Proof. First of all, since A0 is Metzler and B, C, D, and Ak, k∈m, are all nonnega-
tive, from Lemma 1 it follows that system S is internally positive. For any pre-shape
function φ ∈C ([−δ ,0],Rn), let x̄(t) and ȳ(t) denote the state and output trajectories(

x̄(t), ȳ(t)
)
= ΦS̄

(
t, t0, φ̄ , ū

)
(14)

where φ̄(τ) = T f
X (φ(τ)) = π(φ(τ)), ∀τ ∈ [−δ ,0] and ū(t) = TU (u(t)) = π(u(t)),

∀t ≥ t0. Thus, (14) solves the system

˙̄x(t) = A0x̄(t)+
m

∑
k=1

Akx̄(t−δk(t))+Bū(t),

ȳ(t) =Cx̄(t)+Dū(t),

t ≥ t0,

x̄(t) = φ̄(t− t0), t ∈ [t0−δ , t0].

(15)

Consider now the vectors

z(t) = T b
X (x̄(t)) = ∆nx̄(t), (16)

v(t) = TY (ȳ(t)) = ∆qȳ(t). (17)

The theorem is proved by showing that x(t) = z(t) and y(t) = v(t) for all t ≥ t0.
Using properties (b) and (c), given in Section 2.2, and (16), it results that, for t ≥ t0,

ż(t) = ∆n ˙̄x(t) = ∆nA0x̄(t)+
m

∑
k=1

∆nAkx̄(t−δk(t))+∆nBπ
(
u(t)

)
= A0z(t)+

m

∑
k=1

Akz(t−δk(t))+Bu(t). (18)



6 Francesco Conte, Vittorio De Iuliis, and Costanzo Manes

and for t ∈ [t0−δ , t0]

z(t) = ∆nx̄(t) = ∆nφ̄(t− t0) = ∆nπ
(
φ(t− t0)

)
= φ(t− t0), (19)

and

v(t) = ∆qȳ(t) = ∆qCx̄(t)+∆qDπ
(
u(t)

)
=Cz(t)+Du(t), t ≥ t0. (20)

Note that
(
z(t),v(t)

)
obey the same equations of (1), with the same initial condi-

tion. From the uniqueness of the solution we get
(
z(t),v(t)

)
=
(
x(t),y(t)

)
, and this

concludes the proof. �

Remark 1 If Ak = 0 for all k ∈ m the IPR proposed in Theorem 2 coincides with
the normal-form IPR proposed in [2] (Th. 4) for the delay-free case.

3 Stability Analysis

In this section we investigate the relationships between the stability of a delay sys-
tem and of its IPR. A quite obvious consequence of the boundedness of the state
transformations T f

X (·) and T b
X (·) in (12) is that if an IPR of a system is stable, then

the original system is stable as well. As we will see, the converse is not always true.
Throughout this paper we will use a standard nomenclature about stability. The

trivial solution x(t) ≡ 0 of a delay system of the type (1) is said to be stable if any
solution x(t) for all t ≥ t0 satisfies a bound of the type ‖x(t)‖ ≤ k‖φ‖∞, for some
k > 0. If in addition limt→∞ ‖x(t)‖= 0, the trivial solution is asymptotically stable.
If there exist k > 0 and η > 0 such that ‖x(t)‖ ≤ k e−η t‖φ‖∞, the trivial solution is
said to be exponentially stable.

A delay system as in (1) is said to be stable if the trivial solution is asymptotically
stable. It is worth recalling that the stability of a delay system of the type (1) depends
on the nature of delays (see e.g. [7, 11]): one can have stability for a given set or
for any set of constant delays, for commensurate constant delays, for time-varying
delays, within a given bound or without a specific bound, fast or slowly varying,
etc. For reasons that will soon be clear, in this paper we are mainly concerned with
stability for any set of constant or time-varying delays without a specific bound
(delay-independent stability).

3.1 Stable IPRs of delay-free systems

For the case of delay-free systems (Ak = 0,k ∈ m) in [2] it has been shown that the
IPR construction method there presented when applied to stable systems in some
cases may produce unstable IPRs. Indeed, the spectrum of A0 = Γ (A0) properly
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contains the spectrum of A0, and the additional eigenvalues can be unstable. How-
ever, a change of coordinates on the original system can generally affect the stability
of the IPR, and this fact can be exploited to obtain stable IPRs. In [2] it has been
proved that such a change of coordinates exists if σ(A0) belongs to the sector of C−
characterized by ℜ(z)+ |ℑ(z)| < 0. In [3], the IPR construction method of [2] has
been suitably extended so that stable IPRs can be constructed for any stable system,
without any limitation on the location of the eigenvalues of A0 within C−.

