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Abstract

In this paper, we consider the Directed Rural Postman Problem with Turn Penalties (DRPP-

TP). A solution is a tour that traverses all required arcs of the graph. The total cost of the tour

is the sum of the lengths of the traversed arcs plus the penalties associated with the turns. One

solution approach involves transforming the arc routing problem into an equivalent node routing

problem. An alternative direct approach (without graph transformation) that involves two stages

has been proposed in the literature. In the first part of this paper, we investigate the applicability

of the direct approach. We identify several characteristics of the input instance that make this

approach effective and present several limitations of this approach. In the second part of this

paper, we describe an integer linear program that is combined with a local search algorithm.

This combination produces high-quality solutions to the DRPP-TP in a reasonable amount of

computing time.
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1 Introduction

The Directed Rural Postman Problem (DRPP) [8, 10] is an important arc routing problem with

many real-world applications including street sweeping, meter reading, postal delivery, and snow

plowing. In some of these applications, the quality of a tour is determined not only by the length

of the tour but also by the types of turns that are made at street intersections. For example,

most truck drivers prefer to travel straight ahead for as long as possible [16]. Turning left or even

turning right can be dangerous and time consuming. U-turns are impossible for long trucks. In

snow plowing, left turns and U-turns are often discouraged because they take more time and push

snow into an intersection. In these applications, we have to take into account the cost of turning

when solving the problem.

In this paper, we consider the Directed Rural Postman Problem with Turn Penalties (DRPP-

TP). In the DRPP-TP, we need to find the tour that traverses all arcs in a set of required arcs in

a directed graph while minimizing the length of the tour and the sum of penalties associated with

the turns. This problem was introduced by Benavent and Soler [2]. The authors claim that, in

contrast to the DRPP, the DRPP-TP remains NP-Hard even if all arcs are required. Of course,

when all arcs are required, the DRPP reduces to a Directed Chinese Postman Problem (DCPP)

which is solvable in polynomial time. The authors developed a heuristic for the DRPP-TP based

on the results of Bodin and Kursh [4]. Finally, they proved that the DRPP-TP can be solved by

transforming it to an asymmetric traveling salesman problem (TSP) defined on a graph where the

number of nodes is equal to the number of required arcs.

Since 1999, several papers [1, 5, 11, 12, 17, 21] have been published that focus on routing

problems with turn penalties. In these papers, well-known routing problems are generalized to

take turn penalties into account. Theoretical results about resolution and complexity were provided

for these problems. Exact and heuristic approaches produced high-quality computational results.

Transforming the input graph into a new graph with the costs of the turns in its structure is

common to solution approaches. Soler et al. [20] proposed a transformation into an asymmetric

TSP. They provided exact solutions to several instances. Irnich [14] proposed a method based on

a transformation to the asymmetric TSP. This transformation modeled turn and street crossing

restrictions, cluster constraints, and alternative service modes, such as zigzag service. Micó and

Soler [18] transformed an input graph into a generalized vehicle routing problem and then solved

the problem both exactly and heuristically. Clossey et al. [9] developed an alternative direct

approach for turn penalties that used two stages. In the first stage, the problem was solved as a

rural postman problem to obtain an Eulerian graph. In the second stage, an end-pairing algorithm

was used to generate an Eulerian tour taking into consideration the turn penalties. The authors

defined six different strategies for the end-pairing algorithm and found two strategies (denoted

by v2 and v4) to be effective. In this paper, we refer to the direct approach (DA) as a class of

algorithms that are based on the Eulerian tour-first turn-second idea. In the first half of this paper,

we investigate the applicability of DA to solve the DRPP-TP. In the second half, we improve the

DA of Clossey et al. [9].

The remainder of this paper is structured as follows. In Section 2, we identify a set of char-

acteristics that makes DA effective. We compare DA to an exact approach and identify a set of

features for the input graph that makes DA effective. Although DA has been described in the
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literature, our work helps to determine when the approach is applicable.

In Sections 3 and 4, we focus our attention on improving DA. In particular, we provide a way

to identify an Eulerian tour taking into consideration the turn penalties for an Eulerian graph.

We develop an integer linear program (denoted by β-ILP) that produces an Eulerian graph taking

into account turn penalties from a directed graph. We show that DA with β-ILP in the first stage

and our heuristic approach in the second stage produce high-quality solutions for all of our test

instances. We compare the computational results of our algorithm with the results of strategy v4

proposed by Clossey et al. [9], CONS2+IMP proposed by Benavent and Soler [2], and BK proposed

by Bodin et al. [3]. We also perform experiments on very large real street network graphs. In all

the experiments, our algorithm produces effective solutions within reasonable running times. In

Section 5, we give our conclusions.

2 Applicability of the direct approach

In this section, we investigate the applicability of DA. In particular, we formulate the integer linear

program model that we use in our computational experiments. We compare the results produced

by the standard version of DA (i.e., both the rural postman and the end-pairing problems are solved

optimally) to the optimal solutions. We identify a set of characteristics that allows widespread

applicability of DA.

2.1 Flow formulation for the DRPP

We model the DRPP using a flow formulation that does not take into account the cost of turns.

Let the directed graph G = (N,A), where N is the set of nodes and A is the set of arcs. Let

AR ∈ A be the subset of arcs that must be visited. The cost associated with arc a ∈ A is denoted

by c(a). We define the following sets, variables and constants.

xa ∈ N≥0 is the number of times the solution traverses arc a ∈ A.

fa ∈ R≥0 is the flow crossing arc a ∈ A.

NR ∈ N is a set of nodes that are start or end points of some required arcs, i.e.,{i ∈ N | ∃j ∈

N, (i, j) or (j, i) ∈ AR}.

δ−(v) = {(i, v) ∈ A} is the set of incoming arcs into v.

δ+(v) = {(v, j) ∈ A} is the set of outgoing arcs from v.

M = |NR|.

nd ∈ NR is an arbitrarily chosen node.

