
 
 

 

TOWARDS SMART CITY CONCEPT: 

EDGE-CLOUD IOT SOLUTIONS 

 

 

 

 

A DISSERTATION  

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL, 

ELECTRONIC AND TELECOMMUNICATIONS ENGINEERING AND  

NAVAL ARCHITECTURE 

AND THE COMMITTEE ON GRADUATE STUDIES  

OF THE UNIVERSITY OF GENOA 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR THE DEGREE OF  

DOCTOR OF PHILOSOPHY 

 

 

 

 

Ahmad Hassan Kobeissi 

February 2020 

  



ii 
 

 

This page is left empty.  



iii 
 

 

 

 

Abstract 
 

 

Since the term was coined by Kevin Ashton in 1999, the Internet of Things (IoT) did 

not gain considerable popularity until 2010 where it became a strategic priority for 

governments, companies, and research centers. Despite this large-scale interest, IoT only 

reached mass markets in 2014 in the form of wearable devices and fitness trackers, home 

automation, industrial asset monitoring, and smart energy meters. The ‘things’ refer to 

sensors and other smart devices with the ability to monitor an object’s state, or even 

control it using actuators. Ashton envisaged that when such sensors and smart devices 

were on a ubiquitous network – the Internet – they would have far more value. Trending 

data-centric technologies in the IoT involve security and data governance, infrastructure 

(edge & cloud analytics), data processing, advanced analytics, and data integrating and 

messaging. These technologies are supported by cloud computing service models that 

include three major layers – Software as a Service (SaaS), Platform as a Service (PaaS), 

and Infrastructure as a Service (IaaS). Of the three, IaaS is the foundation while SaaS is 

the top layer functioning off both PaaS and IaaS. Interestingly enough, although SaaS is 

normally represented in graphics as the smallest layer of Cloud infrastructure, it is 

anything but. The IaaS layer of Cloud Computing is comprised of all the hardware needed 

to make Cloud Computing possible. The PaaS layer of the Cloud is a framework for 

developers that they can build upon and use to create customized applications. Built on 

top of both IaaS and PaaS, Software as a Service provides applications, programs, 

software, and web tools to the public for free or for a price. 
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By the year 2020, trillions of gigabytes of data will be generated through the Internet 

of Things. This is no doubt difficult to comprehend easily. However, with the growing 

number of connected devices it is not surprising that by 2020, more than ten billion 

sensors and devices will be connected to the internet. Furthermore, all of these devices 

will gather, analyze, share, and transmit data in real-time. Hence, without the data, IoT 

devices would not hold the functionalities and capabilities which have made them 

achieve so much worldwide attention. If organizations are not in a position to somehow 

ingest, process and analyze these data, then it becomes worthless, and the IoT project 

will be considered a failure. Unlike a traditional IT system, IoT systems are cyber-

physical systems involving both humans and machines as end-users. Their interaction 

forms a complex web of M2M (Machine to Machine) and H2M (Human to Machine) 

transactions. Right from device firmware, to network interfaces, extending all the way to 

business logic defined in cloud application and user app, software remains the most 

critical driver in IoT. Similarly, Edge computing presents great opportunities to achieve 

ubiquitous computation in the Internet ecosystem. It is proposed to overcome the intrinsic 

challenges of computing on the cloud side. Edge computing offers to gather more sensory 

data, reducing the response time, freeing up network bandwidth, and ultimately reducing 

the workload on the cloud. 

In the effort to elevate support for technologies that are directed toward IoT in smart 

cities concept, support for developers and service providers is critical especially 

regarding fast and feasible deployment of IoT solutions and assets. To that end, I focused 

during my research on ways and methods to exploit generic IoT solutions; Application 

Programming Interfaces (APIs) and edge engines. In this book, I present Atmosphere, a 

novel edge-to-cloud solution for supporting development and deployment by IoT 

developers and service providers. Atmosphere cloud is a SaaS deployment-ready model, 

while Atmosphere edge is a lightweight edge engine for IoT device management. 

Needless to say, testing the various software components is essential to ensure a safe 

and reliable IoT system. The solutions I contributed to were tested in multiple projects 

of varying volumes and challenges. In some projects, using the generic concept was 

straight forward, while in others, where the structure of the IoT data was complicated and 

restrictions were established by the partners, the integration was challenging.  
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Chapter 1 – Introduction  
 

 

The development and deployment process of IoT services (at the edge, middleware 

and cloud sides) has become a lengthy process that requires considerable time, resources, 

and effort. We need to have a generic solution that can be used by different service 

providers so that they can deploy their services earlier while saving time and resources 

on the development. 

Looking at IoT applications from a generic perspective we spot challenges in the huge 

versatility of IoT, where personal or industrial implementations can be approached in 

various different manners. These concerns raise some serious questions. What are the 

required architectural styles, programming patterns, and hardware tools that can be 

employed to facilitate the development of IoT applications? Which is the most suitable 

approach to provide a comprehensive solution for the various IoT uses cases? How to 

configure an IoT infrastructure for fast deployment by service providers and users? 

Moreover, what are the main indicators for testing the applicability of such 

infrastructure? 

In order to investigate an answer to the research questions, I performed a series of 

experiments dealing with a plethora of IoT applications in different domains. In these 

experiments, I developed the necessary IoT capabilities (hardware and software) and 

inspected the methods to improve the developed tools and achieve a wider usage for these 

tools (separate or combined) by similar IoT applications. 

Cloud technology is a vast area of opportunities for data management of IoT 

applications [1]. More often than not, cloud services are exploited and tailored for 
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industrial [2], domestic [3], and health applications [4].  Due to the nature and 

characteristics of these data [5], from accumulating high volumes to growth rate and its 

variety, these applications are getting the big data treatment. Some solutions are 

exploiting dynamic cloud-edge resource management [6, 7] and collaborative data 

storage for IoT analytics. To enhance data management on the cloud, [8] exemplifies 

novel approaches for composing and interoperating cloud solutions for mobile data. In 

[9], data storage, management, and analysis are served in a multi-cloud architecture for 

facilitating information sharing in scientific communities. In contrast, a cloud storage 

hub [10] is designed to contribute to the integration of different data sources through a 

mapping and ruling system to access data conveniently through a single API. 

Various IoT frameworks are currently available on the market that focuses on different 

types of IoT services. The Amazon Web Services for the Internet of Things (AWS IoT) 

[11] is a cloud service. Its main IoT architecture modules concern data management, 

device connectivity and control, and analytics and event detection. A stack of functions 

is available on the back-end: DynamoDB, Kinesis, Lambda, S3, SNS, SQS, etc. Since 

AWS is a cloud service provider, multiple data processing services are already integrated. 

Likewise, the IoT Applications component enables the connection of further applications 

to the platform. AWS IoT does not distinguish among sensors, actuators, and devices, as 

it focuses on the concept of things. However, there are limited custom attributes for 

things, which challenge manageability and increases latency in [12]. The Microsoft 

Azure cloud platform [13] enables developers to create cloud-based programs using a 

Software as a Service (SaaS) commercial platform. Azure Sphere contains tools for edge 

SDKs [14] to enable secure edge-to-cloud connectivity. Other commercial frameworks 

[15], like Google Cloud and Bluemix, have a variety of IoT cloud services. Despite their 

differences in performance and efficiency in practice, [16] indicates long deployment 

times as a shared issue among such frameworks. We argue that a better-defined content 

structure could facilitate developers, especially for the applications dealing with 

measurements. 

Several IoT data frameworks have been presented in the literature to deal with specific 

IoT application domains. Recent examples concern forensics [17], smart homes [18] and 

smart cities [19].   
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In a more general approach, [20] proposed a framework dealing with typical IoT 

challenges (large volume of data, different data types, rapid generating data, complicated 

requirements, etc.). For structured data, they propose a database management model that 

combines and extends multiple databases and provides unified accessing APIs. For 

unstructured data, the framework wraps and extends the Hadoop Distributed File System 

(HDFS) based on the file repository model to implement version management and 

multitenant data isolation. A resource configuration module supports static and dynamic 

data management in terms of the predefined meta-model. Thus, data resources and related 

services can be configured based on tenant requirements. More recently, [21] presented 

a functional framework that identifies the acquisition, management, processing and 

mining areas of IoT big data, and several associated technical modules are defined and 

described in terms of their key characteristics and capabilities. [22] deals particularly 

with IoT data storage efficiency and security, proposing a framework that keeps locally 

(on the edge) time-sensitive data (e.g., control information) and sends the other (e.g., 

monitoring data) to the cloud. 

In order to support remote and cross-platform data access, several data frameworks 

integrate APIs implementing Representational State Transfer (REST) services [23] 

which provide a platform-independent HyperText Transfer Protocol (HTTP) interface 

(e.g., [15]).  

In a similar fashion to Atmosphere, [24] proposes a framework, which supports 

developers in modeling smart things as web resources, exposing them through RESTful 

APIs and developing applications on top of them. The framework supports resource-type 

definition and design, general-purpose software for operations on web resources, a 

mapping between web resources and data sources, and programming and publishing 

tools. 

[25] singles out four main characteristics of IoT data in cloud platforms: multisource 

high heterogeneity, huge scale dynamic, low-level with weak semantics, inaccuracy. 

These characteristics are important, as they highlight key features that should be provided 

by an effective IoT data framework (e.g., source characterization, variety of source data 

configurations/aggregation, outlier computation [26]), that we kept into account in the 

design of Atmosphere. 
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The presented frameworks and solutions from the literature expose different strategies 

to serve data-driven IoT applications. The available approaches, whether proprietary or 

open-source, are either specialized and are thus difficult to reuse, or high-level in their 

design model that requires significant time for development. Cost-wise, commercial 

solutions offer a pay-as-you-go pricing structure, in which the vendor only charges for 

the computing resources used by the application, usually saving customers money. 

However, in an IoT setup where data is continuously being circulated between edge, 

cloud, and user interface applications, this pricing model may be unfitted. My proposed 

cloud solution shows similarity to the WoT framework in [27]. Both works adopt a 

RESTful web resource approach and expose the accessibility and management of IoT 

devices for similar target users. Table I summarized the advantages and disadvantages of 

existing cloud solutions on the commercial and academic fronts. 

 

The tech giants are also commercial leaders in the IoT edge services and solutions. 

Recently, AWS offered serverless functions called Lambda@Edge [28] in a pay-per-

computation billing scheme. It provides a stand-alone execution environment for 

individual functions written in Node.js, Python, Java, or C#. Content delivery through 

the Amazon CloudFront [29] can be customized as well as compute resources and 

execution time. Since AWS Lambda is serverless, the cost of execution is reduced. For 

this ease of execution and reduction in cost, though, the downside is losing control over 

the environment. While AWS Lambda functions run on Amazon Machine Instances 

TABLE I 

COMMERCIAL VERSUS ACADEMIC CLOUD SOLUTIONS FOR IOT 

 Advantage Disadvantage 

Commercial 

Stack of functions is available on 

the back-end 

Does not distinguish among 

sensors, actuators, and devices 

Enables connection of further 

applications to the platform 

Limited custom attributes for 

things, increases latency 

Contains tools for edge SDKs Long deployment times 

Academic 

Unified accessing APIs 
Specialized for a specific IoT 

domain 

Configurable data resources and 

services 
Limited reusability 

Time-sensitive data preservation 

on edge 
Limited scalability 
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(AMIs), and thus use industry-standard tools for web and general development, 

consumers are not able to custom install packages or software on the running 

environment, nor do they have given control over how the instance is maintained. 

Furthermore, the design of AWS Lambda does have the potential to increase the design-

time cost of the IoT application [30]. AWS Lambda functions are timeboxed, with a 

default timeout of three seconds (it is configurable up to five minutes). This means the 

consumers need to spend more time orchestrating and organizing their functions so that 

they can work in a distributed fashion on their data. 

Azure IoT Edge [31] offers deployment of models - built and trained in the cloud - on 

the edge. In the case of intermittent connectivity, Azure IoT Edge device management 

automatically synchronizes the latest state of edge devices - after they reconnect - to 

ensure seamless operability. Azure IoT Edge aims to target image recognition and contact 

signaling as the main use cases in IoT applications. Despite its costly deployment [32], 

Azure IoT Edge is a Microsoft service, and it is only compatible with other Microsoft 

Azure products, such as Azure IoT Hub, Central, and cloud [33]. 

