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5 INFINITESIMAL NEWTON–OKOUNKOV BODIES AND JET SEPARATION

ALEX KÜRONYA AND VICTOR LOZOVANU

INTRODUCTION

In this paper we wish to continue the investigations initiated in [KL14,KL15] to find a satisfac-
tory theory of positivity for divisors in terms of convex geometry. To be more specific, our aim here
is to relate local positivity of line bundles to Newton–Okounkov bodies attached to infinitesimal
flags.

Ever since the advent of Newton–Okounkov bodies in projective geometry (see [KKh,LM] or
the review [B] for an introduction) the main question has been how their geometry is connected
to the properties of the underlying polarized variety. For example, attention has been devoted to
the combinatorial study of Newton–Okounkov bodies in termsof projective data (see for instance
[AKL , KLM , LSS, PSU]). Nevertheless, in order for these invariants to be reallyuseful in the
quest for understanding projective varieties, it is more important to uncover implications in the
other direction, that is, one should be able to gain information about line bundles in terms of their
Newton–Okounkov bodies.

The hope for such results comes from Jow’s theorem [J] claiming that the function associating
to an admissible flag the Newton–Okounkov body of a given divisor determines the latter up to
numerical equivalence. Following our earlier work [KL14,KL15], we are interested in a local ver-
sion of Jow’s principle: we will be mostly concerned with thesituation where all flags considered
are centered at a given point of the variety.

Compared to [KL15] we specialize the flags further; as suggested by [KL14, Sections 3 & 4],
one can obtain particulary precise results by taking linearflags in the exceptional divisor of the
blow-up of the point. This way, we can not only achieve a description of ampleness and nefness in
terms of infinitesimal Newton–Okounkov bodies, but are alsoable to extend the convex geometric
interpretation of moving Seshadri constants described in [KL14] to all dimensions.

Let nowX be a projective variety over the complex numbers,L a big line bundle, andx ∈ X a
closed point. We say thatL is locally positive or locally ample atx if there exists a neighbourhood
x ∈ U ⊆ X such that the Kodaira mapφmL restricted toU is an embedding for allm≫ 0. One
can of course work with the alternative description provided by global generation of large twists
of coherent sheaves (cf. [PAG1, Example 1.2.21] and [K, Proposition 2.7]), in any case both
conditions end up being equivalent tox belonging to the complement of the augmented base locus
B+(L) of L (see [BCL, Theorem A]).
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2 A. KÜRONYA AND V. LOZOVANU

Once a line bundleL has been proven to be locally positive at a pointx ∈ X, one can try to
measure the extent of its positivity there. The traditionalway to do this is via the Seshadri con-
stantε(L;x) introduced by Demailly [D] (see also [PAG1, Chapter 5] for a thorough introduc-
tion and an extensive bibliography), or, in our setting, itsextension, the moving Seshadri con-
stantε(‖L‖;x) developed by Nakamaye [N], and studied in much more detail by Ein–Lazarsfeld–
Mustaţ̆a–Nakamaye–Popa [ELMNP2].

Since one can describe both local ampleness and moving Seshadri constants in terms of infini-
tesimal Newton–Okounkov bodies, the convex-geometric picture of local positivity appears to be
complete. The first main result of our work is a characterization of ampleness and nefness in terms
of Newton–Okounkov bodies (cf. [KL14, Theorem A] and [KL15, Theorems A & B], see also
[CHPW]).

To fix terminology, letX be a smooth projective variety of dimensionn, x∈ X a closed point,
andπ : X′ → X be the blow-up ofX at x with exceptional divisorE. An infinitesimal flagY• over
x is an admissible flag

Y• : Y0 = X′ ⊇ Y1 = E ⊇ Y2 ⊇ . . . ⊇ Yn ,

where eachYi is a linear subspace ofE ≃ Pn−1 of dimensionn− i for each= 2, . . . ,n. The Newton–
Okounkov body ofπ∗D with respect toY• on X′ will be denoted bỹ∆Y•(D). For further results
regarding infinitesimal Newton–Okounkov bodies the readeris kindly referred to Section 2.

Theorem A. (Corollary3.3) Let X be a smooth projective variety of dimensionn, D a bigR-divisor
on X. Then the following are equivalent.

(1) D is nef.
(2) For every pointx∈ X there exists an infinitesimal flagY• overx such that0∈ ∆̃Y•(D).
(3) One has0∈ ∆̃Y•(D) for every infinitesimal flag overX.

Before we proceed, let us define what we call the inverted standard simplex of sizeξ > 0: this
is the convex body

∆−1
ξ

def
= convex hull of{0,ξe1,ξ (e1+e2), . . . ,ξ (e1+en)} ⊆ Rn ,

wheree1, . . . ,en denote the standard basis vectors forRn. Lemma2.4 and Proposition2.6 below
explain how the polytopes∆−1

ξ arise very naturally in the infinitesimal setting.

Theorem B. (Corollary4.2) Let X be a smooth projective variety of dimensionn, D a bigR-divisor
on X. Then the following are equivalent.

(1) D is ample.
(2) For every pointx∈ X there exists an infinitesimal flagY• overx and a real numberξ > 0 for

which∆−1
ξ ⊆ ∆̃Y•(D).

(3) ∆̃Y•(D) contains a non-trivial inverted standard simplex for everyinfinitesimal flagY• overX.
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Note that as opposed to [KL15, Theorem B], the theorem above provides a full generalization
of what happens in the surface case; its proof is significantly more difficult than that of any of its
predecessors.

An interesting feature of the argument leading to Theorem B is that it passes through separation
of jets. In fact, an important step in the proof is Proposition 4.9 which claims that line bundles
whose infinitesimal Newton–Okounkov bodies contain large inverted standard simplices will sepa-
rate many jets. Not surprisingly, we will make an extensive use of the circle of ideas around jet sep-
aration and moving Seshadri constants, and with it, the non-trivial results of [ELMNP2]. Another
important ingredient of the proof is an acute observation ofFulger–Kollár–Lehmann [FKL, Theo-
rem A] linking inequalities between volumes of divisors to augmented base loci.

It follows from our argument that infinitesimal Newton–Okounkov bodies on projective varieties
always contain inverted standard simplices at points wherethe divisor is locally ample. Given an
infinitesimal flagY•, the supremum of the sizes of all such is called the inverted largest simplex
constant, and will be denoted byξY•(D;x). It will turn out that this constant does not depend on
the choice of the infinitesimal flag taken, leading to the common valueξ (D;x). As a result of
our efforts we obtain a description of moving Seshadri constants in all dimensions (cf. [KL14,
Theorem D]) in the following form.

Theorem C. Let D be a bigR-divisor on a smooth projective varietyX, x /∈ B+(D). Then

ε(‖D‖;x) = ξ (D;x) .

