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INFINITESIMAL NEWTON-OKOUNKOV BODIES AND JET SEPARATION

ALEX KURONYA AND VICTOR LOZOVANU

INTRODUCTION

In this paper we wish to continue the investigations ingihbin [KL14, KL15] to find a satisfac-
tory theory of positivity for divisors in terms of convex geetry. To be more specific, our aim here
is to relate local positivity of line bundles to Newton—Okwov bodies attached to infinitesimal
flags.

Ever since the advent of Newton—Okounkov bodies in projeajeometry (see<Kh, LM] or
the review B] for an introduction) the main question has been how theimgetry is connected
to the properties of the underlying polarized variety. Faaraple, attention has been devoted to
the combinatorial study of Newton—Okounkov bodies in teahgrojective data (see for instance
[AKL, KLM, LSS PSU). Nevertheless, in order for these invariants to be reafligful in the
guest for understanding projective varieties, it is mor@antant to uncover implications in the
other direction, that is, one should be able to gain inforomeabout line bundles in terms of their
Newton—Okounkov bodies.

The hope for such results comes from Jow’s theordrolgiming that the function associating
to an admissible flag the Newton—Okounkov body of a givensdivdetermines the latter up to
numerical equivalence. Following our earlier woKd[14,KL15], we are interested in a local ver-
sion of Jow’s principle: we will be mostly concerned with tiguation where all flags considered
are centered at a given point of the variety.

Compared toKL15] we specialize the flags further; as suggestedkiyli, Sections 3 & 4],
one can obtain particulary precise results by taking lirflzays in the exceptional divisor of the
blow-up of the point. This way, we can not only achieve a dpion of ampleness and nefness in
terms of infinitesimal Newton—Okounkov bodies, but are alske to extend the convex geometric
interpretation of moving Seshadri constants describeHlirifl] to all dimensions.

Let nowX be a projective variety over the complex numbérs, big line bundle, and € X a
closed point. We say thatis locally positive or locally ample atif there exists a neighbourhood
X € 7 C X such that the Kodaira magy,_ restricted to7 is an embedding for alin>> 0. One
can of course work with the alternative description prodithy global generation of large twists
of coherent sheaves (cf.PAG1, Example 1.2.21] andK], Proposition 2.7]), in any case both
conditions end up being equivalenttdelonging to the complement of the augmented base locus

B. (L) of L (see BCL, Theorem A)).
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Once a line bundlé. has been proven to be locally positive at a poiat X, one can try to
measure the extent of its positivity there. The traditiomal to do this is via the Seshadri con-
stante(L; x) introduced by Demailly D] (see also PAG1, Chapter 5] for a thorough introduc-
tion and an extensive bibliography), or, in our setting,ex$ension, the moving Seshadri con-
stante(||L||;x) developed by Nakamay@l], and studied in much more detail by Ein—Lazarsfeld—
Mustap—Nakamaye—Pop&[MNP2].

Since one can describe both local ampleness and moving@esbastants in terms of infini-
tesimal Newton—Okounkov bodies, the convex-geometritupgcof local positivity appears to be
complete. The first main result of our work is a characteigredf ampleness and nefness in terms
of Newton—Okounkov bodies (cf.KL14, Theorem A] and KL15, Theorems A & B], see also
[CHPW)).

To fix terminology, letX be a smooth projective variety of dimensipnnx € X a closed point,
andm: X’ — X be the blow-up o atx with exceptional divisoE. An infinitesimal flagY, over
xis an admissible flag

Yo : Yo=X"D2Y1=E D Y22 ... D Ya,

where eacly; is a linear subspace &~ P"1 of dimensiom—i for each=2,....n. The Newton—
Okounkov body ofrr*D with respect toY, on X’ will be denoted byAy, (D). For further results
regarding infinitesimal Newton—Okounkov bodies the reaslikindly referred to Section 2.

Theorem A. (Corollary3.3) Let X be a smooth projective variety of dimensigrD a bigR-divisor
on X. Then the following are equivalent.

(1) Dis nef. N

(2) Forevery pgint( € X there exists an infinitesimal flag overx such thaD € Ay, (D).

(3) One had € Ay, (D) for every infinitesimal flag ovex.

Before we proceed, let us define what we call the inverteddstahsimplex of siz€ > 0: this
is the convex body

At %' convex hull of {0, £y, & (&1 + &),.... & (1 +en)} C R",

whereey, ..., e, denote the standard basis vectorsifr Lemma2.4 and Propositior2.6 below
explain how the pontope&gl arise very naturally in the infinitesimal setting.

Theorem B. (Corollary4.2) Let X be a smooth projective variety of dimensirD a bigR-divisor
on X. Then the following are equivalent.

(1) Disample.
(2) For every poink € X there exists an infinitesimal flag overx and a real numbef > 0 for
whichA;* C Av, (D).

3) Ey.(D) contains a non-trivial inverted standard simplex for evafyitesimal flagY, overX.
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Note that as opposed t&[15, Theorem B], the theorem above provides a full generatimati
of what happens in the surface case; its proof is signifigantre difficult than that of any of its
predecessors.

An interesting feature of the argument leading to TheoremtBat it passes through separation
of jets. In fact, an important step in the proof is Proposi#o9 which claims that line bundles
whose infinitesimal Newton—Okounkov bodies contain laryeited standard simplices will sepa-
rate many jets. Not surprisingly, we will make an extensise af the circle of ideas around jet sep-
aration and moving Seshadri constants, and with it, thetneial results of ELMNPZ]. Another
important ingredient of the proof is an acute observatioRuwfer—Kollar—-LehmannHKL, Theo-
rem A] linking inequalities between volumes of divisors t@aented base loci.

It follows from our argument that infinitesimal Newton—Okuov bodies on projective varieties
always contain inverted standard simplices at points wtieralivisor is locally ample. Given an
infinitesimal flagY,, the supremum of the sizes of all such is called the invedegekt simplex
constant, and will be denoted Ky, (D;x). It will turn out that this constant does not depend on
the choice of the infinitesimal flag taken, leading to the cammalueé (D;x). As a result of
our efforts we obtain a description of moving Seshadri camistin all dimensions (cf. KL14,
Theorem D]) in the following form.

