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1. Summary 
 

DEP-domain containing 5 (DEPDC5) is part of the GATOR1 complex that functions 

as key inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1) in the 

absence of amino acids. Mutations in DEPDC5 have been identified as the most 

common cause of either lesional or non-lesional focal epilepsy and are associated with 

mTOR hyperactivity. Recently, it has been hypothesized that somatic “second-hit” 

mutations occur in the brain of patients with the more severe symptomatology, 

including focal cortical dysplasia type II, drug-resistant epilepsy and intellectual 

disability. However, the mechanisms underlying dysplastic and epileptic phenotype 

following DEPDC5 loss-of-function, especially at the cellular levels, are still largely 

unknown, particularly regarding the morpho-functional impact of DEPDC5 deficiency 

at level of synaptic connectivity and transmission. The scope of my PhD project is to 

investigate the pathological changes occurring with DEPDC5 loss-of-function, with 

particular emphasis on cellular and synaptic morphology and physiology, and to 

address the role of the loss of heterozygosity in DEPDC5-related pathogenesis. As the 

full knockout of Depdc5 is embryonically lethal in rodents, in this study I have first 

characterized a heterozygous knockout mouse (Depdc5+/-), which failed to recapitulate 

the major phenotypic tracts of the pathology, except for a reduced PTZ-induced 

epileptic threshold. Therefore, to uncover the phenotype induced by Depdc5 loss-of-

function, I have compared the condition of the constitutive Depdc5+/- haploinsufficient 

mouse with the more effective acute neuronal knockdown of Depdc5 by RNA 

interference. While heterozygous Depdc5+/- neurons have a very mild phenotype with 

morpho-functional features that are not significantly different from wild type neurons, 

acutely knocked down neurons exhibit a much stronger phenotype characterized by 

mTOR hyperactivation, increased soma size and dendritic arborization, increased 
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excitatory synaptic transmission and intrinsic excitability of excitatory neurons, leading 

to an excitation/inhibition imbalance. These results uncover a novel synaptic phenotype 

that is causally linked to acute Depdc5 knockdown and mTOR hyperactivity, 

highlighting the loss of heterozygosity as causal factor for the establishment of FCD-

related neuronal phenotype, and suggesting an involvement of Depdc5 in the 

neurodevelopmental processes. The robust synaptic phenotype resulting from acute sh-

mediated, but not constitutive, Depdc5 deficiency is reminiscent of the somatic second-

hit mechanism in patients with focal cortical dysplasia and, together with the increased 

intrinsic excitability, can trigger the epileptogenic process. 
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2. Introduction 

 

2.1. The mTOR pathway: a general overview 

 

The history of the mammalian target of rapamycin (mTOR) began in the early 1990s, 

when genetic screens in yeast identified the TOR1 and TOR2 genes as the target of the 

anti-proliferative effects of rapamycin, a macrolide produced by Streptomyces 

Hygroscopius bacteria, on yeast (Cafferkey et al., 1993; Kunz et al., 1993; Helliwell et 

al., 1994). One year later, mTOR was purified in mammals and recognized as the 

physical target of rapamycin (Brown et al., 1994; Sabatini et al., 1994; Sabers et al., 

1995). mTOR belongs to the serine/threonine kinase protein family, and is the key point 

of convergence of different pathways sensitive to energy and growth factors. Its 

activation, through the stimulation or the inhibition of numerous signaling downstream 

cascades, its critical for the regulation of cell growth, survival and development 

(Bockaert and Marin, 2015). To exert these complex functions, mTOR associates with 

other proteins to form two distinct complexes named mTOR complex 1 (mTORC1) 

and 2 (mTORC2) (Fig. 1), which are differentially regulated and exert different 

functions (Hay and Sonenberg, 2004; Laplante and Sabatini, 2012). Indeed, mTORC1 

is a sensor of nutrients (glucose, amino acids, oxygen, ATP, growth factors, 

neurotransmitters) and regulates fundamental functions of cellular physiology, such as 

protein synthesis, metabolism, autophagy and lysosome biogenesis (Laplante and 

Sabatini, 2012). mTORC2, instead, is preferentially activated by growth factors and 

controls cell shape, survival and proliferation (Laplante and Sabatini, 2012). Classical 

activation of mTOR by growth factors is realized through the well-characterized 

PI3K/Akt/TSC/Rheb pathway (Avruch et al., 2006). Indeed, growth factors bind 
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tyrosine kinase receptors (RTKs), which directly activate Akt. In turn, Akt 

phosphorylates tuberous sclerosis complex 2 (TSC2) causing its dissociation from 

tuberous sclerosis complex 1 (TSC1) (Inoki et al., 2002). This represents a key step for 

mTOR activation, since undissociated TSC1/2 exerts GTPase activity (GAP) over the 

small G-protein Ras homology enriched in brain (Rheb) (Inoki et al., 2003). Indeed, 

while GTP-bound Rheb directly activates mTORC1 (Long et al., 2005), the GAP 

activity of TSC1/2 in response to growth factor stimulation switches off Rheb into the 

inactive GDP-bound state that acts as a mTORC1suppressor. 

  

 

Figure 1: Components of mTORC1 and mTORC2 complexes.  

mTORC1 and mTORC2 share the core proteins mTOR and mammalian lethal SEC13 protein 

8 (mLST8), the Tti1/Tel2 complex and the inhibitory protein DEP domain-containing mTOR-

interacting protein (DEPTOR). In addition, mTORC1 contains the regulatory-associated 

protein of mTOR (Raptor) and the inhibitory subunit proline-rich Akt substrate of 40 kDa 

(PRAS40), whereas mTORC2 contains rapamycin-insensitive companion of mTOR (Rictor) 

and the regulatory proteins Protor1/2 and mSin1 (from Sangüesa et al., 2019). 
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2.2. Effects of mTORC1 activation 

  

The activation of mTORC1 orchestrates cellular physiological functions by integrating 

both intracellular and extracellular inputs. The ability to exert such functions is possible 

through the modulation of various effector pathways (Bockaert and Marin, 2015). 

Classically, translational activity is strongly enhanced by mTOR. Indeed, the control 

of protein synthesis is obtained through the phosphorylation of several targets, 

including eukaryotic translation initiation factor 4E (eIF4E)-binding proteins (4E-

BP1,2,3) (Ran et al, 2013) and the p70 ribosomal S6 kinase 1 and 2 (S6K1,2) (Laplante 

and Sabatini, 2012). In particular, S6K1 phosphorylates the ribosomal protein S6, 

eukaryotic elongation factor-2 kinase (eEF2K), eIF4B, S6K1 Aly/REF (SKAR)-like 

substrate, a cell growth regulator, and CBP80 (cap-binding protein 80) to stimulate 

protein synthesis initiation (Zoncu et al., 2010). In addition, mTORC1 also promotes 

the biogenesis of ribosomes through the expression of ribosomal RNA (rRNA) and 

transfer RNA (tRNA) (Iadevaia et al., 2014). Another mechanism that contributes to 

the mTORC1-induced protein synthesis is the increased expression of proteasome 

genes, via the stimulation of the sterol regulatory element-binding protein 1 (SREBP1), 

that increase amino acid availability and permits better quality control of newly 

synthetized proteins (Zhang et al., 2014).  

mTORC1 also has an important role in the lipid metabolism. Indeed, its activation 

promotes de novo lipid synthesis through the sterol-responsive element binding protein 

(SREBP) transcription factor, which regulates fatty acid and cholesterol biosynthesis 

(Porstmann et al., 2008).  

mTORC1 also negatively controls macro-autophagy through the inhibition of the 

ULK1 complex (Unc51-like kinase 1)/Atg13 (autophagy-related genes 13)/FIP200 
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(focal adhesion kinase family-interacting protein) (Chen et al., 1995). In addition, the 

transcription of genes implicated in lysosome and autophagosome biogenesis is 

negatively modulated by mTORC1 (Laplante and Sabatini, 2012; Peña-Llopis et al., 

2011). Energy production is also strongly affected by mTORC1 activation; indeed, it 

has been shown that its association with PPAR coactivator could enhance 

mitochondrial biogenesis and oxidative functions (Cunningham et al., 2007).  

In conclusion, all the evidences stated above indicate that mTORC1 is a master 

regulator of a variety of cell functions, a key intracellular hub able to integrate many 

different extracellular inputs to orchestrate the correct cell growth, metabolism and 

integration with the surrounding environment. 
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2.3. Role of mTORC1 in neuronal physiology and pathology 

 

mTORC1 signaling is essential for the development of an organism, since it 

orchestrates the growth, metabolism and correct migration of cells; indeed, it has been 

shown that complete loss of each one of the components of mTORC1 leads to 

embryonic death (Murakami et al., 2004). In addition to the functions that it exerts in 

every eukaryotic cell, mTORC1 signaling in the brain is also a key regulator of specific 

neuronal features, such as development and migration, axonal sprouting, regeneration 

and myelination, ion channel and receptor expression, growth of dendritic spine and 

synaptic plasticity (Bockaert and Marin, 2015). Most of the knowledge about the 

influence of mTORC1 in these processes has been obtained from studies in animal 

models with deletion or downregulation of its pathway. 

 

2.3.1. Role in neuronal development and differentiation 

 

The importance of mTOR in brain development was first observed in an ethyl-nitroso-

urea-induced mouse mutation that carry a mis-spliced mutation of mTOR leading to 

defects in telencephalon formation and mid-gestation mortality (Hentges et al., 2001). 

In general, full knockout of core components of mTORC complexes results in 

embryonic lethality (Guertin et al., 2006; Shiota et al., 2006). Also mutations in 

regulatory upstream elements of mTOR have been associated with disturbances of 

brain development (Bockaert and Marin, 2015). It has been shown that deletion of 

REDD1, an upstream inhibitor of mTORC1 complex, impairs neuronal differentiation 

and migration (Malagelada et al., 2011). Moreover, the deletion of PTEN in the 

adulthood leads to constitutive neurogenesis in the subgranular zone (SGZ) of the 
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hippocampus and in the subventricular zone (SVZ) (Gregorian et al., 2009). In general, 

most of the pathologies in which the hyperactivation of mTORC1 is observed, like 

Tuberous Sclerosis (TS), Fragile X syndrome, Cowden syndrome, 

hemimegalencephaly and ganglioma are characterized by neuronal mispositioning, 

migratory heterotopia and cell hypertrophy (Crino et al., 2006; Ehninger, 2013; Hoeffer 

and Klann, 2010; Endersby and Baker, 2008; Osborne, 2010; Salamon et al., 2006). 

 

2.3.2. Role in the somatic growth and hypertrophy 

 

One of the most reproducible effects of enhanced mTORC1 activation in neurons is the 

somatic hypertrophy that has been observed in animal models after deletion of TSC1, 

TSC2, PTEN (Meikle et al., 2008; Zeng et al., 2008). Hypertrophy has been found in 

cortical neurons, hippocampal granule cells and Purkinje cells (Fraser et al., 2004; Tsai 

et al., 2012) and is reversed by rapamycin administration (Zeng et al., 2008), 

confirming that the pathogenic mechanism relies on the hyperactivation of mTORC1. 