Beside providing an alternative way of defining moving Seshadri constants, the largest inverted
simplex constant has other benefits as well. Via Theorem3.1 and Theorem4.1 it explains quite
clearly whyε(‖D‖;x) = 0 for a divisorD with x∈ B+(D)\B−(D).

An interesting by-product of our result is a statement aboutthe existence of global sections with
prescribed vanishing behaviour. From the definition of Newton–Okounkov bodies it is a priori
quite unclear which rational points arise as actual images of global sections, and in general it is
very difficult to decide when it comes to boundary points. As it turns out, for infinitesimal Newton–
Okounkov bodies the situation is more amenable.

Corollary D. (Corollary 4.13) Let D be a bigQ-divisor onX, x ∈ X a closed point, andY• an
infinitesimal flag overx. If ∆−1

ξ ⊆ ∆Y•(π∗(D)) for someξ > 0, then all vectors in∆−1
ξ ∩Qn not

lying on the face generated by the pointsλ ·e1,λ (e1+e2), . . . ,λ (e1+en) are valuative.

Finally, a somewhat tentative side remark regarding movingSeshadri constants and asymptotic
multiplicities. For a given pointx ∈ X, the loci ofR-divisor classes in Big(X) whereε(‖D‖;x)
and multx‖D‖ are naturally defined are complementary, and we point out that one can glue these
functions to a unique one via

εx(D)
def
=






ε(‖D‖;x) if x /∈ B+(D)

0 if x∈ B+(D)\B−(D)

−multx‖D‖ if x∈ B−(D) ,
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which ends up being homogeneous of degree one and continuouson the big cone, while examples
suggest that one can hope forεx to be concave. We believe thatεx could prove useful as an
extension of the moving Seshadri constant function by beingcapable of distinguishing between
divisor classesD with x ∈ B+(D) \B−(D) andx ∈ B−(D). In the end we discuss an example
where the Seshadri function is not everywhere differentiable on the ample cone.

A few words about the organization of the paper. We begin in Section 1 by fixing notation
and collecting useful facts about asymptotic base loci, Newton–Okounkov bodies, and moving Se-
shadri constants, in Section 2 we present some important observations about infinitesimal Newton–
Okounkov bodies. The characterization of restricted base loci is given in Section 3, while Section
4 is devoted to the main part of the paper, the description of augmented base loci in terms of
Newton–Okounkov bodies with the help of separation of jets.Lastly, Section 5 hosts the discus-
sion on Seshadri functions.

Acknowledgements.We are grateful to Mihnea Popa for helpful discussions, and to the Deutsche
Bahn, the Österreichische Bundesbahn, the SNCF and Thello for providing us with excellent work-
ing conditions.

1. NOTATION AND PRELIMINARIES

1.1. Notation. We work over the complex number field,X will stand for a projective variety of
dimensionn which will often taken to be smooth. The pointx∈X will always be assumed a smooth
point, while all points on varieties are taken to be closed. Adivisor is always Cartier, whether it is
integral,Q- , orR-Cartier andD will denote a big divisor without exception.

If F is an effectiveR-Cartier divisor onX, then we write

µF(D) = µ(D;F)
def
= sup{t > 0 | D− tF is big} .

Furthermore, ifZ ⊆ X is a smooth subvariety, then denote by

µZ(D) = µ(D;Z)
def
= µ(π∗D;E) ,

whereπ : X′ → X denotes the blow-up ofX alongZ with exceptional divisorE.

Remark 1.1. Based on the definition of moving Seshadri constant given below, it is not hard to
see that 0< ε(‖D‖;x)6 µ(D;x).

1.2. Asymptotic base loci. Following [ELMNP1], one defines the restricted base locus of a big
R-divisorD as

B−(D)
def
=

⋃

A

B(D+A) ,

where the union is taken over all ample divisorsA, such thatD+A is aQ-divisor. This locus is a
countable union of subvarieties ofX by [ELMNP1, Proposition 1.19]

B−(D) =
⋃

m∈N

B(D+
1
m

A) .
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The augmented base locus ofD is defined by

B+(D)
def
=

⋂

A

B(D−A) ,

where the intersection is taken again over all ample divisors A, such thatD+A is aQ-divisor. It
follows quickly from [ELMNP1, Proposition 1.5] thatB+(D) = B(D− 1

mA) for all m≫ 0 and any
fixed ample classA.

Proposition 1.2. Let X be a projective variety, x∈ X an arbitrary point. Then

(1) B+(x)
def
=

{
α ∈ N1(X)R | x∈ B+(α)

}
⊆ N1(X)R is closed,

(2) B−(x)
def
=

{
α ∈ N1(X)R | x∈ B−(α)

}
⊆ N1(X)R is open,

both with respect to the metric topology of N1(X)R.

For further references and relevant properties of restricted/augmented base loci, we refer the
reader to [ELMNP1,KL15], including the proof to Proposition1.2.

1.3. Newton–Okounkov bodies.Newton–Okounkov bodies have been introduced to projective
geometry by Lazarsfeld–Mustaţă [LM] and Kaveh–Khovanskii [KKh] motivated by earlier work
of Okounkov in representation theory [O]. For a bigR-divisor D on X, ∆Y•(D) stands for the
Newton–Okounkov body ofD with respect to the admissible flagY•, where

Y• : X = Y0 ⊇ Y1 ⊇ . . . ⊇ Yn

is a full flag of (irreducible) subvarietiesYi ⊆ X with codimX Yi = i and the property thatYi is
smooth at the pointYn for all 0 6 i 6 n. In particular, ifX is only assumed to be projective, the
centerYn = {x} of an admissible flag must be a smooth point.

Remark 1.3. (Geometry of∆Y•(D)) In low dimensions the geometry of∆Y•(D) is well-understood:
for curves∆Y•(D) = [0,degD]⊆R is a line segment ([LM, Example 1.13]); in the case of surfaces
variation of Zariski decomposition [BKS] leads to the fact that Newton–Okounkov bodies are
polygons with rational slopes (see [LM, Theorem 6.4] and [KLM , Section 2]).

Note that in dimensions three and above, the situation is no longer purely combinatorial:∆Y•(D)
can be non-polyhedral even ifD is ample andX is a Mori dream space. At the same time finite
generation of the section ring ofD ensures the existence of flags with respect to which∆Y•(D) is a
rational simplex (see [AKL ]).

Next, we quickly recall a few notions and useful facts from [KL15] without proof.