Theorem C. Let D be a bigR-divisor on a smooth projective varie¥, x ¢ B (D). Then
e(/[D]l;x) = &(D;x) .

Beside providing an alternative way of defining moving Sesheonstants, the largest inverted
simplex constant has other benefits as well. Via Thed3elrand Theoremt.1 it explains quite
clearly whye(||D||;x) = 0 for a divisorD with x € B, (D) \ B_(D).

An interesting by-product of our result is a statement alioeiexistence of global sections with
prescribed vanishing behaviour. From the definition of NewfOkounkov bodies it is a priori
quite unclear which rational points arise as actual imadegabal sections, and in general it is
very difficult to decide when it comes to boundary points. tatins out, for infinitesimal Newton—
Okounkov bodies the situation is more amenable.

Corollary D. (Corollary4.13 Let D be a bigQ-divisor onX, x € X a closed point, andl, an

infinitesimal flag ovew. If A;* C Ay, (1"(D)) for some¢ > 0, then all vectors iy, * N Q" not

lying on the face generated by the poiAtse;, A (e1 +€2),...,A(e1+e,) are valuative.

Finally, a somewhat tentative side remark regarding mo@eghadri constants and asymptotic
multiplicities. For a given poink € X, the loci of R-divisor classes in Bi@gX) wheree(||D||;x)
and mulk||D|| are naturally defined are complementary, and we point otiothe can glue these
functions to a unique one via

([ID]1;x) if x¢ B(D)
(D) £ 0 if x€ B, (D)\ B_(D)
“mult|D|| if xeB_(D),
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which ends up being homogeneous of degree one and continndhe big cone, while examples
suggest that one can hope fgrto be concave. We believe that could prove useful as an

extension of the moving Seshadri constant function by beappble of distinguishing between
divisor classe® with x € B, (D) \ B_(D) andx € B_(D). In the end we discuss an example
where the Seshadri function is not everywhere differefgiab the ample cone.

A few words about the organization of the paper. We begin icti®e 1 by fixing notation
and collecting useful facts about asymptotic base loci, tdawOkounkov bodies, and moving Se-
shadri constants, in Section 2 we present some importartwdifons about infinitesimal Newton—
Okounkov bodies. The characterization of restricted basidd given in Section 3, while Section
4 is devoted to the main part of the paper, the descriptionugfreented base loci in terms of
Newton—Okounkov bodies with the help of separation of jé@stly, Section 5 hosts the discus-
sion on Seshadri functions.

Acknowledgements We are grateful to Mihnea Popa for helpful discussions, aritlé Deutsche
Bahn, the Osterreichische Bundesbahn, the SNCF and Telwdviding us with excellent work-
ing conditions.

1. NOTATION AND PRELIMINARIES

1.1. Notation. We work over the complex number field, will stand for a projective variety of
dimensiom which will often taken to be smooth. The poxk X will always be assumed a smooth
point, while all points on varieties are taken to be closedivAsor is always Cartier, whether it is
integral,Q- , or R-Cartier andD will denote a big divisor without exception.

If F is an effectiveR-Cartier divisor onX, then we write

ur (D) = u(D;F) d:efsup{t > 0| D—tF is big} .

Furthermore, iZ C X is a smooth subvariety, then denote by

kz(D) = u(D;2) &' u(wDiE)

whererm: X’ — X denotes the blow-up of alongZ with exceptional divisoE.

Remark 1.1. Based on the definition of moving Seshadri constant giveavpet is not hard to
see that < &(||DJ|;x) < u(D;X).

1.2. Asymptotic base loci. Following [ELMNP1], one defines the restricted base locus of a big
R-divisorD as
B_(D)E'| JB(D+A),
A
where the union is taken over all ample divisé¢ssuch thaD + A is aQ-divisor. This locus is a
countable union of subvarieties ¥fby [ELMNP1, Proposition 1.19]

B_(D) = | B(D-i—%A) .

meN
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The augmented base locusis defined by

B.(D) £'NB(D-A),
A
where the intersection is taken again over all ample digisoisuch thaD + A is aQ-divisor. It
follows quickly from ELMNP1, Proposition 1.5] thaB_. (D) = B(D — r—}1A) for all m> 0 and any
fixed ample clasé.

Proposition 1.2. Let X be a projective variety,& X an arbitrary point. Then

(1) BL(X) d:ef{a eNY(X)r |xeBi(a)} € N (X)gis closed,
) B-(x) £'{a e N} (X)r |x€B_(a)} € NL(X)g is open,

both with respect to the metric topology of (X ).

For further references and relevant properties of resttiagmented base loci, we refer the
reader to ELMNP1,KL15], including the proof to Propositioh.2.

1.3. Newton—Okounkov bodies. Newton—Okounkov bodies have been introduced to projective
geometry by Lazarsfeld—-Mus&fLM] and Kaveh—Khovanskii{Kh] motivated by earlier work

of Okounkov in representation theor@]. For a bigR-divisor D on X, Ay, (D) stands for the
Newton—Okounkov body dD with respect to the admissible flag, where

Yo : X=Y2Y12...20¥

is a full flag of (irreducible) subvarietieg C X with codimkY; = i and the property that; is
smooth at the poinY, for all 0 <i < n. In particular, ifX is only assumed to be projective, the
centery, = {x} of an admissible flag must be a smooth point.

Remark 1.3. (Geometry of\y, (D)) In low dimensions the geometry Af, (D) is well-understood:
for curvesAy, (D) = [0,degD] C R is a line segment (M, Example 1.13]); in the case of surfaces
variation of Zariski decompositiorBKS] leads to the fact that Newton—Okounkov bodies are
polygons with rational slopes (see\l, Theorem 6.4] andLM , Section 2)).

Note that in dimensions three and above, the situation ismgdr purely combinatorially, (D)
can be non-polyhedral evenlf is ample andX is a Mori dream space. At the same time finite
generation of the section ring 8f ensures the existence of flags with respect to whiglD) is a
rational simplex (seeqKL]).