Human mTORopathies also include this feature, and somatic enlargement has been 

consistently found in patients with TS, where the presence of giant cells within the 

cortical tubers is a distinctive tract of the pathology (White et al., 2001). Cytomegalic 

cells and “balloon” cells are also been observed in focal cortical dysplasia. The increase 

in soma size has been shown to impact neuronal properties.  Indeed, the increase in 

soma size after deletion of the mTORC1 inhibitor TSC1 has been associated with 

decreased input resistance and increased capacitance (Bateup et al., 2011). Similar 

results have been found after knockdown of PTEN with small hairpin RNA (shRNA) 

(Luikart et al. 2011). Somatic hypertrophy also impacts neuronal functions at 

macroscopic level. Indeed, in animal models of TSC or PTEN deletion, the cellular 
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hypertrophy (potentially associated with increased neurogenesis) leads to progressive 

macrocephaly with increased brain size and loss of organization of cortical layers (for 

review see Lasarge and Danzer, 2014). 

 

2.3.3. Role in dendritic growth and arborization 

 

The activation of mTORC1 plays a key role also in regulating dendritic growth. It has 

been shown that knockdown of the mTORC1 inhibitory gene PTEN induces 

arborization of hippocampal neurons (Jaworski et al., 2005). While the soma and 

dendrite size are regulated by PI3K–Akt–mTOR pathway (Jaworski et al., 2005), its 

coordinated activation with the Ras-mitogen-activated protein kinase pathway also 

increases dendritic complexity (Kumar et al., 2005). All these effects are abolished by 

knockdown of mTOR and rapamycin treatment. In addition, rapamycin has been shown 

to inhibit BDNF-induced mTORC1 activation and dendritic growth (Jaworski et al., 

2005). So, it is clear that dysregulation of the mTORC1 pathway could alter the precise 

development of the dendritic tree structure. This structure, however, is critical for the 

correct signal processing in neurons, and changes associated with mTOR disruption 

could alter the integration of synaptic inputs. More and thicker dendrites could mean 

increased connectivity among neurons and increased signal spread that could 

potentially be associated with abnormal network activity (Lasarge and Danzer, 2014). 
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2.3.4. Role in synaptic physiology and plasticity 

 

Most of the knowledge on the effects of mTORC1 activation on synaptic activity has 

been obtained from studies in animal models with loss-of-function mutations and 

rescue with mTORC1 inhibitors and from surgical samples from TS and FCD patients. 

At the synaptic level, mTORC1 activation increases synaptic activity by enhancing 

AMPA receptor subunits GluA1 and GluA2 synthesis and surface localization (Ran et 

al., 2013; Wang et al., 2006). In addition, it also mediates the inhibition of Kv1.1 

synthesis induced by NMDA receptor activation (Raab-Graham et al., 2006). The 

Sabatini’s group employed a “sparse deletion” approach to delete TSC1 from the brain 

of TSC1flox/flox mice using a Cre-expressing virus. They found that, in-vitro, TSC1 KO 

hippocampal neurons exhibit an increased length and width of synaptic spines coupled 

to an increased mEPSC amplitude, without changes in frequency (Tavazoie et al., 

2005). Strikingly, the same approach applied in-vivo yielded quite different results 

(Bateup et al., 2011). In this study, pyramidal neurons showed no changes in spine 

morphology or mEPSC amplitude, while mEPSCs frequency was increased. 

Successively, they demonstrated that pharmacologically blocking activity in TSC1 KO 

neuron cultures prevented most of the gene expression changes in these cells, 

suggesting that they are secondary to mTORC1 hyperactivation (Bateup et al., 2013b). 

TSC1 KO cells in these animals also exhibited decreased frequency and amplitude of 

miniature inhibitory post-synaptic currents (mIPSCs) and reduced amplitude of evoked 

IPSCs. These effects were reversed by rapamycin treatment, confirming that they are 

mTOR-dependent (Bateup et al., 2013a).  

Electrophysiological recordings of human neurons from surgical samples of pediatric 

TS and FCD patients also revealed important properties of the abnormal neuronal types 
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that are present in these pathologies. Interestingly, it has been shown that giant/balloon 

and neuronal-glial cells from TS and FCD are unable to generate action potentials 

(Cepeda et al., 2005; Cepeda et al., 2003), suggesting that their role in epileptogenesis 

is probably negligible (Boonyapisit et al., 2003). Instead, dysmorphic/cytomegalic 

pyramidal neurons, both could more likely sustain the epileptiform activity in TS and 

FCD due to their hyperexcitability (Cepeda et al., 2005). Moreover, 

dysmorphic/cytomegalic pyramidal neurons have abnormal passive membrane 

properties, such as larger cell capacitance, longer time constant, and lower input 

resistance compared with normal pyramidal neurons. The amplitude of macroscopic 

Ca2+ currents and Ca2+ influx were also larger in this type of neurons, possibly 

contributing to hyperexcitability (Cepeda et al., 2003; Cepeda et al., 2012). The 

pathogenic role of these dysmorphic cells is also underlined by studies demonstrating 

cell-specific alterations in glutamate and GABA receptor subunit expression in human 

brain tissue from TS patients (Crino et al., 2001; Talos et al., 2008; White et al., 2001). 

An important role for mTORC1 has been established also in the regulation of synaptic 

plasticity. Indeed, the late stage of long-term plasticity (L-LTP) that requires 

transcription and new protein synthesis, is an mTORC1 and c-AMP dependent process 

(Cammalleri et al., 2003; Tang et al., 2002). Indeed, the c-AMP synthesis triggered by 

Ca2+ entry can activate mTORC1 in two different ways: (i) directly, following 

activation of Ca2+-dependent adenylyl cyclase (Kim et al., 2010); (ii) indirectly, 

through the cAMP-induced release of BDNF which, in turn, activates the PI3K-Akt-

mTOR pathway (Patterson et al., 2001). In contrast, other studies have shown that 

rapamycin application does not block L-LTP in vivo (Panja et al., 2009). The lack of 

S6K1 or S6K2, also, does not block normal L-LTP in mice (Antion et al., 2008). 

Despite the different experimental paradigms used for LTP induction could account for 
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these contradictory results, the exact role of mTORC1 in synaptic plasticity remains to 

be fully elucidated. 
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2.4. Role of DEPDC5 in the regulation of mTORC1  

 

Classically, the small GTPase Rheb is considered the main regulator of mTORC1 

activity (Inoki et al., 2003). Rheb is located at the lysosomal surface (Dibble et al., 

2012) and is negatively modulated by the TSC complex that switch Rheb from the 

active GTP bound state to the inactive GDP bound state (Inoki et a., 2003). Numerous 

intracellular and extracellular inputs, like growth factors and energy levels regulate 

mTORC1 activity through this pathway (Bar-peled and Sabatini, 2014). In addition to 

these inputs, amino acid availability is crucial for mTORC1 activation (Fig. 2).  

 

Figure 2: Schematic representation of the amino acid sensing branching of the mTOR 

pathway.  

The GATOR2 complex, containing the proteins MIOS, SEH1L, WDR24, WDR59, and SEC13, 

inhibits the GATOR1 complex when there is amino acid abundance. The GATOR1 complex, 

containing the proteins DEPDC5, NPRL2, and NPRL3, under conditions of amino acid 

depletion, inhibits mTORC1 through its GAP activity towards the GTPases RagA/C (from Bar-

Peled and Sabatini, 2014). 

 

In particular, the four members of Rag proteins (Rag A, B, C, and D), expressed on the 

lysosomal membrane (Sekiguchi et al., 2001), are the key regulators of mTORC1 in 



16 
 

response to amino acids. Unlike Rheb, Rags do not directly activate mTORC1, but 

rather control its subcellular localization on lysosomal or late endosomal surface 

(Sancak et al., 2008). While under conditions of amino acid deprivation mTORC1 is 

diffusely distributed throughout the whole cytoplasm, when amino acids are available, 

it accumulates on the surface of these organelles where can be activated by Rheb 

(Sancak et al., 2010; Zoncu et al., 2011). Rags activity is fine regulated by a 

multiproteic complex, called GATOR (Bar-Peled et al., 2013) composed of two distinct 

interacting subcomplexes known as GATOR1 and GATOR2 that have opposite role in 

Rags activation.  In particular, GATOR1 possesses GAP activity towards RagA, 

leading to its inactivation with lack of recruitment of mTORC1 at the lysosomal surface 

(Bar-Peled et a., 2013; Panchaud et al., 2013). GATOR1 is composed of three proteins, 

namely DEPDC5 (DEP domain-containing protein5), NPRL2 (nitrogen permease 

regulator 2-like protein) and NPRL3 (nitrogen permease regulator 3-like protein). Their 

specific function inside the GATOR1 complex has not been addressed, but loss-of-

function of each of them has been associated with loss of amino acid regulation of 

mTORC1 activation (Baldassari et al., 2016). A very recent study showed that 

DEPDC5 phosphorylation by Pim and AKT blocks GATOR1 inhibition of mTORC1, 

revealing the presence of a phosphorylation-dependent regulation of  DEPDC5 activity 

in which Pim1 and AKT act as upstream effectors of mTORC1 (Padi et a., 2019). 
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2.5. DEPDC5 mutations and diseases  

 

The DEPDC5 gene is located on chromosome 22q12. It encodes for a protein of 1603 

amino acids that is expressed ubiquitously and constantly throughout development and 

adulthood. Two functional domains, DUF3608 and DEP, have been identified in 

DEPDC5 (Dibbens et al., 2013). The DUF3608 domain accounts for the interaction of 

DEPDC5 with the other components of the GATOR1 complex in yeast (Wu and Wu, 

2011), while the DEP domain is a globular domain found in other GTPase activating 

proteins. Loss-of-function mutation in GATOR1 components, particularly in 

DEPDC5, has been found to be the principal cause of several monogenic inherited focal 

epilepsies (Dibbens et al., 2013; Ishida et al., 2013; Baldassari et al., 2016; Martin et 

al., 2014). In affected patients, brain magnetic resonance imaging has disclosed a 

spectrum of Malformations of Cortical Development (MCD), ranging from Focal 

Cortical Dysplasia (FCD) type II to subtle band heterotopias (Scheffer et al., 2014; 

Baulac et al., 2015; D'Gama et al., 2017; Baldassari et al., 2019a; Baldassari et al., 

2019b; Wong, 2013; Picard et al., 2014).  

 

2.5.1. Familial focal epilepsy 

 

Familiar Focal Epilepsies (FFEs) encompass several inherited epileptic syndromes, 

including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), autosomal 

dominant epilepsy with auditory features (ADEAF) and familial focal epilepsy with 

variable foci (FFEVF). DEPDC5 mutations are estimated to account for about 20% 

(range: 5-37%) of individual cases of these syndromes (Baldassari et al., 2016). 
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ADNFLE is a syndrome characterized by motor seizures occurring in clusters and 

predominantly during sleep and has been related to mutations in CHRNA4, CHRNB2 

and CHRNA2. KCNT1 has been found mutated in cases with severe phenotype (Heron 

et al., 2012). Mutations in these genes encoding, respectively, the α4, α2 and β2 

subunits of the neuronal nicotinic acetylcholine receptor (nAChRs) and a potassium 

channel subunit (KCNT1) account for only 10% of the pedigrees reported, suggesting 

further genetic heterogeneity. 

ADEAF is characterized by focal seizures with typical auras and/or auditory symptoms 

suggesting a lateral temporal onset. Mutations in LGI1 are responsible for less than 

50% of ADEAF families (Ottman et al., 2004). Efforts to identify new genes 

responsible for ADEAF have been unsuccessful, also because the small size of LGI1-

negative pedigrees makes them not suitable for linkage analysis.  