3.2 Stability of positive delay-systems

The IPR produced by the method in Theorem 2 is by construction a linear positive
delay system. For this reason we recall below the stability conditions for such a class
of systems. Consider a system of the type (1) which is internally positive (i.e., A0 is
Metzler and Ak, k ∈ m, are nonnegative, Lemma 1). In [12] it has been proved that,
when the delays δk are constant, a necessary and sufficient stability condition is that
there exist p and r in Rn such that( m

∑
k=0

Ak

)T

p+ r = 0 p > 0, r > 0. (21)

Note that, being ∑
m
k=0 Ak a Metzler matrix, condition (21) is equivalent to ∑

m
k=0 Ak

Hurwitz, i.e.

α

( m

∑
k=0

Ak

)
< 0. (22)

Another interesting equivalent condition (see [6]), that does not require the explicit
computation of eigenvalues (condition (22)) or solving a linear problem (condition
(21)) is that all the leading principal minors of the matrix

M =−
m

∑
k=0

Ak

are positive, i.e. Mi > 0 for i = 1, ...,n, where Mi is the determinant of the matrix
obtained removing the last n− i rows and columns from M. Note that all these
equivalent conditions do not depend on the size of the delays. In [1] and in [17] it
has been proved that (22) is necessary and sufficient for stability even in the case of
time-varying delays δk(t), without limitation on the size of the delays and of their
derivatives. Ngoc in [23] proved a similar condition also for the case of distributed
delays.

Remark 2 It should be remarked that condition (22) is necessary and sufficient for
the delay-independent stability of a positive delay-system, while it is only necessary
for the stability of general (not necessarily positive) systems, being required for the
stability of the associated delay-free system.



8 Francesco Conte, Vittorio De Iuliis, and Costanzo Manes

To summarize, we have the following:

Proposition 3 If a system S as in (1), with A0 Metzler and B, C, D, Ak, for k ∈ m,
nonnegative, is stable for a given set of constant delays δk, then it is also delay-
independent stable, i.e. stable for any arbitrary set of constant or time-varying de-
lays.

Liu and Lam [16] showed that if a positive delay system is stable for all con-
tinuous and bounded delays, then the trivial solution is exponentially stable for all
continuous and bounded delays. On the other hand, if the delays are continuous but
unbounded, the trivial solution may be asymptotically stable but not exponentially
stable.

3.3 Stable IPRs of delay systems

Consider the equations (15) of the IPR given in Theorem 2. We have the following:

Theorem 4 If a delay system S as in (1) admits a stable IPR, then necessarily S is
delay-independent stable.

Proof. As discussed in the previous paragraph, since the IPR is a positive delay
system, a necessary and sufficient condition for its stability is that the Metzler ma-
trix ∑

m
k=0 Ak is Hurwitz, and this in turn implies that the IPR is delay-independent

stable. The boundedness of the state transformations T f
X (·) and T b

X (·) defined in (12)
trivially implies the delay-independent stability of the original system. �

Stated in another way, Theorem 4 claims that only delay systems that are delay-
independent stable admit stable Internally Positive Representations.

Theorem 4 suggests the following sufficient condition of delay-independent sta-
bility for not necessarily positive delay systems.

Theorem 5 Consider a delay system S as in (1). If

α

(
Γ (A0)+

m

∑
k=1

Π(Ak)

)
< 0, (23)

then S is delay-independent stable.

Proof. Note first that the Metzler matrix in (23) coincides with ∑
m
k=0 Ak, where

Ak are the matrices of the IPR of Theorem 2. Thus, if condition (23) is satisfied,
then the IPR of S is stable, and thanks to Theorem 4 the original system S is delay-
independent stable. �

Remark 3 As pointed out in Section 3.2, checking condition (23) does not re-
quire the explicit computation of the eigenvalues of the Metzler matrix Γ (A0) +

∑
m
k=1 Π(Ak). Indeed, an easy equivalent condition only requires to check that all the

leading principal minors of M =−
(
Γ (A0)+∑

m
k=1 Π(Ak)

)
are positive.
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4 Comparison with similar conditions of delay-independent
stability