Next, we quickly recall a few notions and useful facts frdt.15] without proof.

Proposition 1.4 (Equivalent definition of Newton-Okounkov bodieg)et & € N1(X)g be a big
R-class and ¥ be an admissible flag on X. Then

Ay, (&) = closed convex hull of w, (D) | D € Divo(X)r,D =&},

where the valuationw, (D), for an effectiveR-divisor D, is constructed inductively as in the case
of integral divisors.
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Proposition 1.5. Suppos€ is a big R-class and ¥ is an admissible flag on X. Then for any
t € [0, uy,(€)), we have
Ay, (&)vi>t = Dy, (& —tY1) +tey,
wheree; = (1,0,...,0) € R".

Lemma 1.6. Let D be a bigR-divisor and ¥ an admissible flag on X. Then the following hold.

(1) For any real numbee > 0 and any ampl&-divisor A on X, we havAy, (D) C Ay, (D + €A).

(2) If a is an arbitrary nefR-divisor class, thedy, (D) C Ay, (D + a).

(3) If oy is any sequence of n&-divisor classes with the property that, — am:1 is nef and
||am|| — 0 as m— oo with respect to some norm on*fK)g, then

Ay, (D) = (Av, (D + am) .

Definition 1.7. (Valuative points) LeX be a projective varietyf, an admissible flag, and a big
Q-Cartier divisor onX. We call a pointv € Ay, (D) valuative if it lies in the image of normalized
map%w. . |[mD] — Qxo for somem > 1, whenevemD becomes Cartier.

Lemma 1.8. With notation as abovent Ay, (D) NQ" consists of valuative points. &y, (D) con-
tains a small simplex with valuative vertices, then alloatl points of the simplex are valuative.

Proof. Follows from Propositiorl.4 and multiplicative property of, . U

1.4. Moving Seshadri constants.We recall the necessary information about moving Seshadri
constants; our main source BIIMNP2, Section 6].

Definition 1.9. (Moving Seshadri constant) L&t be a projective variety € X be a smooth point,
andD a bigR-divisor withx ¢ B (D). Themoving Seshadri constant of D atxdefined as

;x)d:ef sup &(AX),
f*D=A+E

e(|ID

where the supremum is taken over all projective morphi$m¥ — X with Y smooth andf an
isomorphism around, and over all decompositions'D = A+ E, whereA is ample, ancE is
effective with f ~1(x) ¢ SupgE).

If D is nef, thene(||D||;x) specializes to the usual Seshadri constgbx; x). The formal rules
that the moving Seshadri constant obeys can be concisetgssex as follows.

Proposition 1.10. [ELMNP2, Proposition 6.3With notation as above(|| - ||;x) descends to a
degree one homogeneous concave functioBigtX) \ B, (X).

By virtue of its concavity and the fact that its domain Big \ B, (x) € NY(X)R is openg(]| -
||;X) is of course a continuous function on it. The highly nonitdivesult of ELMNPZ] is that
continuity is preserved under extendiag| - ||;x) by zero outside Bi¢X) \ B, (x) in N}(X)g.
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Theorem 1.11.[ELMNP2, Theorem 6.2] et X be a smooth projective varietyexX. Then the
functione(|| - ||;X): N*(X)r — R0 given by

D (|[D[;x) .ifD¢$+(X)
0 , otherwise

iS continuous.

In Section 5, we offer an alternative extensiore@fD

;X) overB, (X).

2. INFINITESIMAL NEWTON-OKOUNKOV BODIES

In this section we define infinitesimal Newton—Okounkov lescind discuss some of their prop-
erties needed in the rest of the paper. Recall that we deyoie X’ — X the blow-up ofX atx
with exceptional divisoE. As x is smooth X' is again a projective variety, arilis an irreducible
Cartier divisor onX’, which is smooth as a subvariety ¥f.

Definition 2.1. We say thaty, is aninfinitesimal flag over the pointxf Y; = E and eacly; is a
linear subspace i ~ P"! of dimensionn —i. We will often writeY, = {z}. An infinitesimal
flag over Xis an infinitesimal flag ovex € X for some smooth point

The symboly, (D) stands for an infinitesimal Newton—Okounkov bodyDofthat is,

def

By, (D) = By, (TD) CRY

whereY, is an infinitesimal flag ovex.

Remark 2.2. (Difference in terminology) Note the deviation in termingly from [LM, Section
5.2]; what Lazarsfeld and Mustatall an infinitesimal Newton—Okounkov body, is in our laage
(following [KL14]) the generic infinitesimal Newton—Okounkov body.

Remark 2.3. Recently, interesting steps in the infinitesimal directiawe been taken by RoR].

We start with an observation explaining the shapes of tigatrkind of simplices that play the
role of standard simplices in the infinitesimal theory.

Lemma 2.4.(cf. [KL15, Lemma 3.4] Let X be a projective variety,& X a smooth point, and A an
ample Cartier divisor on X. Then there exists a natural nunmhgsuch that for any infinitesimal
flag Y, over x and for every iz mg there exist global sectiongs. ., s, € HO (X', Oy/(1*(mA)))
for which

W,(So) = 0, W,(s)) = e1, and w,(5) = e1+e, forevery2<i<n,
where{ey,...,en} C R" denotes the standard basis.

Proof. The line bundleA is ample, therefore there exists a natural nunmrhgr- 0 such thatpA
is very ample, in particular the linear serigeny + m)A| define embeddings for ath > 0. As
|mpA| separates tangent directions as well, Bertini’s theoresldgithe existence of hyperplane



8 A. KURONYA AND V. LOZOVANU

sectionsHy, ..., Hn1 € |MoA| intersecting transversally at and HiN...NHiNE =Y, for all
i=1,...,n—1, whereH; denotes the strict transform Blf through the blow-up mag.
At the same time observe that for amy> my there exists a global sectiare HO(X, Ox (mA))

not passing through By settings d:efif"(t-l—s) wheres € HO (X, Ox(moA)) is a section associated
to Hi, then the sections, . . ., s, satisfy the requirements. O

Definition 2.5. For a positive real numbédr > 0, theinverted standard simplex of siZe denoted
by Agl, is the convex hull of the set

A € 0o E(eten),. . E(eten)} TR

Whené& =0, thenA(»;l =0.