FFEVF is an autosomal dominant form of epilepsy characterized by a marked intra-

familial variation. The seizures may arise from various cortical regions in different 

family members. Frontal and temporal (mesial and lateral) foci predominate. Nocturnal 

frontal phenotype is the commonest pattern described, and this may lead to 

misdiagnosis. Despite intra-familial heterogeneity, the individual phenotype is 

stereotyped (Berkovic et al., 2004). 

 

2.5.2. Focal Cortical Dysplasia 

 

Focal cortical dysplasia (FCD) is a clinical entity, strongly associated with intractable 

epilepsy (Tassi et al., 2002; Aronica and Crino, 2014) that encompasses various 

subtypes of cortical malformations. All subtypes are characterized by the focal 
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disruption of the normal cytological architecture of the cerebral cortex. The presence 

of dysplastic areas in the cortex is common in surgical samples from patients with 

epileptic focal syndromes, including autosomal dominant temporal lobe epilepsy and 

FFEVF. FCDs have been classified in type I, type II and type III, on the basis of 

differences in the neuroanatomical changes and genetic origin (Blümcke et al., 2011). 

In addition, different subtypes are thought to affect neurodevelopment at different 

stages of neurogenesis (Crino, 2015). The major hallmark of FCD type I is the 

abnormal cortical layering, characterized by radial microcolumns. However, this 

phenotype is subtle and the detection on routine neuropathology could be challenging. 

It can be further divided into three subtypes. FCD type Ia, in which the radial 

microcolumns organization resembles the early stage of cortical development; FCD 

type Ib, characterized by tangential layer alteration; and finally, FCD type Ic showing 

a combination of the other two subtypes. In all these variants, alterations in dendrite 

development, as well as heterotopic neurons in the white matter, could be present. FCD 

type IIa, in addition to the layer dyslamination observed in FCD type I, is characterized 

by the presence of dysmorphic/cytomegalic neuron. In addition, the presence of balloon 

cells defines the FCD type IIb. These cells are histologically characterized by an 

opalescent, eosinophilic cytoplasm and enlarged soma. FCD type II (Fig. 3) is a very 

common finding in surgical series and often causes drug-resistant focal epilepsy. 

Balloon cells express proteins markers of neuroglial progenitors, like SOX2, nestin and 

vimentin, suggesting that they originate from failures in differentiation during 

neurodevelopment (Orlova et al., 2010). Balloon cells are also histologically similar to 

giant cells found in tubers of patients with TS (Crino et al., 2006). FCD type III can 

include any of the alterations in cortical architecture or cell morphology present in the 

other subtypes, but it is also associated with brain lesions, such as tumors or vascular 

malformations. 
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Figure 3: Schematic representation of the main histological abnormalities observed in FCD 

type II compared with normal brain tissue.  

FCD type II, in addition to the layer dyslamination observed in FCD type I, is characterized 

by the presence of dysmorphic/cytomegalic neurons and balloon cells. These abnormal 

principal neurons are diffuse through all cortical layers (adapted from Sisodiya et al., 2009). 

 

There are four distinct subtypes of FCD type III: the type IIIa associated with 

hippocampal sclerosis; IIIb, associated with tumors; IIIc, associated with vascular 

malformations; and IIId, associated with any other lesion.  
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2.6. Germline and somatic mutations of DEPDC5 

 

Since the large majority of the mutations on DEPDC5 and other GATOR1 genes leads 

to haploinsufficiency, the pathogenic mechanisms underlying GATOR1-related 

diseases has been related to loss-of-functions of these genes (Marsan and Baulac, 

2018), followed by a subsequent hyperactivation of mTORC1 (Fig. 4).   

  

 

Figure 4: Effects of the abnormal activation of mTORC1.  

The loss of the inhibitory brake exerted by GATOR1 upon mTORC1 upregulates the mTORC1 

complex, leading to changes in morphology, proliferation, migration and apoptosis, and 

changes in neuronal excitability (from Baulac, 2016). 



22 
 

Nevertheless, the peculiar features of DEPDC5-dependent epilepsies give rise to 

unsolved questions. Firstly, FCD is characterized by mosaic and focal patterns, an 

unlikely phenotype for germline mutations. In addition, only a subset of patients carries 

morphological focal malformations, while the others show only non-lesional epilepsy. 

In resected post-operatory brain tissue, an increased phosphorylation of S6 protein has 

been observed only in balloon cells and dysmorphic neurons, while the large majority 

of cells displaying normal morphological features did not shown increased activation 

of the mTORC1 pathway (Marsan and Baulac, 2018). These findings seem to result 

from a mosaic inactivation of DEPDC5, suggesting that a double-hit inactivation in 

brain cells is necessary to trigger dysplastic areas. This hypothesis is based on the 

concept that, in individuals with a heterozygous loss-of-function mutation, a second 

biallelic somatic mutation on DEPDC5 occurs during neurodevelopment in a subset of 

progenitor cells, giving rise to the morphological abnormal cells observed in FCD. This 

mechanism, originally observed in cancer, is known as Knudson’s two-hit mutation. 

Several studies on resected brain samples suggest the presence of biallelic inactivation 

of DEPDC5 in patients with family history of focal epilepsy (Baulac et al., 2015; 

Ribierre et al., 2018; Baldassari et al., 2019b; Sim et al., 2019; Lee et al., 2019) . More 

recently, a study highlighted that in an individual with drug-resistant epilepsy, FCD, 

and a germline DEPDC5 pathogenic variant, a second-hit DEPDC5 variant was present 

and limited to dysmorphic neurons, and the somatic mutation load correlated with both 

dysmorphic neuron density and the epileptogenic focus (Sim et al., 2019). 
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2.7. Experimental models of Depdc5 loss-of-function 

 

Given the importance of DEPDC5 mutations in the etiology of focal epilepsies and 

FCD, several cellular and animal models mimicking DEPDC5 haploinsuffiency have 

been generated. In a TALEN-mediated Depdc5 knockout rat, Marsan et al. (2016), 

showed that,  while the constitutive deletion of Depdc5 is embryonically lethal, the 

heterozygous only exhibited dysmorphic pyramidal neurons and altered cortical 

excitability, failing to recapitulate the major tract of the pathology, i.e. the presence of 

spontaneous seizures (Marsan et al., 2016). These results were confirmed in a 

heterozygous mouse model, which also showed no increased propensity to epileptic 

seizures triggered by a single dose of pentylenetetrazol (Hughes et al., 2017). 

Interestingly, a neuron-specific Depdc5 knockout mouse was characterized by a 

progressive neuronal phenotype with macrocephaly, dysmorphic neurons and 

increased susceptibility to spontaneous and provoked seizures, up to terminal seizures 

(Yuskaitis et al., 2018). A morpholino oligonucleotide-mediated Depdc5 knockdown 

in the zebrafish was also characterized by motor hyperactivity and increased neuronal 

activity (de Calbiac et al., 2018), while a zebrafish full knockout model showed 

spontaneous epileptiform events, increased seizure propensity and premature death 

associated with defects in GABAergic networks (Swaminathan et al., 2018). At the 

cellular level, shRNA-mediated Depdc5 knockdown in mouse neuroblastoma cells or 

neural progenitors derived from the subventricular zone induced mTOR 

hyperactivation causing soma enlargement, increased filopodia formation and 

mislocalization of mTOR at lysosomes in the absence of amino acids (Iffland et al., 

2018). 

Recently, through a combination of in utero electroporation and CRISPR/Cas9 

technology, it has been possible to obtain focal somatic Depdc5 deletions in the 
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embryonic brain. These model succeeded to reproduce the main clinical features of 

DEPDC5-related FCD and intractable epilepsy, displaying both dysmorphic and 

ectopic pyramidal neurons, cortical abnormalities, spontaneous seizures and premature 

sudden death due to terminal seizures (Ribierre et al., 2018; Hu et al., 2018). These 

studies represent the first in-vivo experimental evidence supporting the two-hit 

hypothesis as the etiology of DEPDC5-related FCD. However, the mechanisms 

underlying the dysplastic and epileptic phenotype following DEPDC5 loss-of-function 

at the cellular level are still largely unknown, particularly regarding the morpho-

functional impact of DEPDC5 deficiency on synaptic connectivity, transmission and 

plasticity.  
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3. Aim of the thesis 
 

The aim of the project is to investigate the pathological changes occurring with Depdc5 

loss-of-function, with particular emphasis on cellular and synaptic morphology and 

functionality, and to address the role of the loss of heterozygosity in Depdc5-related 

pathogenesis. To address this issue, I have characterized a heterozygous Depdc5 mouse 

model and investigated the biochemical, morphological, ultrastructural and 

electrophysiological phenotypes associated with Depdc5 deficiency in two 

experimental models: primary heterozygous Depdc5 neurons as compared to primary 

WT neurons acutely silenced with an RNA interference strategy. 
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4. Material and methods 

 

Experimental animals 

Heterozygous Depdc5 KO mice were obtained from the IMPC European Consortium 

at the Sanger Institute (UK) in the frame of the European EMMA/Infrafrontier, and 

bred at the IIT SPF animal facility. The EUCOMM/KOMP targeting strategy was 

based on the “knockout-first” allele that contains an IRES:lacZ trapping cassette and a 

floxed neo cassette that were inserted into the intronic region between exons 4 and 5 of 

the Depdc5 locus. The presence of an Engrailed (En2) splice acceptor disrupts gene 

function, resulting in a lacZ fusion for studying gene expression localization (Skarnes 

et al., 2011). Genotyping was performed by PCR with the following primers 

Depdc5_F: GGTTTTAGTTTTTGGATTTGTTTCA, Depdc5_R: 

GCCTTTAATCCCAGCACTTG; 5mut-R1_Term: 

GAACTTCGGAATAGGAACTTCG, that were used to detect the WT (+/+) 

(Depdc5_F plus Depdc5_R product, 227 bp) and mutant (Depdc5_F plus 

CAS_R1_Termproduct, 129 bp) Depdc5 alleles and to genotype +/+ and heterozygous 

(+/-) mice. The colony was maintained on a C57BL/6N background and propagated in 

heterozygosity. Two females were housed with one male in standard Plexiglas cages 

(33 × 13 cm), with sawdust bedding and a metal top. After two weeks of mating, male 

mice were removed and dams were housed individually and daily checked for delivery. 

Mice were maintained on a 12∶12 h light/dark cycle (lights on at 7 a.m.) at constant 

temperature (21 ± 1 °C) and relative humidity (60 ± 10 %). Animals were provided 

drinking water and a complete pellet diet (Mucedola, Settimo Milanese, Italy) ad 

libitum. Mouse genotypes were determined at weaning (P20-25) by RT-PCR on tail 

samples. Mice were weaned into cages of same sex pairs. Sample mice of both 
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genotypes were video recorded and inspected offline to monitor spontaneous 

behavioral seizures. All experiments were carried out in accordance with the guidelines 

established by the European Communities Council (Directive 2010/63/EU of March 

4th, 2014) and were approved by the local Ethics Committee and the Italian Ministry 

of Health (authorization n. 1276/2015-PR). 