Proposition 1.4 (Equivalent definition of Newton-Okounkov bodies). Let ξ ∈ N1(X)R be a big
R-class and Y• be an admissible flag on X. Then

∆Y•(ξ ) = closed convex hull of{νY•(D) | D ∈ Div>0(X)R,D ≡ ξ},

where the valuationνY•(D), for an effectiveR-divisor D, is constructed inductively as in the case
of integral divisors.
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Proposition 1.5. Supposeξ is a bigR-class and Y• is an admissible flag on X. Then for any
t ∈ [0,µY1(ξ )), we have

∆Y•(ξ )ν1>t = ∆Y•(ξ − tY1) + te1,

wheree1 = (1,0, . . . ,0) ∈ Rn.

Lemma 1.6. Let D be a bigR-divisor and Y• an admissible flag on X. Then the following hold.

(1) For any real numberε > 0 and any ampleR-divisor A on X, we have∆Y•(D)⊆ ∆Y•(D+ εA).
(2) If α is an arbitrary nefR-divisor class, then∆Y•(D)⊆ ∆Y•(D+α).
(3) If αm is any sequence of nefR-divisor classes with the property thatαm−αm+1 is nef and

‖αm‖→ 0 as m→ ∞ with respect to some norm on N1(X)R, then

∆Y•(D) =
⋂

m

∆Y•(D+αm) .

Definition 1.7. (Valuative points) LetX be a projective variety,Y• an admissible flag, andD a big
Q-Cartier divisor onX. We call a pointv∈ ∆Y•(D) valuative, if it lies in the image of normalized
map 1

mνY• : |mD| →Q>0 for somem> 1, whenevermD becomes Cartier.

Lemma 1.8. With notation as above,int ∆Y•(D)∩Qn consists of valuative points. If∆Y•(D) con-
tains a small simplex with valuative vertices, then all rational points of the simplex are valuative.

Proof. Follows from Proposition1.4and multiplicative property ofνY• . �

1.4. Moving Seshadri constants.We recall the necessary information about moving Seshadri
constants; our main source is [ELMNP2, Section 6].

Definition 1.9. (Moving Seshadri constant) LetX be a projective variety,x∈ X be a smooth point,
andD a bigR-divisor withx /∈ B+(D). Themoving Seshadri constant of D at xis defined as

ε(‖D‖;x)
def
= sup

f ∗D=A+E
ε(A;x) ,

where the supremum is taken over all projective morphismsf : Y → X with Y smooth andf an
isomorphism aroundx, and over all decompositionsf ∗D = A+E, whereA is ample, andE is
effective with f−1(x) /∈ Supp(E).

If D is nef, thenε(‖D‖;x) specializes to the usual Seshadri constantε(D;x). The formal rules
that the moving Seshadri constant obeys can be concisely expressed as follows.

Proposition 1.10. [ELMNP2, Proposition 6.3]With notation as above,ε(‖ · ‖;x) descends to a
degree one homogeneous concave function onBig(X)\B+(x).

By virtue of its concavity and the fact that its domain Big(X) \B+(x) ⊆ N1(X)R is open,ε(‖ ·
‖;x) is of course a continuous function on it. The highly non-trivial result of [ELMNP2] is that
continuity is preserved under extendingε(‖ · ‖;x) by zero outside Big(X)\B+(x) in N1(X)R.
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Theorem 1.11. [ELMNP2, Theorem 6.2]Let X be a smooth projective variety, x∈ X. Then the
functionε(‖ · ‖;x) : N1(X)R → R>0 given by

D 7→

{
ε(‖D‖;x) , if D /∈ B+(x)

0 , otherwise

is continuous.

In Section 5, we offer an alternative extension ofε(‖D‖;x) overB+(x).

2. INFINITESIMAL NEWTON–OKOUNKOV BODIES

In this section we define infinitesimal Newton–Okounkov bodies and discuss some of their prop-
erties needed in the rest of the paper. Recall that we denote by π : X′ → X the blow-up ofX at x
with exceptional divisorE. As x is smooth,X′ is again a projective variety, andE is an irreducible
Cartier divisor onX′, which is smooth as a subvariety ofX′.

Definition 2.1. We say thatY• is an infinitesimal flag over the point x, if Y1 = E and eachYi is a
linear subspace inE ≃ Pn−1 of dimensionn− i. We will often writeYn = {z}. An infinitesimal
flag over Xis an infinitesimal flag overx∈ X for some smooth pointx.

The symbol̃∆Y•(D) stands for an infinitesimal Newton–Okounkov body ofD, that is,

∆̃Y•(D)
def
= ∆Y•(π

∗D)⊆ Rn
+ ,

whereY• is an infinitesimal flag overx.

Remark 2.2. (Difference in terminology) Note the deviation in terminology from [LM, Section
5.2]; what Lazarsfeld and Mustaţă call an infinitesimal Newton–Okounkov body, is in our language
(following [KL14]) the generic infinitesimal Newton–Okounkov body.

Remark 2.3. Recently, interesting steps in the infinitesimal directionhave been taken by Roé [R].

We start with an observation explaining the shapes of the ’right’ kind of simplices that play the
role of standard simplices in the infinitesimal theory.

Lemma 2.4. (cf. [KL15, Lemma 3.4]) Let X be a projective variety, x∈X a smooth point, and A an
ample Cartier divisor on X. Then there exists a natural number m0 such that for any infinitesimal
flag Y• over x and for every m> m0 there exist global sections s′

0, . . . ,s
′
n ∈ H0(X′,OX′(π∗(mA)))

for which

νY•(s
′
0) = 0 , νY•(s

′
1) = e1 , and νY•(s

′
i) = e1+ei , for every26 i 6 n,

where{e1, . . . ,en} ⊆ Rn denotes the standard basis.

Proof. The line bundleA is ample, therefore there exists a natural numberm0 > 0 such thatm0A
is very ample, in particular the linear series|(m0+m)A| define embeddings for allm> 0. As
|m0A| separates tangent directions as well, Bertini’s theorem yields the existence of hyperplane
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sectionsH1, . . . ,Hn−1 ∈ |m0A| intersecting transversally atx, andH̃1∩ . . .∩ H̃i ∩E = Yi+1 for all
i = 1, . . . ,n−1, whereH̃i denotes the strict transform ofHi through the blow-up mapπ .

At the same time observe that for anym> m0 there exists a global sectiont ∈ H0(X,OX(mA))

not passing throughx. By settings′i
def
= π∗(t+si)wheresi ∈H0(X,OX(m0A)) is a section associated

to Hi , then the sectionss′0, . . . ,s
′
n satisfy the requirements. �

Definition 2.5. For a positive real numberξ > 0, theinverted standard simplex of sizeξ , denoted
by ∆−1

ξ , is the convex hull of the set

∆−1
ξ

def
= {0,ξe1,ξ (e1+e2), . . . ,ξ (e1+en)} ⊆ Rn.

Whenξ = 0, then∆−1
ξ = 0.