A major difference from the non-infinitesimal case is thd fhat infinitesimal Newton—Okounkov
bodies are also contained in inverted simplices in a veryraaway.
Proposition 2.6. Let D be a bigR-divsor X, themy, (11*(D)) C A;(lD.X) for any infinitesimal flag
Y, over the point x.

Proof. By the continuity of Newton—Okounkov bodies inside the bage it suffices to treat the
case wherD is a bigQ-divisor. Homogeneity then lets us assume that integral. Sefu =

H(D;x).
We will follow the line of thought of the proof of{L 14, Proposition 3.2]. Recall th& ~ P"1;
we will write [y; : ... : yn] € P"~1 for a set of homogeneous coordinate€isuch that

Y, = Zeroegys,...,yi_1) C P"1 = Eforall2<i <n.

With respect to a system of local coordinates, ..., u,) at the pointx, the blow-upX’ can be
described (locally arounx) as

X'={((ug,...,un);[yr: ... 1¥n]) | Uiyj = ujy; forany 1<i< j<n} .
We can then write a global sectigrof D in the form
S = Pn(U1,...,Un) + Pny1(Ug,...,Un) + ... + BPrik(Ug, ... Up)

aroundx, wherePR are homogeneous polynomials of degree
We will perform the computation in the open subSgt= {y, # 0}, where we can takg, = 1
and the defining equations of the blow-up are givemiby u,y; for L <i<n—1. Then

S|Un == qu : (Pm(YL . 7yn—1, 1) + Uan+1(Y17 R 7yn717 l) + s + Uﬁpmk(yb .. ,Ynfl, 1)) )

in particular,v1(s) = m. Notice that for the rest ofi;(s)’s we have to restrict to the exceptional
divisorun, = 0 and thus the only term arising in the computatioR$y1, . . .,Yn-1,1).

As dedPn < m, taking into account the algorithm for constructing theuadion vector of a
section one can see that indeed

V2(S)+ ...+ Vn(s) < vi(s),
and this finishes the proof of the proposition. O
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3. RESTRICTED BASE LOCUS VIANEWTON-OKOUNKOV BODIES

The section is devoted to our characterization of resttittase loci in terms of infinitesimal
data. The proofs are variations of those founddh15, Section 2].

Theorem 3.1.Let X be a smooth projective variety, D a fiRgdivisor and xe X an arbitrary point
on X. Then the following are equivalent.

(1) x¢ B_(D). N
(2) There exists an infinitesimal flag &ver x such thad € Ay, (D).
(3) For every infinitesimal flagsYover x, one ha® € Ay, (D).

Proof. (1) = (3) Assumex ¢ B_(D), and fix a sequence of ampR-divisor (am)mery SO that
Om— Qmy1 IS ample and + ap, is aQ-divisor for anym > 1, and|| || — 0 asm — co.

Now, letY, be an arbitrary infinitesimal flag over Sincex ¢ B_(D), thenx ¢ B(D + a,) for
allm> 1. On the other hand, we have the sequence of equalities

B(r*(D+am)) = m X(B(D+am)) .

In particular, this implies that
ENB(m(D+am)) = @,

forallm> 1. AsY, is an infinitesimal flag ovex, there must exist a sequence of natural numbers
nm > 1 and a sequence of global sectispss HO(X', Oy (1T (Nm(D + am)))) such thatm(z) # 0.
This implies thatwy, (sn) = 0 for eachm > 1. In particular0Q ﬂy. (D + am) for everym > 1.

Recall thatrt* ay, is big and semi-ample, therefore

Bv.(D) = () &v.(D+ )

m=1

according to Lemma.6, henced € Ay, (D) as wanted.

The implication(3) = (2) is trivial, and so we are left with checkin@) = (1). LetY, be
an infinitesimal flag ovex so thatO Ey.(D). Fix an ampleR-divisor A on X and an decreasing
sequence of positive real numldéh) men such thaf|tm|| — 0 asm— o, andD +tpA is aQ-divisor
forall m> 1. Now, by Lemmal.6, we know

0€ Ay, (D) C Ay, (D+tnA)

for all m> 0, therefore miwy p,,a) = 0 for the sum functiow, p1,a): Ay, (D +tmA) — R
In particular, this implies, by making use a€IL15, Proposition 2.6], that mulf|| 77 (D +tmA)||) =

0 for allm> 1, whereY, = zis the base point of the flag. Taking into account the string of
(in)equalities

mult([[D +tmAl]) = multe (|| (D +tmA)[|) < multy([|7T"(D +twA)|]) = 0
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yields mult ||D +tmA|| = 0 for allm > 1. As all the divisor® +ty,A were taken to bé&)-divisors,
[ELMNP1, Proposition 2.8] leads to¢ B_ (D +tyA) for allm> 1. But, since

B_(D) = JB-(D+am) = | JB(D+am)

by [ELMNP1, Proposition 1.19], we are done. U

Remark 3.2. We point out that the implicatiofil) = (3) remains true under the weaker assump-
tions thatX is a projective variety ange X a smooth point. For the converse the answer is unclear
since the proof 0of2) = (1) uses ELMNP1, Proposition 2.8], which in turn is verified with the
help of multiplier ideals and Nadel vanishing.

Corollary 3.3. Let X be a smooth projective variety, D a liggdivisor on X. Then the following
are equivalent,

(1) Dis nef.

(2) For every point xc X there exists an infinitesimal flag Wver x such thad ﬂy,(D).

(3) The origin0 Ey.(D) for every infinitesimal flag over X.