 

Immunohistochemistry  

Depdc5+/+ and Depdc5+/- littermates (3-4 months of age) were deeply anesthetized with 

an intraperitoneal injection of urethane and transcardially perfused with ice-cold 0.1 M 

phosphate buffer (PB; pH 7.4) until the liver became clear, followed by 4% 

paraformaldehyde in 0.1 PB. After perfusion, brains were briefly dissected and post-

fixed in the same fixative solution overnight at 4 °C. After several washes in 0.1 M PB, 

brains were then cryoprotected by immersion in 10, 20 and 30% sucrose solutions and 

subsequently cut in 30 μm sections with a Vibratome and stored at − 20 °C in a solution 

containing 30% ethylene glycol and 20% glycerol in 0.1 M PB. Sections containing 

frontal and somatosensory cortex were then washed in phosphate-buffered saline (PBS, 

pH 7.4) and processed for free-floating immunofluorescence. After blocking step in 

PBS containing 0.05% Triton X-100 and 10% normal goat serum (NGS), sections were 

incubated overnight at room temperature (RT) with the following primary antibodies: 

rabbit anti-vesicular GABA transporter (vGAT; 1:250, Synaptic System), guinea pig 

anti-vesicular glutamate transporter-1 (vGlut1; 1:250, Synaptic System), rabbit anti-

phosphorylated S6240-244 (pS6; 1:250, Synaptic System) or mouse anti-neuronal nuclear 

antigen (NeuN; 1:5000, Cell Signaling). Antibodies were diluted in PBS with 3% of 

NGS and 0.05% Triton X-100. Double immunofluorescence (pS6-NeuN or 

vGlut1/vGAT) was performed with the simultaneous addition of the primary 

antibodies. Sections were then washed in PBS (4 × 10 min) and incubated for 1 h at 25 
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°C with anti-rabbit Alexa Fluor 488, and anti-mouse Alexa Fluor 568 or anti-guinea 

pig Alexa Fluor 488 (Invitrogen). After several PBS rinses, sections were mounted on 

glass slide and observed with a Leica SP8 confocal microscope (Leica Microsystem). 

Z-series stacks of seven consecutive confocal sections (1024x1024 pixels) for a total 

depth of 2 μm of tissue were acquired at 20 x using the multi-track mode to avoid 

fluorescence crosstalk (pinhole: 1.0 airy unit) and background labeling was subtracted. 

Sections of frontal or somatosensory cortices were reconstructed and analyzed using 

ImageJ. 

 

RNA extraction, retrotranscription and qRT-PCR 

Total cellular or tissue RNA was extracted using TRIzol (Life Technologies). RNA 

concentration was quantified by using theNanodrop-1000 spectrophotometer (Thermo 

Scientific). cDNA was synthesized starting from 0.25 μg RNA with SuperScript IV 

Reverse Transcriptase kit (#18090010; Thermo Fisher) according to manufacturer’s 

instruction and used for qRT-PCR. Gene expression was measured by quantitative real-

time PCR using C1000 Touch™ Thermal Cycler (Bio-Rad) on a CFX96™Real-Time 

System following the manufacturer’s protocol. Real time PCR analyses were 

performed using the SYBR Green I Master mix (Roche), on a Lightcycler 480 (Roche), 

with the following protocol: 95 °C for 5 min; 10s at 95 °C / 20 s at the specific annealing 

temperature (Ta) / 10 s at 72 °C for 45 cycles; melting curve (heating ramp from 55 °C 

to 95 °C) in order to check for amplification specificity. The following primers (final 

concentration 0.25 μM) and annealing temperature were used:  

Depdc5_F: TGATGCCTACGATGCTCAAG, Ta= 64 °C;  

Depdc5_R: TGGCTCCTCACTTCCTCAGT, Ta= 64.1 °C;  

Gapdh_F: GATCATCAGCAATGCCTCCT, Ta= 59.8 °C; 

Gapdh_R: TGTGGTCATGAGTCCTTCCA, Ta= 61.7 °C; 
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Relative gene expression was determined using the ΔΔCT method, normalizing data 

the housekeeping transcript (Gapdh). 

 

Pentylenetetrazol-induced seizures 

Depdc5+/+ and Depdc5+/- littermates (3-4 months of age) were repeatedly injected with 

unitary doses of pentylenetetrazol (PTZ; 10 mg/kg intraperitoneally in 0.9% saline) 

every 10 min and continuously monitored after each injection in a 17x17x25 cm box 

equipped with the Anymaze video tracking system. Seizure scoring was conducted as 

previously reported by Browning and Nelson (1986), and the following parameters 

were considered: (i) myoclonic jerk, (ii) face and forelimb clonus (iii) whole body 

clonus with twisting or loss of posture, (iv) running/bouncing clonus, (v) tonus: (tonic 

flexion and tonic extension). At the end of the observation period, animals were killed 

humanely by cervical dislocation. Seizure manifestations were recorded by inspection 

of the videos by two independent observers blind to the genotype. Seizure threshold 

was defined as the dose (mg/kg) necessary to induce a score (v). 

 

Plasmids and viral vectors 

Four distinct short hairpin (sh) RNAs (Origene, TL508165) and a scramble (Scr) 

construct (Origene, TR30023) in a pGFP-C-Lenti vector were used to acutely silence 

Depdc5 expression. Sequences were: 

sh1: AAGTGAGGAGCCAGGCTTCTGATGACACG 

sh2: GTGGACCAGACTGTGACTCAAGTATTCCG 

sh3: TGTCCGACCTGGAGGATACACGCCTCAGA 

sh4: CTCCAGTCGGCAAGAAAGGAACCTCAGCT 

Lentiviral particles encoding these vectors are a modification of Addgene plasmids 

8454, 8455 co-expressing turbo-Green Fluorescent Protein (tGFP) as a reporter and 
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were produced as previously described (Stewart et al., 2003) at the Virus Core Facility, 

Charité University, Berlin, Germany.  

 

Culture and transfection of cell lines.  

HEK-T293 cells were cultured in Dulbecco’s MEM (DMEM; Gibco) supplemented 

with 10% fetal calf serum (Gibco), 1% L-glutamine, 100 U/ml penicillin, and 100 

μg/ml streptomycin (Gibco) and maintained at 37 °C in a 5% CO2 humidified 

atmosphere. For transfection experiments Lipofectamin2000 (Thermo Scientific) was 

used according to the manufacturer’s protocol, and cells were incubated under standard 

growth conditions for 72 h and then processed. 

 

Cultures and transduction of primary neurons 

Low-density cortical neurons were prepared from WT C57BL/6J (Charles River) for 

RNA interference experiments or from Depdc5+/+ and Depdc5+/- C57BL/6N mice, as 

previously described (Baldelli et al. 2007; Chiappalone et al. 2009). Animals were 

sacrificed by CO2 inhalation and 17/18-day embryos (E17-18) were immediately 

removed by cesarean section. In brief, cerebral cortices were dissociated by enzymatic 

digestion in 0.125% trypsin for 20 min at 37 °C and then triturated with a fire-polished 

Pasteur pipette. Primary cultures of dissociated cortical neurons were subsequently 

plated onto poly-D-lysine (0.1 mg/ml, Sigma-Aldrich)-coated 25-mm glass coverslips 

(6x104 cells/coverslip) and 35-mm wells (1 × 106 cells/well). Neurons were maintained 

in a culture medium consisting of Neurobasal (Gibco) supplemented with B27 (1:50 

v/v, Gibco), Glutamax (1% w/v, Gibco), penicillin–streptomycin (1%, Gibco) and kept 

at 37 °C in a 5% CO2 humidified atmosphere. For shRNA transfection experiments, 

neurons (4x106) were nucleofected before with Amaxa basal nucleofector kit for 

primary neurons (Lonza) with 4 μg of plasmid DNA according to the manufacturer’s 
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protocol. For lentiviral transduction experiments, 7 DIV cortical neurons were infected 

with lentiviruses at 10 multiplicity of infection (MOI). After 24 h, the medium was 

replaced with an equal volume of fresh and conditioned medium (1:1). All experiments 

were performed 5-6 days post-infection, when not differently indicated. Transduction 

efficiency was always above 75% of neuronal cells.  

 

Western blotting 

Total cell lysates were obtained from cortical neuronal cultures or whole brains from 

E12.4 mouse embryos. Cells were extracted in lysis buffer (150 mM NaCl, 50 mM 

Tris-HCl pH 7.4, 1 mM EDTA, 1% Triton X-100) supplemented with protease and 

phosphatase inhibitor cocktails (Roche, Monza, Italy). After 10 min of incubation on 

ice, cell lysates were collected and clarified by centrifugation (10 min at 10,000 x g at 

4 °C). Brains were dissected and pottered in liquid nitrogen, then centrifuged at 1,000 

x g for 10 min at 4 °C. Protein concentration was determined using BCA (Thermo 

Scientific) assay. Equivalent amounts of protein were subjected to SDS-PAGE on 10% 

polyacrylamide gels and blotted onto nitrocellulose membranes (Whatman). Blotted 

membranes were blocked for 1 h in 5% milk in Tris-buffered saline (10 mM Tris, 150 

mM NaCl, pH 8.0) plus 0.1% Triton X-100 and incubated overnight at 4 °C with the 

following primary antibodies: rabbit anti-Depdc5 (1:1000, Abcam, ab185565), rabbit 

anti-phosphorylated S6 protein (1:2000, Cell Signaling, #2215), mouse anti-S6 

(1:1000, Cell Signaling, #2317), mouse anti-Actin (1:2000, Sigma-Aldrich, A2228). 

Membranes were washed and incubated for 1 h at RT with peroxidase-conjugated goat 

anti-mouse (1:3000; Bio-Rad) or anti-rabbit (1:5000; Bio-Rad) antibodies. Bands were 

revealed with the ECL chemiluminescence detection system (Thermo Scientific) and 

the quantification of immunoreactivity was performed by densitometric analysis of the 

fluorograms. 
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Patch-clamp recording in primary cortical neurons.  

Whole patch-clamp recording were made from primary cortical neurons as previously 

described (Baldelli et al. 2007; Chiappalone et al. 2009) using a Multiclamp 

700B/Digidata1440A system (Molecular Devices, Sunnyvale, CA). Patch pipettes, 

prepared from thin borosilicate glass, were pulled and fire-polished to a final resistance 

of 4-5 MΩ when filled with standard internal solution. For all the experiments, cells 

were maintained in standard extracellular Tyrode solution containing (in mM): 140 

NaCl, 2 CaCl2, 1 MgCl2, 4 KCl, 10 glucose, and 10 HEPES (pH 7.3 with NaOH). For 

the analysis of neuronal excitability, D-(−)-2-amino-5-phosphonopentanoic acid (D-

AP5; 50 μM), 6-cyano-7 nitroquinoxaline-2,3-dione (CNQX; 10 μM), bicuculline 

methiodide (30 μM), and (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-

hydroxypropyl] (phenylmethyl)phosphinic acid hydrochloride (CGP58845; 5 μM) 

were added to block NMDA, non-NMDA, GABAA, and GABAB receptors, 

respectively. Current-clamp recordings of AP firing activity were performed at a 

holding potential of −70 mV and APs were induced by injection of 10 pA current steps 

lasting 500 ms in morphologically identified pyramidal neurons. Excitatory neurons 

were identified by estimating the AP failure ratio evoked by short trains of high-current 

steps at increasing frequency (10-140 Hz; Prestigio et al., 2019). The mean firing 

frequency was calculated as the number of APs evoked by minimal current injection in 

500 ms, whereas the instantaneous frequency was estimated as the reciprocal value of 

the time difference between the first two evoked APs. Current-clamp recordings of APs 

were acquired at a 50 kHz and filtered at 1/5 of the acquisition rate with a low-pass 