The deployment of IoT applications to distributed nodes is a tedious procedure. In 

[34], a proposed approach is presented where the IoT application can be modeled in one 

place, where after modeling; the different pieces of the application are annotated with 

location information. Based on this annotation, the application is decomposed into 

fragments that are deployed to the corresponding individual compute nodes, 

automatically generating code to remotely connect the application fragments to other 

application fragments on other compute nodes in the edge or in the cloud. In addressing 

the domain-diversity aspect in data sharing in IoT, [35] proposes a cross-domain, secure, 

and feasible data sharing scheme in cooperative edge computing. To ensure the data’s 

safety achieve data’s fine-grained access, the scheme employs CP-ABE as an encryption 

mechanism for data privacy.  

A Fog node, denoted as “IoT Hub,” placed at the edge of multiple networks, which 

enhances the capabilities of the network by implementing the following functions: border 

router; cross-proxy; cache; and resource directory is presented in [36]. The IoT Hub 

enables clients to effectively discover and access resources hosted by heterogeneous 

Smart Objects (SOs). The benefit of the IoT Hub is its capability to hide completely the 
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diverse nature of SOs, in terms of hardware, wired/wireless communication protocol, and 

application-layer protocol used, to clients, which can interact with them using uniform 

interfaces and without requiring any prior configuration. An implementation of the IoT 

Hub to evaluate its practical feasibility and performance in a real-world IoT testbed 

comprising several heterogeneous devices resulted in positive results regarding 

deployment on low-end devices, such as the Raspberry Pi. Steel [37], is a high-level 

abstraction framework designed specifically for building complex data processing 

applications in the emerging edge-cloud environment. It is an extensible framework 

where common but crucial optimizations for the edge (e.g., placement, load balancing, 

communication) can be built as pluggable and configurable modules. Steel is claimed to 

have reduced the initial deployment effort by 2.6x on average. Several lightweight 

solutions on the edge [38, 39, & 40] propose novel approaches to edge computing, from 

exposing RESTful web services and relying on specific portions of commercial IoT 

services such as IBM Watson IoT platform, to establishing multi-source feedback 

information fusion towards alleviating the concerns of numerous IoT users. 

We have seen the available IoT edge solutions in the tech market as well as in the 

latest academic research. Solutions found in the literature present significant features 

such as cost reduction [34, 37], optimizing operability [36], or providing feasible data 

sharing schemes [35]. On the other hand, as listed in Table II, each solution has its own 

limitations and/or drawbacks with respect to the general industrial IoT application. These 

solutions are best suited and applicable in their targeted scenarios such as complex data 

TABLE II 

COMMERCIAL VERSUS ACADEMIC EDGE SOLUTIONS FOR IOT 

 Advantage Disadvantage 

Commercial 

Easily programmable Increased design-time cost 

Complementing same-vendor 

cloud services 
Limited customizability 

Cross-platform support 
Limited support for third-party 

services 

Academic 

Cost reduction 
Fit for specific edge 

configurations 

Optimized operability Complex programming  

Provides feasible data sharing 

schemes 

Reliance on commercial 

services 
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structure, information fusion, and real-time analytics. Commercial solutions [28, 31] 

suffers from design-time cost and lack of customizability and third-party compatibility. 

Our proposed concept of the edge solution aims to satisfy the widest range of IoT device 

management features in one abstract service while focusing on reduced design-time cost 

and easy deployment. 

IoT applications are demanding for developers when they try to build a whole 

customized solution. The choices are, as we saw in the state-of-the-art, start from scratch, 

buy one or more commercial solutions (train and get used to those), or use an open-source 

project. What I learned from the experience of mine and other developers in this field is 

that there is a substantial common ground that can be exploited and thus make it more 

feasible for IoT developers to realize their applications. All smart things stream 

measurements with attributes (user, feature, device, service, provider, etc.) to the cloud 

or local buffer. 

APIs are the communication and data sharing mechanisms between two different 

applications or systems. APIs are the natural evolution of web services; they facilitate 

dynamic information sharing. Moreover, APIs have more lightweight architectures, 

which makes them more suitable for limited bandwidth devices such as IoT devices. 

When building APIs, some considerations must be dealt with such as latency, partial 

failure, and security concerns. Latency is the amount of time it takes a request to return 

a response. Latency increases when client and server are running on different machines. 

Modern APIs are developed to keep the latency at minimum figures (sub milliseconds). 

Partial failure occurs when a component of the server or network that is supposed to send 

data back to the calling client fails to respond. It happens when a network is down or the 

server is overloaded by requests and cannot respond. The more web services used in a 

single application, the bigger the risk of experiencing a partial failure. Thus, a developer 

has to balance the number of web services with the requirements of the API. Considering 

API security, two common procedures must be followed: authentication and 

authorization. Authentication is about validating the identity of the client that is 

attempting to call a web service that accesses secure data. The identity is usually 

validated with user credentials (username/ password). Authorization determines the level 
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of a client’s access. A well-designed API must incorporate a sturdy and well-structured 

authentication/authorization model. 

In this context, we (myself and supervisors) have developed Atmosphere, an open-

source, provider-independent, and comprehensive data management framework. 

Atmosphere is easily configurable for different IoT applications, providing an abstract 

interface towards measurements. We focus on the concept of measurement, as this type 

of data is very common in IoT, which makes the process of abstraction needed in order 

to support efficient application development in a variety of domains and operational 

contexts easier and more effective. 

The contributions of this work are evident in Atmosphere’s main characteristics, 

where it combines features from both commercial and academic solutions and package 

these features in a general-purpose architecture that suits different IoT applications and 

domains.  On the cloud, atmosphere provides high scalability, ease-of-deployment, 

preservations of data integrity, large reusability, Standardized IoT terminology in a 

domain-independent generalizability and applicability, and user management. In addition 

to those, edge features such as versatility, portability, real-time reactivity, simplicity in 

function support, and high customizability while being lightweight form the 

characteristics that distinguish Atmosphere among its alternatives. 

The remainder of the book is organized as follows. Chapter 2 describes Atmosphere 

with its two main components, the cloud API and the edge engine. Chapter 3 describes 

the experimental use cases of Atmosphere in two automotive European projects, one e-

Health Italian project, and an in-lab smart home simulation. These experiments are 

discussed thereafter to reflect on the results and shed light on their significance to the 

research project. Finally, chapter 4 concludes the topic with a preview of the entire thesis.  
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Chapter 2 – Atmosphere  
 

 

Section I – Overall Architecture 
 

Our effort, extracted from analyzing the state-of-the-art, aimed first at leveraging 

cloud principles to provide feasible access and programmability to different IoT 

applications. Second, we worked towards complementing the principles on the cloud by 

exploiting edge functionalities for a general-purpose. We specifically experimented with 

an e-Health application and two automotive applications that resemble IoT environments. 

An additional experiment simulating home automation was performed in-lab. The 

experiments revolved around a comprehensive (cloud to edge) development as a 

framework that provides the necessary devices to ease the deployment of IoT cloud and 

edge APIs. The cloud API makes stored data more accessible to other systems in a secure 

fashion. A wide range of audiences and platforms can use the data. The edge IoT solution 

provides feasible and seamless connectivity for collections of IoT edge devices to the 

cloud as well as local computations. The scope of this framework is the design and 

implementation of a generic web service that accommodates numeric-type data in 

compliance with REST guidelines in a reusable fashion. Furthermore, we set on adopting 

a document-based DBMS such as MongoDB to complement the RESTful nature of the 

desired web services.  

Towards this objective, we proposed Atmosphere, a generic measurement-oriented 

framework for speeding up the exposure of APIs for accessing and managing smart 

things in the IoT ecosystem. The contribution of this work is threefold: 1) the proposal 
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of a cloud storage model using abstracted IoT web resources and relations to reflect the 

structure and functionality of the IoT edge applications. 2) The proposal of an edge 

engine using abstracted methods and routines to act as a hub for IoT edge devices and 3) 

the provision of methods and tools to add reusable components to the existing framework. 

In the context of this development, the target users are mainly IoT developers, IoT service 

providers, and users with fundamental-level IoT support.   

Atmosphere’s high-level architecture, shown in Figure 1, is a collection of generic 

services on the cloud and the edge targeting IoT. Atmosphere introduces programmable 

models via the edge engine and abstracted API service representation on the cloud. The 

communication protocols across the usage of the platform – from edge to user interface 

– are compatible and secure. 

Atmosphere uses JavaScript Object Notation (JSON) as a data-interchange format, 

internally and externally. JSON is a lightweight text or data format that is easy for 

humans and computers to read. It is used for exchanging data between applications and 

web APIs or services. Although it has its origins in the JavaScript programming 

language, it is often looked at as language-independent. 

At the center of our development is the cloud API. The API is responsible for 

connecting backend data and applications, devices and services, and external party 

applications together. Atmosphere API is a RESTful API that is based on the architectural 

style known as REST. A seamless communication concept is realized through the 

adoption of the REST paradigm for HTTP. The adoption of REST facilitates the use of 

IoT by both the end-users and service developers across networks containing smart 

 
 

Fig. 1.  High-level Block Diagram of Atmosphere cloud and edge 
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objects [23]. A RESTful API concocts Simplicity, it is easy to grasp since HTTP verbs 

are based on CRUD (Create, Remove, Update, and Delete) operations. REST design is 

stateless and separates the concerns of the client and the server. Moreover, REST reads 

can be cached for better performance and scalability. Even though REST supports many 

data formats, the predominant use of JSON allows for better support by browser clients. 

Client requests consist of a URI (Uniform Resource Identifier), an HTTP verb, a request 

header, and an optional request body. The alternative for RESTful is SOAP [41], where 

different components are required such as XML format data communication. SOAP-

based web services require more work to pack and unpack the data. The complexities 

with SOAP-based web services lead to REST-based APIs. RESTful APIs are easier to 

create and easier for clients to consume.  

Atmosphere relies on HTTP as a client-server communication protocol. HTTP status 

codes are employed throughout the API, including Informational responses: 1xx, 

Successful responses: 2xx, Redirection responses: 3xx, Client error responses: 4xx, and 

Server error responses: 5xx. HTTP is an unencrypted communication protocol. Without 

HTTPS (HTTP Secure) enabled, the communication channels edge-cloud as well as User 

Interface (UI)-cloud are vulnerable. An HTTPS extension was added for communication 

security. We obtained and installed an HTTPS certificate for the deployed instance of 

Atmosphere’s cloud server from a publicly trusted Certificate Authority (CA).  

On the edge, we implemented a generic edge engine, as a runtime system for 

embedded boards. The engine is designed to provide feasible edge computing capabilities 

on low-end IoT edge devices and can be adapted for different use case implementations. 

The engine runs stream-managing scripts and commands for the sensory devices. Scripts 

in the edge constitute a set of JSON objects with information about operations performed 

to process each stream of measurements. These operations perform local computations 

on the measurements like filter, map, combine, and send as well as support for custom 

functions. Working towards having Atmosphere as full-stack Node.js development, we 

used Node.js to code the edge engine. For web developments on the edge, Node.js is 

advantageous in real-time performance over alternatives (e.g. Python). It is very good at 

handling projects with many simultaneous connections or applications with high-speed 

input/output (I/O).  
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Both the cloud API and the edge engine in Atmosphere rely on asynchronous 

processing. A usual server-side approach (e.g., in PHP, ASP.net, Ruby and Java) involves 

multi-threading. Node.js avoids the multi-threading burden by employing a non-blocking 

single-thread pattern and is able to efficiently serve multiple concurrent clients by 

operating asynchronously, employing the event-loop mechanism. The asynchronous 

model allows releasing the thread that is handling the request to become available for 

other processes. Nevertheless, we invoked some synchronous functions in cases where 

we needed the thread to stay engaged until the request is processed, with a defined 

timeout to avoid an endless wait. 

Using Atmosphere, developers and service providers will find a deployment-ready 

cloud platform containing the common IoT entities as well as an edge engine containing 

computational options for their own choice of sensor objects. Enabling the edge to 

perform computation on data before sending it to the cloud supports the concept of Edge 

Computing, which implies reducing traffic on communication channels and facilitating 

maintenance across the IoT network. On the other hand, developers using Atmosphere 

are required to do the mapping of the application-specific attributes to the abstracted 

attributes offered by Atmosphere. Atmosphere’s components; cloud API and edge 

engine; are highly suitable and compatible with each other, but they can be independently 

integrated with third-party components as well. 
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Section II – Cloud API 
 

A. Requirements 
 

Based on the literature analysis and our insight in industrial research projects (e.g., 

[42]) elicited the need for an IoT domain-independent data framework to support the 

efficient development of IoT applications dealing with measurements. The solution 

would support easy problem and context modeling and facilitate collaboration between 

developers, customers, and stakeholders. When the data model is defined, developers 

should be able to quickly configure the framework, so as to allow edge devices to upload 

data and (third-party) applications to seamlessly access them, either directly or after 

processing, for instance extracting statistical values, such as means or histograms. 