Our integer linear program (denoted by ILP) is given below:
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(ILP) Minimize
∑
a∈A

c(a)xa (1)

subject to

xa ≥ 1 ∀ a ∈ AR (2)∑
a∈δ−(i)

xa −
∑

a∈δ+(i)

xa = 0 ∀ i ∈ N (3)

∑
a∈δ+(nd)

fa = M − 1 (4)

∑
a∈δ−(i)

fa −
∑

a∈δ+(i)

fa = 0 ∀ i ∈ N \NR (5)

∑
a∈δ−(i)

fa −
∑

a∈δ+(i)

fa = 1 ∀ i ∈ NR \ {nd} (6)

fa ≤Mxa ∀ a ∈ A (7)

xa ∈ N≥0 ∀ a ∈ A (8)

fa ∈ R≥0 ∀ a ∈ A. (9)

Constraints (2) force all required arcs in AR to be in each solution. For each node, constraints

(3) require the in-degree to be equal to the out-degree. If the solution is characterized by a single

connected component, then constraints (3) are sufficient to force the variables xa to represent an

Eulerian graph. In this model, in order to guarantee the connectivity of the solution, we use a flow

formulation. The node nd ∈ NR is the source with supply M − 1, where M is equal to the size of

NR. All other nodes in NR are sinks, with a demand of one. All nodes that are not end points

of any required arcs are transshipment nodes. Constraints (4), (5), and (6) force the variables fa

to represent a spanning tree rooted at nd that connects to all nodes in NR. Constraints (7) allow

the variables fa to be greater than zero only if the corresponding variables xa are greater than

zero. This implies that the variables xa define a connected structure, so that constraints (3) are

sufficient to define an Eulerian graph. To create the Eulerian graph, denoted by Ge = (Ne, Ae),

we use the values associated with the variables xa which is the solution to the ILP. For each arc

a = (i, j) ∈ A such that xa > 0, we add nodes i, j to Ne and add xa copies of the arc (i, j) in Ae.

2.2 Graph transformation for the DRPP-TP

We use the graph transformation defined in [9] to solve the DRPP-TP. We produce the new graph

G′ = (N ′, A′) on which to apply the mathematical model. The set of arcs A′ = A′A ∪ A′T is the

union of arcs associated with the arcs of the original graph and the arcs associated with the turns.

Specifically, for each arc (i, j) ∈ A, we insert nodes ni,j,i and ni,j,j in N ′ and arc (ni,j,i, ni,j,j) in

A′A. For each node j ∈ N and pairs of arcs (i, j) and (j, k) ∈ A, we insert the arc (ni,j,j , nj,k,j) in

A′T . The cost c(ni,j,i, ni,j,j) equals c(i, j), and the cost c(ni,j,j , nj,k,j) equals the cost of the turn

(i, j)(j, k) in G.

In addition to A′A and A′T , we define the following sets.

A′R = {(ni,j,i, ni,j,j) ∈ A′A | (i, j) ∈ AR}.

N ′R = {ni,j,k ∈ N ′ | (i, j) ∈ AR}.
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(a) (b)

Figure 1: Graph transformation example from [9].

In Fig. 1(a), we show a directed graph with five nodes and five arcs from [9]. Each arc is

associated with two nodes and one arc in the transformed graph, which is shown in Fig. 1(b). For

example, arc (1, 3) in Fig. 1(a) is associated with nodes n131 and n133 and arc (n131, n133). The

cost of the arc (n131, n133), denoted by c13, is the same as the cost of the arc (1, 3) in the original

graph. The dashed arcs in the transformed graph are associated with the turns. For example, arc

(n211, n131) represents turn (2, 1), (1, 3) in the original graph. The cost of this arc, denoted by cL,

is the cost of the left turn made at node 1.

2.3 ILP for the DRPP-TP

This model (denoted by α-ILP) requires the graph G′ and uses the constraints (2)-(9) with the

objective function shown below:

(α-ILP) Minimize α
∑
a∈A′

A

c(a)xa + (1− α)
∑
a∈A′

T

ĉ(a)xa. (10)

The sets N,NR, A, and AR of G, used in constraints (2)-(9), are replaced by N ′, N ′R, A
′, and A′R

of G′, respectively. The α-ILP, with α = 1, 0, and 0.5, is used in the computational experiments

in Sections 2.4 and 4.4.

With α = 1, the ILP minimizes the length of the tour. In this case, the objective function is

given by the minimization of
∑
a∈A′

A
c(a)xa, which is equivalent to (1).

With α = 0, the ILP minimizes the total cost of the turns. The objective function is given

by the minimization of
∑
a∈A′

T
ĉ(a)xa. The arcs in A′T are related to the turns and ĉ(a) defined

∀ a ∈ A′T represents the cost of the turn a.

With α = 0.5, the ILP produces an optimal solution for the DRPP-TP. The objective function

is given by the minimization of 1
2
(
∑
a∈A′

A
c(a)xa) + 1

2
(
∑
a∈A′

T
ĉ(a)xa). This model produces the

minimum cost solution that takes into account the balance between the length of the tour and the

total cost of the turns.
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Figure 2: Example of 8× 8 test instance.

2.4 Computational results

2.4.1 Test instances

Our test instances are randomly generated. Each graph represents a strongly connected grid. Each

street is represented by one or two arcs depending on the direction of the street. The cost assigned

to each arc is proportional to the Euclidean distance between the endpoints of the arc, where the

average cost for an arc is equal to 100. Each vertex is located within 10% of its exact position

on the grid in order to produce arcs with different lengths (see Fig. 2). We randomly remove a

percentage of arcs from each instance and only use a graph that is totally connected. Instances

are characterized by the number of nodes n (intersections) and the percentage of removed arcs p.

We have three scenarios for the number of nodes (8 × 8, 10 × 10, 12 × 12) and four scenarios for

the percentage of removed arcs (5%, 10%, 20%, 30%). We define three scenarios for the percentage

of required arcs that we need to traverse in each feasible solution (25%, 50%, 75% of the total

number of arcs). The results reported in our tables give the average value computed on 10 graphs

of the same scenario. Our codes were developed in Java 1.8 and CPLEX 12.7. All experiments

were performed on an OSX 10.9.5 laptop equipped with an Intel(R) Core(TM) i7-3720QM 2.6GHz

CPU and 16Gb of RAM.

In the remainder of this paper, we use the following notation. Let X be a solution to the

DRPP-TP. V (X) is the objective function value associated with solution X. C(X), T (X), Tt(X),

and Ft(X) are the total cost, cost of the turns, number of turns, and number of prohibited turns

in the solution, respectively. OPT is the optimal solution to the DRPP-TP. DA[procA, procB]

is the solution produced by a direct approach that uses algorithm procA in the first stage and

algorithm procB in the second stage.

2.4.2 Results from DA compared to an optimal solution

In Tables 1 to 4, we compare the optimal solution to the results produced by DA. To produce

the optimal solution to DRPP-TP, we solve α-ILP with α = 0.5. To produce the DA solution,

we run ILP on the directed graph to create the Eulerian graph Ge described in Section 2.1, and

run α-ILP with α = 0 on its transformed graph G′ with all arcs required as input. To define

the cost associated with each turn, we use a parameter γ ∈ {25, 50}. In the top half of Table

1 (first nine rows), we summarize the results using a turn configuration equal to (0, γ, 2γ, 3γ).
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Multiplier γ 25 50

AverageRequired Arcs (%)
25 50 75 25 50 75

Removed Arcs (%)

Turn Costs 5 4.84 2.29 2.45 9.87 5.91 4.54 4.98

(0,γ,2γ,3γ) 10 4.15 1.63 1.74 8.76 4.59 3.33 4.03

20 2.96 1.45 1.02 5.03 3.50 1.96 2.65

30 1.82 1.27 0.69 3.56 1.97 1.70 1.83

Average 3.44 1.66 1.47 6.81 3.99 2.88
3.38

Overall Avarage 2.19 4.56

Turn Costs 5 1.50 0.86 0.96 3.66 1.85 2.26 1.85

(0,γ,γ,γ) 10 1.50 0.84 0.71 3.22 1.74 1.55 1.59

20 0.93 0.58 0.37 2.03 1.69 0.90 1.08

30 0.48 0.45 0.45 1.86 0.77 0.46 0.74

Average 1.10 0.68 0.62 2.69 1.51 1.29
1.32

Overall Avarage 0.80 1.83

Table 1: Percentage difference in total cost between the DA solution and the optimal solution.