Bessel filter. The mean firing frequency and the instantaneous frequency were analyzed 

using Clampfit 10.7 (Molecular Devices, Sunnyvale, CA) and Prism softwares. The 

shape properties of the first AP elicited by minimal current injection were analyzed by 
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building time-derivatives of voltage (dV/dt) versus voltage plots (phase-plane plots) as 

previously described (Valente et al., 2016; Prestigio et al., 2019). Phase-plane plots 

were obtained and analyzed with the software OriginPro-8 (OriginLab Corp., 

Northhampton, MA, USA). For recording miniature excitatory postsynaptic currents 

(mEPSCs), bicuculline, CGP58845, D-AP5 and tetrodotoxin (TTX; 300 nM) were 

added to the extracellular solution to block GABAA, GABAB, NMDA receptors and 

generation and propagation of spontaneous action potentials (APs). For miniature 

Inhibitory Postsynaptic Currents (mIPSCs), D-AP5, CGP58845, CNQX and TTX (300 

nM) were added in the Tyrode extracellular solution. The internal solution (K-

gluconate) used for recording APs in current-clamp and mEPSCs in voltage-clamp 

configuration contained (in mM): 126 K gluconate, 4 NaCl, 1 MgSO4, 0.02 CaCl2, 0.1 

BAPTA, 15 glucose, 5 Hepes, 3 ATP, and 0.1 GTP (pH 7.3 with KOH). The internal 

solution (KCl) used for mIPSC recordings contained (in mM): 126 KCl, 4 NaCl, 1 

MgSO4, 0.02 CaCl2, 0.1 BAPTA, 15 glucose, 5 Hepes, 3 ATP, and 0.1 GTP (pH 7.3 

with KOH). All the reagents were from Tocris, otherwise specified. Both mEPSCs and 

mIPSCs were acquired at a 10 kHz sample frequency and filtered at 1/5 of the 

acquisition rate with a low-pass Bessel filter. The amplitude and frequency of the 

miniature excitatory and inhibitory events were calculated using a peak detector 

function using appropriate threshold amplitudes and areas. The frequency, amplitude 

and kinetics of miniature PSCs were analyzed using the MiniAnalysis (Synaptosoft) 

and Prism (GraphPad Software, Inc.) software. All experiments were performed at RT. 

 

Immunocytochemistry 

Primary cortical neurons were fixed in 4% formaldehyde, freshly prepared from 

paraformaldehyde, in 0.1 M PB, pH 7.4 for 20 min at RT and immunostained for 

specific pre/postsynaptic markers of excitatory and inhibitory synapses. Briefly, after 
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several washes in PBS, cells were permeabilized and blocked for 30 min in 0.05% 

Triton X-100 and 10% normal goat serum (NGS) in PBS and then incubated overnight 

with primary antibodies diluted in 3% NGS and 0.05% Triton X-100 in PBS. 

Antibodies were used as follows: mouse anti-S6 protein (Cell Signaling, #2317), rabbit 

anti-phosphorylated-S6 protein (Cell Signaling, #2215), guinea pig anti-vGlut1 (1:500, 

Synaptic Systems, 135 304), mouse anti-Homer1 (1:200; Synaptic Systems, 160 011), 

rabbit anti-vGAT (1:500; Synaptic Systems 131 003), mouse anti-Gephyrin (1:500; 

147 011), rabbit anti-GluA1 (1:500; Synaptic Systems, 182 003), rabbit anti-GABAA-

β2 receptor subunit (1:500; Synaptic Systems, 224 803). Neurons were then washed 

three times in PBS and then incubated in the same buffer with Alexa-conjugated 

secondary antibodies (1:1500, Invitrogen) and counterstained with Hoechst for nuclei 

detection. After several washes in PBS, coverslips were mounted with Moviol 

mounting medium. Images were acquired using a 40x objective with a Leica SP8 

confocal microscopy (Leica Microsystems, Wetzlar, Germany). Images were 

processed using the colocalization plugin of ImageJ. For the analysis of synaptic 

density, basal dendrites of neurons were considered, and the colocalization analysis 

was performed, after threshold subtraction, to evaluate the simultaneous presence of 

pre- and a post-synaptic markers (vGlut1/Homer1 for excitatory synapses and 

vGAT/Gephyrin for inhibitory synapses). For experiments with transduced neurons, 

only tGFP-positive neurons were analyzed. To identify bona fide synaptic boutons, we 

selected colocalized puncta within an area of 0.1-1 μm2, corresponding to the 

overlapping area of pre-synaptic and post-synaptic proteins. We counted the number 

synaptic puncta present within 30 μm dendrite tracts starting from the cell body. For 

the analysis of postsynaptic receptors, the thresholded signal of Homer1 and Gephyrin 

was overlapped to GluA1 and GABAA-β2 receptors, respectively, and the fluorescence 

intensity was measured only within this colocalization area. Data are referred to three 
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independent experiments carried out in duplicate with 5-10 neurons analyzed per 

duplicate.  

 

Electron Microscopy 

Low-density cultures of cortical neurons from Depdc5+/+ and Depdc5+/- embryos, or 

from WT C57BL/6J embryos infected at 7 DIV with either shScr or shDepdc5 

lentiviruses were processed for transmission electron microscopy (TEM). Neurons 

were fixed at 14-15 DIV with 1.2% glutaraldehyde in 66 mM sodium cacodylate buffer, 

post-fixed in 1% OsO4, 1.5% K4Fe(CN)6, 0.1 M sodium cacodylate, en bloc stained 

with 10% of uranyl acetate replacement stain (EMS) for 30 min, dehydrated, and flat 

embedded in epoxy resin (Epon 812, TAAB). After baking for 48 h, the glass coverslips 

were removed from the Epon block by thermal shock and neurons were identified by 

means of a stereomicroscope. Embedded neurons were excised from the block and 

mounted on a cured Epon block for sectioning using an EM UC6 ultramicrotome (Leica 

Microsystems). Ultrathin sections (60-70 nm thick) were collected on 200-mesh copper 

grids (EMS) and observed with a JEM-1011 electron microscope (Jeol, Tokyo, Japan) 

operating at 100 kV using an ORIUS SC1000 CCD camera (Gatan, Pleasanton, CA). 

For each experimental condition, at least 30 images of synapses were acquired at 

10,000x magnification (sampled area per experimental condition: 36 μm2). Synaptic 

vesicles (SVs) were defined as spherical organelles with a diameter of approximately 

40 nm. Synaptic morphological features, including nerve terminal area, active zone 

(AZ) length, number and density of total SVs and of AZ-docked SVs were determined 

using ImageJ. 
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Statistical analysis  

Data are expressed as means ± SEM or box plot showing median, mean, 25th to 75th 

interquartile range and min to max values for number of cells (N) or independent 

preparations as detailed in the figure legends. Normal distribution of data was assessed 

using the D’Agostino-Pearson’s normality test (n>6) or the Shapiro-Wilk test (n≤6). 

The F-test was used to compare variance between two sample groups. To compare two 

experimental groups, either the two-tailed unpaired Student's t-test or the non-

parametric Mann-Whitney’s U-test was used based on data distribution. To compare 

more than two normally distributed experimental groups, one-way ANOVA (followed 

by the Bonferroni's multiple comparison test) or repeated measures ANOVA was used. 

To compare more than two experimental groups that are not normally distributed, the 

Kruskal-Wallis ANOVA was used, followed by the Dunn's multiple comparison test. 

Significance level was preset to p<0.05. Statistical analysis was carried out using Prism 

(GraphPad Software, Inc., La Jolla, CA).  
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5. Results 
 

5.1. Validation of Tm1a cassette efficiency 

 

As previously assessed in other murine models of constitutive Depdc5 knockout 

(Marsan et al., 2016; Hughes et al., 2017), homozygous deletion of Depdc5 leads to 

prenatal mortality (occurring between E14.5 and E17.5); consistently, we have never 

observed Depdc5-/- newborn after mating heterozygous to heterozygous carriers. Thus, 

to verify the block of Depdc5 gene expression obtained by the insertion of the Tm1a 

allele (Fig. 5A), we evaluated Depdc5 mRNA and protein levels by means of Real-

Time qPCR and Western Blotting, respectively, in the whole brain of E12.5 Depdc5+/+, 

Depdc5+/- and  Depdc5-/- embryos (Fig. 5B,C). The analysis confirmed that Depdc5 

mRNA levels were significantly reduced in Depdc5+/- and Depdc5-/- embryos by ≈ 40% 

and ≈ 90%, respectively, compared to Depdc5+/+ littermates (p=0.0016, One-Way 

ANOVA test). However, when we performed Western Blotting analysis, we observed 

that Depdc5 protein levels were reduced of ≈ 50% in Depdc5+/- and 100% in Depdc5-/- 

embryos (Fig. 1C; p=0.002, Student’s t-test). Thus, despite the qRT-PCR showed a 

residual Depdc5 mRNA in Depdc5-/- embryos, the total absence of Depdc5 protein in 

Depdc5-/- embryos indicates that the insertion of the Tm1a allele was 100% efficient in 

disrupting gene expression and that the residual transcript traces did not lead to protein 

translation. 
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Figure 5: Characterization of constitutive Depdc5 knockdown model.  

A. Representative image showing the insertion cassette of the Tm1a allele carried by Depdc5 

mouse. B. Bar plots showing Depdc5 mRNA levels in Depdc5+/+, Depdc5+/- and Depdc5-/- 

embryos. C. Representative Western Blot images (left) and bar plot (right) showing Depdc5 

protein levels in Depdc5+/+, Depdc5+/- and Depdc5-/- embryos. Data are expressed as means ± 

SEM with individual experimental points. *p<0.05; ***p<0.001, Kruskal-Wallis 

ANOVA/Dunn's test. 

  



39 
 

5.2. Morphological characterization of the Depdc5 heterozygous mouse 

 

Given the importance of DEPDC5 mutations in mTOR-dependent FCD etiology 

(Baulac et al., 2015; Baldassari et al., 2019a), we assessed the level of activation of 

mTORC1 pathway and checked for subtle alterations in cortical architecture in 

Depdc5+/- mice. First, we assessed the phosphorylation levels of S6 protein (a widely 

accepted marker for mTORC1 activation) in cortical lysates from 3-months old 

Depdc5+/+ and Depdc5+/- mice (Fig. 6 A,B), but the analysis revealed no significant 

changes between Depdc5+/+ and Depdc5+/- mice (Fig. 6, B). We thus could confirm 

that, as already reported (Marsan et al., 2016; Hughes et al., 2017), heterozygous loss 

of function of Depdc5 fails to hyperactivate mTORC1 pathways in vivo. 

Immunostaining analysis, however, revealed that heterozygous mice had a significantly 

increased number of pS6-positive neurons in cortical sections from frontal (p=0.0006, 

Mann-Whitney U-test) and somatosensory (p=0.005, Mann-Whitney’s U-test) cortices 

(Fig. 6C,D). Interestingly, the increase of pS6-positive cells was specifically localized 

in layers IV and VI, in both frontal (Fig. 6D, middle) and somatosensory (Fig. 6D, 

bottom) cortices. However, when we measured the total cortical thickness, as well as 

single layer thickness in slices stained with the Neuronal Nuclear Marker (NeuN), no 

significant differences between Depdc5+/+ and Depdc5+/- mice were detected (Fig. 7), 

ruling out an overt disturbance in the central nervous system development or in 

neuronal migration.  
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Figure 6: Depdc5+/- mice do not display hyperactivation of the mTORC1 pathway. 