4. AUGMENTED BASE LOCI, INFINITESIMAL NEWTON-OKOUNKOV BODIES, AND JET
SEPARATION

In this section, which is the core of the paper, we extend tieacterization of augmented
base loci in terms of infinitesimal Newton—Okounkov bodieggested byKL14, Theorem 3.8]
to all dimensions (cf. KL15, Theorem B] as well). Our statement can be seen as a gerti@iiz
of Seshadri’s criterion for ampleness. The argument widispd@arough a study of the connection
between infinitesimal Newton—Okounkov bodies and jet sejuar.

4.1. The main theorem and the largest inverted simplex constant.

Theorem 4.1. Let X be a smooth projective varietyexXX an arbitrary (closed) point, D a big
R-divisor on X. Then the following are equivalent.

(1) x¢ B.(D). )
(2) For every infinitesimal flag,Yover x there i€ > 0 such thal‘Ag1 C Ay, (D).

(3) There exists an infinitesimal ¥ver x andé > 0 such thatAg1 C Ay, (D).
As an immediate consequence via the equivalence of amglaneB . being empty, we obtain

Corollary 4.2. Let X be a smooth projective variety and D a Befdivisor on X. Then the follow-

ing are equivalent.

(1) Disample.

(2) For every point x X and every infinitesimal flag,Yover x there exists a real numbé&r> 0
for whicha, * C Ay, (D).

(3) For every point xc X there exists an infinitesimal flag Wver x and a real numbefy > 0 such
thatA;* C Ay, (D).
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We will first give a proof of implicatior(1) = (2) from Theoren¥.1

Proposition 4.3. Let X be a projective variety, ® X a smooth point, and D a big-Cartier
divisor on X. If x¢ B4 (D), then there exists a real numbé&r> 0 such thaTAg1 C Ay, (D) for any
infinitesimal flag Y over x

Proof. This is a modification of the proof oKL15, Theorem B] using Lemma.4; the basic
strategy is the same.

Let us first suppose thél is Q-Cartier. By assumptior ¢ B (D) = B(D — A) for some small
ampleQ-Cartier divisorA. Note also that b (7*(D — A)) = 1(B(D — A)) this gives

B(m'(D-A) (\E=o

as well. Choose a positive integaiarge and divisible enough such that mA) becomes integral,

satisfies the conclusions of Lemr@al, andB(m*(D — A)) = Bs(m*(m(D — A))) set-theoretically.
Sincez¢ Bs(r*(m(D —A))), there exists a sectiae HO(X/, Ox/(m*(mD—mA))) with s(z) # 0,

i.e. w,(s) = 0. Furthermore, Lemm2.4provides global sectiors, ..., s, € HO(X', Oy (11 (mA)))

such thaty, (sp) = 0, w,(s1) = e andwy,(s) =e1+g forall 2<i < n.
Multiplicativity of the valuation mapy, then gives

W, (s®%0) = 0, W, (s®s1) = e andwy, (s®s) =e +& forall2<i<n.

By the construction of Newton—Okounkov bodies, tlzi‘.q‘ﬁn C Ay, (D).

Next, letD be a bigR-divisor for whichx ¢ B (D), and letA be an ampl&-divisor such that
D —Ais aQ-divisor, andB, (D) =B, (D —A). Then we have ¢ B, (D —A), therefore

A;1 C Ay, (D—A) C Ay (D)

for some positive numbéf, according to thé)-Cartier case and Lemnia6. O
Just as in the surface case¢ B (D) implies thatAy, (D) will contain an inverted standard

simplex of some size, hence it makes sense to ask how large gwmmplices can become (cf.
[KL14, Definition 4.5]).

Definition 4.4. (Largest inverted simplex constant) Letbe a projective varietys € X a smooth
point onX, andD a bigR-divisor withx ¢ B_(D). For an infinitesimal flagf, overx write

&.(0:) Esupl e > 0|8t C A (D)}

Thelargest inverted simplex constaftD; x) of D atx is then defined as
(D) € supéy, (D)

whereY, runs through all infinitesimal flags over Moreover, ifx € B_(D), then let (D;x) = 0.
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Remark 4.5. As Newton—Okounkov bodies are homogeneous, s&(is ;x) as a function on
N(X)g. Although it is not a priori clear i€ ( - ;x) should be continuous, a bit of thought will
convince that this is indeed the case over the domain whe¢rm_ (D).

First, Corollary4.8 below shows thafy, (D;X) is in fact independent of,, therefore we can use
one flag for allR-divisor classes. The natural inclusion

Ay, (D) + Ay, (D') € Ay, (D+D')

shows tha€ (-;X) is in fact a concave function on Bi¥) \ B (X). This latter is an open subset of
N(X)g, thereforeé( - ;x) is continuous on its domain. For further results regardiogtiouity,
we advise the reader to look at Corollaryl2and Section 5.

Proposition 4.6. Let X be a normal projective variety,&X a smooth point and D a bi§-Cartier
divisor on X. Assume thﬂgl C Ay, (D) for some infinitesimal flagsYover x. Thenﬁ(‘;l C Ay (D)

for all infinitesimal flags ¥ over x.

Remark 4.7. Normality is used in[fFKL, Theorem A], a key ingredient of the proof. The cited
result studies the question when the support of an effe@idiévisor is contained in certain aug-
mented base loci in terms of the variation of the volume fiomct

Proof. The argument below works only f@-divisors, passing to the limit delivers the general case
(recall that restricted Newton—Okounkov bodies behavedardginuous fashion byL]M, Example
4.22]). Assume thab is a bigQ-divisor onX For &’ € (0, &), write Agfl C R"1 for standard
simplex of sizef’ and dimensiom — 1.

Our goal is then to show that

Dvy((D) — E'E) ({0} x Rt = AR !

for any infinitesimal flagr! overx. By continuity it suffices to check this for rational valudso.