From an architectural point of view, requirements concern scalability, ease of 

deployment, preservation of data integrity, large reusability, standardized IoT 

terminology in a domain-independent generalizability and applicability, user 

management. In detail, scalability is the ability of cloud development to be used or 

produced in a range of capabilities. Ease of deployment is the fast and feasible setup of 

the cloud server. In such a cloud setup, the preservation of data integrity is achieved in 

maintaining the reliability and trustworthiness of the data. The way the system can be 

deployed in different settings represents reusability. Standardized IoT terminology 

means that the employed terminology addresses standard IoT components. Finally, user 

management is required in order to ensure different levels of user access through the 

cloud. 

 

B. System architecture 
 

Atmosphere’s cloud framework represents IoT resources as objects, with connections 

between these objects as relations in the IoT application. This representation allows direct 

and fast mapping of IoT entities into a series of related objects to build a comprehensive 

solution. The framework underwent multiple stages of development, starting with core 

models and functionalities, and eventually expanding to support an expansive set of 
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beneficial resources and services. The latest deployed solution offers processing, 

querying, and scalable storage of addressable information on the cloud. The following 

sections (1, 2, 3, 4, and 5) details the design of the model and, based on the proposed 

design choice, the practical implementation of Atmosphere. 

1. Platform choices 

Based on the above requirements, we opted for designing a framework leveraging 

cloud principles to support scalability and ease of deployment. The framework provides 

a generic web service that accommodates numeric-type data in compliance with REST 

guidelines in a reusable fashion. Figure 2 shows a block diagram of Atmosphere cloud 

components and platforms. A major set of design choices for a data-oriented framework 

is related to the definition of the resources it will expose. A RESTful API separates the 

user interface from the server and data storage, which improves portability, scalability, 

and independent development.  

API services in Atmosphere are implemented in Node.js – a JavaScript-based open-

source server environment – within the Express.js framework. Express.js is a web 

application framework for Node.js. Node.js shines in real-time applications employing 

push technology over WebSockets, which makes it very suitable to Atmosphere’s 

concept. This open-source framework offers easy integration of third-party services and 

 
 

Fig. 2.  Atmosphere Cloud Block Diagram. 
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middleware. The single-threaded, event-driven architecture of Node.js allows it to handle 

multiple simultaneous connections efficiently. Most of the popular web platforms create 

an additional thread for each new request, using up random access memory RAM for the 

whole time it takes to process it. Node, on the other hand, operates on a single thread, 

making use of the event loop and callbacks for I/O operations, delegating tasks such as 

database operations as soon as possible. This allows it to handle hundreds of thousands 

or even a million concurrent connections. What’s more, Node.js embraces scalability 

from the get-go, with powerful features such as the Cluster module enabling load 

balancing over multiple central processing unit (CPU) cores.  The Node Package 

Manager, known as an “NPM”, allows developers to install, update, and use smaller 

open-source software packages (modules), which means they do not have to write 

common features from scratch and can avoid new layers of complexity that often come 

with that particular territory. In our modern world, things are constantly shifting and new 

technologies rise and fall, sometimes without even entering long-term support (LTS). 

Moreover, it is difficult to develop and maintain an app written in an outdated language. 

According to the 2018 Node.js User Survey Report [43], 61% of programmers consider 

LTS for Node.js an important feature. That knowledge allows developers to assess what 

the future holds for their application and to plan further development according to the 

timeline. Programmers can easily plan to adopt new versions based on their regular 

development cycles. Every major release of Node.js will be actively maintained for 18 

months from the date it enters LTS, after which it will transition to maintenance mode 

lasting another 12 months. 

For cloud storage, we chose the NoSQL document-oriented database platform 

MongoDB [44]. NoSQL databases provide a series of features that relational databases 

cannot provide, such as horizontal scalability, memory, distributed index, and 

dynamically modifying data schema [45]. Compared to their traditional alternative; the 

Relational Data-Base Management System (RDBMS); MongoDB is easier to scale and 

tune due to its schema-less nature, where the number of fields, content, and size of the 

collection documents can differ from one document to another [46]. The database schema 

is thus defined by Atmosphere’s code schema. In addition, conversion and mapping of 

application objects to database objects are not needed. Since it is open-source, MongoDB 
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has a wide software development community and professionals that contribute to 

enhancements, unified modifications, and bug fixing of the code. There is the cost of a 

certain difficulty in coding complex queries. However, this is hidden to the user of the 

framework, who will access data through predefined routes to the modeled resources, 

according to the REST API design principles [23]. REST supports the mapping of HTTP 

verbs (Get, Post, Put, Delete) and the classical CRUD database actions (Create, Read, 

Update, Delete). Behind the scenes, MongoDB saves documents in a Binary JSON 

format (BSON). BSON extends the JSON model to provide additional data types, 

ordered fields, and to be efficient for encoding and decoding within different languages. 

Like JSON, MongoDB's BSON implementation supports embedding objects and arrays 

within other objects and arrays – MongoDB can even 'reach inside' BSON objects to 

build indexes and match objects against query expressions on both top-level and nested 

BSON keys. This means that MongoDB gives users the ease of use and flexibility of 

JSON documents together with the speed and richness of a lightweight binary format. 

Unlike relational DBMSs, MongoDB does not impose the prerequisite of defining a fixed 

structure. Models in MongoDB allow hierarchical relationships representation, with the 

ability to modify the structure of the record. Furthermore, MongoDB recognizes data in 

JavaScript Object Notation (JSON) [47], a natural JavaScript format, which means that 

no conversion is required on a Node.js server. JSON facilitates the exchange of data 

between web apps and servers in a compact and human-readable format, preventing the 

need for a persistence layer. 

For securing the API, JSON Web Tokens (JWTs) were employed. JWT is based on 

the RFC 7519 standard [48] that defines how access tokens can be generated and encoded 

as JSON objects, to enable the secure transmission of data. A JWT consists of a set of 

claims, which refers to information in the form of key/ value pairs (Claim Name/Value) 

that are used for authentication, authorization and for exchanging sensitive information. 

A JWT is trusted since it is digitally signed using an HMAC algorithm or an RSA 

signature with SHA-256 (RS256). 
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2. Modeling 

Atmosphere cloud was designed to represent the application context and its elements 

as interrelated software objects, onto which to build applications. These objects are 

modeled as resources, with their own schemas and functionalities, accessible through the 

API routes. Defining resources to expose the interface is thus a key design step and 

requires abstraction in order to support flexibility, extendibility, and scalability. Not only 

do the choices concern the terminology, but also the semantic of each resource. These 

resources correspond to documents (tables) in the storage database. Each resource 

constitutes of a number of attributes (fields), some are mandatory while others are 

optional.  

Resources are the collection of elements that (collectively) define the IoT application. 

At the core of these resources are the essential elements that are common in the IoT 

environment: Thing, Feature, Service, Device, and Measurement. In Atmosphere’s API, 

we grouped the available resources into three categories: pre-measurement (mandatory 

and optional), the measurement resource, and post-measurement resources. Figure 3 

shows the different levels of supported resources in Atmosphere’s API model. 

 
 

Fig. 3.  Categorized Resources of Atmosphere’s API 
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Pre-measurement resources are those that get populated prior to uploading a 

measurement to which they are subjects. Such resources could be mandatory, such as 

thing, feature, and user, or optional such as service, device, and tag.  

A Thing represents the subject of a Measurement. A Feature represents a (typically 

physical) dimension measured by a Device. Each dimension has a name and a unit. A 

Service denotes the type of the target IoT deployment. A Device is a tool providing 

measurements regarding a thing (or an actuator that acts within a thing to modify its 

status). A Measurement represents a value of a Feature measured by a Device for a 

specific Thing in the context of a certain Service. Other supplementary resources are 

Alert, User, Provider, Subscription, Log, Login, Script, Tag, and Constraint resources. 

As post-measurement resources, machine Learning and Computation resources 

supply analytical abilities to the API. In the machine learning resource, traditional 

machine learning algorithms are available with a wide variation for options. For 

regression, the resource can perform linear and polynomial regression of univariate or 

multivariate data sets. For classification, the resource implements the logistic regression 

algorithm with k-NN (k-Nearest Neighbor) algorithm. For clustering, I implemented a 

 

Fig. 4. Example of a Measurement Sample. 
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fast variation of the k-means algorithm. I took advantage of TensorFlow for JavaScript 

[49] in implementing the machine learning resource.  

The concept of measurement abstracts the samples posted to and retrieved from the 

database. Its structure must match its Feature. A measurement can contain one or more 

homogeneous samples, the latter being the typical case when sampling signals (Figure 

4). Each sample contains a vector of values. Values are not necessarily homogeneous. 

For instance, a sample could represent a set of statistical information on a quantity (e.g., 

average, stdev, etc.). Each value can be a scalar (e.g. a temperature), a vector (e.g. the 

orientation in space) or a tensor of numbers (e.g., general multidimensional data points). 

The Feature resource is used to check the integrity of each received measurement. The 

size of each measurement sample value must match the corresponding dimension 

attribute stored in the corresponding feature item. 

Figures 5, 6, and 7 preview with examples the defining relationship between the 

measurement and features resources. For example, a measurement whose feature is 

weather-conditions must have in each of its Sample elements of the samples array exactly 

two values as the number of items defined within the weather-conditions feature. 

Furthermore, the dimension of each value in the sample must also correspond to the 

 
 

Fig. 5.  Atmosphere resource model relations around the Measurement resource. 
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specified item dimension in the feature resource, which is 0 and 1 for weather-conditions 

feature items respectively. 

We also defined the Computation resource, which makes complex queries to perform 

post-processing calculation on raw data (typically measurements) exploiting the cloud 

server capabilities. A set of (typically statistical) computation types are executable, 

identified by the ‘Code’ attribute. Currently, the following codes are supported: 

maximum, minimum, average, median, standard deviation, variance, first quartile, third 

quartile, histograms. A custom computation is also available, which executes a custom 

script uploaded by the user. In the case of stdev() and var(), the engine offers two 

variations: population-based and sample-based [50]. Codes are parametrized, to allow 

the user to specify the dimensionality of the measurements’ values to be aggregated. 

From the filtered measurements, the value vector can be chosen as a whole, include only 

a number of value arrays, or include only a number of elements in each value array. 

Another type of computation concerns outlier detection, which is key to guarantee the 

quality of data series. The result of a Computation is structured and stored as a 

Measurement, thus allowing further processing. 

Another abstraction that we defined to support the possible needs of a data consumer 

service, is the Constraint, which allows defining relationships between different 

 

Fig. 6.  Block diagram showing some resources relations in Atmosphere. 
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resources. We modeled this as a resource in order to the maximum flexibility in adding 

associations/dependencies between resources while avoiding hard-coding them inside 

the resources themselves. As a use case, a user interface that is dynamically built by 

querying the DB can show in a drop-down menu the proper options only. Figure 5 gives 

an overview example of the Atmosphere resource modeling. 

 

3. Implementation 

Within the API, resources are modeled through two stages: schema and controller. 

The schema defines the resource structure while the controller defines its functionality.  

A resource schema describes the fields, including their types, default values, and 

references for other resource fields. Fields that refer to other resources have cross-

validation functions implemented within the resource schema. The schema also includes 

plugin definitions as well as indexing options. The controller defines the HTTP methods 

that are supported by the resource. The main methods are GET, POST, PUT, and 

DELETE. Practically, the GET method is represented in the controller by two 

asynchronous functions: ‘get’ (many), which supports filter and aggregate queries to 

retrieve multiple records and ‘getone’ which fetches one record by its ID. A POST 

 
 

Fig. 7.  Depiction of the cross-validation between ‘Feature’ and ‘Measurement’ resources. 
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method is responsible for the insertion of new records, while the PUT method updated 

existing records. The DELETE method removes (permanently or soft deletes) records 

from the database. Each of those asynchronous functions takes an HTTP request as an 

input, performs a specific function, and then issues a response to the requesting (source) 

Internet Protocol (IP) address. 