A,B. Representative Western Blot images (A) and histogram (B) showing the phosphorylation 

level of S6 protein in  cortices from Depdc5+/+ and Depdc5+/- mice. C. Representative confocal 

cortical reconstruction of frontal (left) and somatosensory (right) cortices of Depdc5+/+ and 

Depdc5+/- mice stained for pS6. D. Morphometric analysis of the number of pS6 positive cells 

in total cortical sections (up) and the number of pS6-positive cells in defined layers of the 

frontal (middle) and somatosensory cortices, respectively (bottom). Data are shown as box 

plots. *p<0.05; **p<0.01; ***p<0.001, Student’s t-test/Mann Whitney’s U-test. Scale bar: 

100 μm. 
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Figure 7: Cortical layer thickness is not altered in Depdc5+/- mice. 

A. Representative confocal cortical reconstruction of frontal (left) and somatosensory (right) 

cortices of Depdc5+/+ and Depdc5+/- mice stained for NeuN. B. Morphometric evaluation of 

total cortical (up) and single layer thickness in the frontal (middle) and somatosensory 

(bottom) cortices of Depdc5+/+ and Depdc5+/- mice, respectively. Data are shown as box plots. 

No significant differences were found (Student’s t-test/Mann Whitney’s U-test). Scale bar: 100 

μm. 
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5.3. Increased seizure susceptibility of Depdc5+/- mice 

 

Alterations in the balance between excitation and inhibition, occurring either locally or 

diffused to the whole brain, are believed to be at the basis of most epileptic phenotypes 

(Stafstrom, 2014; Bozzi et al., 2018). We then assessed whether Depdc5 mutants 

displayed any excitatory/inhibitory imbalance in synaptic connectivity by counting, in 

cortical sections, puncta positive for vGlut1 and vGAT, which are presynaptic markers 

of excitatory and inhibitory synapses, respectively (Fig. 8A,B), in 3-months old 

Depdc5+/+ and Depdc5+/- mice. Interestingly, heterozygous mice showed an increased 

vGlut1/vGAT ratio in both frontal and somatosensory regions (p=0.042 and p=0.010, 

respectively, Student’s t-test; Fig. 8A,B), opening the possibility that these Depdc5 

mutants display a pro-epileptic phenotype. Indeed, despite Depdc5+/- mice did not 

display spontaneous seizures, as assessed by long-term video-tracking, the potential 

excitatory/inhibitory imbalance suggests that a subtle epileptic phenotype could be 

present in Depdc5+/- mice. Indeed, Depdc5+/- mice challenged with the serial 

administration of low-doses of the convulsant pentylentetrazol (PTZ, 10 mg/kg every 

10 min, until provocation of a tonic-clonic seizure) displayed a significantly lower 

seizure threshold than Depdc5+/+ littermates (p=0.039, Student’s t-test; Fig. 8C). 
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Figure 8: Depdc5+/- mice display lowered PTZ-induced seizure threshold. 

A,B. Representative confocal images of DAPI, vGlut1, vGAT staining, and overlapped signals 

in frontal (left) and somatosensory (right) cortices of Depdc5+/+ and Depdc5+/- mice (A) and 

ratio between vGlut1- and vGAT-positive puncta in the frontal (left) and somatosensory (right) 

cortices of Depdc5+/+ and Depdc5+/- mice (B). C. Seizure provocation threshold in Depdc5+/+ 

and Depdc5+/- mice (n=8/genotype) treated with progressively increasing doses of the 

convulsant PTZ. Data are shown as box plots. *p<0.05; Student’s t-test/Mann Whitney’s U-

test. Scale bar: 50 μm. 
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5.4. Validation of the shRNA-induced Depdc5 deficiency model 

 

Our previous experiments showed that the Depdc5+/- mouse fails to recapitulate the 

major traits of DEPDC5-related pathological phenotype, namely the cytoarchitectural 

malformations in the cerebral cortex and the occurrence of spontaneous seizures. The 

presence of mosaic loss of heterozygosity has been often observed in the brain of 

patients with FCD and epilepsy, suggesting that heterozygous haploinsufficiency could 

be not sufficient to trigger the most severe effects of DEPDC5 deficiency. Thus, in the 

effort to induce a stronger Depdc5 depletion in neurons, reminiscent of loss of 

heterozygosity, we adopted a RNA interference strategy and designed four distinct anti-

Depdc5 shRNA constructs (sh1-sh4). We independently transfected the constructs in 

HEK-293T cells and evaluated Depdc5 transcript levels by qRT-PCR analysis. All 

shRNAs significantly reduced Depdc5 mRNA levels compared to the scrambled 

construct with a more intense Depdc5 mRNA down-regulation by the sh3 (≈70% 

decrease; p=0.008, Kruskal-Wallis ANOVA/Dunn's tests; Fig. 9A). The sh3 construct 

was therefore used for subsequent experiments. We transduced cultured primary 

neurons with lentiviral vectors encoding for either the sh3 against Depdc5 mRNA 

(Depdc5KD1) or a scramble construct thereof (Depdc5Scr).  We found that Depdc5KD1 

neurons exhibited ≈80% reduction in Depdc5 mRNA levels compared to Depdc5Scr 

(p<0,0007, Student’s t-test; Fig. 9B), while Western Blotting analysis confirmed that a 

parallel reduction in Depdc5 protein was also present in Depdc5KD1 neurons (Fig. 9C; 

p=0.045, Student’s t-test). 
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Figure 9: Characterization of shRNA-induced Depdc5 knockdown model. 

A. Histograms representing Depdc5 mRNA levels in HEK-293T cells after transfection with 

Sh1-4RNA against Depdc5 and Scramble control. B. Bar plots showing Depdc5 mRNA levels 

in Depdc5Scr and Depdc5KD1 neurons, respectively. C,D. Representative Western Blot images 

(C) and bar plot (D) showing Depdc5 protein levels in Depdc5Scr and Depdc5KD1 neurons. Data 

are expressed as means ± SEM. *p<0.05; **p<0.01; ***p<0.001, Student’s t-test (B,D) and 

Kruskal-Wallis ANOVA/Dunn's test (A). 
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5.5. Biochemical and morphological neuronal phenotype of chronic and 

acute Depdc5 deficiency 

 

After validating our heterozygous and shRNA-induced models of Depdc5 deficiency, 

we characterized their neuronal phenotype to unmask the effects of Depdc5 loss-of-

function at the cellular level. Firstly, we checked for the presence of a hyperactivation 

of mTORC1 pathway, by comparing the phosphorylated fraction of S6 protein of 

Depdc5+/+ and Depdc5+/- primary cortical neurons with those of Depdc5KD1 and 

Depdc5Scr by Western Blotting (Fig. 10). While constitutive Depdc5+/- neurons did not 

present an overt increase of pS6 compared to Depdc5+/+ (n=5, p>0.05, Student’s t-test), 

Depdc5KD1 neurons displayed an about 1.5-fold increase in pS6 levels with respect to 

Depdc5Scr neurons (n=4, p=0.012, Student’s t-test) (Fig. 10A,B). Since ectopic, pS6-

positive enlarged neurons have been reported in FCD patients with DEPDC5 loss-of-

function, we immunostained neuronal cultures with the pS6 antibody (Fig. 10C). In 

agreement with biochemical analyses, only Depdc5KD1 neurons displayed an increased 

fluorescent intensity for pS6 (p=0.001, Student’s t-test) without significant changes in 

the total S6 intensity, suggesting that the observed hyperphosphorylation of S6 is not 

due to an increased translation of the protein, but rather to its increased phosphorylation 

by mTORC1. Interestingly, we also observed a significant increase in soma size 

(≈15%; p=0.013, Student’s t-test) in Depdc5KD1 neurons compared to Depdc5Scr, 

confirming that mTORC1 hyperactivation triggers morphological changes in vitro 

(Fig. 10D,E). Overall, these results suggest that loss of heterozygosity in Depdc5 is 

required to trigger the hyperactivation of the mTORC1 pathway and to induce 

morphological changes resembling those observed in patients with FCD. 
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Figure 10: Acute Depdc5 deficiency induces hyperactivation of the mTORC1 pathway and 

cell body enlargement in primary cortical neurons.  

A,B. Representative western blot (left) and quantification (right) of the S6 phosphorylation 

levels (pS6) in Depdc5+/+ and Depdc5+/- primary cortical neurons (A; n=6 embryos) and in 

Depdc5KD1 and Depdc5Scr neurons. (B; n=4 independent preparations). C. Left: Representative 

confocal images of βIII-tubulin, pS6 and S6 staining in Depdc5+/+ and Depdc5+/- neurons. 

Right: tGFP, pS6 and S6 immunofluorescence in Depdc5Scr and Depdc5KD1 neurons, 

respectively. D,E. Bar plots showing the soma size (left) and the fluorescent intensity of pS6 

(middle) and S6 (right)  of primary cortical neurons from Depdc5+/+ and Depdc5+/- mice (D; 

n=6 plates from 3 embryos per genotype) or of Depdc5Scr and Depdc5KD1 neurons (E; n=6 

plates from 3 independent preparations). Data are expressed as means ± SEM with individual 

experimental points. *p<0.05; ***p<0.001, Student’s t-test. Scale bar: 10 μm. 
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5.6. Increased complexity of dendritic arborization in Depdc5-deficient 

neurons  

 

As stated in the introduction, mTORC1 plays a key role in dendrites and axons 

developments. To assess the potential neurodevelopmental changes due to Depdc5 

downregulation, we next examined neurite elongation and branching by Sholl analysis 

in primary neurons prepared from Depdc5+/+ and Depdc5+/- littermates, as well as in 

primary neurons nucleofected with either Scr or sh3 (Fig. 11). In Depdc5+/- neurons, 

the number of intersections was significantly higher than in Depdc5+/+ neurons at 

distances between 90 and 110 μm from the cell body (Fig. 11,B). Accordingly, the area 

under the curve revealed a significant increase of neurite complexity for Depdc5+/- 

neurons compared to Depdc5+/+ neurons (p=0.027, Student’s t-test; Fig. 11C). The 

increased neurite arborization complexity was more pronounced in Depdc5KD1 

neurons, with a much higher number of intersections at distances between 80 and 150 

μm from the cell body, resulting in a significant increase in the area under the curve 

when compared to Depdc5Scr neurons (p=0.017, Student’s t-test; Fig. 11D-F). These 

results confirm that reduction of Depdc5 levels affects neuronal development by 

increasing the outgrowth and branching of neurites. 
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Figure 11: Depdc5-deficient neurons display an increased complexity of neurite 

arborization.  