So, fix a rational numbef’ € (0, &) and denote by def (D) — &’E. Obviously,

Ay, (B+AE) = Ay, (m'D— (¢~ A)E)
foranyA < &’. The conditiomg1 C Ey.(D) and Propositiod.5imply

Volgn (Ay,(B+AE)) > volgn (Ay,(B))

for any rational number & A < &’. Then LM, Theorem A] gives vol(B+A E) > volx (B), which,
via [FKL, Theorem B] leads t& ¢ B, (B).
The significance of this condition is that it grants us actesse slicing theoremM, Theorem
4.24]. In particular,
Dy, (B) = Ay, (B)lx—0 = AF 1,
where left-hand side denotes the appropriate restricteddhe-Okounkov body (see M, (2.7)]).
By the same token, sinée ¢ B (B), we have

Volxjg(B) = (N—1)!V0lgn-1(Ay,g(B)) = (n—1)!Volgn1(A% ).
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Note that both extremes are independet of the choice of thelfence we have

VOIRnfl (AY.’|E(B)> = VOIRnfl(Ag,_l)

for any infinitesimal flagr! on X'.
It follows from Propositior2.6that

Dyie(B) = Dy;(B)|x,—0 € A%,

EI
however, as the the two convex bodies have equal volume,nthusy coincide. This means that
Dv;(B) =0 = A, as required. O

Corollary 4.8. With notation as abové (D;x) = &y, (D;x) for all infinitesimal flags ¥ over x.

4.2. Inverted standard simplices and jet separation. Arguably one of the most important in-
gredients of the proof of Theoret1lis the following connection between infinitesimal Newton—
Okounkov bodies and jet separation of adjoint bundles.

Proposition 4.9. (Infinitesimal Newton—Okounkov bodies and jet separatiehX be an n-dimensional
smooth projective variety, D a big Cartier divisor, and x besed) point on X. Assume that there
exists a positive real numberand a natural number k with the property tktb;jk+g C Ay, (m*(D))

for every infinitesimal flag Yover x. Then Ik + D separates k-jets.

Proof. By definition (seeD], also [PAG1, Definiton 5.1.15] andRAG1, Proposition 5.1.19]), what
we need to prove is that the restriction map

HO(X, Ox (Kx + D)) — HO(X, Ox(Kx + D) ® O x/m§})

IS surjective.
Transferring the question to the blow-Xp, this is equivalent to requiring

(4.9.1)  HOYX,Ox(m (Kx+D))) — HOX', Ox (11 (Kx + D)) ® Oxs/ Oxs(—(k+1)E))
to be surjective.

In order to do check surjectivity i(4.9.1), let us writeB def (D) — (n+k)E. By Proposi-
tion 1.5 we have

Ay;(B) = By (10(D))xgzn+k — (N+K,0,...,0)

for any infinitesimal flagr] over the poini. In particular,B is a big line bundle with the property
that the origin0 € Ay,(B) for any infinitesimal flagy,. As a consequence of Theoresril, we
obtain thaB_(B) NE = @. Thus Zeroe§7(X',||B||)) NE = & via [ELMNP1, Corollary 10].

To finish off the proof, we will make use of a variant of the claal argument to deduce the
required surjectivity. Recall th& = "D — (n+Kk)E, andKy = m*Kx + (n— 1)E, therefore we
have the short exact sequence

0— Ox/(Kx+B)®_Z(X',||B||) = Ox (*(Kx +D)) = Ox (T (Kx +D)) ® (2 & O1e) — 0,

whereZ stands for the structure sheaf determined by the closedlseb® associated to the ideal
Z(X',|BJ|)); note that this latter has support disjoint frdn
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SinceB is a big line bundle, by Nadel’s vanishing for asymptotic tiplier ideals PAG2, The-
orem 11.2.12.(ii)] we have

HY(X', O (Kx +B)®_#(X',[[B]])) = 0,
therefore the restriction map
HO (X', 0y (" (Kx +D))) — HO (X', Ox/ (" (Kx + D)) ® (2 ® O s 1)) )
is surjective, but then so is
H® (X', 6/ (1 (Kx +D))) — H® (X', Ox/(T1"(Kx + D)) ® Oy 1))
as required. O

Now we are in a position to finish the proof of Theorehi; our main tool is going to be
the connection between moving Seshadri constants andstanyerted simplex constants via jet
separation (cf. ELMNP2, Proposition 6.6])

Proposition 4.10. Let D be a bigR-divisor on a smooth projective variety X an&xXX a closed
point. If £(D;x) > 0, then& (D;x) = £(||D||; x).

Proof. Let us first assume thé&t is a bigQ-divisor; we wish to show that

(4.10.2) £(D:x) — limsupXMPX)

m—-c0

= (D

1 X)

where the latter equality i< MNP2, Proposition 6.6]. Then one can go on and (4&0.2) and
Proposition4.9to deduce (D; x) = &(||D||; x).

Our first goal is to check(||D|[;x) > & (D;x). Since both expressions are homogeneous, it will
suffice to showe(||D||;x) > n wheneveré (D;x) > n. Letr > 0 be a natural number so thdd
becomes integral. Then, by homogenedtymrD; x) > mrn, and Propositiod.9 gives

S(Kx +mrD;x) > mrn—n.
Consequently, by taking multiples we obtain
s(k(Kx +mrD); x)
k
in particular, by ELMNP2, Proposition 6.6] one has

&(]|Kx +mrD|[;x) = Iimsups(k<KX +kmrD);x)
k—so0

On the other handHLMNP2, Theorem 6.2] says that the functibid(X)r > a — £(||a
is continuous, therefore

> mrn—n, foranymk > 1,

= mrn—n.

X) € Ry

e((|[D[f;x) = ~limsup >n

m—sco m

1. e(|[Kx+mrDlf:x)
r
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For the converse inequalig(||D||;x) < &(D;x), we will show that wheneveb is an integral
divisor separating-jets at the poink , thenAg ! C Ay, (11(D)) for any infinitesimal flagr, overx.
Note that Propositiod.6 shows that it suffices check this for one such flag.

To this end, choose a system of local coordindies. .., u,} atx and choose the infinitesimal
flag Y, in such a way that eacti,; is given by the intersection & with the proper transforms
of uy,...,U;. Becaused separates-jets atx, there exist sections, ..., s, € HO(X, Ox (D)) such
thats = u?® locally. Analogously to the proof of Lemntai4, we see thaty, (11°(s1)) = s- e and
W, (1T(s)) = s- (e +8). The origin is contained ify, (D) since& (D;x) > 0.