Many stability conditions exist for delay systems with multiple delays, based on dif-
ferent techniques: frequency sweeping [5], spectral analysis [20], Linear Matrix In-
equalities [10, 7] and others (see [11]). These results refer to different cases such as
commensurate or incommensurate delays, constant or time-varying delays, slowly
or fast varying delays. Many stability tests rely on numerical computations and some
have a not negligible computational complexity (particularly the necessary and suf-
ficient ones). Coming to delay-independent stability, in [21] and [22], for the case of
single and constant delay, the following sufficient condition for delay-independent
stability has been given

µp(A0)+‖A1‖p < 0 (24)

where µp(A) is the logarithmic norm (or measure) of matrix A induced by the oper-
ator norm ‖A‖p, defined as:

µp(A) = lim
ε→0

‖I + εA‖p−1
ε

.

The expression of µp(·) can easily be computed for p = 1,2,∞:

µ1(A) = max
j=1...n

(
aii +

n

∑
i=1, i 6= j

|ai j|
)
,

µ2(A) =
1
2

λmax(AT +A),

µ∞(A) = max
i=1...n

(
aii +

n

∑
j=1, j 6=i

|ai j|
)
.

The extended condition:

µp(A0)+
m

∑
k=1
‖Ak‖p < 0 (25)

has been shown [26] to be sufficient for the stability of systems with multiple com-
mensurate delays, although only for the case of p = 2. In [25] and [24] the same
condition has been proven sufficient, for any p, also in the case of non commensu-
rate and time-varying delays of any size, and therefore is a sufficient condition of
delay-independent stability of the system.

As a matter of fact, it is rather easy to find delay-independent stable systems
which satisfy condition (23) given in Theorem 5 and do not satisfy condition (25):
an example is reported in Section 5. Further investigations are needed to compare
the conservativeness of the new condition with respect to the classical one.
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5 Example

Consider the problem of verifying the delay-independent asymptotic stability of a
system S =

{
{A0,A1,A2},B,C,D

}
3,p,q with:

A0 =

−25 −5 −14
0 −19 0.1

0.7 1.2 −16

 , A1 =

−1.5 −0.4 0
0.5 −2.9 1
−1.5 0.5 −3.4

 , A2 =

 −7 2 6.8
1.8 −1.6 −2.1
0.5 1.6 −3.3


Since S is not an internally positive system, (22) is only a necessary condition for
its delay-independent stability (see Remark 2). We have that:

α

( m

∑
k=0

Ak

)
=−23.131 < 0

and therefore condition (22) is satisfied. Hence we can check the proposed sufficient
condition (23), verifying that all the leading principal minors of the matrix

M =−
(
Γ (A0)+Π(A1)+Π(A2)

)
are positive (Remark 3). We get:

M1 = 25, M2 = 470.4, M3 = 7.2 ·103, M4 = 1.4 ·105,

M5 = 2.3 ·106, M6 = det(M) = 1.5 ·107

and this is sufficient to conclude that the system is delay-independent stable.
Actually, the exact value of condition (23) is:

α

(
Γ (A0)+Π(A1)+Π(A2)

)
=−2.436.

It is not possible to achieve the same conclusion on the stability of the system ap-
plying the classical sufficient condition (25), since:

µ1(A0)+‖A1‖1 +‖A2‖1 = 14.700 > 0,
µ2(A0)+‖A1‖2 +‖A2‖2 = 2.896 > 0,

µ∞(A0)+‖A1‖∞ +‖A2‖∞ = 15.200 > 0,

and therefore the condition is not satisfied at least for p = 1,2,∞.
To sum up, for the system in this example the criterion (25) fails to assess the

stability, which has been proved using the proposed condition (23).
Figure 1 depicts some examples of time evolution of log(‖x(t)‖) obtained with

u(t) = 0 for t ∈ [0,200] and different constant values of the two delays. In all
cases, the plotted quantity decreases linearly, thus confirming the asymptotic sta-
bility, which in the case of constant delays is also exponential.
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Fig. 1 Plot of log(‖x(t)‖) with different constant delays values.

6 Conclusions and future work

In this paper the Internally Positive Representation of linear delay systems with
multiple delays, possibly time-varying, has been introduced, and its consequences
on the study of the stability of the original system have been investigated, leading
to an easy-to-check sufficient condition whose efficacy with respect to the delay-
independent stability tests provided in [21, 24, 25] has been tested by means of
numerical examples. Future work will be devoted to further stability analysis and to
the extension of the IPR technique to other classes of delay systems.
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