A-C. Representative reconstructions of neuronal arborization of Depdc5+/+ and Depdc5+/- 

cortical neurons (A), the respective Sholl analysis (B) and the histogram of the area under the 

curve (C) (N=4 embryos per genotype). D-F. Representative reconstruction of neuronal 

arborizations of Depdc5KD1 and Depdc5Scr neurons. (D), the respective Sholl analysis (E) and 

the histogram of the area under the curve (F) (N=4 independent preparations). At least 10 

neurons per preparation were analyzed. Data are expressed as means ± SEM with individual 

experimental points. *p<0.05; **p<0.001; ***p<0.001; Student’s t-test (C,F) and ANOVA for 

repeated measures (B,E). 
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5.7.  Increased excitatory synaptic transmission in Depdc5-deficient 

neurons 

 

The observed alterations due to Depdc5 loss of functions, especially regarding the 

increased dendrite arborization, open the possibility that other disturbances in related 

developmental processes, such as synaptic formation and homeostasis, are present in 

our mutants. Therefore, we investigated whether constitutive or acute Depdc5 

deficiency could alter synaptic transmission in vitro. First, we focused on excitatory 

synaptic transmission. To study this aspect, we performed electrophysiological whole-

cell recordings of mEPSCs in 14 DIV cortical neurons from Depdc5+/+ and Depdc5+/- 

mice, as well as in 14 DIV Depdc5Scr or Depdc5KD1. (Fig. 12A,B). Interestingly, while 

no changes in frequency, amplitude and kinetics of mEPSCs were observed in 

Depdc5+/- neurons (Fig. 12C,E), Depdc5KD1 neurons showed a 4-fold increase in 

mEPSC frequency (p=0.0002, Student’s t-test), together with significant increases in 

mEPSC amplitude (p=0.001, Mann-Whitney's U-test) and charge (p= 0.002, Student’s 

t-test) with respect to Depdc5Scr controls (Fig. 12D,F). Depdc5KD1 also showed an 

increased EPSC 10-90 rise time (p=0.046, Student’s t-test) compared to Depdc5Scr 

neurons, while the decay was not significantly affected (Fig. 12E). To ascertain 

whether the changes in mEPSC frequency were attributable to variations in synaptic 

density, we checked the distribution of excitatory synapses by confocal microscopy 

(Fig 13A,B). To investigate this aspect, we counted puncta that were double-labeled 

with an excitatory presynaptic marker, such as vGlut1, and an excitatory postsynaptic 

marker, such as Homer1, to unambiguous identify mature excitatory synapses. In 

agreement with the electrophysiological data, no changes in synaptic density were 

detected in Depdc5+/- neuronal networks with respect to Depdc5+/+ cultures (Fig. 13E, 
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left), while a marked and significant increase in the density of excitatory synaptic 

synapses was observed in Depdc5KD1 neurons (p<0.0001, Student’s t-test; Fig. 13F, 

left) that paralleled the increase in mEPSC frequency. To explain the observed changes 

in mEPSC amplitude and charge, the expression of the major AMPA receptor subunit 

GluA1 was investigated at Homer-positive puncta (Fig. 13C,D). While no changes in 

the GluA1 immunoreactivity were observed in Depdc5+/- neurons with respect to 

Depdc5+/+ neurons (Fig. 13E, right), we found a significant increase in GluA1 

fluorescence intensity in Depdc5KD1 neurons compared to Depdc5Scr control neurons 

(p=0.012, Student’s t-test; Fig. 13F, right). 
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Figure 12: Acute Depdc5 silencing increases excitatory synaptic transmission.  

A,B. Representative traces of mEPSCs recorded in Depdc5+/+ and Depdc5+/- primary cortical 

neurons (A) and in Depdc5KD1 and Depdc5Scr neurons.  (B). C. Mean frequency and amplitude 

of mEPSCs in Depdc5+/+ (n=17) and Depdc5+/- (n=15) neurons (upper panels) and the 

respective mEPSC cumulative curves of inter-event interval and amplitude distributions (lower 

panels). D. Mean frequency and amplitude of mEPSCs in Depdc5Scr (n=16) and Depdc5KD1 

(n=19) neurons (upper panels) and the respective cumulative curves of mEPSC inter-event 

interval and amplitude distributions (lower panels). E. Box plots showing charge (left), 80% 

decay (middle) and 10-90 rise (right) of mEPSCs measured in Depdc5+/+ and Depdc5+/- 

cortical neurons F. Box plots showing the same mEPSC parameters measured in Depdc5Scr 

and Depdc5KD1 transduced WT neurons. All measurements were obtained from n=3 

independent preparations. Data are expressed as box plots. *p<0.05; **p<0.01; ***p<0.001, 

Student’s t-test/Mann Whitney’s U-test.  
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Figure 13: Increased number of excitatory synapses and AMPA receptor expression in 

neurons following acute Depdc5 silencing. 

A,B Representative confocal images of pre/post-synaptic markers vGlut1 and Homer1 in 

Depdc5+/+ and Depdc5+/- neurons (A) and Depdc5Scr and Depdc5KD1 neurons (B). C,D. 

Representative confocal images of the GluA1 AMPA receptor subunit at excitatory synaptic 

boutons in Depdc5+/+ and Depdc5+/- neurons (C) and Depdc5Scr and Depdc5KD1 neurons (D). 

E. Quantification of the linear density of excitatory synaptic boutons (left) and GluA1 AMPA 

receptor subunit fluorescent intensity (right) in Depdc5+/+ and Depdc5+/- neurons. F. 

Quantification of the linear density of excitatory synaptic boutons (left) and GluA1 AMPA 

receptor subunit fluorescent intensity (right) in Depdc5Scr and Depdc5KD1 neurons. All 

measurements were taken from 3 independent preparations. For histology, dendrites from at 

least 10 neurons per each preparation were analyzed. Data are expressed as box plots. 

*p<0.05; ****p<0.0001, Student’s t-test/Mann Whitney’s U-test. Scale bar: 10 μm.  
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5.8. Inhibitory synaptic transmission is not markedly affected in 

Depdc5-deficient neurons 

 

We next investigated whether Depdc5 deficiency could also alter inhibitory synaptic 

transmission in Depdc5+/+ and Depdc5+/- neurons, as well as in Depdc5Scr and 

Depdc5KD1 neurons (Fig. 14A,B). As observed for excitatory transmission, no 

detectable changes in mIPSC frequency, amplitude, charge or kinetics were observed 

under conditions of chronic haploinsufficiency in Depdc5+/- neurons (Fig. 14C,E). 

mIPSC frequency was neither affected after acute silencing of Depdc5, although we 

observed an increase in the amplitude of mIPSCs (p=0.015, Mann-Whitney's U-test; 

Fig. 14D). However, further analysis revealed that the overall charge of mIPSCs was 

unchanged, and that the effects on amplitude were attributable to an acceleration in 

mIPSC kinetics in Depdc5KD1 neurons that showed shortening of both the IPSC 10-90 

rise time and 80% decay time (p=0.001 and 0.042, respectively, Student’s t-test; Fig. 

14F).. Immunocytochemical analysis of the density of inhibitory synapses identified 

by co-staining with the pre/postsynaptic inhibitory markers VGAT and Gephyrin, 

respectively, confirmed the electrophysiological results (Fig. 15A,B). Indeed, no 

differences were observed in synaptic density in both Depdc5+/- or Depdc5KD1 networks 

when compared to the respective controls, as assessed by double immunolabeling for 

vGAT and Gephyrin, a pre- and a post-synaptic marker of inhibitory synapses, 

respectively (Fig. 15E,F, left). Moreover, the expression of the GABAA β2 receptor 

subunit, measured as fluorescence intensity in Gephyrin-positive puncta, was not 

significantly changed in both Depdc5+/- and Depdc5KD1 neurons, confirming that the 

increase in mIPSC amplitude observed in Depdc5KD neurons was not contributed by an 

increase in quantal size (Fig. 15E,F, right).  
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Figure 14. Acute Depdc5 silencing increases the amplitude, but not the frequency, of 

mIPSCs.  

A,B. Representative traces of mIPSCs recorded in Depdc5+/+ and Depdc5+/- primary cortical 

neurons (A) and in Depdc5Scr and Depdc5KD1 neurons (B). C. Mean frequency and amplitude 

of mIPSCs in Depdc5+/+ (n=12) and Depdc5+/- (n=12) neurons (upper panels) and the 

respective cumulative curves of mIPSC inter-event interval and amplitude distributions (lower 

panels). D. Mean frequency and amplitude of mIPSCs in Depdc5Scr (n=18) and Depdc5KD1 

(n=18) neurons (upper panels) and the respective mIPSC cumulative curves of inter-event 

interval and amplitude distributions (lower panels). E. Box plots showing charge (left), 80% 

decay (middle) and 10-90 rise (right) of mIPSCs measured in Depdc5+/+ (n=12) and Depdc5+/- 

(n=12) cortical neurons D. Box plots showing the same mIPSC parameters measured in 

Depdc5Scr (n=18) and Depdc5KD (n=18) transduced WT neurons. All measurements were 

obtained from n=3 independent preparations. Data are expressed as box plots. *p<0.05, 

**p<0.01, Student’s t-test. 
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Figure 15: Depdc5 deficiency does not alter the density of inhibitory synapses and the 

postsynaptic expression of the GABAA β2 receptor subunit.  

A,B. Representative confocal images of pre/post-synaptic markers vGAT and Gephyrin in 

Depdc5+/+ and Depdc5+/- neurons (A) and Depdc5Scr and Depdc5KD1 neurons (B). C,D. 

Representative confocal images of GABAA β2 receptor subunit at excitatory synaptic boutons 

in Depdc5+/+ and Depdc5+/- neurons (C) and Depdc5Scr and Depdc5KD1 neurons (D). E. 

Quantification of the linear density of inhibitory synaptic boutons (left) and GABAA β2 receptor 

subunit fluorescent intensity (right) in Depdc5+/+ and Depdc5+/- neurons. F. Quantification of 

the linear density of inhibitory synaptic boutons (left) and GABAA β2 receptor subunit 

fluorescent intensity (right) in Depdc5Scr and Depdc5KD1 neurons. All measurements were taken 

from 3 independent preparations. For histology, dendrites from at least 10 neurons per each 

preparation were analyzed. Data are expressed as box plots. Scale bar: 10 μm. 
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5.9. Synaptic ultrastructure is not altered by Depdc5 deficiency 

 

Although the electrophysiological phenotype suggested that an increase in synapse 

number, rather than a change in the quantal properties of synaptic transmission, was 

responsible for the increased excitatory strength, we checked whether Depdc5 

deficiency had any effect on synaptic ultrastructure in Depdc5+/+ and Depdc5+/- neurons 

(Fig. 16A), as well as in Depdc5Scr and Depdc5KD1 neurons (Fig. 16B). Therefore, we 

performed a detailed morphometric analysis of synaptic contacts by TEM. The analysis 

failed to detect major changes in synaptic ultrastructure. Indeed, both Depdc5+/- and 

Depdc5KD1 neurons showed no significant changes in nerve terminal area, active zone 

(AZ) length, number and density of total nerve terminal synaptic vesicles (SVs) and 

number and linear density of docked SVs, as compared to the respective controls (Fig. 

16C,D). However, a significant increase (p = 0.0211, Mann-Whitney's U-test) in the 

mean area, but not in the number, of endosomes was observed in Depdc5KD1 nerve 

terminals, suggesting the presence of an impaired autophagic flux (Fig. 16E,F). 
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Figure 16. Acute Depdc5 silencing increases the size of nerve terminal endosomes without 

affecting synaptic ultrastructure.  

A,B. Representative TEM micrographs showing synaptic morphology of Depdc5+/+ and 

Depdc5+/- primary neurons (A), and Depdc5Scr and Depdc5KD1 neurons (B). C,D. Histograms 

showing morphometric analysis of synapses from Depdc5+/+ and Depdc5+/- neurons (C) and 

Depdc5Scr and Depdc5KD1 neurons (D) for the following parameters: total SV number, SV 

density, docked SV number, docked SV density, endosome density and mean endosome area. 