A major difference from the non-infinitesimal case is the fact that infinitesimal Newton–Okounkov
bodies are also contained in inverted simplices in a very natural way.

Proposition 2.6. Let D be a bigR-divsor X, then∆Y•(π∗(D)) ⊆ ∆−1
µ(D;x) for any infinitesimal flag

Y• over the point x.

Proof. By the continuity of Newton–Okounkov bodies inside the big cone it suffices to treat the
case whenD is a bigQ-divisor. Homogeneity then lets us assume thatD is integral. Setµ =
µ(D;x).

We will follow the line of thought of the proof of [KL14, Proposition 3.2]. Recall thatE ≃ Pn−1;
we will write [y1 : . . . : yn] ∈ Pn−1 for a set of homogeneous coordinates inE such that

Yi = Zeroes(y1, . . . ,yi−1) ⊆ Pn−1 = E for all 26 i 6 n.

With respect to a system of local coordinates(u1, . . . ,un) at the pointx, the blow-upX′ can be
described (locally aroundx) as

X′ =
{(

(u1, . . . ,un); [y1 : . . . : yn]
)
| uiy j = u jyi for any 16 i < j 6 n

}
.

We can then write a global sections of D in the form

s = Pm(u1, . . . ,un)+Pm+1(u1, . . . ,un)+ . . .+Pm+k(u1, . . .un)

aroundx, wherePi are homogeneous polynomials of degreei.
We will perform the computation in the open subsetUn = {yn 6= 0}, where we can takeyn = 1

and the defining equations of the blow-up are given byui = unyi for 16 i 6 n−1. Then

s|Un = um
n ·

(
Pm(y1, . . . ,yn−1,1)+unPm+1(y1, . . . ,yn−1,1)+ . . .+uk

nPm+k(y1, . . . ,yn−1,1)
)
,

in particular,ν1(s) = m. Notice that for the rest ofνi(s)’s we have to restrict to the exceptional
divisorun = 0 and thus the only term arising in the computation isPm(y1, . . . ,yn−1,1).

As degPm 6 m, taking into account the algorithm for constructing the valuation vector of a
section one can see that indeed

ν2(s)+ . . .+νn(s) 6 ν1(s) ,

and this finishes the proof of the proposition. �
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3. RESTRICTED BASE LOCUS VIANEWTON–OKOUNKOV BODIES

The section is devoted to our characterization of restricted base loci in terms of infinitesimal
data. The proofs are variations of those found in [KL15, Section 2].

Theorem 3.1.Let X be a smooth projective variety, D a bigR-divisor and x∈X an arbitrary point
on X. Then the following are equivalent.

(1) x 6∈ B−(D).
(2) There exists an infinitesimal flag Y• over x such that0∈ ∆̃Y•(D).
(3) For every infinitesimal flag Y• over x, one has0∈ ∆̃Y•(D).

Proof. (1) ⇒ (3) Assumex /∈ B−(D), and fix a sequence of ampleR-divisor (αm)m∈N so that
αm−αm+1 is ample andD+αm is aQ-divisor for anym> 1, and‖αm‖→ 0 asm→ ∞.

Now, letY• be an arbitrary infinitesimal flag overx. Sincex /∈ B−(D), thenx /∈ B(D+αm) for
all m> 1. On the other hand, we have the sequence of equalities

B(π∗(D+αm)) = π−1(B(D+αm)) .

In particular, this implies that

E∩B(π∗(D+αm)) = ∅ ,

for all m> 1. AsY• is an infinitesimal flag overx, there must exist a sequence of natural numbers
nm > 1 and a sequence of global sectionssm ∈ H0(X′,OX′(π∗(nm(D+αm)))) such thatsm(z) 6= 0.
This implies thatνY•(sm) = 0 for eachm> 1. In particular,0∈ ∆̃Y•(D+αm) for everym> 1.

Recall thatπ∗αm is big and semi-ample, therefore

∆̃Y•(D) =
∞⋂

m=1

∆̃Y•(D+αm) ,

according to Lemma1.6, hence0∈ ∆̃Y•(D) as wanted.
The implication(3) ⇒ (2) is trivial, and so we are left with checking(2) ⇒ (1). Let Y• be

an infinitesimal flag overx so that0∈ ∆̃Y•(D). Fix an ampleR-divisor A on X and an decreasing
sequence of positive real number(tm)m∈N such that‖tm‖→ 0 asm→∞, andD+ tmA is aQ-divisor
for all m> 1. Now, by Lemma1.6, we know

0∈ ∆̃Y•(D) ⊆ ∆̃Y•(D+ tmA)

for all m> 0, therefore minσπ∗(D+tmA) = 0 for the sum functionσπ∗(D+tmA) : ∆̃Y•(D+ tmA)→ R+.
In particular, this implies, by making use of [KL15, Proposition 2.6], that multz(||π∗(D+ tmA)||) =
0 for all m> 1, whereYn = z is the base point of the flagY•. Taking into account the string of
(in)equalities

multx(‖D+ tmA‖) = multE(‖π∗(D+ tmA)‖) 6 multz(‖π∗(D+ tmA)‖) = 0
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yields multx‖D+ tmA‖= 0 for all m> 1. As all the divisorsD+ tmA were taken to beQ-divisors,
[ELMNP1, Proposition 2.8] leads tox /∈ B−(D+ tmA) for all m> 1. But, since

B−(D) =
⋃

m

B−(D+αm) =
⋃

m

B(D+αm)

by [ELMNP1, Proposition 1.19], we are done. �

Remark 3.2. We point out that the implication(1)⇒ (3) remains true under the weaker assump-
tions thatX is a projective variety andx∈ X a smooth point. For the converse the answer is unclear
since the proof of(2)⇒ (1) uses [ELMNP1, Proposition 2.8], which in turn is verified with the
help of multiplier ideals and Nadel vanishing.

Corollary 3.3. Let X be a smooth projective variety, D a bigR-divisor on X. Then the following
are equivalent.

(1) D is nef.
(2) For every point x∈ X there exists an infinitesimal flag Y• over x such that0∈ ∆̃Y•(D).
(3) The origin0∈ ∆̃Y•(D) for every infinitesimal flag over X.

4. AUGMENTED BASE LOCI, INFINITESIMAL NEWTON–OKOUNKOV BODIES, AND JET

SEPARATION

In this section, which is the core of the paper, we extend the characterization of augmented
base loci in terms of infinitesimal Newton–Okounkov bodies suggested by [KL14, Theorem 3.8]
to all dimensions (cf. [KL15, Theorem B] as well). Our statement can be seen as a generalization
of Seshadri’s criterion for ampleness. The argument will pass through a study of the connection
between infinitesimal Newton–Okounkov bodies and jet separation.