The framework guarantees that all its exposed resources can be manipulated through 

the previously mentioned HTTP methods. Standard response codes were defined for each 

method like success codes (2xx) and client error codes (4xx) with suited information in 

the response message. 

We have implemented the RESTful API services in Node.js (JavaScript-based) within 

the Express.js framework. This open-source framework offers easy integration of third-

party services and middleware, particularly the MongoDB database and its seamlessly 

utilizable Mongoose persistence layer. A usual server-side approach (e.g., in PHP, 

ASP.net, Ruby and Java) involves multi-threading. Node.js avoids the multi-threading 

burden by employing a non-blocking single-thread pattern and is able to efficiently serve 

multiple concurrent clients by operating asynchronously, employing the event-loop 

mechanism.  

In storage, resources correspond to collections in the database. Each resource involves 

a number of fields, some of which are mandatory, while others are optional. Within the 

API, resources are implemented through two stages: schema and controller. The schema 

– which is needed for data-checking, given the schema-less nature of MongoDB – defines 

the resource structure, while the controller implements the resource functionality. A 

resource schema prescribes the fields, including their types, default values, and 

references to other resource fields. Fields that refer to other resources have cross-

validation functions implemented within the resource schema. The schema also includes 

plugin definitions as well as indexing options. The controller defines the HTTP methods 

that are supported by the resource (typically: GET for fetching resources, POST for 

inserting, PUT for updating, DELETE for removing, either permanently or softly).  

The Computation controller performs incremental calculations in order to avoid 

exhausting the system’s resources (e.g., memory), as computations are typically 

performed on huge quantities of data. Computations are obtained in a two-step process, 
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where the client first issues a computation request, which opens a WebSocket through 

which the client can get information from the system about the progress of the execution. 

According to the best practice in software engineering, we included in the framework 

an automatic test suite for all routes and methods, supported by the NPM [51, 52]. This 

is key to ensure that all the anticipated API operations perform as intended. Given the 

custom nature of the API, we developed tailored tests for each method within the 

resources. I employed ‘chai’ [53], a Test-Driven Development (TDD)/ Behavior-Driven 

Development (BDD) assertion library for Node.js, paring it to my custom-made testing 

mechanism through NPM. 

 

Script 1. A portion of the test code from the GET method in the User resource 

… 

chai.use(chaiHttp); 

// Test the /GET route 

describe('/GET users', () => { 

 it('it should GET all the users', async () => { 

     await factory.dropContents(); 

     await factory.createUser("test-username-1", "test-password-1"); 

     await factory.createUser("test-username-2", "test-password-2"); 

     const res = await 

chai.request(server).get('/v1/users').set('Authorization', await 

factory.getAdminToken()); 

     res.should.have.status(200); 

     res.body.docs.should.be.a('array'); 

     res.body.docs.length.should.be.eql(3); 

   }); 

… 
 

The code example in Script 1 shows one test scenario of the GET route in the user 

resource. In this test, the code creates two new users, then calls the get method for all 

users. For the test to be successful, each of the last three check must be true. The returned 

status must be 200 (success), the content of the response body is expected to be an array, 

and the number of returned users must be three (the two created earlier plus the admin 

user that is pre-loaded). 
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As a manual for new consumers of the API, we developed comprehensive online 

documentation using Swagger UI [54]. The documentation, available via 

https://apil3p.atmosphere.tools/, is a collection of HTML, JavaScript, and CSS that 

dynamically generate documentation from Atmosphere’s API (a Swagger compliant 

API). The API documentation provides a description of every web resource and clearly 

indicate the purpose of each. It also provides the expected JSON request and response 

schemas to simplify client integration. The deployed API documentation, shown partially 

in Figure 8, acts as a catalog where developers can easily see what resources are available 

with detail on how to interact with each. Furthermore, dependencies are pointed out to 

ensure the awareness of resource relationships. Finally, I added the design 

documentation, which takes two forms: one for documenting how each resource fits into 

the greater architecture of the API, and another that illustrates the logic of each resource. 

 
 

Fig. 8. Thing resource described in Swagger graphical user interface documentation of 

Atmosphere API. 
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The information provided in Appendix A is heavily influenced by the online Swagger 

documentation. 

 

4. Working System 

When the API is first initialized, it connects to the storage server and creates the 

database ‘Atmosphere-DB’ with one collection inside. That collection is the ‘users’ 

collection, and it is essential to have one admin user in order to create other users and 

other collections. This first instance of a user is pre-defined within the source code. The 

‘admin’ user can create two other types of users: ‘provider and analyst’. While the 

‘admin’ has full access to the DB (all methods unrestricted), the ‘provider’ user has 

restricted access that depends on ownership (allowed access to records that are owned by 

the user), and the ‘analyst’ user has limited access, that only includes the GET methods. 

Beside this Authorization access mechanism, another security measure is Authentication. 

It is based on a JSON Web Token (JWT) as a security pass that expires every 30 minutes. 

To get a JWT, users must POST to the ‘login’ resource with their given credentials. The 

API will reply with a JWT with the specific authorization level of the requesting user. 

The JWT must then be used as a header attribute for any further requests to the API. 

 

5. Supported Workflow 

The above system has been designed in order to support an efficient workflow for 

preparing different measurement-based data-rich applications. The first step consists of 

the domain mapping, where the field objects are to be mapped to the Atmosphere API’s 

resources. In this phase, the IoT application designer has to define features (i.e., types of 

measurements), devices (i.e., measurement instruments), things (i.e. main subjects of the 

measurement), tags (i.e., labels that can be attached as attributes to other resources – 

typically measurements, features and things), constraints (i.e., relationships between 

elements in the DB), and user types (e.g., Provider and Analyst). Once these objects are 

POSTed to the API, the system becomes operational, allowing insertion/update of users, 

things, field measurements and computation requests; and retrieval of results in terms of 

things, measurement and computation outcomes. The structure can be updated during the 
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operation as well, by POSTing/PUTting features, devices, and tags. All these actions 

happen only through the exposed resource routes, with the well-known advantages of the 

RESTful approach in terms of scalability, encapsulation, security, portability, platform 

independence, and clarity of terminology and operations. The latest version of 

Atmosphere API is hosted online and can be accessed via https://api.atmosphere.tools/v1.  
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Section III- Edge Engine 
 

The amount of data generated by IoT edge devices is exploding. Storage and 

processing of all the data in the cloud have become too slow and costly to meet the 

requirements of the end-user. Edge computing presents a substantial solution through 

facilitating the processing of device data closer to the source. However, developing and 

deploying computation engines for heterogeneous edge devices is a formidable challenge 

for IoT developers and service providers. This section presents a generic edge engine for 

low-end open-hardware that serves as an edge-to-cloud hub as well as an edge 

computational node. The aim of this development is to support IoT edge developers by 

facilitating development and cutting on deployment time. The results, observed in two 

experiments, show a positive impact on deployment speed with low-end hardware. 

 

A. Requirements 
 

The requirements for a generic edge engine stem from the challenges of edge 

computing in the literature [55, 56]. In edge computing, as several research projects have 

demonstrated, programmers must partition the functions of their applications between 

the edge and the cloud [57]. Most early efforts in this area were done manually and 

carefully tuned, which is not scalable or extensible. Thus, easy-to-use programming 

frameworks and tools are required. Such tools must include remote configurability and 

auto-updates.  

The edge engine solution must address include difficulties of high latency, where 

measurement collection, processing, and routing all form a bottleneck due to network 

congestion and limited computing resources. Furthermore, the solution needs to tackle 

the user’s familiarity with edge computing by providing simple functions to deploy with 

the ability to expand and deploy complex functions. 

While focusing on providing a lightweight and easy-to-deploy edge engine, the 

requirements for are versatility, portability, real-time reactivity, simplicity in function 

support, and high customizability. Versatility describes a flexible way of adapting to 

change in function. Portability is manifested in the ease of script transfer across the IoT 
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network (also involving cloud). Real-time reactivity is the main feature of edge setups 

where responses to triggers as well as processing and uploading of data must be as fast 

as possible. The simplicity of the supported functions ensures the feasible use of 

processing functions by the less experienced users. While high customizability offers 

experienced users, the ability to run functions that are more complex and tailored for their 

specific IoT service or setup. 

These requirements are suitable for limited bandwidth on the communication channels 

available for IoT node connections (I2C, BLE, Wifi) as well as an internet connection to 

the cloud. Furthermore, for better data management and structural organization of edge 

devices, a common edge hub for multiple sensory nodes works better than connecting 

each node directly to the cloud. 

 

B. System architecture 
 

The concept behind the generic edge engine is based on the assumption that it will be 

deployed on low-end hardware, that ranges from microcontroller development boards 

and single-board computers such as Arduino, ST microcontroller, Raspberry Pi, or other 

systems with a similar level of computational capabilities. For a detailed description of 

the range of targeted computational capabilities associated with low-end hardware, refer 

to Appendix B. 
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1. Design 

The nature of the edge engine deployment, shown in Figure 9, is close to the physical 

IoT sensors on-site. In the edge engine implementation, we made sure of the transparent 

remote configurability via HTTP.  

The edge engine supports local processing with a set of predefined functions by the 

Array.prototype JavaScript library. Furthermore, the engine supports the execution of 

custom functions defined by the developers in the script. It is possible to run edge 

computing with one or more functions serially (on the same data stream) in a chain 

fashion. 

Uploading data streams to the cloud can be done in one of three supported fashions: 

Continuous (Upload data as soon as received or processed), Batch (upload data buffer at 

a specified interval), and triggered (upload data upon specific conditions). 

 

 

Fig. 9.  Edge Engine Ecosystem 
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2. Implementation 

The implementation of the edge engine was manifested by several processes that 

depend on parameters specified by the user in the edge script or, if missing, initialized 

from a pre-defined default script within the source code. The processes are login to cloud, 

get script from the cloud, read from the sensors, process data locally, store locally, and 

upload to cloud. Three of those processes require a time schedule for the delay in their 

repetitive execution.  

The first is the process ‘login to cloud’ where the interval must be appropriate to the 

expiration time of the security token, which, in our implementation with Atmosphere, 

was a JSON Web Token (JWT). The second is the ‘read from sensors’ process where the 

time interval sets the pulling rate from the edge devices. The third is the ‘upload to cloud’ 

where the time interval specifies the rate of POSTing the contents of the local buffer – 

whether it contains raw or processed data – to the cloud. Moreover, this interval decides 

the nature of the upload – batch or stream – when contrasted with the pulling rate from 

the sensors.  

If the ‘uploadInterval’ equals the ‘readInterval’, the upload is streaming every 

measurement immediately to the cloud. While if the ‘uploadInterval’ is set bigger than 

the ‘readInterval’, then the upload will become a batch upload since the uploaded buffer 

would contain multiple measurements the size of which is determined by the difference 

between the two intervals: read and upload. The example in Script xx is a JSON script 

with an upload interval 10 times the readInterval. This makes the measurement upload 

batches of 10 measurements at a time.  

Other met-data parameters such as ‘device’, ‘tags’, ‘thing’, and ‘feature’ are used as 

identifying attributes for the POSTed measurements. The ‘operation’ field would contain 

the computational functions that the user intends to apply to raw data in local processing. 

If this field is empty, the edge engine discards local processing and the raw data are 

uploaded as-is. The ‘operation’ field can specify pre-defined operations, such as filter, 

map, window, and others, and custom operations as well that are valid JavaScript 

functions. In the case that one or more of these parameters (fields) in the script are 

missing or not specified on purpose, the edge engine will load default parameters that are 
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pre-defined in the source code. Furthermore, the edge engine keeps checking for 

modifications of the script on the cloud DB to update those parameters immediately.  

To deploy the edge engine properly, a number of preparatory steps have to be 

completed beforehand. As the typical user to deploy the edge engine solution, we will be 

referring to the consumer – developer or service provider – as the deploying entity of the 

edge engine.  

 

Script 2. JSON script example with edge engine parameters 

{ 

    "_id": "script_Sample_Id", 

    "device": "IoT_Sensor", 

    "tags": ["Edge_Device"], 

    "command": {  

     "method": "POST", 

     "resource": "measurements", 

     "thing": "Smart_Thing", 

     "feature": "Sample_Feature", 

     "readInterval": "5", 

     "uploadInterval": "50", 

     "loginInterval": "1798000", 

     "operation": [ 

      { 

      "type": "filter", 

      "condition": "value > 30" 

      } 

     ], 

     "custom": "" 

    } 

} 
 

At first, the consumer would prepare a JSON script edge descriptor. It is not crucial to 

have all fields in the script filled, but it is recommended to fill the essential parameters 

that are best suitable for the IoT deployment rather than leave it up for the default values. 