Using this configuration, we have costs of (0, γ, 2γ, 3γ) for a straight turn, right turn, left turn,

and U-turn, respectively. We assume a straight turn has no cost, a right turn has a unitary cost,

a left turn is twice as expensive as a right turn, and a U-turn is the most costly. This scheme is a

simplification of the scheme (0, 2, 5, 9) proposed by Clossey et al. in [9]. Left turns are considered

more dangerous than right turns in right-hand driving countries. In bottom half of Table 1, we

have costs of (0, γ, γ, γ) for a straight turn, right turn, left turn, and U-turn, respectively. In this

configuration, we want to maximize the number of straight turns. The size of the input graph is

fixed at 12× 12.

In Table 1, we see that the gap between the exact approach and DA decreases when the

density of the graph decreases, the percentage of required arcs increases, and the cost of the turns

decreases. To compute the values in the table, we use the formula 100× V (DA[ILP,α-ILP])−V (OPT )
V (OPT )

.

In Tables 2, 3, and 4, we report detailed results. We use two different sets of costs for the turns

((0, γ, 2γ, 3γ), (0, γ, γ, γ)), and three different sizes for the graphs (8 × 8, 10 × 10, 12 × 12). Table

2 presents the percentage difference of the optimal solution produced by α-ILP with α = 0.5 to

the solution produced by the standard DA where ILP is solved in the first stage and α-ILP with

α = 0 is solved in the second stage. In subtables b and d, we have, for a straight turn, right turn,

left turn, and U-turn, the cost (0, γ, γ, γ) (with γ equal to 50 in b and 25 in d, respectively). In

these two scenarios, we maximize the number of straight turns. Each row gives the percentage

of arcs that we remove from a complete grid representing our input graph. Each column gives

the percentage of arcs that we need to visit in the tour. In the subtables a and c, we have, for

a straight turn, right turn, left turn, and U-turn, the cost (0, γ, 2γ, 3γ) (with γ equal to 50 in a

and 25 in c, respectively). Tables 3 and 4 deal with the tour length and turn costs, respectively.

DA produced better solutions in terms of tour length with respect to the optimal solution (Table

3); however, this is not true in terms of the objective function value when turn costs are taken

into account (Table 2). To compute the values reported in Tables 2, 3, and 4, we use the formulas

100× V (DA[ILP,α-ILP])−V (OPT )
V (OPT )

, 100× C(DA[ILP,α-ILP])−C(OPT )
C(OPT )

, and 100× T (DA[ILP,α-ILP])−T (OPT )
T (OPT )

,
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Number of Nodes 8 × 8 10 × 10 12 × 12

Required Arcs (%)
25 50 75 25 50 75 25 50 75

Removed Arcs (%)

5 6.86 6.35 3.57 8.22 5.05 5.22 9.87 5.91 4.54

a (0, γ, 2γ, 3γ) 10 7.25 4.45 2.60 7.33 4.49 3.16 8.76 4.59 3.33

50 20 5.52 2.56 2.60 5.26 2.94 2.18 5.03 3.50 1.96

30 3.57 2.33 1.37 4.11 2.31 1.68 3.56 1.97 1.70

5 3.83 2.14 2.02 4.05 1.73 1.60 3.66 1.85 2.26

b (0, γ, γ, γ) 10 3.24 1.76 1.70 3.40 1.81 1.83 3.22 1.74 1.55

50 20 2.11 1.34 1.16 2.25 1.45 1.21 2.03 1.69 0.90

30 1.30 0.77 0.86 1.58 0.89 0.64 1.86 0.77 0.46

5 3.61 3.04 1.41 4.24 1.55 2.15 4.84 2.29 2.45

c (0, γ, 2γ, 3γ) 10 3.30 1.97 1.98 3.45 2.05 2.05 4.15 1.63 1.74

25 20 2.24 1.53 0.65 2.32 1.04 0.91 2.96 1.45 1.02

30 1.81 0.90 0.57 1.37 1.01 0.52 1.82 1.27 0.69

5 1.66 1.00 1.03 1.63 0.80 1.02 1.50 0.86 0.96

d (0, γ, γ, γ) 10 0.90 0.62 0.61 0.88 0.86 0.77 1.50 0.84 0.71

25 20 1.10 0.63 0.39 0.88 0.44 0.33 0.93 0.58 0.37

30 0.73 0.58 0.44 0.79 0.57 0.31 0.48 0.45 0.45

Table 2: Percentage difference in total cost between the DA solution and the optimal solution.

respectively.

2.5 Prohibited turns

In many real-world situations, some turns are not just more expensive, they are prohibited. For

example, a truck cannot make a U-turn on a narrow city street. Taking prohibited turns into

account in a direct approach can be important. In a solution approach using a graph transforma-

tion, it is straightforward to take into account the prohibited turns. To transform the arc routing

problem into an equivalent node routing problem, it is sufficient to remove the arcs related to the

prohibited turns from the new graph.

For the DA, it is not straightforward. In the first stage, the graph G is transformed into an

Eulerian graph Ge. This transformation does not take the prohibited turns into account. In the

second stage, an end-pairing algorithm is used to generate an Eulerian tour. The second stage uses

the turn penalties. One way to take into account the prohibited turns is to allow all turns in the

Eulerian graph Ge (to ensure a feasible DRPP tour), but associate a big cost M to the prohibited

turns in the transformed graph. Unfortunately, the first stage may result in an Eulerian graph

that would force one or more prohibited turns into the final solution.