4.1. The main theorem and the largest inverted simplex constant.

Theorem 4.1. Let X be a smooth projective variety, x∈ X an arbitrary (closed) point, D a big
R-divisor on X. Then the following are equivalent.

(1) x /∈ B+(D).
(2) For every infinitesimal flag Y• over x there isξ > 0 such that∆−1

ξ ⊆ ∆̃Y•(D).

(3) There exists an infinitesimal Y• over x andξ > 0 such that∆−1
ξ ⊆ ∆̃Y•(D).

As an immediate consequence via the equivalence of ampleness andB+ being empty, we obtain

Corollary 4.2. Let X be a smooth projective variety and D a bigR-divisor on X. Then the follow-
ing are equivalent.

(1) D is ample.
(2) For every point x∈ X and every infinitesimal flag Y• over x there exists a real numberξ > 0

for which∆−1
ξ ⊆ ∆̃Y•(D).

(3) For every point x∈ X there exists an infinitesimal flag Y• over x and a real numberξ > 0 such
that ∆−1

ξ ⊆ ∆̃Y•(D).
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We will first give a proof of implication(1)⇒ (2) from Theorem4.1.

Proposition 4.3. Let X be a projective variety, x∈ X a smooth point, and D a bigR-Cartier
divisor on X. If x/∈ B+(D), then there exists a real numberξ > 0 such that∆−1

ξ ⊆ ∆Y•(D) for any
infinitesimal flag Y• over x

Proof. This is a modification of the proof of [KL15, Theorem B] using Lemma2.4; the basic
strategy is the same.

Let us first suppose thatD is Q-Cartier. By assumptionx /∈ B+(D) = B(D−A) for some small
ampleQ-Cartier divisorA. Note also that byB(π∗(D−A)) = π−1(B(D−A)) this gives

B(π∗(D−A))
⋂

E = ∅

as well. Choose a positive integerm large and divisible enough such thatπ∗(mA) becomes integral,
satisfies the conclusions of Lemma2.4, andB(π∗(D−A)) = Bs(π∗(m(D−A))) set-theoretically.

Sincez /∈Bs(π∗(m(D−A))), there exists a sections∈H0(X′,OX′(π∗(mD−mA)))with s(z) 6= 0,
i.e. νY•(s)=0. Furthermore, Lemma2.4provides global sectionss0, . . . ,sn∈H0(X′,OX′(π∗(mA)))
such thatνY•(s0) = 0, νY•(s1) = e1 andνY•(si) = e1+ei for all 26 i 6 n.

Multiplicativity of the valuation mapνY• then gives

νY•(s⊗s0) = 0,νY•(s⊗s1) = e1 andνY•(s⊗si) = e1+ei for all 26 i 6 n.

By the construction of Newton–Okounkov bodies, then∆−1
1/m ⊆ ∆̃Y•(D).

Next, letD be a bigR-divisor for whichx /∈ B+(D), and letA be an ampleR-divisor such that
D−A is aQ-divisor, andB+(D) = B+(D−A). Then we havex /∈ B+(D−A), therefore

∆−1
ξ ⊆ ∆̃Y•(D−A) ⊆ ∆̃Y•(D)

for some positive numberξ , according to theQ-Cartier case and Lemma1.6. �

Just as in the surface case,x /∈ B+(D) implies that∆̃Y•(D) will contain an inverted standard
simplex of some size, hence it makes sense to ask how large these simplices can become (cf.
[KL14, Definition 4.5]).

Definition 4.4. (Largest inverted simplex constant) LetX be a projective variety,x∈ X a smooth
point onX, andD a bigR-divisor withx /∈ B−(D). For an infinitesimal flagY• overx write

ξY•(D;x)
def
= sup

{
ξ > 0 | ∆−1

ξ ⊆ ∆̃Y•(D)
}

.

The largest inverted simplex constantξ (D;x) of D atx is then defined as

ξ (D;x)
def
= sup

Y•
ξY•(D;x) ,

whereY• runs through all infinitesimal flags overx. Moreover, ifx∈ B−(D), then letξ (D;x) = 0.
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Remark 4.5. As Newton–Okounkov bodies are homogeneous, so isξ ( · ;x) as a function on
N1(X)R. Although it is not a priori clear ifξ ( · ;x) should be continuous, a bit of thought will
convince that this is indeed the case over the domain wherex /∈ B+(D).

First, Corollary4.8below shows thatξY•(D;x) is in fact independent ofY•, therefore we can use
one flag for allR-divisor classes. The natural inclusion

∆Y•(D)+∆Y•(D
′) ⊆ ∆Y•(D+D′)

shows thatξ (·;x) is in fact a concave function on Big(X)\B+(x). This latter is an open subset of
N1(X)R, thereforeξ ( · ;x) is continuous on its domain. For further results regarding continuity,
we advise the reader to look at Corollary4.12and Section 5.

Proposition 4.6. Let X be a normal projective variety, x∈X a smooth point and D a bigR-Cartier
divisor on X. Assume that∆−1

ξ ⊆ ∆̃Y•(D) for some infinitesimal flag Y• over x. Then∆−1
ξ ⊆ ∆̃Y′

•
(D)

for all infinitesimal flags Y′• over x.

Remark 4.7. Normality is used in [FKL, Theorem A], a key ingredient of the proof. The cited
result studies the question when the support of an effectiveR-divisor is contained in certain aug-
mented base loci in terms of the variation of the volume function.

Proof. The argument below works only forQ-divisors, passing to the limit delivers the general case
(recall that restricted Newton–Okounkov bodies behave in acontinuous fashion by [LM, Example
4.22]). Assume thatD is a bigQ-divisor onX For ξ ′ ∈ (0,ξ ), write ∆n−1

ξ ′ ⊆ Rn−1 for standard

simplex of sizeξ ′ and dimensionn−1.
Our goal is then to show that

∆Y′
•
(π∗(D)−ξ ′E)

⋂
{0}×Rn−1 = ∆n−1

ξ ′

for any infinitesimal flagY′
• overx. By continuity it suffices to check this for rational values of ξ ′.

So, fix a rational numberξ ′ ∈ (0,ξ ) and denote byB
def
= π∗(D)−ξ ′E. Obviously,

∆Y•(B+λE) = ∆Y•(π
∗D− (ξ ′−λ )E)

for anyλ < ξ ′. The condition∆−1
ξ ⊆ ∆̃Y•(D) and Proposition1.5 imply

volRn
(
∆Y•(B+λE)

)
> volRn

(
∆Y•(B)

)

for any rational number 0< λ < ξ ′. Then [LM, Theorem A] gives volX(B+λE)> volX(B), which,
via [FKL, Theorem B] leads toE * B+(B).