The script would look like the sample script in Script 2. The script would then be sent to 
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the cloud through the Atmosphere API, or an alternative cloud service, as the body part 

of a POST request to the ‘script’ resource: {{url}}/v1/scripts/. The API will store the 

 

Fig. 10.  Preparation procedure for the setup of the edge engine deployment. 

 

Fig. 11.  Flow chart of the entire edge engine source code. 
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uploaded script – after it runs the necessary checks – into the DB. Now, the script can is 

accessible to the edge engine. These preparatory steps are visualized in Figure 10. 

In the IoT setting, the host device of the edge engine acts as a hub, thus it must be 

connected to the IoT sensing and actuating devices on the edge as well as to the cloud 

via an internet connection. In both cases where we experimented with the deployment of 

the edge engine, the host hardware was a Raspberry Pi single-board computer. Refer to 

the Use Cases of Chapter 4, Sections II and IV for details on the edge engine deployment 

in my IoT experiments. The second step is the transfer of the edge engine source code to 

the host device. The consumer must make sure to set up the necessary runtime 

environment support such as NodeJS and NPM libraries and dependencies such as 

‘express’, ‘http’, ‘mathjs’, ‘prompts’, and ‘request’. Then, the consumer would start the 

edge engine by issuing a command in the terminal of the operating system (OS): node 

source-code-directory/server.js.  

 

 

Fig. 12.  Flow chart of the Login subroutine. 
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The edge engine is configured to connect to a cloud (e.g. Atmosphere cloud) by 

specifying DNS/IP address as an endpoint such as, in my case, 

https://api.atmosphere.tools/v1. If the cloud is secured, as with Atmosphere cloud, then 

the consumer must follow the authentication procedure enforced by the API. Otherwise, 

it depends on the security measures employed by the endpoint cloud service chosen by 

the consumer. In my particular implementation, the edge engine prompts the client for 

authentication credentials (username and password) that are predefined for the consumer 

by the cloud administration. This process is presented in Figure 11 – a high-level flow 

chart representation of the edge engine – as the ‘Login’ subroutine. A more detailed 

representation is provided in Figure 12. 

 

The edge engine sends these credentials through an HTTP request to the specified 

end-point. The cloud server responds with a JWT that validates the identity of the client. 

The edge engine awaits this response and stores the JWT token to be used for 

authorization of further HTTP communication (e.g. uploading measurements) with the 

cloud server. The edge then prompts the consumer for the script Id, a reference to the 

 

Fig. 13.  Flow chart of the Script Download subroutine. 
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script which has been stored earlier by the customer on the cloud database. This step is 

denoted as the ‘Script Download’ subroutine as shown in Figure 11. A more detailed 

demonstration of the inner processes of the script download is presented in Figure 13. 

The ‘Script Download’ flow chart also shows that when the script is not found on the 

cloud database, the edge engine would load parameters of a default script saved locally 

within the source code.  

After the ‘Login’ and ‘Script Download’ subroutines are executed, the edge engine 

enters a state of an infinite event loop where asynchronous functions run in parallel. 

These functions are significant to the main usage of the edge engine as an IoT edge hub. 

Since Node.js is single-threaded one functions must precede the other for smooth 

execution. Precedencies are derived from the logical flow of the edge engine 

functionalities. Since the ‘Login’ function was executed in the preparatory (initialization) 

phase, and thus the security token must still be valid (my usual preset is 30 minutes), then 

the ‘Login’ function is scheduled last in precedence.  

Figuring the order of execution of the other two asynchronous functions comes 

naturally since ‘Data Input and Processing’ is responsible for acquiring and manipulating 

the resources that the ‘Data Storage and Cloud Upload’ function manages. the order of 

 

Fig. 14.  Flow chart of the Asynchronous Event Loop subroutine. 
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precedence is key upon the first cycle of execution of the ‘Asynchronous Event Loop’ as 

well as cycles where two or all of the embedded functions coincidentally schedule the 

same execution time. Another cause could be implicitly specifying the scheduling 

intervals by the script cases to coincide such as equal intervals or intervals that are factors 

of other intervals. As Figure 14 shows, the three functions: ‘Data Input and Processing’, 

‘Data Storage and Cloud upload’, and ‘Login’ are scheduled each by its own time interval 

with the priority to the function in precedence from the left to the right. 

The subroutine ‘Data Input and Processing’, also shown in a flowchart form in Figure 

15, collects data from connected IoT devices in the form of an ordered stack of arrays, 

where each array is reserved for one device input stream. Then, this subroutine checks 

the script for existing ‘operations’ – pre-defined and/or custom operations – to enable 

local processing then executes those operations according to their attached parameters or 

conditions if any.  

For example, Script 2 shows a single operation ‘filter’ with condition ‘value > 30’. 

This is straight forward; the engine would filter the stream allowing only numeric values 

that are greater than thirty. In another example, Script 3 shows two operations ‘window’ 

 

Fig. 15.  Flow chart of the Data Input and Processing subroutine. 
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and ‘absolute’ respectively. Operation ‘window’ is pre-defined in Array.prototype that 

creates a new stream applying a function against an accumulator and each element in a 

fixed (size) subset of the stream. In the example, the accompanying parameters specify 

the multiplication as the method, 0 as the initial position, and 2 as the size of the 

accumulator. The edge engine uses its script parameters to form a mathematical function. 

The formed function of the current example is ‘window(y = xi*xi+1*xi+2)’, where ‘i’ 

starts from 0 and increments till the end of the array with a step of three (accumulator 

+1). The custom operation ‘absolute’ does not exist in Array.prototype, thus the operation 

code must be provided as part of the script. The edge engine will inject this new code 

into the Array.prototype constructor and execute it upon call. 

 

Script 3. JSON script example with two operations, one pre-defined and another custom  

{ 

    … 

    "command": {  

     … 

     "operation": [ 

      { 

      "type": "window", 

      "params": "*, 0, 2" 

      }, 

      { 

      "type": "absolute" 

      } 

     ], 

     "custom": "Array.prototype.absolute = function () {  

var newArray = [];  

for (i = 0; i < this.length; i++) {  

newArray[i] = math.abs(this[i]); }  

return newArray;}"    } 

} 
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The resulting data from ‘Data Input and Processing’, whether raw or processed, are 

handed to the subroutine ‘Data Storage and Cloud Upload’, where the stack of arrays is 

saved into a local buffer that preserves the data until an upload to the cloud is 

accomplished. A process tests for cloud connection availability, the success of which 

allows a measurement POST with the whole buffer in the body part of the HTTP request. 

Simultaneously, a GET request is issued for the script on the cloud (using the saved Script 

Id from the initialization phase). Once the new script is received, the edge engine updates 

its local script. To avoid data accumulation, the local buffered is erased after successful 

 

Fig. 16.  Flow chart of the Data Storage and Cloud Upload subroutine. 
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upload to the cloud. Figure 16 shows the internal processes composing the ‘Data Storage 

and Cloud Upload’ subroutine. 

The local buffer grows in size with the increase in the difference between the 

scheduled intervals of the two subroutines denoted by ‘uploadInterval’ and 

‘readInterval’. 

The third subroutine in the Asynchronous Event Loop is the Login subroutine, which 

is presented earlier in Figure 12. The purpose of the ‘Login’ subroutine is to keep 

generating a valid JWT for the HTTP requests issued by the preceding subroutine ‘Data 

Storage and Cloud Upload’. The time interval for the schedule managing this subroutine, 

the ‘loginInterval’, must be less than the expiration interval of a JWT specified by the 

cloud API.   
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Chapter 3 – Use Cases (Experiments) 
 

 

Section I – H@H 
 

Health at Home (H@H), a domestic project funded by the Italian Ministry of 

economic development and aimed at supporting the elderly with Chronic Health Failure 

(CHF) [58], developed a complete IoT Cloud service consisting of the Home Monitoring 

Sensor System (front-end), the Home Gateway (middleware), and a Remote Cloud (back-

end). Through the Gateway, several physiological quantities (electrocardiogram signal, 

heart rate, breathing waveform, breathing rate, oxygen saturation, blood pressure, 

glycemia, etc.) are collected and provided to the cloud. Through a web-based user 

interface, a clinician can view the measurements, and modify the pharmacological 

therapy according to the symptoms. Atmosphere acted as the backbone of the application 

in order to implement the H@H API described in [59]. Atmosphere had to accommodate 

the needs and usage variations of different service providers, as the front-end (edge) and 

the gateway (fog) were provided and maintained by third parties in the health industry. 

The mapping of the H@H quantities onto the Atmosphere resources was 

straightforward: for each physiological signal, we create a corresponding “feature” and 

for each sensor a “device”, in order to collect information acquired on patients as 

“measurements” in Atmosphere.  The mapping between H@H concepts and Atmosphere 

resources provided in Table III. The ‘operator’ entity, a new instance of the user resource, 

was required, with a special set of behaviors and permissions. We implemented this as 



41 
 

an extension to the main ‘User’ resource exploiting the Object-Oriented Programming 

(OOP) paradigm. 

In H@H, several service providers offer various e-Health services (e.g., post-surgery 

rehabilitation support, daily activity monitoring, pain self-assessment, etc.). This 

required a management framework to organize the services on both the patient and the 

provider side. Thus, we implemented a publish/subscribe (pub/sub) pattern, through a 

supplementary Subscription resource.  Atmosphere takes advantage of asynchronous 

Webhooks to provide automated real-time callbacks. Webhooks broadcast any service 

update by the service providers to all subscribers. The new resource couples the users 

with their subscribed services (the ones that are supported by their installed edge sensory 

system). One field (IsActive) specifies whether the payload delivery is enabled, while 

another (Endpoint) specifies the Uniform Resource Locator (URL) address to which the 

service and later updates must be published. Figure 17 shows a demonstration of roles 

assigned to entities in H@H within the Pub/Sub pattern. Webhooks manages service 

TABLE III 

ATMOSPHERE RESOURCE MAPPING TO H@H MODELS  

Resource H@H data 

Measurement A record containing the value of a medical indicator (e.g., breath 

rate, heart rate, body temperature) 

Feature  Medical indicators. For instance: breath rate, heart rate, body 

temperature, etc. 

Device Different types of medical devices (e.g., heart pulse sensor, blood 

pressure sensor) 

Thing  The physical object being monitored (e.g. patient, organ) 

Tag  Associated medication and active treatment (e.g. physical therapy) 

Constraint Association between things and services 

Computation Outlier detection 

Service Specific health monitor services (e.g., post-surgery rehabilitation, 

ambulance call) 
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topics between service providers and patients. In this pattern, patients are subscribers to 

e-Health services while service providers are publishers of those services and subsequent 

updates. 

 

 

  

 

Fig. 17.  Pub/Sub pattern in Atmosphere use case H@H using Webhooks. 
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Section II – FABRIC 
 

In Fabric, a 7th Framework Programme European industrial research project which 

implemented an on-road testbed for Dynamic Wireless Charging (DWC) of electrical 

vehicles (EVs) [60], we realized a charging process metering service for the vehicles 

passing through the charging lane [61, 62]. The system senses and computes on the edge 

information about the charging process and stores it on Atmosphere’s cloud server to 

support new electro-mobility (e-mobility) services (e.g., billing, energy-aware car 

navigation) which can be implemented by relevant companies (e.g., energy providers, 

navigation providers). Figure 18 shows the ecosystem of the wireless charging of electric 

vehicles including the road power supply infrastructure as well as the IoT infrastructure. 

 

A. Edge 
 

The edge engine was hosted on a Raspberry Pi 3b on the vehicle-side. Also running 

on the host device was a Grid Alignment Assistant System (GAAS). Measurements from 

which were sent to the edge engine internally (within the Raspberry Pi itself, from one 

memory buffer into another), while other measurements from the vehicle-side DWC 

 
 

Fig. 18.  Integration of Atmosphere components (Edge engine and Cloud) into the Fabric 

ecosystem. 
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electronic sub-system were sent through a wired Ethernet connection and measurements 

from the road-side DWC electronic sub-system were sent through wireless Ethernet 

connection (WiFi). Thus, the edge engine collects data from three IoT sources, processes 

each, then uploads it to the cloud. 