Lastly, it remains to deal with the case wheris a bigR-divisor, which we will do by reduction
to the rational case. Fix a sequence of anfpldivisors(a ),y for which lim;_,. ||a;|| = O for an
arbitrary norm on N(X)g, D + oy is aQ-divisor, anda 1 — a; is ample for any > 1.

Then Lemmal.6yields

Ay, (m(D)) = () Av(T(D+a))
leN
for any infinitesimal flagY, overx. As a consequence, lim. ¢ (D + A;X) = &(D;X); however,
since each clasB + A is aQ-divisor, we know tha€ (D + A)) = &(||D + Al||;x) for anyl € N.
Continuity of moving Seshadri constanELJ]MNP2, Theorem 6.2] then concludes the proofl]

Proof of Theorend.1 The implication(1) = (2) has been taken care of in Propositi!3, as
(2) = (3) is formal, we are left with(3) = (1). However, if there exists an infinitesimal flag
overx with an inverted standard simplex contained in it, ti§¢D;x) > 0, hence Propositio#.10
yieldse(||D||;x) = & (D;x) > 0, which by definition means¢ B_.(D). O

We obtain a sequence of interesting corollaries.
Corollary 4.11. Let D be a bigR-divisor on a smooth projective variety X. Then
¢(D;x) = &(|[DI};x)
for any (closed) point x X.

Proof. If x¢ B (D), then this is immediate from Theorefriland Propositiod.10 If xe B (D) \
B_(D), then&(D;x) = 0 by Propositior4.6 and £(||D||;x) = O by definition. In the last case
x € B_(D), both invariants are zero by definition. O

Corollary 4.12. For a smooth projective variety X and a poinexX, the function
EC-):NT X — Ry
D — ¢&(D;x)
is continuous.
Proof. Follows easily from Corollaryt.11and ELMNPZ2, Theorem 6.2]. O

Corollary 4.13. Let D be a bigQ-divisor on X, xc X a closed point, and,Yan infinitesimal flag
over X. Ing1 C Ay, (r*(D)) for someé > 0, then all vectors imglm(@” not lying on the face

generated by the poinis- e,A (e +€2),...,A(e1 +&,) are valuative.
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Proof. This is a consequence of Lemrha, the inequality
im S(kD; x)
k—o0 k

and the definition of jet separation constants. One can sebebgroof of Propositiort.10 all
vectors with rational coordinates sitting on one of the ray®ing out of the origin in the inverted
simplex come from a basis for some power of the maximal ideal o O

> A,

5. THE EXTENDED SESHADRI FUNCTION

In this section we briefly discuss an extension of moving &dsltonstants completing in some
ways the picture considered iBEILMNPZ2]. We also give an example where the Seshadri constant
function inside the ample cone is not everywhere diffeedsié.

First, recall the notion of asymptotic multiplicity: for somt x € X on a smooth projective
variety X, theasymptotic multiplicityof a bigIR-divisor D is defined as

mult |D|| &' inf {mult,(D)} .

where the minimum is over all effectiv-divisors withD’ = D (see ELMNP]] for the general
theory).

Note that mul||D|| > O precisely whex € B_(D) by [ELMNP1, Proposition 2.9]; in contrast
with the various largest simplex constants and the geome#finition of the moving Seshadri
constant, muj||D|| concerns the situation when the pairgt B_ (D). Our goal is to see this invari-
ant through the eyes of infinitesimal Newton—Okounkov bsdand use this relation to connect
asymptotic multiplicities to moving Seshadri constants.

Proposition 5.1. Let D be anR-divisor on X, xc B_(D), and denote by OI|§fmultX |ID||. Then for
any infinitesimal flags.Yover the point x, the following hold

(1) Ay, (D) Cr-e; + RY. In particular, EC B (7°(D) —rE).
(2) EZ B_(*(D) —rE). In particular Ay, (D) N {r} x R"-1 £ 2.
(3) The intersectiody, (D) N {r} x R"1 has empty interior iR" L.

Proof. (1) Asx € B_(D), the asymptotic multiplicity = multy||D|| is strictly positive. By the defi-
nition of asymptotic multiplicity coupled with the fact thaulty(D’) = orde (17" (D’) ) = v1 (11" (D’))
for any effectiveR-divisor D’ = D we obtain Ay, (177(D)) C r-e; +R..

Take an arbitrary point € E and an infinitesimal flagy, centered az € X’. Proposition1.5
implies thatO ¢ Ay, (m'D —tE) for O<t <r. Thenze B_(rm*D —tE) C B, (71"D —tE) follows
from [KL15, Theorem A] for all 0< t < r. Using Propositiori.2 (i), then we know thaB, (2) is
closed in the big cone and in particular this yields thatB_ (11°D — rE) as well.

(2) Observe thatt*D — rE is big (it has the same volume Bshas), thereforet*D — (r +t)E
is big for all 0< t < 1. By the definition of asymptotic multiplicity, m@t| 7D — (r +-t)E|| =0
forall 0 <t < 1, in particularE ¢ B_ ("D — (r +t)E). But thenz¢ B_ ("D — (r +t)E for alll
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rational values & t << 1 providedz € E is very general. Now, making use of Propositibf.(ii)
we know that BigX')g \ B_(2) is closed. In particular, this yields thatt B_(*D —rE).

(3) Let us first point out thaE ¢ B (rm*(D) — (r +t)E) for any 0< t < 1. To see this, recall
that by (2) above Ay, (D) N{r} x R"™1 = &. SecondAy, (D) is a full dimensional convex body,
therefore

Vol (77*(D) —rE) > voly (1"(D) — (t+1)E) ,

by [LM, Theorem A]. But thenfKL, Theorem A] give€ ¢ B (rm*(D) — (r +t)E) for any 0<
t< 1.
To finish the proof, suppose for a contradiction that

VOlgn-1(Ay, (D)N{r} xR"™1) > 0.