The significance of this condition is that it grants us accessto the slicing theorem [LM, Theorem
4.24]. In particular,

∆Y•|E(B) = ∆Y•(B)|x1=0 = ∆n−1
ξ ′ ,

where left-hand side denotes the appropriate restricted Newton–Okounkov body (see [LM, (2.7)]).
By the same token, sinceE * B+(B), we have

volX′|E(B) = (n−1)!volRn−1(∆Y•|E(B)) = (n−1)!volRn−1(∆n−1
ξ ′ ) .
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Note that both extremes are independet of the choice of the flag, hence we have

volRn−1(∆Y′
•|E(B)) = volRn−1(∆n−1

ξ ′ )

for any infinitesimal flagY′
• on X′.

It follows from Proposition2.6that

∆Y′
•|E(B) = ∆Y′

•
(B)|x1=0 ⊆ ∆n−1

ξ ′ ,

however, as the the two convex bodies have equal volume, theymust coincide. This means that
∆Y′

•
(B)|x1=0 = ∆n−1

ξ ′ as required. �

Corollary 4.8. With notation as above,ξ (D;x) = ξY•(D;x) for all infinitesimal flags Y• over x.

4.2. Inverted standard simplices and jet separation.Arguably one of the most important in-
gredients of the proof of Theorem4.1 is the following connection between infinitesimal Newton–
Okounkov bodies and jet separation of adjoint bundles.

Proposition 4.9.(Infinitesimal Newton–Okounkov bodies and jet separation)Let X be an n-dimensional
smooth projective variety, D a big Cartier divisor, and x be a(closed) point on X. Assume that there
exists a positive real numberε and a natural number k with the property that∆−1

n+k+ε ⊆ ∆Y′
•
(π∗(D))

for every infinitesimal flag Y′• over x. Then KX +D separates k-jets.

Proof. By definition (see [D], also [PAG1, Definiton 5.1.15] and [PAG1, Proposition 5.1.19]), what
we need to prove is that the restriction map

H0(X,OX(KX +D)) −→ H0(X,OX(KX +D)⊗OX,x/m
k+1
X,x )

is surjective.
Transferring the question to the blow-upX′, this is equivalent to requiring

(4.9.1) H0(X,OX′(π∗(KX +D))) → H0(X′,OX′(π∗(KX +D))⊗OX′/OX′(−(k+1)E))

to be surjective.

In order to do check surjectivity in(4.9.1), let us writeB
def
= π∗(D)− (n+ k)E. By Proposi-

tion 1.5, we have
∆Y′

•
(B) = ∆Y′

•
(π∗(D))x0>n+k − (n+k,0, . . . ,0)

for any infinitesimal flagY′
• over the pointx. In particular,B is a big line bundle with the property

that the origin0 ∈ ∆Y′
•
(B) for any infinitesimal flagY′

•. As a consequence of Theorem3.1, we
obtain thatB−(B)∩E =∅. Thus Zeroes(J(X′,‖B‖))∩E =∅ via [ELMNP1, Corollary 10].

To finish off the proof, we will make use of a variant of the classical argument to deduce the
required surjectivity. Recall thatB = π∗D− (n+ k)E, andKX′ = π∗KX +(n−1)E, therefore we
have the short exact sequence

0→OX′(KX′+B)⊗J(X′, ||B||)→OX′(π∗(KX+D))→OX′(π∗(KX+D))⊗
(
Z ⊕O(k+1)E

)
→ 0 ,

whereZ stands for the structure sheaf determined by the closed subscheme associated to the ideal
J(X′, ||B||)); note that this latter has support disjoint fromE.



14 A. KÜRONYA AND V. LOZOVANU

SinceB is a big line bundle, by Nadel’s vanishing for asymptotic multiplier ideals [PAG2, The-
orem 11.2.12.(ii)] we have

H1(X′,OX′(KX′ +B)⊗J(X′, ||B||)) = 0 ,

therefore the restriction map

H0(X′,OX′(π∗(KX +D))
)
−→ H0(X′,OX′(π∗(KX +D))⊗

(
Z ⊕O(k+1)E

))

is surjective, but then so is

H0(X′,OX′(π∗(KX +D))
)
−→ H0(X′,OX′(π∗(KX +D))⊗O(k+1)E

)
,

as required. �

Now we are in a position to finish the proof of Theorem4.1; our main tool is going to be
the connection between moving Seshadri constants and largest inverted simplex constants via jet
separation (cf. [ELMNP2, Proposition 6.6])

Proposition 4.10. Let D be a bigR-divisor on a smooth projective variety X and x∈ X a closed
point. If ξ (D;x)> 0, thenξ (D;x) = ε(||D||;x).

Proof. Let us first assume thatD is a bigQ-divisor; we wish to show that

(4.10.2) ξ (D;x) = limsup
m→∞

s(mD;x)
m

= ε(||D||;x) ,

where the latter equality is [ELMNP2, Proposition 6.6]. Then one can go on and use(4.10.2) and
Proposition4.9to deduceξ (D;x) = ε(‖D‖;x).

Our first goal is to checkε(||D||;x)> ξ (D;x). Since both expressions are homogeneous, it will
suffice to showε(||D||;x) > n wheneverξ (D;x) > n. Let r > 0 be a natural number so thatrD
becomes integral. Then, by homogeneity,ξ (mrD;x)> mrn, and Proposition4.9gives

s(KX +mrD;x) > mrn−n .

Consequently, by taking multiples we obtain

s(k(KX +mrD);x)
k

> mrn−n, for anym,k> 1 ,

in particular, by [ELMNP2, Proposition 6.6] one has

ε(||KX +mrD||;x) = limsup
k→∞

s(k(KX +mrD);x)
k

> mrn−n .

On the other hand, [ELMNP2, Theorem 6.2] says that the functionN1(X)R ∋ α 7→ ε(||α||;x)∈R+

is continuous, therefore

ε((||D||;x) =
1
r

limsup
m→∞

ε(||KX +mrD||;x)
m

> n .
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For the converse inequalityε(||D||;x) 6 ξ (D;x), we will show that wheneverD is an integral
divisor separatings-jets at the pointx , then∆−1

s ⊆ ∆Y•(π∗(D)) for any infinitesimal flagY• overx.
Note that Proposition4.6shows that it suffices check this for one such flag.

To this end, choose a system of local coordinates{u1, . . . ,un} at x and choose the infinitesimal
flag Y• in such a way that eachYi+1 is given by the intersection ofE with the proper transforms
of u1, . . . ,ui . BecauseD separatess-jets atx, there exist sectionss1, . . . ,sn ∈ H0(X,OX(D)) such
thatsi = us

i locally. Analogously to the proof of Lemma2.4, we see thatνY•(π∗(s1)) = s·e1 and
νY•(π∗(si)) = s· (e1+ei). The origin is contained iñ∆Y•(D) sinceξ (D;x)> 0.