GAAS computes in real-time the misalignment between the axis of the vehicle and 

that of the charging grid (i.e., the coils) in the road (described in Figure 19). As an optical 

sensor, GAAS used the Logitech c920, a high definition (1920 x 1080) webcam to 

capture 30 frames per second of the road ahead. The webcam performs automatic 

luminosity adaptation. Mounted on the top-middle of the windshield, using a suction cup, 

the camera is connected to a server-node Raspberry Pi 3 running Python 3.7.0. The 

Python server node processes each frame, estimating the current position of the center of 

the vehicle w.r.t the center of the grid. The computed alignment offset (in cm) is 

displayed to the driver as a pointer across a gauge scale as part of the Human-Machine 

 
 

Fig. 19.  Fabric edge deployment schematic. 
  



45 
 

Interaction module implemented in the on-board unit (OBU) on a tablet. The alignment 

offset is also sent, through Atmosphere’s edge engine, to Atmosphere cloud for storage 

and further analysis. The alignment offset is passed over to the local buffer within the 

RAM of the Raspberry Pi edge engine as is without further processing. The edge engine 

fills in the suitable attributes for this particular measurement and executes a POST to the 

cloud. 

The road-side control unit (CU) sends to Atmosphere data representing the state of 

each consecutive charging grid. The vehicle management unit (VMU) generates a stream 

of measurements recording the vehicle-coil alignment (which is key to power transfer 

efficiency and was supported by a vision system [63]) and the charging parameters and 

battery status. In an approach suitable to the nature of each data stream, we implemented 

the edge-computing module to process data in two different ways. The road-side uploads 

to the cloud when a change in measured values occurs. That was accomplished by 

implementing the custom operation ‘ComparePrev’ within the edge engine. Since the 

values collected are already stored in the buffer, this function blocks the upload of the 

newest values of the record if they were equal to their previous values. As part of the 

edge script, the function ComparePrev is written as: "custom": 

"Array.prototype.ComparePrev = function () { for (i = 0; i 

< this.length; i++) { if (this[i] != prevBuffer[i]) 

{this.splice(i, 1); } } }". 

Due to the oscillating nature of the data generated by the vehicle-side sub-system, it 

was required to average the measurements every specific batch. To control such batches, 

I manipulate the processing rate with respect to the data input rate. Thus, vehicle-side 

data were averaged within a predefined period. We used the custom operation ‘Average’ 

which incorporates a pre-defined method ‘reduce’ as the following snippet of the script: 

"custom": "Array.prototype.ComparePrev = function () { this 

= (this.reduce((accumulator, currentValue)=> accumulator + 

currentValue))/this.length } } }". The method ‘reduce’ is used for 

summing the values of the array to be divided by the array length.  

The host device was connected to the internet – for cloud access – via 4G LTE mobile 

network. The edge engine performed all three required local computations on top of the 
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running GAAS system (live image processing instance in python). Furthermore, the edge 

engine’s local buffer was exploited to deal with the intermittent connection between the 

edge and the cloud.  

  

B. Cloud 
The stored values represent the electrical charging process in current and voltage. 

Figure 20 shows the real measured values of the current in Ampere of a charging session. 

The mapping of the Fabric objects onto the Atmosphere resources is reported in Table 

IV. Further parameters are required to contribute to the metering and billing services such 

as the electrical power transfer, energy stored, and final electrical bill. Acquiring these 

data was made possible through the Computation resource.  

Power transfer is computed directly from the stored measurements. But computing 

energy requires integrating the result of previous power computations. I thus altered the 

computation resource to get the source data from the Computation collection as well as 

the Measurement collection. The alteration concerns a new attribute in the computation 

resource to specify the target resource of the computation (i.e. the data resource) and that 

 
 

Fig. 20.  Raw charging parameters of a FABRIC trip recorded and presented with Atmosphere. 
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could be a measurement resource or a computation resource. For instance, computing the 

power constitutes of a POST request to the computation resource with the request body 

shown in Script 4. The header of this HTTP request would filter the desired measurement 

by trip: filter={"thing": "Charging_Trip"}. 

Script 4. Power Computation Script 

{ 

 "code": "multiply()", 

 "name": "power-computation", 

 "target": "measurements", 

 "items": { 

    "item1": "voltage", 

    "item2": "current", 

   } 

} 
 

TABLE IV 

ATMOSPHERE RESOURCE MAPPING TO FABRIC MODELS  

Resource Fabric data 

Measurement A record containing the vehicle-coil alignment estimation, or the 

values of the charging process 

Feature  Measured quantity. For instance: vehicle-coil displacement, 

charging parameters (with dimensions: current, voltage, speed, etc.) 

Device Vehicle-coil alignment system, Dynamic Wireless Charger (DWC) 

road and vehicle side 

Thing  Passage of an electric vehicle in the charging road lane  

Tag  Charging conditions (e.g., preparing, charging, fault) 

Constraint Association between features and services 

Computation Outlier detection, Power, Energy 

Service Vehicle-coil alignment, Wireless charging, Billing, Lane keeping 
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The result of the request is a computation record with an array of time-series power 

values. Another request is issued to compute the total power consumption, this time 

targeting the computation resource. To distinguish between the targeted data source, the 

header would contain a filter with the name of the computation: filter={"name": 

"power-computation"}. The result of the request, whose body is shown in Script 

5, is a value representing the total power consumption for the recoded charging trip and 

the time of the trip in seconds (delta time). 

Script 5. Total Power Computation Script 

{ 

 "code": "add()", 

 "name": "total-power-computation", 

 "target": "computations" 

} 
 

Using the total power and the time frame of the charging trip, the energy can be 

computed using Script 6. Given the pricing schematics from the service provider 

(wireless charging), billing for the charging trip I thus available per consumed energy. 

Script 6. Energy Computation Script 

{ 

 "code": "multiply()", 

 "name": "energy-computation", 

 "target": "computations" 

} 
 

The whole end-to-end deployment was tested in the lab and (the vision module for 

vehicle-coil alignment) on the test site inside the MotorOasi Piemonte safe drive track in 

Val di Susa, Italy. Through enabling edge computing functionalities, the edge device 

managed to drop data upload size by approximately 96% from 720 MB/h to 27 MB/h. 

Based on stored data, we performed tests in lab tests for a simple prototype billing 

service. In a three-step procedure, starting with power (KW) then energy (KWH), we 

were able to obtain an estimate of the electrical bill for a specific charging lane passage. 

In all cases, concurrent and consecutive HTTP requests were maintained at a stable 40 

ms delays in response time.  
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Section III – L3Pilot 
 

L3Pilot [64] is a Horizon 2020 research project aimed at assessing the impact of 

automated driving (AD) on public roads, testing the Society of Automotive Engineers 

(SAE) Level 3 (and some Level 4) functions [65]. The pilots involve 1,000 test subjects, 

100 cars, by 12 vehicle owners (either Original Equipment Manufacturers, or suppliers), 

across 10 European countries. The project uses the Field opErational teST support Action 

(FESTA) methodology [66], driven by a set of research questions and hypotheses on 

technical aspects, user acceptance, driving and travel behavior, as well as the impact on 

traffic and safety. 

In order to answer such research questions, the project has defined a data toolchain, 

that translates the proprietary vehicular signals to a shared format [67], and processes 

them to extract the driving scenario (e.g., “lane change”, “cut-in”) and other event 

information [68, 69]. This toolchain, developed by L3Pilot partners, eliminates the need 

for the edge engine. Filtered data, aggregated from all the pilot sites, needs to be analyzed 

for an overall impact assessment. For that, Atmosphere provides a shared data storage 

back-end [70]. Figure 21 shows the data management process initiating from the 

autonomous vehicles, through the toolchain, and into Atmosphere cloud. 

 
 

Fig. 21.  High-level schema of the overall data management architecture in L3Pilot. 
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The mapping of the L3Pilot objects onto the Atmosphere resources is reported in 

Table V, with a Thing (i.e., the subject of a Measurement) corresponding to every single 

experimental trip. Stored data – produced by the above-mentioned toolchain - is not the 

original signal time-series, but meaningful aggregations (called “Datapoints” and various 

types of “Indicators”, with various types of items such as: avg speed, minimum 

longitudinal distance, time headway at minimum time to collision, percentage of driving 

times in the various scenarios, etc.). Thus, these “Datapoints” and “Indicators” are the 

Features in the L3Pilot installation. A complete list of L3Pilot features is presented in 

Table C1 of Appendix C. Different driving scenario types have different datapoint 

structures. All these features are tagged as Datapoint to facilitate data retrieval according 

to the jargon. Tags were very useful also to specify driving scenarios, experimental 

conditions (baseline, system available, system active, etc.) and road types (e.g., 

TABLE V 

ATMOSPHERE RESOURCE MAPPING TO L3PILOT MODELS  

Resource Fabric data 

Measurement A record containing all the values of a Driving Scenario Instance 

(DSI) Datapoint, or of the Performance Indicators (PI) per Trip, or of 

the PI per SI 

Feature Measured quantity (e.g., Trip PI, DSI Datapoint). 

Device Dimensions include: average speed, time headway at maximum 

speed, percentage time in each type of driving scenario, etc. 

Thing  The L3Pilot data toolchain 

Tag Trip (i.e., the unit of the information source processed by the 

toolchain) 

Constraint Driving scenarios (e.g., traffic jam, cut-in), road types (e.g., urban, 

motorway) and experimental conditions (e.g., baseline) 

Computation Association between higher and lower order features, and between 

tags and features. 

Service Outlier detection 

 



51 
 

motorway, urban), that are all used to segment a trip’s data. A list of the used tags for 

L3Pilot populates Table C2 in Appendix C. 

The Constraint resource was introduced to define abstract relationships (e.g., 

dependencies) between two documents in the DB. The web-browser-based graphical user 

interface (GUI) – that was developed by another project partner [69] – exploits Constraint 

documents in order to allow the data analyst user to select the available measurement 

types from dynamically populated drop-down menus. To this end, constraints were used 

for relating tags among each other. Tags, in fact, are used to specify driving scenarios, 

experimental conditions (baseline, system available, system active, etc.) and road types 

(e.g., motorway, urban), that are all used to segment a trip’s data. The measurement 

resource is also modified accordingly, to allow specifying features and items with 

different dimensionalities. The validation of the value vector size with the item’s 

dimension size is done through two checks on both specified features. 

The toolchain processes offline the data gathered during a pilot vehicle’s trip and 

POSTs the resulting measurements in batches to the DB. Batch sizes differ from one trip 

to another, and we monitored the effect of batch sizes on the API response time. As 

Figure 22 shows, the response time is almost linear with respect to the number of 

 
 

Fig. 22.  Line graph of Atmosphere’s API response times to batch uploads by L3Pilot with 

different batch sizes of two types of measurements (one with 28 dimensions and one with 40 

dimensions).  
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measurements per batch. The size of the sample vector (feature’s items) has a minor 

impact.  

Examining the effect of the batch approach on the single measurement response time. 

On a rough analysis, we observed a significant improvement in response times down to 

17 ms on batches with a larger number of measurements. Figure 23 shows a decline in 

response time, which settles at batches with 30 measurements. The addition of the 

support of HTTPS had only a minor impact, even while enabling SSL certificate 

verification. We observed a +/- 4 ms difference at most between encrypted and 

unencrypted requests, with a slight peak of 1% in CPU load upon HTTPS connection. 

To POST measurements to Atmosphere, vehicle owners are given ‘Provider’ 

credentials. They are owners and can see and manage (through the web UI) their own 

data only. Analyst users can see all the measurements. The admin user has full control 

over all the data and defines the domain by posting Features, Constraints, Device (the 

L3Pilot toolchain) and Service (only one, L3Pilot), according to the Atmosphere 

workflow described in chapter 2, section II.B.5.  

 
 

Fig. 23.  Line graph of Atmosphere’s API relative response times of single measurements to batch 

uploads by L3pilot with different batch sizes in close range (1 to 100). 
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Section IV – Home Automation 
 

We designed a lab experiment to test the performance and parametric limits of the 

edge engine deployment on a Raspberry Pi 3 b [71]. The experiment [72] was designed 

to simulate a smart home IoT environment, shown in Figure 24. It included up to 16 

sensors, wire connected to the GPIO (general-purpose input/output) port of the Raspberry 

Pi. Those sensors consist of 4 dual temperature and pressure sensors, 4 switch sensors, 3 

photodetectors, 3 passive infra-red (PIR) sensors, 1 humidity sensor, and 1 moisture 

sensor. These sensors have different polling rates, with the fastest at 100 Hz frequency 

reached by the PIR sensor. That indicated that the minimum delay that still captures a 

change in measurements from the sensors is 10 ms.  