Here is an alternative way to consider the prohibited turns. Suppose the path i − j − k from

vertex i to vertex k uses the arcs (i, j) and (j, k). If the path i− j− k corresponds to a prohibited

turn, we can remove arcs (i, j) and (j, k) from the solution and replace them with the shortest

path from i to k that avoids the prohibited turns [22]. We note that, if one or both arcs (i, j) and

(j, k) are required, the resulting new tour could be infeasible.
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Number of Nodes 8 × 8 10 × 10 12 × 12

Required Arcs (%)
25 50 75 25 50 75 25 50 75

Removed Arcs (%)

5 -5.70 -5.34 -3.40 -6.90 -5.12 -3.12 -7.84 -4.71 -3.66

a (0, γ, 2γ, 3γ) 10 -6.02 -3.07 -2.01 -6.17 -3.24 -1.84 -6.96 -4.02 -2.64

50 20 -5.06 -1.94 -1.00 -5.12 -2.93 -1.59 -5.96 -2.26 -1.33

30 -2.48 -1.56 -1.09 -3.36 -1.72 -0.70 -3.18 -1.96 -1.00

5 -2.27 -0.65 -0.64 -2.72 -0.53 -0.80 -1.81 -0.74 -0.76

b (0, γ, γ, γ) 10 -1.44 -0.53 -0.59 -2.13 -0.63 -0.53 -2.07 -0.80 -0.50

50 20 -0.82 -0.58 -0.56 -1.19 -0.55 -0.30 -0.84 -0.64 -0.34

30 -0.33 -0.20 -0.19 -0.52 -0.42 -0.36 -0.71 -0.27 -0.23

5 -2.47 -1.01 -0.46 -2.79 -0.74 -0.58 -2.06 -0.89 -0.61

c (0, γ, 2γ, 3γ) 10 -1.35 -0.56 -0.49 -1.79 -0.74 -0.63 -2.44 -0.71 -0.59

25 20 -1.12 -0.43 -0.27 -1.30 -0.58 -0.23 -1.02 -0.67 -0.54

30 -0.59 -0.19 -0.19 -0.87 -0.37 -0.48 -0.65 -0.46 -0.28

5 -0.71 -0.45 -0.39 -0.93 -0.39 -0.40 -0.99 -0.38 -0.41

d (0, γ, γ, γ) 10 -0.58 -0.23 -0.37 -0.59 -0.43 -0.33 -0.65 -0.36 -0.31

25 20 -0.54 -0.22 -0.15 -0.39 -0.28 -0.21 -0.47 -0.34 -0.14

30 -0.25 -0.28 -0.18 -0.30 -0.21 -0.15 -0.29 -0.23 -0.21

Table 3: Percentage difference in tour length between the DA solution and the optimal solution.

Number of Nodes 8 × 8 10 × 10 12 × 12

Required Arcs (%)
25 50 75 25 50 75 25 50 75

Removed Arcs (%)

5 34.71 46.83 28.72 43.60 45.95 42.13 56.00 53.00 43.91

a (0, γ, 2γ, 3γ) 10 36.43 25.92 17.17 40.02 28.70 20.65 46.59 35.00 25.67

50 20 26.32 13.08 11.68 26.47 17.95 12.34 28.46 18.15 10.79

30 14.88 10.36 7.07 18.44 11.09 7.01 16.65 10.55 7.82

5 24.82 15.57 17.67 28.50 14.30 16.01 22.51 16.76 22.51

b (0, γ, γ, γ) 10 19.18 11.99 13.57 23.19 14.26 14.91 22.28 14.76 13.10

50 20 11.47 8.92 8.72 13.82 9.64 7.72 11.63 11.64 6.49

30 6.58 4.28 4.74 8.39 5.82 4.51 10.37 4.59 3.09

5 27.11 27.23 13.21 33.31 14.81 22.10 32.89 23.71 26.50

c (0, γ, 2γ, 3γ) 10 19.87 14.33 17.69 23.29 17.29 19.39 31.32 14.73 17.68

25 20 14.03 9.49 5.11 15.49 8.33 6.69 17.77 11.30 9.12

30 10.28 5.09 3.79 9.17 6.43 4.94 10.85 8.40 5.05

5 17.01 14.55 16.76 17.97 13.02 17.94 17.66 15.07 18.90

d (0, γ, γ, γ) 10 9.97 7.91 11.01 10.33 13.27 12.04 16.28 12.74 12.32

25 20 11.99 7.50 4.73 9.09 6.20 4.99 9.96 8.33 4.89

30 6.84 6.73 5.04 7.59 6.25 3.79 5.30 5.45 5.51

Table 4: Percentage difference in turn costs between the DA solution and the optimal solution.
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Required Arcs (%)
25 50 75 Average

Removed Arcs (%)

5 12.9 4.9 0.6 6.1

10 13.5 8.7 2.7 8.3

20 17.4 7.4 3.8 9.5

30 15.4 9.9 6.2 10.5

Average 14.8 7.7 3.3 8.6

Table 5: Percentage of prohibited turns in the DA solution.

To investigate how likely it is that a DA solution has prohibited turns, we perform the following

experiment. We run ILP on the directed graph to create the Eulerian graph Ge described in Section

2.1. Next, we run α-ILP with α = 0 on its transformed graph G′ with all arcs required as input.

To avoid the prohibited turns, we set the cost of the allowed turns to zero and the cost of the

prohibited turns to one. The size of the input graph is fixed at 12× 12.

The results of this experiment are given in Table 5. We see that the number of prohibited

turns in a DA solution is related to the density of the graph and the number of required arcs. As

the number of required arcs or the density of the graph increases, the percentage of prohibited

turns decreases. For example, when 75% of the arcs are required and we remove only 5% of the

total number of arcs, the percentage of prohibited turns decreases to 0.6%. The formula used to

compute the values reported in Table 5 is 100 × Ft(DA[ILP,α-ILP])
Tt(OPT )

. Unfortunately, the results of

this experiment show that DA is not guaranteed to produce solutions that are free of prohibited

turns. If there exists a solution for the DRPP-TP without prohibited turns, it is not guaranteed

that DA can produce such a solution. For this reason, DA may not be applicable to problems with

prohibited turns.

3 Penalty ILP model

In this section, we focus on the first stage of DA. Our penalty variant (denoted by β-ILP) extends

the ILP model for the DRPP and produces an Eulerian graph covering all required arcs. The

output graph takes into account the turn penalties. In particular, for each arc a = (i, j) ∈ A, we

define d(a) = d(i, j) = (j, k) ∈ A such that the path (i, j, k) produces the minimum turn cost after

we traverse arc (i, j).

We define the following variables and constant:

ya ∈ N≥0 is the number of times the solution traverses arc a ∈ A but does not traverse arc

d(a).

β is a penalty value.

10



Our penalty model is presented below:

(β-ILP) Minimize
∑
a∈A

c(a)xa + β
∑
a∈A

ya (11)

Constraints (2)− (9)

ya ≥ xa − xd(a) ∀ a ∈ A (12)

ya ∈ N≥0 ∀ a ∈ A. (13)

Using constraint (12), the variable ya counts the number of times that arc a is traversed and arc

d(a) is not traversed. We define (γ1(a), γ2(a), γ3(a), . . .) as the costs (in ascending order) associated

with the different turns that we can make after traversing arc a. We define γ(a) = γ2(a) − γ1(a)

as the minimum opportunity cost if we do not select the best turn in terms of cost after traversing

arc a.