Lastly, it remains to deal with the case whenD is a bigR-divisor, which we will do by reduction
to the rational case. Fix a sequence of ampleR-divisors(αl)l∈N for which liml→∞ ||αl ||= 0 for an
arbitrary norm on N1(X)R, D+αl is aQ-divisor, andαl+1−αl is ample for anyl > 1.

Then Lemma1.6yields
∆Y•(π

∗(D)) =
⋂

l∈N

∆Y•(π
∗(D+αl))

for any infinitesimal flagY• over x. As a consequence, liml→∞ ξ (D+Al ;x) = ξ (D;x); however,
since each classD+Al is aQ-divisor, we know thatξ (D+Al) = ε(||D+Al ||;x) for any l ∈ N.
Continuity of moving Seshadri constants [ELMNP2, Theorem 6.2] then concludes the proof.�

Proof of Theorem4.1. The implication(1) ⇒ (2) has been taken care of in Proposition4.3, as
(2)⇒ (3) is formal, we are left with(3)⇒ (1). However, if there exists an infinitesimal flagY•
overx with an inverted standard simplex contained in it, thenξ (D;x)> 0, hence Proposition4.10
yieldsε(‖D‖;x) = ξ (D;x)> 0, which by definition meansx /∈ B+(D). �

We obtain a sequence of interesting corollaries.

Corollary 4.11. Let D be a bigR-divisor on a smooth projective variety X. Then

ξ (D;x) = ε(||D||;x)

for any (closed) point x∈ X.

Proof. If x /∈B+(D), then this is immediate from Theorem4.1and Proposition4.10. If x∈B+(D)\
B−(D), thenξ (D;x) = 0 by Proposition4.6 and ε(||D||;x) = 0 by definition. In the last case
x∈ B−(D), both invariants are zero by definition. �

Corollary 4.12. For a smooth projective variety X and a point x∈ X, the function

ξ ( · ;x) : N1(X)R −→ R+

D 7→ ξ (D;x)

is continuous.

Proof. Follows easily from Corollary4.11and [ELMNP2, Theorem 6.2]. �

Corollary 4.13. Let D be a bigQ-divisor on X, x∈ X a closed point, and Y• an infinitesimal flag
over x. If∆−1

ξ ⊆ ∆Y•(π∗(D)) for someξ > 0, then all vectors in∆−1
ξ ∩Qn not lying on the face

generated by the pointsλ ·e1,λ (e1+e2), . . . ,λ (e1+en) are valuative.
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Proof. This is a consequence of Lemma1.8, the inequality

lim
k→∞

s(kD;x)
k

> λ ,

and the definition of jet separation constants. One can see bythe proof of Proposition4.10 all
vectors with rational coordinates sitting on one of the rayscoming out of the origin in the inverted
simplex come from a basis for some power of the maximal ideal of x. �

5. THE EXTENDED SESHADRI FUNCTION

In this section we briefly discuss an extension of moving Seshadri constants completing in some
ways the picture considered in [ELMNP2]. We also give an example where the Seshadri constant
function inside the ample cone is not everywhere differentiable.

First, recall the notion of asymptotic multiplicity: for a point x ∈ X on a smooth projective
varietyX, theasymptotic multiplicityof a bigR-divisorD is defined as

multx‖D‖
def
= inf

D′

{
multx(D

′)
}
,

where the minimum is over all effectiveR-divisors withD′ ≡ D (see [ELMNP1] for the general
theory).

Note that multx‖D‖> 0 precisely whenx∈ B−(D) by [ELMNP1, Proposition 2.9]; in contrast
with the various largest simplex constants and the geometric definition of the moving Seshadri
constant, multx‖D‖ concerns the situation when the pointx∈ B−(D). Our goal is to see this invari-
ant through the eyes of infinitesimal Newton–Okounkov bodies, and use this relation to connect
asymptotic multiplicities to moving Seshadri constants.

Proposition 5.1. Let D be anR-divisor on X, x∈ B−(D), and denote by r
def
= multx‖D‖. Then for

any infinitesimal flags Y• over the point x, the following hold

(1) ∆̃Y•(D)⊆ r ·e1 + Rn
+. In particular, E⊆ B+(π∗(D)− rE).

(2) E* B−(π∗(D)− rE). In particular ∆̃Y•(D)∩{r}×Rn−1 6=∅.
(3) The intersectioñ∆Y•(D)∩{r}×Rn−1 has empty interior inRn−1.

Proof. (1) As x∈B−(D), the asymptotic multiplicityr =multx‖D‖ is strictly positive. By the defi-
nition of asymptotic multiplicity coupled with the fact that multx(D′)=ordE(π∗(D′))= ν1(π∗(D′))
for any effectiveR-divisorD′ ≡ D we obtain,∆Y•(π∗(D))⊆ r ·e1+Rn

+.
Take an arbitrary pointz∈ E and an infinitesimal flagY• centered atz∈ X′. Proposition1.5

implies that0 /∈ ∆Y•(π∗D− tE) for 06 t < r. Thenz∈ B−(π∗D− tE) ⊆ B+(π∗D− tE) follows
from [KL15, Theorem A] for all 06 t < r. Using Proposition1.2.(i), then we know thatB+(z) is
closed in the big cone and in particular this yields thatz∈ B+(π∗D− rE) as well.

(2) Observe thatπ∗D− rE is big (it has the same volume asD has), thereforeπ∗D− (r + t)E
is big for all 0< t ≪ 1. By the definition of asymptotic multiplicity, multE ‖π∗D− (r + t)E‖= 0
for all 0< t ≪ 1, in particularE * B−(π∗D− (r + t)E). But thenz /∈ B−(π∗D− (r + t)E for all
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rational values 0< t <≪ 1 providedz∈ E is very general. Now, making use of Proposition1.2.(ii)
we know that Big(X′)R \B−(z) is closed. In particular, this yields thatz /∈ B−(π∗D− rE).

(3) Let us first point out thatE * B+(π∗(D)− (r + t)E) for any 0< t ≪ 1. To see this, recall
that by(2) above,∆̃Y•(D)∩{r}×Rn−1 6= ∅. Second,̃∆Y•(D) is a full dimensional convex body,
therefore

volX′(π∗(D)− rE) > volX′(π∗(D)− (t+ r)E) ,

by [LM, Theorem A]. But then [FKL, Theorem A] givesE * B+(π∗(D)− (r + t)E) for any 0<
t ≪ 1.

To finish the proof, suppose for a contradiction that

volRn−1(∆̃Y•(D)∩{r}×Rn−1) > 0 .