In the simulation, I experimented with multiple versions of the edge scripts. Each 

script specifying different delay parameters for input reading from sensors and output 

uploading to the cloud. Local processing operations were varied as well. These constitute 

the two variable factors across the experiments in this simulation. The minimal script 

would have the same values for ‘readInterval’ and ‘uploadInterval’ and no active local 

processing operations, which results in an instantaneous stream upload of raw data to the 

 
 

Fig. 24. Block Diagram depicting the Home Automation Simulation Experiment. 
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cloud. The maximal script would have the ‘uploadInterval’ 20x the ‘readInterval’ and 

four consecutive local operations applied on each data stream. That amounts to 6400 

executed operations per second on the raw input, and 1280 new entries of processed data 

into the local buffer before uploading to the cloud then clearing the buffer. Script 7 

includes a sample of the edge script used in the home automation simulation at maximal 

operating configurations. 

Script 7. Sample of the edge script for Home Automation 

{ 

    "_id": "Home_Automation_Script_1", 

    "device": "Thermostat", 

    "tags": ["Edge_Device", "Heating",], 

    "command": {  

     "method": "POST", 

     "resource": "measurements", 

     "thing": "Smart_Home", 

     "feature": "Heating", 

     "readInterval": "5", 

     "uploadInterval": "100", 

     "loginInterval": "1798000", 

     "operation": [ 

      {"type": "window", "params": "*, 0, 2"}, 

      {"type": "absolute"}, 

      {"type": "filter", "condition": "value > 30"}, 

      {"type": "map", "condition": "value * 9/5 + 32"} 

     ], 

     "custom": "Array.prototype.absolute = function () {  

var newArray = [];  

for (i = 0; i < this.length; i++) {  

newArray[i] = math.abs(this[i]); 

}  

return newArray;}" 

      } 

} 
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The change in script parameters allowed me to test the engine’s auto-check for script 

modifications on the cloud. This feature explained in chapter 2, section III.B.2, allows 

the engine to update its local script based on the cloud version of the script. Varying the 

delay intervals for reading and uploading allowed me to test both the edge engine’s and 

the cloud API’s performance with respect to different upload fashion within the same 

experimentation scenario and environment, which is the smart home. Further 

contextualized discussion of the methods and results of this experiment are discussed in 

the following section. 
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Section V- Discussion 
 

The deployment of Atmosphere cloud in three diverse IoT applications showed its 

effectiveness, flexibility, and ability to support an efficient workflow. Additionally, we 

were able to integrate new functionalities in an abstract manner, keeping the reusability 

objective valid across all resources and methods. Table VI summarizes the mapping 

between Atmosphere and the three project models. 

While the other two projects are finished, L3Pilot is in progress, and a full account of 

Atmosphere’s cloud deployment will not be available before the project concludes in 

2021. However, requirements by L3Pilot partners and pilot tests are being satisfied 

efficiently by Atmosphere, which showed a great deal of versatility in meeting the 

automotive requirements, also considering that we dealt with statistically pre-processed 

data, with complex semantic structures. When upgrades were needed (e.g., for increasing 

the dimensionality of each measurement sample), we managed to keep the deployment 

delay upon structure change relatively low (a couple of days at most). L3Pilot allowed 

testing and upgrading Atmosphere to the use case in which different IoT data source 

providers share post-processed data, typically in batches. The structural data checks 

implemented in Atmosphere allowed detecting bugs in the complex data preparation 

toolchain (e.g., in terms of dimensions), which saved significant development time. 

Across the three use cases, not only did the deployment environment change but the 

manner of data streaming to the cloud as well. In H@H, we experienced a steady stream 

of raw data, Fabric uploads contained a high frequency of aggregated data, and in L3Pilot 

we implemented batch upload of pre-processed data. Upon examination of each use case, 

we extracted the relevant parameters that give an insight into the efficacy of 

Atmosphere’s deployment. We spotted a remarkable difference in API response time to 

stream POSTs (one measurement with a single or multi-dimension value vector) versus 

batch POSTs. Stream POST requests resulted in an average 40 ms response time. Batch 

POSTs contained up to 4,000 measurements, with multiple dimensions (5 to 40) value 

vectors. Figure 25 shows the response times of two batch uploads to Atmosphere with 

different item sizes. Each batch POST cost around one minute, for 3,500 measurements 

with 40-sized value vectors, resulting in a per measurement cost of 17ms on average.  
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TABLE VI 

ATMOSPHERE RESOURCE MAPPING TO PROJECT MODELS  

Resource H@H data Fabric data L3pilot data 

Measurement A record containing 

the value of a medical 

indicator 

A record containing 

the alignment 

estimation, or the 

charging parameters 

A record containing all the 

values of a Datapoint, or of the 

Performance Indicators 

Feature Medical indicators. 

For instance: breath 

rate, heart rate, body 

temperature, etc. 

Measured quantity. 

For instance: vehicle-

coil displacement, 

charging parameters 

Measured quantity (e.g., Trip PI, 

DSI Datapoint). 

Device Different types of 

medical devices (e.g., 

heart pulse sensor, 

blood pressure 

sensor) 

Vehicle-coil 

alignment system, 

Dynamic Wireless 

Charger (DWC) road 

and vehicle side 

Dimensions include: average 

speed, time headway at 

maximum speed, percentage 

time in each type of driving 

scenario, etc. 

Thing The physical object 

being monitored (e.g. 

patient, organ) 

Passage of an electric 

vehicle in the 

charging road lane  

The L3Pilot data toolchain 

Tag Associated 

medication and active 

treatment  

Charging conditions 

(e.g., preparing, 

charging, fault) 

Trip (i.e., the unit of the 

information source processed by 

the toolchain) 

Constraint Association between 

things and services 

Association between 

features and services 

Driving scenarios (e.g., traffic 

jam, cut-in), road types and 

experimental conditions 

Computation Outlier detection Outlier detection, 

Power, Energy 

Association between higher and 

lower order features, and 

between tags and features. 

Service Specific health 

monitor services 

Vehicle-coil 

alignment, Wireless 

charging, Billing 

Outlier detection 
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We argue that the reason for this contrast in response time per measurement between 

the stream and batch POSTs is partly because of the enabling of the response compression 

using the ‘npm compression’ middleware and partly due to overhead avoidance of extra 

HTTP requests/responses header upon large batches. 

The consecutive deployments of Atmosphere cloud in three diverse IoT applications 

served the proof-of-concept profoundly. Additionally, we were able to integrate new 

functionalities into Atmosphere in a generic manner keeping the reusability objective 

valid across all resources and methods. 

Regarding the edge engine deployments, in Fabric and the Home Automation 

Simulation, multiple requirements were experienced. The feasible script updates, the 

simplicity in supported functions, and the high customizability of the edge engine as a 

whole as well as the operational functions within were all experienced in the two 

mentioned deployments. 

 
 

Fig. 25.  Bar graph of Atmosphere’s API relative response times of single measurements to batch 

uploads by L3pilot with different batch sizes. 
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In Fabric, we used the edge engine to collect IoT measurements from three sources, 

each with a different processing operation, stored the results locally, then uploaded 

seamlessly to the cloud. Grid alignment and billing information were delivered to the 

cloud in real-time. Moreover, the engine ran on a busy host (Raspberry Pi running 

GAAS), this is only possible because it is designed to be lightweight and very suitable 

for low-end hardware devices that are typical for IoT settings. We maintained a proper 

balance between the edge engine configuration and the GAAS configuration to run both 

instances on the same device while preserving high accuracy and performance. We 

particularly selected the highlighted configurations in Table VII and Table VIII to run 

simultaneously. The sensory delay of 10 ms for the edge engine configuration is very 

suitable since it corresponds to the fastest polling rate of the connected devices (i.e. VMU 

and road-side CU). In the GAAS configuration, a 5x5 kernel size was chosen since it 

provided the same accuracy as a 7x7 kernel with less CPU load and better FPS 

performance. Selecting these configurations together amounts to 62 % of CPU load 

which leaves enough resources for an unexpected influx in CPU demand and serving the 

edge engine and GAAS simultaneously. 

TABLE VII 

EDGE ENGINE HARDWARE TEST ON THE RASPBERRY PI 3 B  

Sensory Delay (ms) CPU Freq. (MHz) Threads RAM 
Network 

(KBps) 

1 90% 1200 4 7.4% 3.0 

5 55% 1200 3 7.4% 0.6 

10 28% 1200 2 6.5% 0.3 

50 13% 1200 1 6.4% 0.06 

>100 <10% 600 1 <5% <0.03 
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In the Home Automation simulation, the performance test was performed to prove the 

applicability and operability of the edge engine on low-end devices. The experiment 

resulted in two main observations as presented in Figure 26 (shows CPU load of different 

edge engine scripts) and Figure 27 (shows RAM usage of different edge engine scripts). 

The variation in the number of incorporated operations for local processing had little to 

no effect on the CPU load or RAM usage. The CPU usage reached its maximum at 90% 

with 4 threads running on the 4-core CPU at the minimum limit of possible input stream 

delay at 1 ms. The typical delay of 10 ms for input stream corresponded to 27% CPU 

usage with 3 running threads. Such usage is acceptable considering the number of input 

streams (16) and computations (4) running 100 times per second.  

The other observation, which concerned the memory usage was unexpected. The test 

recorded a decline in memory usage in regards to higher output stream delays. One 

explanation for this observation is the cash management mechanism within the Raspbian 

OS, which keeps the buffers that were cleared by the engine saved for a while. Therefore, 

the more buffers are cleared by the engine in a smaller timeframe, the more buffers the 

OS is cashing. The amount of used RAM varied from 4 to 8 percent that is 40-80 MB of 

the available 1 GB. We measured a steady 60% of the RAM usage (between 30 and 50 

MB) occupied by the OS. The edge engine approximately uses up to 30 MB on the 

highest configuration. This is substantially comfortable with respect to the Raspberry Pi 

TABLE VIII 

GAAS HARDWARE TEST ON THE RASPBERRY PI 3 B  

Kernel 

size 
CPU Freq. (MHz) Threads FPS 

Network 

(KBps) 
Acc. (<10 cm) Acc. (<20 cm) 

9x9 99% 1200 4 3 1.5 100% 100% 

7x7 71% 1200 3 10 2.4 80% 100% 

5x5 34% 1200 2 24 2.9 80% 100% 

3x3 20% 1200 1 28 3.0 5% 20% 

Idle 3% 600 1 30 0 - - 

 



61 
 

specifications but could be more challenging to manage on hosts with less memory space 

such as the devices presented in Table B1 in Appendix B. 

The two factions of the developed Atmosphere solution, the edge engine, and the 

cloud API, demonstrated our manifestation of the proposed concept: a generic IoT edge-

to-cloud solution for smart cities. Compared to similar systems and solutions in the 

 
 

Fig. 26.  Raspberry Pi 3b Edge Engine CPU Performance Test. 

 

 
 

Fig. 27.  Raspberry Pi 3b Edge Engine RAM Performance Test. 

+ 
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literature as well as in the tech market, Atmosphere is distinguished by its comprehensive 

breadth, abstraction, and customizability. While it is still being updated frequently, I 

contributed to developing Atmosphere’s core and establishing valid and tested resources 

and methods. 

According to our goals, Atmosphere is presented as a deployment-ready IoT SaaS 

framework. To that end, we can judge the usability of Atmosphere in comparing its 

deployment time with a start-from-scratch approach on a commercial or open-source 

alternative (presented in chapter 1). When deploying Atmosphere, the only preparatory 

stage is mapping, where IoT specific labels and entities have to be mapped to the API’s 

resources. Using an alternative, deployment would require more stages to configure 

including attribute definition, user roles, relations (and references) between the resources, 

security (authorization and authentication), methods calibration, and automated test suite 

for routes and methods. Such tasks could take a considerable amount of time that can be 

avoided with minimal to no compromise by adopting Atmosphere. Furthermore, 

customizing Atmosphere has been proven to be a feasible task and one that can adhere 

to the generic concept for reusability. Customizable space in Atmosphere is vast; almost 

any resource can be customized to fit IoT industrial applications where measurements 

are numeric in nature. Most of these properties are not available in alternatives either 

commercially or open-source. Whether on the cloud, on the edge, or both, we easily 

deployed Atmosphere in diverse IoT projects under the smart city concept. 
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Chapter 4 – Conclusion  
 

As IoT technologies are increasing the capabilities of collecting huge quantities of 

data from the field, it is ever more important to have tools for creating new, data-rich 

applications. This book has presented Atmosphere, an independent, abstract, 

measurement-oriented edge-to-cloud framework for managing smart things in the IoT 

ecosystem. The original contribution of our work consists of proposing an edge-to-cloud 

computing model using abstract IoT web resources and relations to reflect the structure 

and functionality of cross-domain IoT applications. In the context of this project, our 

target users are mainly IoT developers and service providers, and in order to support the 

IoT developer community, we release Atmosphere open source on GitHub: 

https://github.com/Atmosphere-IoT-Framework. 