Theorem 3.1 In the Eulerian graph produced by β-ILP model with β = min
a∈A

γ(a), the term

(
∑
a∈A γ1(a)xa + β

∑
a∈A ya) gives a lower bound on the total cost of turns.

Proof In the Eulerian graph, we have a tour that traverses each arc one time. After traversing

each arc a, we have a turn and γ1(a) represents the minimum cost of this turn. In the lower

bound,
∑
a∈A γ1(a)xa represents the sum of all minimum costs related to the turns. The variable

ya counts the number of times that it is not possible to select the best turn after traversing arc

a. β
∑
a∈A ya is the cost related to each time that it is not possible to select the best turn after

traversing an arc. Because β = min
a∈A

γ(a), the term (
∑
a∈A γ1(a)xa + β

∑
a∈A ya) gives a lower

bound on the total cost of turning.

4 Node-to-node approach

In this section, we focus on the second stage of DA. We assume that an Eulerian graph is given.

The tour length is fixed for all Eulerian tours, but the turn cost depends on the sequence in which

the arcs are traversed. Based on the observation that each turn cost is incurred at a visit to a node,

we estimate the turn cost of a tour by considering different possible turns made at every node.

The three procedures described in the subsections (lower bound, greedy, local search algorithm)

are developed from this observation.

4.1 Lower bound on the turn cost

Proposition 4.1 In an Eulerian tour, the sum of the minimum possible turn costs at each node

is a lower bound on the turn costs of that tour, no matter the order in which arcs are traversed.

In this subsection, we assume a turn cost structure of (0, 1, 2, 3) for illustration. In Fig. 3(a), we

have an Eulerian graph and want to determine a lower bound on the turn cost. It is only possible

to make a right turn at node 1, so the minimum turn cost incurred at node 1 is 1. Similarly,

the minimum turn cost is 1 at nodes 3, 4, and 6. There are two incoming arcs and two outgoing

arcs at node 2, so there are two possible turn combinations, either two right turns (1− 2− 5 and

5− 2− 3) with a total cost of 2 or one straight turn (1− 2− 3) and one U-turn (5− 2− 5) with a

total cost of 3. The minimum value for these two possibilities is 2. It follows that a lower bound

11



(a) (b)

Figure 3: Eulerian graph with possible turns.

Figure 4: Turns at a node.

on the turn cost at node 5 is also 2. Hence, a lower bound on the turn cost for this Eulerian

graph is 8. The actual minimum turn cost for this small graph is 9 by inspection, using the tour

(1− 2− 3− 4− 5− 2− 5− 6− 1). We point out that there is no depot, or starting node, specified

for the tour. Therefore, a turn cost of 1 is incurred at node 1. The lower bound obtained with this

procedure may be tight. For example, in Fig. 3(b), the minimum turn cost at node 5 is 0 with

two straight turns (2 − 5 − 8 and 4 − 5 − 6). There is only one possible turn at the other nodes.

A lower bound is 9 and this bound is attainable using the tour (1− 2− 5− 8− 9− 4− 5− 6− 1).

In our implementation, instead of enumerating all possible turn combinations at a node, we

solve an assignment problem and apply the Hungarian algorithm [15] to assign the outgoing arcs

to the incoming arcs. The assignment problem is applicable because the number of incoming arcs

is equal to the number of outgoing arcs at every node in an Eulerian graph. The assignment cost

is the same as the turn cost. For example, in Fig. 4, node 10 has four incoming arcs a1 to a4, and

four outgoing arcs b1 to b4. If arc b1 is assigned to arc a4, a U-turn results, so the cost is 3. Other

assignment costs are presented in Table 6. A similar idea was used by Bodin and Kursh [4], but

the assignment problem was solved on a node that was not necessarily in an Eulerian graph.

4.2 Greedy algorithm

We propose a greedy algorithm (denoted by GRA) that extends the lower bound to obtain a high-

quality solution with respect to the turn cost. For each node in the Eulerian graph Ge, we solve

the assignment problem that produces an arrangement of the turns with minimum cost. If this

arrangement does not disconnect the graph (in other words, if this arrangement does not create

two or more disjoint loops (see Fig. 5(b))), it is adopted. Otherwise, if the number of incoming

arcs at the node is less than a specified value (we denote this parameter by dn, which is equal to

seven in our experiments), we enumerate all possible assignments and select the best one in terms

of lowest turn cost without disconnecting the graph. If there are more than dn incoming arcs,

we pair the incoming arcs one by one with the outgoing arcs in the least-cost manner without

12



a1 a2 a3 a4

b1 2 2 2 3

b2 0 0 0 2

b3 1 1 1 0

b4 1 1 1 0

Table 6: Illustration of assignment costs, using the network of Figure 4.

Let:
G = (N,A) be a directed Eulerian graph
S ∈ P(N), where P(N) is the set of permutations on N

1 U = ∅ is a set of turns
2 For each n ∈ S
3 Let the set of turns T = ∅
4 While number of unpaired incoming arcs at n > dn

Pair an unpaired incoming arc with an unpaired outgoing arc that results in a least cost turn, t
T = T ∪ {t}

5 Identify a set of turns, T ′, at n for the unpaired outgoing arcs to the unparied incoming arcs,
with minimum cost by solving an assignment problem

6 If Connect(G,U ∪ T ∪ T ′) = false
7 Enumerate all possible assignments of the unpaired outgoing–incoming arcs, and

choose the least cost assignment that results in a set of turns, T ′, such that Connect(G,U ∪ T ∪ T ′) = true
8 U = U ∪ T ∪ T ′
9 Return U

Table 7: Greedy algorithm (GRA).

disconnecting the graph until there are dn incoming arcs that are not paired. Then we enumerate

all possible assignments of the dn incoming arcs. After we have selected the best arrangement for

each node without disconnecting the graph, we generate a feasible solution to the Eulerian graph.

To illustrate, in Fig. 3, there is only one possible arrangement at nodes 1, 3, 4, and 6. At node

2, the least-cost arrangement has two right turns and this arrangement does not disconnect the

graph (Fig. 5(a)). Similarly, at node 5, the least-cost arrangement has two right turns. However,

given the arrangement at node 2, the same arrangement at node 5 will disconnect the graph into

two pieces, one with nodes 1 and 6 and one with nodes 3 and 4 (Fig. 5(b)). Therefore, we can

have only one U-turn and one straight turn at node 5 (Fig. 6(a)). The tour that results from the

greedy algorithm is (1− 2− 5− 2− 3− 4− 5− 6− 1) with a turn cost of 9. The greedy algorithm

and the algorithm to test graph connectivity are given in Tables 7 and 8, respectively.