By the slicing theoremL[M, Theorem 4.24] and the fact thatZ B (r1*(D) — (r +t)E) for any
0 <t < 1, we obtain

tli_rg(volx/‘E(n*(D)—(t-i—r)E)) > VOIRM(EY.(D)ﬁ{r}x]R”_l) > 0.

On the other handHLMNP2, Theorem 5.7] forces the limit on the left-hand side to b@zsince
E is an irreducible component &, (7*(D) — rE) by (1), a contradiction. O

Lemma 5.2. Let (Dy)ken be a sequence of bi§-divisors on a smooth projective variety X con-
verging to a bigR-divisor D, let xe X be a point. Then

(1) If £(]|Dy|[;x) > Ofor all k € N, andlimy_,. £(||Dy|[;X) = 0, then xc B (D) \ B_(D).
(2) If mult(||Dy||) > Ofor all k € N, andlimj_,, multy || Dx|| = 0, then xc B, (D) \ B_(D).

Proof. (1) By Corollary 4.11it is legal to write & OI:ef:f(||Dk||;x) = &(||Dk|l;x) for eachk € N.
Fixing an infinitesimal flagv, overx, by definition we havé € Agkl C Zy,(Dk). By continuity
of Newton—Okounkov bodies we obtaihe Ay, (11"(D)), we can conclude by TheoreBl, x ¢
B_(D).

On the other hand € B (D) follows from the continuity of the moving Seshadri constast
function on the Néron-Severi space.

(2) Since mul||Dg|| > 0, [ELMNP1, Theorem B] implies that € B_(Dy) for all k € N. But
thenx € B4 (Dy) for all k € N as well, whence € B (D) according to KL15, Proposition 1.2].
For x ¢ B_(D) note that asymptotic multiplicity is continuous on the bne (see ELMNP1,
Theorem A]), therefore mylf|D|| = 0, and consequently¢ B_ (D). O

By Corollary 4.11, and Lemméb.2 one can glue the functior(|| - ||;x) and —multk|| - ||
giving rise to a continuous extension of the moving Seshamhistant function which is nowhere
zero on the open subsBt (x) € NY(X)g.
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Definition 5.3 (Extended Seshadri functianl.et X be a smooth projective variety,e X. We
define thgextended) Seshadri functiep: Big(X) — R>o associated to the point& X by

([ID]1;x) if D¢ B (x)
(D) E{ 0 if D € B, (x)\B_(x))
—mult|D|| ifDeB_(x).

Remark 5.4. Since both the asymptotic multiplicity and the moving Selsheonstant are concave
on the domain where they are non-zero, it is not unnaturalofethat the extended Seshadri
function will retain this property. We shall see that thisndeed the case in the example below.

We end this section with an explicit computation of the eggghSeshadri function; an interest-
ing feature of the example is thgtis not everywhere differentiable even inside the ample cone

Example 5.5(A non-differentiable Seshadri functianl.et p € P? be a point and denote by, :
def

X = Blp(IP?) — P2 the blow-up ofP? at the pointp with exceptional divisoE. We pick a point
x € E, and then pursue to compute the functigron the pseudo-effective coldf(X) = R, E +
R4 (H —E), whereH is the pullback of the class of a line.

The functiongy, being homogeneous of degree one, it will suffice to deterrtiinevalues ok

as we traverse the line segméatH — E] C N'(X)r = R2. To this end, set

R 2'tH + (1-20)E forallo<t < 1.

Observe that fot € [0, %) we havex € B_(R), and
&(R) = —mult|tH+ (1 -2t)E|| = 2t - 1.

If % <t <1, thenk is nef, hencex(R) = €(||R||;X) = €(R;X). The Seshadri constarg§h; X)
are somewhat more complicated to compute, this will takéhepémaining part of our example.
Thus, letrs : X’ — X denote the blow-up of at the poinix. Write 71= 5 o 15 for the composi-
tion of the two blow-ups. OX’ we have precisely three negative curves:
E:x = the strict transform of the exceptional divisormfunderr,
E> = the exceptional divisor of the blow-ump,
E3s = the strict transform of the line of clags— E on X going through the point.

The intersection matrix of the curvésis

-2 1 0
(B Ej)i<i<aicj<s = 1 -1 1
0 1 -1

In the basigEy, E,, E3) of NY(X')g, the hyperplane clads’ is given as
H = Ei+2E,+Es.
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Along with H’, the divisorsH’ + E3 andE, + E3 turn out to be nef as well, and the three generate
the nef cone oK'. In this notation,

Dt €' BR = 7B(tH + (1 2)E) = tH'+ (1- 2)(E1 +Ep) ,

which can in turn be written in the form
Dt = (1-t)H' + (2t —1)(Ex+ Eg) forall1/2<t < 1.

This means in particular th& sits on the face of the nef cone generatedHbyndE, + E3 for all
1/2<t < 1.

As one can check, that the r&¢ — €E; leave the nef cone through the the face generated by
the divisorsH’ andH’ + E3 whenevelt € [2, 3] and throught the face generated by the divisors
H'+Ez andE; +Esfort € [g,l].

As a result,g is going to be piecewise linear, and it is not going to be dif¢iable at = %

The full computation goes as follows.
Fort € [3, 3] the rayD; — €E; hits the boundary of the nef conesat= 2t — 1, in the divisor

Di— (2t —1)E; = (2—-3t)H + (2t —1)(H'+Eg3) .

In particular,ex(R) = 2t — 1 on the |nterva[2,3

On the other hand, tfe [g, 1], the rayD; — eE; reaches the boundary of the nef cone at1—t,
in the divisor

Dt — (1-t)Ey = (1-t)(H'+Eg) + (3t —2)(E1 + Bg)

and we obtairgy(t) = 1—t on the interva[%, 1]. Putting all this together, the Seshadri function on
the line segmenE,H — E] is given by

2t—-1 iftel0 %]
&(R)=1¢ 2t—-1 |ft€%
1-t |ft€[3,1]
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