Atmosphere has been designed as a deployment-ready IoT data storage and 

computation support service. It focuses on measurement data and exposes key resources 

(including Computations and Machine Learning) to support measurement-rich 

applications.  

Our experience in three industrial research projects in addition to an in-lab simulation 

of the smart home – while quite various in nature – showed that the tool can seamlessly 

support a variety of IoT applications, providing benefits in terms of efficiency and 

effectiveness, as its resources support a structured and modular approach to application 

modeling and development. Atmosphere does not tie the development to a proprietary 

commercial platform, nor requires the huge set-up times needed to start from scratch a 

solution. Furthermore, customizing Atmosphere based on new/changing requirements 

has proven to be easily feasible, also without compromising on abstraction for 
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reusability. Code extensions were efficiently implemented when needed, only in few 

situations. 

For developing a new cloud application, Atmosphere defines a workflow in which the 

first step consists of mapping the field objects to the API’s resources, such as Features, 

Devices, Tags, Constraints, and User types. The Atmosphere instance is configured by 

POSTing these objects to the API. Then, the system becomes operational, allowing 

insertion/update of users, things, field measurements and computation requests, and 

retrieval of results. The system implements a rigorous RESTful architecture. 

Computation and machine learning resources can be exploited to allow further analysis 

of the acquired data. 

On the edge, the engine development aimed at supporting IoT edge developers 

especially focusing on deployment speed with low-end hardware. The two experiments 

are indicators of the feasibility of deployment and configuration of the edge engine on 

heterogeneous IoT devices. The edge engine demonstrated our manifestation of the 

proposed concept: a generic IoT edge solution for smart cities. Compared to similar 

systems and solutions in the literature as well as in the tech market, the proposed engine 

is distinguished by its versatility, abstraction, and customizability. 

The tests indicated that Atmosphere offers promising support also for starting up new 

generation e-mobility data-driven services for metering and energy-awareness. 

Future works will involve enriching the existing set of computations also with 

machine learning processing, for instance for time-series prediction and automated 

clustering. Moreover, we would like to integrate psychometric measurements and user 

survey/questionnaire data, for supporting user acceptance studies in the field. 

Committing to REST has shown some limitations that popped in while scaling up to 

the larger number of devices and a greater number of translations per second. An 

alternative to REST over HTTP based connectivity is Message Queuing Telemetry 

Transport (MQTT). MQTT [73], the lightweight protocol designed exclusively for IoT 

has its advantage in the much better data transfer rate. The major function of this feature 

packed protocol is that it caters enhancement for scalability & large-scale industrial 

deployments. Thus, we recommend bridging MQTT and REST in future work on this 

development.  
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APPENDIX A 
 

API resources description 

Thing: 

- Route: 

https://api.atmosphere.tools/v1/things 

- Methods: 

o GET/things: returns a list of the available things 

o POST/things: creates one or several things 

o DELETE/thing: removes a thing (if it is not a subject of existing 

measurements) 

o PUT/things: updates one thing record 

o GET/things/{id}: returns a single thing record 

- Model: 

{ 

  "_id": "string", 

  "metadata": "string", 

  "tags": [string] // tags Ids 

} 
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Device: 

- Route: 

https://api.atmosphere.tools/v1/devices 

- Methods: 

o GET/devices: returns a list of the available devices 

o POST/devices: creates one or several devices 

o DELETE/devices: removes a device (if it is not a subject of existing 

measurements) 

o GET/devices {id}: returns a single device record 

- Model: 

[ 

  { 

    "_id": "string", 

    "features": [string], // features Ids 

    "owner": "[objectId]", // user Id 

    "tags": [string]  // tags Ids 

  } 

] 
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Feature: 

- Route: 

https://api.atmosphere.tools/v1/features 

- Methods: 

o GET/features: returns a list of the available features 

o POST/features: creates one or several features 

o DELETE/features: removes a feature (if it is not a subject of existing 

measurements) 

o GET/features /{id}: returns a single feature record 

- Model: 

[ 

  { 

    "_id": "string", 

    "items": [ 

      { 

        "name": "string", 

        "unit": "string", 

        "dimension": "number" 

      } 

    ], 

    "owner": "[objectId]",  // user Id 

    "description": "string", 

    "tags": [string]   // tags Ids 

  } 

] 
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Tag: 

- Route: 

https://api.atmosphere.tools/v1/tags 

- Methods: 

o GET/tags: returns a list of available tags 

o POST/tags: creates one or several tags 

o DELETE/tags: removes one or more tags (if they are not a subject of 

existing measurements) 

o GET/tags /{id}: returns a single tag record 

- Model: 

[ 

  { 

    "_id": "string", 

    "description": "string", 

    "tags": [string],  // tags Ids 

    "owner": "objectId"  // user Id 

  } 

] 
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User: 

- Route: 

https://api.atmosphere.tools/v1/users 

- Methods: 

o GET/users: returns a list of registered users 

o POST/users: creates one or several users 

o DELETE/users: removes one or more users (if they are not a subject of 

existing measurements) 

o GET/users /{id}: returns a single user record 

- Model: 

[ 

  { 

    "username": "string", 

    "password": "string", 

    "type": "string"  // Admin/ Provider/ Analyst 

  } 

] 
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Constraint: 

- Route: 

https://api.atmosphere.tools/v1/constraints 

- Methods: 

o GET/constraints: returns a list of available constraints 

o POST/constraints: creates one or several constraints 

o DELETE/constraints: removes constraints (according to a filter) 

o GET/constraints /{id}: returns a single constraint record 

- Model: 

[ 

  { 

    "type1": "string",  // resource type 

    "type2": "string",   

    "element1": "string", // resource Id 

    "element2": "string", 

    "relationship": "string" 

  } 

] 
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Script: 

- Route: 

https://api.atmosphere.tools/v1/scripts 

- Methods: 

o GET/scripts: returns a list of available scripts 

o POST/scripts: creates one or several scripts 

o DELETE/scripts: removes scripts (according to a filter) 

o GET/scripts /{id}: returns a single script record 

- Model: 

[ 

  { 

    "id": "string", 

    "tags": [string],    // tags Ids 

    "device": "string",   // device Id 

    "command": { 

      "method": "string",  // http verb type 

      "resource": [string],   // resource type 

      "thing": "string",  // thing Id 

      "feature": "string",  // feature Id 

      "readInterval": "number", // count of seconds 

      "uploadInterval": " number", 

      "loginInterval": " number", 

      "operation": [object] 

    } 

  } 

] 
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Measurement: 

- Route: 

https://api.atmosphere.tools/v1/measurements 

- Methods: 

o GET/measurements: returns a paginated list of filtered/aggregated 

measurements 

o POST/measurements: creates one or several measurements 

o DELETE/measurements: removes measurements (according to a filter) 

o PUT/measurements: updates one measurement record 

o GET/measurements/{id}: returns a single measurement record 

- Model: 

{ 

  "owner": "objectId",  // user Id 

  "location": "geoJSON", 

  "startDate": "date", 

  "endDate": " date", 

  "thing": "string",  // thing Id 

  "device": "string",  // device Id 

  "feature": "string",  // feature Id 

  "samples": [ 

    { 

      "values": [[object]], 

      "delta": "number" 

    } 

  ], 

  "tags": [string]  // tags Ids 

} 
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Computation: 

- Route: 

https://api.atmosphere.tools/v1/computations 

- Methods: 

o GET/computations: returns a list of available computations 

o POST/computations: creates one or several computations 

o DELETE/computations: removes computations (according to a filter) 

o PUT/computations: updates one computation record 

o GET/computations/{id}: returns a single computation record 

- Model: 

[ 

  { 

    "_id": "string", 

    "name": "string", 

    "owner": "[objectId]", // user Id 

    "code": "string", 

    "filter": "string", 

    "status": "string", 

    "progress": number, 

    "startDate": "date", 

    "endDate": "date", 

    "tags": [string]  // tags Ids 

  } 

] 
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Machine Learning: 

- Route: 

https://api.atmosphere.tools/v1/machineLearning 

- Methods: 

o GET/machineLearning: returns a list of trained models 

o POST/machineLearning: trains and creates one or several models 

o DELETE/machineLearning: removes models (according to a filter) 

o GET/machineLearning /{id}: returns a single model record 

- Model: 

{ 

    "mlAlgorithm": "string",  // e.g. Regression 

    "params": { 

      "iterations": "number",  // max. number of training iterations 

      "error": "number"    // threshold for acceptable error 

    } 

} 
  



75 
 

 

 

 

APPENDIX B 
  

TABLE B1 

LOW-END HARDWARE RANGE OF SPECIFICATIONS  

 
Processor 

speed 
Memory 

Network 

interface 

Logic level 

voltage 

Waspmote 14 MHz 
128 KB flash, 

8 KB SRAM 
Zigbee 3.3V 

Arduino 

Uno 
16 MHz 

32 KB flash, 

2 KB SRAM 

I2C, Ethernet 

Shield 
5V 

Zolertia Re-

mote 
32 MHz 

512 KB flash, 

32 KB SRAM 
Wifi, Bluetooth 3.3V 

Atmel SAM 48MHz 
256 KB flash, 

32 KB SRAM 
Zigbee 3.6V 

STM32 

Nucleo 
84 MHz 

512 KB flash, 

96 KB SRAM 

I2C, Ethernet 

Shield 
3.3V 

BeagleBone 

Black 
1 GHz 512 GB RAM Ethernet 3.3V 

Raspberry 

Pi 
1.2 GHz 1 GB RAM Wifi, Ethernet 3.3V 
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APPENDIX C 
  

 

TABLE C1 

L3PILOT FEATURES STRUCTURE IN ATMOSPHERE 

Feature 
Number of 

core Items 

Additional 

metadata 

Items 

Represents 

ScenarioInstance 22 6 
Performance 

Indicator 

Trip _ScenarioSpecific_ 2 3 
Performance 

Indicator 

Trip 14 3 
Performance 

Indicator 

Following_a_lead_vehicle 11 6 Datapoint 

Approaching_a_static_object 16 6 Datapoint 

Approaching_a_traffic_jam 27 6 Datapoint 

Approaching_a_lead_vehicle 27 6 Datapoint 

Cut_in 11 6 Datapoint 

Driving_in_traffic_jam 7 6 Datapoint 

Lane_change 15 6 Datapoint 

Uninfluenced_driving 2 6 Datapoint 

Incident_with_rear_vehicle 13 6 Datapoint 
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TABLE C2 

L3PILOT TAGS IN ATMOSPHERE 

Tag Used In Represents 

Measurement Tags Measurement 

Thing Tags Thing 

Condition Tags Trip condition 

Scenario Tags Trip scenario 

Road_Type Tags Trip road type 

UI Tags User interface 

Treatment Measurements Condition 

Treatment_SysAvailable Measurements Condition 

Treatment_ADF Measurements Condition 

Treatment_SysNotAvailable Measurements Condition 

Treatment_SysAvailable_ADF_OFF Measurements Condition 

Baseline Measurements Condition 

Lane_change Measurements Scenario 

Following_a_lead_vehicle Measurements Scenario 

Approaching_a_static_object Measurements Scenario 

Approaching_a_lead_vehicle Measurements Scenario 

Approaching_a_traffic_jam Measurements Scenario 

Cut_in Measurements Scenario 

Driving_in_traffic_jam Measurements Scenario 

Uninfluenced_driving Measurements Scenario 

Incident_with_rear_vehicle Measurements Scenario 

Motorway Measurements Road type 

All Measurements Road type 

Urban1 Measurements Road type 

Urban2 Measurements Road type 

Urban3 Measurements Road type 

Parking Measurements Road type 

Driver Things Driver 

Trip Things Trip 

Datapoint UI Feature 

ScenarioInstance_PI UI Feature 

Trip_ScenarioSpecific_PI UI Feature 

Trip_PI UI Feature 
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