4.3 Local search algorithm

Our greedy algorithm depends on the order in which the nodes are considered. For example, if node

5 is considered before node 2 in Fig. 3(a), we produce a different tour 1−2−3−4−5−2−5−6−1

Let:
G = (N,A) be a directed Eulerian graph
U ⊆ {(i, j, k)|i, j, k ∈ N and (i, j)(j, k) ∈ A}

1 x = number of nodes visited by a Depth-First Search (DFS) of G(N,A)
starting from a random node.
If DFS uses the arc (i, j) and (i, j, k) ∈ U ,
then to account for the turn (i, j, k), DFS is forced to use the arc (j, k).

2 Return true if x = |N |

Table 8: Connect algorithm.
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(a) (b)

Figure 5: Disconnected graph.

(a) (b)

Figure 6: U-turns.

(shown in Fig. 6(b)). Therefore, we use a local search algorithm (LSA) to improve the solution

produced by the greedy algorithm. Given a greedy solution, we randomly permutate 5% of the

node positions in the sequence and apply the same procedure in the greedy algorithm to produce

a feasible solution. If this solution is better than the current solution, we retain it. Our algorithm

is given in Table 9.

4.4 Results of computational experiments

In this section, we report on the results produced by GRA and LSA. Since both strategies are

used in the second stage of DA, their results are compared to the results produced by strategy v4

given in [9] (taking into account that strategy v4 outperformed all the other strategies proposed

in [9]), the optimal solution produced by α-ILP with α = 0 (denoted by OPT), and the algorithm

developed by Edmonds and Johnson [13] (denoted by EJ). We use the input graph defined in

Section 2.4.1. An input graph is transformed to an Eulerian graph using the ILP model. The test

Let:
G = (N,A) be a directed Eulerian graph
St ∈ P(N) : |St| = |N |, St is a permutation of N
µ(St) = solution value of the greedy algorithm with input St and G(N,A)
ε(St) = neighborhood of St (in which p percentage of the nodes differ from St)
l = size of our neighborhood

1 Set index t = 0, p = 5%, l = 10
2 Construct a random permutation S0

3 Do
4 Create P = {S ∈ ε(St)} containing l random permutations S ∈ ε(St)
5 Choose S′ ∈ P such that µ(S′) ≤ µ(S) ∀S ∈ P
6 Set St+1 = S′

7 Set t = t+ 1
8 While µ(St) ≤ µ(St−1)
9 Return St−1

Table 9: Local search algorithm (LSA).
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scenarios are the same as defined in Section 2.4.2.

For each scenario of Table 10, we use 10 12 × 12 Eulerian graphs. In order to compute the

values shown in this table, we use the formula 100 × V (DA[ILP,X])−V (OPT )
V (OPT )

, where X is EJ , v4,

GRA and, LSA, respectively.

In the first part of Table 10, for a straight turn, right turn, left turn, and U-turn, we have costs

of (0, 1, 2, 3), respectively. Here, the number of turns is the average number of edges in the Eulerian

graph. We see that strategy v4 is effective, because it decreases the turn costs given by the EJ

solution. The average gap of v4 with respect to the optimal value is 49.5%. GRA outperforms v4

with an average gap of 4.5% compared to the optimal value. LSA produces better solutions, with

an average gap equal to 1.4%.

In the second part of Table 10, for a straight turn, right turn, left turn, and U-turn, we have

costs of (0, 1, 1, 1), respectively. In this scenario, the average gap between v4 and the optimal value

is 25.4%. GRA produces an average gap of 2.0%. LSA produces an average gap of 0.8%. The

running times are given in Table 11. On average, the running time of GRA is about twice that of

v4. LSA takes longer than v4 and GRA, but it is still much faster than OPT.

In Tables 12 and 13, we compare the total cost. In Table 12, we compare the DA using the

optimal solution produced by α-ILP in the second stage with the DA using LSA in the second

stage. The table entries represent the percentage differences between the two approaches. These

percentage differences are calculated using the formula 100× V (DA[ILP,LSA])−V (DA[ILP,α-ILP])
V (DA[ILP,α-ILP])

. In

the subtables b and d, we have, for a straight turn, right turn, left turn, and U-turn, the cost

(0, γ, γ, γ) (with γ equal to 50 in b and 25 in d, respectively). Each row gives the percentage of

arcs that we remove from a complete grid representing our input graph. Each column gives the

percentage of arcs that we need to visit in the tour. In the subtables a and c, we have, for a

straight turn, right turn, left turn, and U-turn, the cost (0, γ, 2γ, 3γ) (with γ equal to 50 in a and

25 in c, respectively). For example, in subtable a of Table 12, when the number of nodes is 8× 8,

5% of the arcs are removed, and 50% of the arcs are required, there is an increase in total cost

of 0.13%, on average, if the second stage of the exact end-pairing procedure in DA is replaced by

LSA. We see that the additional cost (beyond the exact end-pairing solution) from using LSA is

less than or equal to 0.31% in every case.

In Table 13, we compare the optimal solution for the DRPP-TP produced by α-ILP to the DA

solution based on β-ILP and LSA. We set α = 0.5 for α-ILP and β = γ ∈ {25, 50} for β-ILP. The

percentage differences in solutions are calculated using the formula 100× V (DA[β-ILP,LSA])−V (OPT )
V (OPT )

.

The results show that DA is more effective if the first stage takes into account the turn penalties.

For example, in subtable a of Table 13, when the number of nodes is 8 × 8, 5% of the arcs

are removed, and 25% of the arcs are required, the gap between our heuristic solution using

β-ILP and LSA and the optimal DRPP-TP solution is 3.59%, on average. The gap between

the DA solution and the optimal solution in this scenario is 6.86%, on average (see Table 2).

The average gap between the optimal solution and DA is equal to (1.65%, 0.56%, 0.63%, 0.23%)

for subtables (a,b, c, and d). Comparing these results to the same average results of Table 2

(4.32%, 1.85%, 2.00%, 0.79%), we see that accounting for turn costs in the first stage of DA produces

high-quality solutions.

In Table 14, we compare the DA solution, based on β-ILP and LSA, with the algorithms

proposed by Benavent and Soler [2] and Bodin et al. [3]. Benavent and Soler proposed three
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heuristics for the DRPP-TP. Two of them are constructive, whereas the third is an improvement

heuristic. Their best results combined the second constructive heuristic with the improvement

approach (CONS2+IMP). Bodin et al. [3] proposed a constructive approach (BK) that does not

take into account prohibited turns. We performed our experiments on the instances used in [2].

Each instance is characterized by a specific cost for turns and a large number of prohibited turns.