By the slicing theorem [LM, Theorem 4.24] and the fact thatE * B+(π∗(D)− (r + t)E) for any
0< t ≪ 1, we obtain

lim
t→0

(
volX′|E

(
π∗(D)− (t+ r)E

))
> volRn−1

(
∆̃Y•(D)∩{r}×Rn−1

)
> 0 .

On the other hand, [ELMNP2, Theorem 5.7] forces the limit on the left-hand side to be zero, since
E is an irreducible component ofB+(π∗(D)− rE) by (1), a contradiction. �

Lemma 5.2. Let (Dk)k∈N be a sequence of bigR-divisors on a smooth projective variety X con-
verging to a bigR-divisor D, let x∈ X be a point. Then

(1) If ε(||Dk||;x)> 0 for all k ∈ N, andlimk→∞ ε(||Dk||;x) = 0, then x∈ B+(D)\B−(D).
(2) If multx(||Dk||)> 0 for all k ∈ N, andlimk→∞ multx‖Dk‖= 0, then x∈ B+(D)\B−(D).

Proof. (1) By Corollary 4.11 it is legal to writeξk
def
= ξ (||Dk||;x) = ε(‖Dk‖;x) for eachk ∈ N.

Fixing an infinitesimal flagY• over x, by definition we have0 ∈ ∆−1
ξk

⊆ ∆̃Y•(Dk). By continuity

of Newton–Okounkov bodies we obtain0 ∈ ∆Y•(π∗(D)), we can conclude by Theorem3.1, x /∈
B−(D).

On the other hand,x∈ B+(D) follows from the continuity of the moving Seshadri constantas a
function on the Néron-Severi space.

(2) Since multx‖Dk‖ > 0, [ELMNP1, Theorem B] implies thatx∈ B−(Dk) for all k ∈ N. But
thenx∈ B+(Dk) for all k ∈ N as well, whencex ∈ B+(D) according to [KL15, Proposition 1.2].
For x /∈ B−(D) note that asymptotic multiplicity is continuous on the big cone (see [ELMNP1,
Theorem A]), therefore multx‖D‖= 0, and consequentlyx /∈ B−(D). �

By Corollary 4.11, and Lemma5.2 one can glue the functionsε(|| · ||;x) and−multx‖ · ‖
giving rise to a continuous extension of the moving Seshadriconstant function which is nowhere
zero on the open subsetB−(x)⊆ N1(X)R.
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Definition 5.3 (Extended Seshadri function). Let X be a smooth projective variety,x ∈ X. We
define the(extended) Seshadri functionεx : Big(X)→ R>0 associated to the point x∈ X by

εx(D)
def
=






ε(‖D‖;x) if D /∈ B+(x)

0 if D ∈ B+(x)\B−(x))

−multx‖D‖ if D ∈ B−(x) .

Remark 5.4. Since both the asymptotic multiplicity and the moving Seshadri constant are concave
on the domain where they are non-zero, it is not unnatural to hope that the extended Seshadri
function will retain this property. We shall see that this isindeed the case in the example below.

We end this section with an explicit computation of the extended Seshadri function; an interest-
ing feature of the example is thatεx is not everywhere differentiable even inside the ample cone.

Example 5.5(A non-differentiable Seshadri function). Let p ∈ P2 be a point and denote byπ1 :

X
def
= Blp(P2)→ P2 the blow-up ofP2 at the pointp with exceptional divisorE. We pick a point

x∈ E, and then pursue to compute the functionεx on the pseudo-effective coneEff(X) = R+E+
R+(H −E), whereH is the pullback of the class of a line.

The functionεx being homogeneous of degree one, it will suffice to determinethe values ofεx

as we traverse the line segment[E,H −E]⊆ N1(X)R = R2. To this end, set

Ft
def
= tH +(1−2t)E for all 06 t 6 1.

Observe that fort ∈ [0, 1
2) we havex∈ B−(Ft), and

εx(Ft) = −multx‖tH +(1−2t)E‖ = 2t−1 .

If 1
2 6 t 6 1, thenFt is nef, henceεx(Ft) = ε(‖Ft‖;x) = ε(Ft ;x). The Seshadri constantsε(Ft ;x)

are somewhat more complicated to compute, this will take up the remaining part of our example.
Thus, letπ2 : X′ → X denote the blow-up ofX at the pointx. Write π = π2◦π1 for the composi-

tion of the two blow-ups. OnX′ we have precisely three negative curves:

E1 = the strict transform of the exceptional divisor ofπ1 underπ2,

E2 = the exceptional divisor of the blow-upπ2,

E3 = the strict transform of the line of classH −E on X going through the pointx.

The intersection matrix of the curvesEi is

(Ei ·E j)16i63,16 j63 =




−2 1 0
1 −1 1
0 1 −1


 .

In the basis(E1,E2,E3) of N1(X′)R, the hyperplane classH ′ is given as

H ′ = E1+2E2+E3 .



INFINITESIMAL NEWTON–OKOUNKOV BODIES 19

Along with H ′, the divisorsH ′+E3 andE2+E3 turn out to be nef as well, and the three generate
the nef cone ofX′. In this notation,

Dt
def
= π∗

2Ft = π∗
2(tH+(1−2t)E) = tH ′+(1−2t)(E1+E2) ,

which can in turn be written in the form

Dt = (1− t)H ′+(2t −1)(E2+E3) for all 1/26 t 6 1.

This means in particular thatDt sits on the face of the nef cone generated byH ′ andE2+E3 for all
1/26 t 6 1.

As one can check, that the rayDt − εE1 leave the nef cone through the the face generated by
the divisorsH ′ andH ′+E3 whenevert ∈ [12,

2
3], and throught the face generated by the divisors

H ′+E3 andE1+E3 for t ∈ [23,1].
As a result,εx is going to be piecewise linear, and it is not going to be differentiable att = 2

3.
The full computation goes as follows.

For t ∈ [12,
2
3], the rayDt − εE1 hits the boundary of the nef cone atε = 2t −1, in the divisor

Dt − (2t −1)E1 = (2−3t)H ′+(2t −1)(H ′+E3) .

In particular,εx(Ft) = 2t−1 on the interval[12,
2
3].

On the other hand, ift ∈ [23,1], the rayDt −εE1 reaches the boundary of the nef cone atε = 1−t,
in the divisor

Dt − (1− t)E1 = (1− t)(H ′+E3)+(3t−2)(E1+E3) ,

and we obtainεx(t) = 1− t on the interval[23,1]. Putting all this together, the Seshadri function on
the line segment[E,H −E] is given by

εx(Ft) =






2t −1 if t ∈ [0, 1
2]

2t −1 if t ∈ [12,
2
3]

1− t if t ∈ [23,1]
.
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