In our computational experiments, we associate a large cost of M with each prohibited turn. We

apply our approach 10 times using the values (30, 60, 90, ..., 300) for β. In Tables 14 and 15,

we display the best result over 10 runs of the algorithm for each instance. The running time is

the total for the 10 iterations. For the set of instances in Table 14, the running time for ItLSA is

negligible. The average running times over all instances are equal to (0.4, 15.43, 7.59) seconds for

(ItLSA, CONS2+IMP, BK), respectively and the maximum running times are (1.8, 90.43, 29.51)

seconds, respectively. It is important to point out that the experiments for CONS2+IMP and BK

are performed on a Sun Sparcstation 20.

In 12 cases, ItLSA produces the best results. In 13 cases, CONS2+IMP produces the best re-

sults and BK never produces a best result. Even though the instances contain numerous prohibited

turns, our approach (ItLSA) is capable of producing very effective solutions.

In Table 15, we use real street networks to evaluate the effectiveness of the approach. The

numbers of vertices, arcs, and required arcs are shown for each instance (see Capobianco et al.

[6] for more details). We used α-ILP to compute the optimal solution. Unfortunately, none of the

instances were solved optimally in three hours of running time. In the biggest instance, we were

unable to produce a feasible solution. On the other hand, using β-ILP and LSA, we were able to

produce feasible solutions for all instances. The average gap with respect to the best solution was

less than 1.2 percent.

5 Conclusions

The most common solution approach for the directed rural postman problem with turn penalties

involves transforming an arc routing problem into an equivalent node routing problem. In this

paper, we investigated the applicability of a direct approach. The direct approach proposed in

the literature has two stages. The first stage focuses on the directed rural postman problem. The

second stage accounts for the turn penalties. We designed computational experiments to identify

the features of the input graph that make the direct approach effective. In particular, taking into

account the costs of the turns, the density of the graph, and the percentage of required arcs, the

cost of the solution produced by the direct approach was only 0.4% to 0.9% greater than the cost

of the optimal solution.

We also tested DA when turns are prohibited. In our tests, all parameter settings produced

solutions with prohibited turns, so DA is not recommended in this case.

In the second part of this paper, we developed a greedy algorithm and a local search procedure

to optimize the turn cost in an Eulerian graph. We compared our results to the results of algorithms

proposed in the literature and observed that our algorithm produced better solutions. Finally,

we proposed a mathematical model for the directed rural postman problem that accounted for

turn costs. Combining this mathematical model with our local search algorithm produced the

best solutions. We tested this new approach on instances from the literature and on real street
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networks. In both cases, we were able to produce effective results in reasonable running times,

even taking into account that the instances from the literature contain numerous prohibited turns.

In future work, we want to investigate the applicability of DA when prohibited turns are

considered in the first phase. We would like to improve the heuristic approach using an iterated

greedy [19] or a carousel greedy algorithm [7]. Both approaches would allow us to improve the

results without greatly increasing the running times. Finally, we might consider replacing local

search with a more sophisticated metaheuristic.

Removed Arcs (%)
Cost

Number of Increased Cost over OPT (%)

Required Arcs (%) Turns OPT EJ v4 GRA LSA

Turn Costs

25

5 222.0 293.5 13.7 9.9 3.7 0.9

(0, 1, 2, 3) 10 219.2 289.4 19.2 10.5 3.8 0.6

20 211.6 264.3 19.3 10.1 1.0 0.0

30 218.0 271.7 19.9 8.6 1.6 0.0

50

5 356.8 272.1 191.1 76.9 4.6 1.2

10 356.6 308.6 188.9 58.6 7.0 1.4

20 351.0 347.6 145.5 53.1 6.2 2.7

30 346.2 364.8 111.6 49.0 5.0 0.5

75

5 474.6 300.1 388.6 86.9 6.7 4.2

10 466.6 323.5 342.6 93.0 5.6 3.1

20 469.6 394.4 281.7 73.4 5.2 1.4

30 473.6 441.2 220.5 64.0 3.9 1.1

Average 161.9 49.5 4.5 1.4

Turn Costs

25

5 220.0 154.9 9.2 5.5 1.4 0.3

(0, 1, 1, 1) 10 216.2 154.0 9.9 5.8 1.4 0.3

20 212.2 140.3 8.9 5.5 1.0 0.0

30 214.8 146.2 11.2 4.6 0.7 0.3

50

5 357.2 142.5 94.8 34.5 4.5 1.9

10 353.8 152.9 84.4 32.7 3.9 1.3

20 352.0 186.9 66.7 26.5 3.0 1.0

30 372.2 217.7 46.0 17.9 1.4 0.6

75

5 472.4 180.5 169.3 46.9 2.3 1.0

10 463.0 182.1 158.4 47.9 1.7 1.4

20 471.4 228.7 126.7 41.6 1.8 1.2

30 481.4 255.6 90.8 34.9 1.2 0.5

Average 73.0 25.4 2.0 0.8

Table 10: Turn cost comparison of EJ, v4, GRA, and LSA.
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Removed Arcs (%) Time (milliseconds)

Required Arcs (%) OPT v4 GRA LSA

Turn Costs

25

5 194.1 0.5 0.7 12.5

(0, 1, 2, 3) 10 167.3 0.3 0.8 11.2

20 129.6 0.3 0.4 8.0

30 216.1 0.1 0.9 9.1

50

5 1081.1 0.9 1.6 19.5

10 1052.7 0.8 1.1 21.1

20 1357.8 0.8 1.1 16.7

30 1090.2 0.6 1.5 17.4

75

5 3090.0 0.8 2.0 23.8

10 1620.6 0.9 1.4 25.8

20 2542.2 1.2 1.7 23.3

30 2846.7 1.1 1.9 19.5

Turn Costs

25

5 109.1 0.2 0.9 8.9

(0, 1, 1, 1) 10 133.9 0.3 0.6 8.6

20 136.1 0.3 0.8 7.2

30 173.5 0.5 0.5 7.0

50

5 1155.5 0.6 1.1 15.5

10 1075.1 0.6 1.0 17.2

20 948.3 1.0 1.2 13.9

30 1273.7 0.6 1.3 13.1

75

5 2005.6 1.0 1.6 23.2

10 1710.0 0.9 1.4 16.2

20 2290.0 1.1 1.5 17.7

30 2264.0 1.0 1.6 15.9

Table 11: Average running times of OPT, v4, GRA, LSA for the experiments shown in Table 10.
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Number of Nodes 8 × 8 10 × 10 12 × 12

Required Arcs (%)
25 50 75 25 50 75 25 50 75

Removed Arcs (%)

5 0.00 0.13 0.17 0.00 0.20 0.31 0.05 0.17 0.16

a (0, γ, 2γ, 3γ) 10 0.00 0.18 0.30 0.06 0.22 0.16 0.01 0.09 0.06

50 20 0.10 0.02 0.10 0.02 0.07 0.09 0.00 0.05 0.10

30 0.00 0.00 0.02 0.00 0.15 0.04 0.01 0.03 0.05

5 0.00 0.08 0.15 0.02 0.18 0.08 0.02 0.22 0.11

b (0, γ, γ, γ) 10 0.00 0.13 0.08 0.00 0.13 0.10 0.00 0.15 0.07

50 20 0.00 0.03 0.08 0.00 0.18 0.04 0.04 0.09 0.04

30 0.00 0.13 0.02 0.00 0.03 0.06 0.05 0.04 0.02

5 0.00 0.07 0.10 0.00 0.09 0.08 0.05 0.15 0.15

c (0, γ, 2γ, 3γ) 10 0.00 0.05 0.23 0.05 0.06 0.07 0.07 0.09 0.09

25 20 0.00 0.05 0.05 0.01 0.05 0.05 0.02 0.08 0.08

30 0.00 0.00 0.00 0.00 0.03 0.06 0.00 0.03 0.02

5 0.02 0.07 0.01 0.00 0.08 0.06 0.00 0.14 0.03

d (0, γ, γ, γ) 10 0.02 0.07 0.02 0.01 0.08 0.07 0.00 0.10 0.06

25 20 0.00 0.00 0.02 0.00 0.05 0.03 0.01 0.06 0.04

30 0.00 0.03 0.03 0.00 0.02 0.03 0.01 0.02 0.05

Table 12: Percentage difference in total cost between two DA solutions using α-ILP and LSA, respectively, in
the second stage.

Number of Nodes 8 × 8 10 × 10 12 × 12

Required Arcs (%)
25 50 75 25 50 75 25 50 75

Removed Arcs (%)

5 3.59 1.87 1.06 4.07 2.35 0.98 3.72 1.89 1.31

a (0, γ, 2γ, 3γ) 10 3.59 1.41 0.61 3.61 1.79 0.97 3.59 1.88 0.82

50 20 1.77 0.93 0.53 2.43 1.29 0.75 2.69 1.25 0.65

30 1.28 0.74 0.44 1.16 0.93 0.35 1.31 0.93 0.78

5 1.26 0.76 0.36 0.94 0.65 0.48 0.97 0.60 0.36

b (0, γ, γ, γ) 10 0.92 0.86 0.18 1.42 0.54 0.23 1.06 0.57 0.31

50 20 0.96 0.41 0.20 0.89 0.41 0.21 0.72 0.43 0.25

30 0.51 0.37 0.09 0.58 0.40 0.07 0.58 0.35 0.22

5 1.69 0.97 0.31 1.74 0.79 0.32 1.61 0.69 0.30

c (0, γ, 2γ, 3γ) 10 1.07 0.87 0.46 1.05 0.58 0.40 1.24 0.59 0.34

25 20 0.87 0.44 0.22 0.84 0.40 0.25 0.96 0.46 0.20

30 0.39 0.21 0.21 0.50 0.31 0.36 0.42 0.44 0.17

5 0.52 0.32 0.16 0.39 0.55 0.16 0.42 0.26 0.11

d (0, γ, γ, γ) 10 0.19 0.19 0.08 0.33 0.33 0.11 0.40 0.32 0.18

25 20 0.21 0.20 0.10 0.33 0.17 0.10 0.31 0.21 0.12

30 0.25 0.10 0.09 0.32 0.13 0.05 0.21 0.14 0.09

Table 13: Percentage difference in total cost between β-ILP+LSA solution and the optimal solution.

19



|V | |A| |Ar|
Turns

Penalty
Cost

All Proh. BK CONS2+IMP ItLSA

P1 35 116 116 400 50 (1,2,4,8) 21147 21137 21116

P2 36 120 79 416 90 (1,3,5,11) 13936 13916 13918

P3 40 132 98 452 73 (1,3,5,11) 15634 15636 15620

P4 49 168 148 596 129 (1,1,3,7) 16512 16418 16382

P5 49 168 128 596 135 (1,2,3,7) 22011 +4M 22227 22214

P6 54 186 166 662 86 (1,2,4,8) 26959 26950 26950

P7 60 208 131 744 86 (2,2,4,8) 24174 +4M 24546 24394 +M

P8 96 344 212 1264 234 (0,2,4,8) 19792 +8M 20574 20334 +3M

P9 96 344 344 1264 259 (0,2,4,8) 36972 36944 36912

P10 99 356 176 1312 384 (1,2,3,M) 17374 +14M 18135 18623 +3M

P11 100 360 360 1328 326 (1,3,5,11) 37078 37088 37028

P12 105 376 376 1380 217 (2,1,4,8) 35046 34815 34613

P13 105 376 177 1380 396 (1,1,4,8) 24770 +28M 26100 27021 +5M

P14 126 458 354 1702 231 (2,3,5,11) 25686 +M 35623 35620

P15 126 458 458 1702 469 (2,3,5,11) 36441 36449 36398

P16 143 524 358 1960 522 (2,3,5,11) 32207 +6M 32766 33062

P17 143 524 524 1960 517 (2,3,5,11) 42369 42363 42308

P18 144 528 377 1976 413 (2,1,4,8) 53565 +5M 36036 36991

P19 144 528 427 1976 311 (2,1,4,8) 40886 +3M 41150 41389 +M

P20 150 550 425 2058 367 (1,3,5,11) 38339 +3M 38564 38423 +M

P21 150 550 550 2058 360 (1,3,5,11) 40338 40338 40260

P22 169 624 556 2348 650 (1,1,3,8) 43990 +5M 44176 45050

P23 169 624 451 2348 584 (1,1,3,8) 34777 +12M 35224 36564

P24 180 666 540 2510 754 (1,2,5,M) 48312 +3M 48361 49038

Number of best solutions 0 13 12

Table 14: Iterative β-ILP and LSA (ItLSA) compared to CONS2+IMP [2] and BK [3].

|V | |A| |Ar|
OPT β-ILP + LSA

Solution Time1 (s) Solution Time2 (s)

Campobasso 3489 7176 1794 371797* 1412 375770 48

Salerno 3811 7602 1901 489284* 1027 491007 51

Boston 16407 33561 8391 1833241* 3067 1856919 496

Rome 18585 36894 9224 1856639* 5280 1888187 828

Washington, DC 27766 61743 15436 – – 3295652 4831

Table 15: Comparison of the best solution found (α-ILP with α= 0.5) with our heuristic solution on real street
networks where * indicates a suboptimal solution and – indicates no feasible solution found within three hours.
The column Time1 shows the number of seconds necessary for α-ILP with α= 0.5 to produce a solution as good
or better than our heuristic solution. The column Time2 shows the running times in seconds of our heuristic
approach. We used the penalties (0, 25, 50, 75).
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