Nerve terminal areas (means ± SEM) were: Depdc5+/+, 0.811 ± 0.211; Depdc5+/-, 0.832 ± 

0.397; Depdc5Scr, 0.741 ± 0.280; Depdc5KD1, 0.652 ± 0.219. AZ lengths (means ± SEM) were: 

Depdc5+/+, 0.496 ± 0.142; Depdc5+/-, 0.427 ± 0.104; Depdc5Scr, 0.410 ± 0.110; Depdc5KD1, 

0.367 ± 0.064. All measurements were taken from 3 independent preparations. At least 10 

synapses per each preparation were analyzed. Data are expressed as box plots. *p<0.05, 

Student’s t-test. Scale bars: 0.2 μm and 0.05 μm (zoomed pictures). 
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5.10. Acute Depdc5-deficiency increases intrinsic excitability of 

principal neurons 

 

We next investigated whether Depdc5 downregulation was associated with an increase 

in intrinsic excitability, in addition to the observed excitatory/inhibitory synaptic 

imbalance. We thus performed electrophysiological recordings in current-clamp 

configuration to evaluate the passive and active properties of single cortical neurons 

from Depdc5+/+ and Depdc5+/- mice or of WT neurons that had been subjected to RNA 

interference to silence Depdc5 expression (Fig. 17A,B). No major changes in 

excitability were observed from the firing rate versus injected current curves between 

Depdc5+/- and Depdc5+/+ neurons, in both mean firing frequency (number of APs 

elicited during the 500 ms of current injection), instantaneous firing frequency and 

rheobase (Fig. 17C, Table 1). Similarly, no changes were observed in the basic passive 

properties, as well as in the threshold voltage, and AP shape parameters obtained from 

the phase-plane plot analysis (Table 1). On the contrary, Depdc5KD1 neurons displayed 

a significant increase in the mean firing frequency at higher levels of injected current 

compared to Depdc5Scr neurons that was paralleled by a significant decrease in the 

rheobase (Fig. 8D, Table 1). Depdc5KD1 neurons did not exhibit altered passive 

properties. However, the analysis of the AP waveform by phase-plane plot analysis 

showed significant increases in the maximum rising and repolarization slopes and AP 

peak (Table 1), consistent with a condition of hyperexcitability induced by the acute 

Depdc5 depletion.  
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Figure 17: Acute Depdc5 silencing increases intrinsic excitability.  

A,B. Representative recordings of action potentials induced by the injection of 280 pA for 500 

ms (upper panels) and representative phase-plane plots of the first action potential in the train 

(lower panels) in Depdc5+/+ and Depdc5+/- neurons (A) and in Depdc5Scr and Depdc5KD1 

neurons (B). C. Mean number of APs evoked by the 500 ms current step in Depdc5+/+ (n=22) 

and Depdc5+/- (n=22) primary neurons (left) and instantaneous frequency of APs (right). D. 

Mean number of APs evoked by the 500 ms current step in Depdc5Scr (n=40) and Depdc5KD1 

(n=31) neurons (left) and instantaneous frequency of APs (right). All measurements were taken 

from 3 independent preparations. Data are expressed as means ± SEM. *p<0.05; ANOVA for 

repeated measures. 
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Table 1. Passive and active properties of Depdc5-deficient primary cortical 
neurons. 
 

 
Data are expressed as means ± SEM. The number of replicates is indicated. *p<0.05; 
**p<0.01; Student’s t-test/Mann-Whitney's U-test.  
 

 

Parameters Depdc5+/+ Depdc5+/- p Depdc5Scr Depdc5KD1 p  

Vrest (mV) 
- 53.41 ± 1.55 

(n=22) 
- 52.55 ± 1.42 

(n=22) 

 
0,68 

 

 
- 53.00 ± 1.39 

(n=40) 
 

- 50.84 ± 2.11 
(n=31) 

0.39 

Cin (pF) 
40.97 ± 3.39 

(n=25) 
34.91 ± 1.79 

(n=27) 
0.28 

 
51.88 ± 4.97 

(n=14) 
 

42.92 ± 3.82 
(n=19) 

0.16 

Rin (MΩ) 
201.8 ± 16.25 

(n=22) 
208.1 ± 17.48 

(n=22) 
0.79 

264.4± 15.28 
(n=40) 

255.2 ± 15.00 
(n=31) 

0.84 

Rheobase 
(pA) 

213.6±9.03 
(n=22) 

198.2±11.89 
(n=22) 

0.30 
160.3 ± 10.26 

(n=40) 
133.5 ± 7.80 

(n=31) 
0.04* 

Vthr (mV) 
- 30.46 ± 1.69 

(n=22) 

 
- 29.61 ± 1.54 

(n=22) 
 

 
0.71 

 

- 28.61 ± 1.04 
(n=40) 

- 29.99 ± 1.13 
(n=31) 

0.37 

Max rising 
slope 

(mV/ms) 

101.4 ± 7.3 
(n=22) 

119.8 ± 14.2 
(n=22) 

 
0.74 

 

67.16 ± 6.85 
(n=40) 

 
95.89 ± 11.16 

(n=31) 
 

0.04* 

Half-width 
(ms) 

1.69 ± 0.12 
(n=22) 

 
1.42 ± 0.10 

(n=22) 
 

0.31 
2.71 ± 0.23 

(n=40) 
2.101 ± 0.13 

(n=31) 

 
0.17 

 

AP peak 
(mV) 

25.17 ± 2.20 
(n=22) 

 
27.07 ± 2.27 

(n=22) 
 

0.55 

 
22.70 ± 1.73 

(n=40) 
 

30.29± 2.63 
(n=31) 

0.02* 

Max repol. 
slope 

(mV/ms) 

- 28.57 ± 1.96 
(n=22) 

 
- 32.29 ± 2.69

(n=22) 
 

0.27 
- 20.14 ± 1.73

(n=40) 
- 26.50 ± 3.11

 (n=31) 
0.09 

Phase slope 
(ms-1) 

10.45±0.71 
(n=22) 

 
10,55±0,65 

(n=22) 
 

0.92 
7.201±0,48 

(n=40) 

 
8.705±0.69 

(n=31) 
 

0.22 
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5.11. Depdc5 knockdown with an alternative shRNA resumes most 

of the Depdc5KD1 neurons phenotype 

 

To confirm that the observed phenotype in Depdc5KD1 neurons was specifically due to 

the knockdown of Depdc5 and to exclude any off-target effect of the sh3 construct, we 

cloned and alternative shRNA, the sh4, in a lentiviral vector and used for experiments 

in primary neurons. qRT-PCR and Western Blot analysis showed that sh4-transduced 

neurons (Depdc5KD2) exhibited 45% reduction of Depdc5 mRNA and ≈ 40% reduction 

of Depdc5 protein level compared to Depdc5Scr (Fig. 18A,B; p=0.028 and p=0.0285, 

respectively; Mann-Whitney’s U-test/Student’s t-test). Depdc5KD2 neurons displayed a 

≈ 30% increase of the phosphorylated fraction of S6 protein (Fig. 18C; p=0.044; 

Student’s t-test), suggesting that an acute depletion of about half Depdc5 protein level 

is sufficient to induce hyperactivation of the mTORC1 pathway. Similarly to 

Depdc5KD1 neurons, immunofluorescence analysis showed that Depdc5KD2 exhibited 

an increase in soma size and pS6 immunoreactivity compared Depdc5Scr, with no 

changes in the intensity of total S6 protein (Fig. 18D,E; p=0.007 and p=0.004, 

respectively; Student’s t-test). We then recorded mEPSCs and firing activity to assess 

the synaptic phenotype of Depdc5KD2 neurons. Similar to the sh3-mediated silencing, 

we observed an increase in the frequency of mEPSCs of Depdc5KD2 neurons compared 

to the control (Fig. 18G; p=0.0001, Mann-Whitney's U-test), in the absence of 

significant changes in amplitude of miniature events. The same result was observed for 

both mean firing frequency and instantaneous firing frequency, where no differences 

between Depdc5KD2 and Depdc5Scr neurons were observed (Fig. 18I). 
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Figure 18: Depdc5Kd2 neurons recapitulate most of the phenotype of Depdc5Kd1neurons. A. 

Depdc5 mRNA levels in Depdc5KD2 and Depdc5Scr neurons. B,C. Representative Western Blot 

images (left) and bar plot (right) showing the level of Depdc5 protein (B) and the 

phosphorylated fraction of S6 protein (C) in Depdc5KD2 and Depdc5Scr neurons. D,E. 

Representative Western Blot images (D) and bar plot showing the soma size (left) and the 

fluorescent intensity of pS6 (middle) and S6 (right) in Depdc5KD2 and Depdc5Scr neurons. F. 

Representative traces of mEPSCs recorded from Depdc5Scr and Depdc5KD2. G. Box plot 

showing mEPSCs frequency and amplitude recorded in Depdc5KD2 and Depdc5Scr with the 

respective cumulative distributions. H. Representative recordings of action potentials in 

Depdc5Scr and Depdc5KD2 neurons, I. Mean number of APs evoked by the 500 ms current step 

in Depdc5Scr and Depdc5KD2 neurons (left) and instantaneous frequency of APs (right). All 

measurements were taken from 3 independent preparations. Data are expressed as box plots 

and as means ± SEM.***p<0.001, Mann Whitney’s U-test. Scale bar: 10 μm. 
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6. Discussion 
 

DEPDC5 mutations are emerging as a common cause of a broad epileptic syndrome 

spectrum (Poduri, 2014; Baldassari et al., 2019a; Baldassari et al., 2019b;), including 

FCD, that are characterized by dysmorphic neurons displaying enhanced mTOR 

activation (for reviews see Marsan and Baulac, 2018; Iffland and Crino, 2017). 

Notwithstanding Depdc5 has been identified as a part of the GATOR1 complex (Bar-

Peled et al., 2013), its neuronal profile is still poorly characterized. mTORC1 plays a 

key role in neurons soma growth, dendritic branching and synaptogenesis, and synaptic 

excitability (Laplante and Sabatini, 2012; Lasarge and Danzer, 2014). We therefore 

investigated these aspects in primary neuron cultures from either heterozygous 

Depdc5+/- mice or in primary neurons silenced for Depdc5 by RNA interference. 

It was previously reported that heterozygous Depdc5+/- mice failed to replicate the main 

hallmarks of the human pathology, such as spontaneous seizures (Marsan et al., 2016; 

Hughes et al., 2017). Here we demonstrate that, although Depdc5+/- mice have a 

reduced epileptic threshold to PTZ, they do not display alterations in the mTORC1 

pathway and in cortical cytoarchitecture. Moreover, primary heterozygous neurons do 

not exhibit overt alterations of mTORC1 signaling and, except for a slightly increased 

dendritic tree development, soma size, synaptogenesis and synaptic transmission were 

comparable to WT neurons.  

Strikingly, acute silencing of Depdc5 in WT neurons by RNA interference revealed 

that a ≈ 80% decrease in Depdc5 mRNA is able to induce morphological defects that 

resemble those seen in patients with FCD consisting of mTOR hyperactivated enlarged 

neurons. Recent studies showed the occurrence of second-hit DEPDC5 variants in 

resected brain samples from individuals with FCD (Baldassarri et al. 2019, Sim et al., 

2019). This variant was present only in abnormal neurons within the dysplastic area 
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and the somatic mutation load correlates with dysmorphic cell density (Sim et al., 

2019). Our experiments, in line with these findings, highlight the importance of loss of 

heterozygosity to trigger the changes in neuronal morphology and connectivity that, 

together with the impairment in neuronal differentiation and migration associated with 

mTOR hyperactivity, could possibly lead to macroscopic dysplasia. Our results also 

suggest an important neurodevelopmental role of DEPDC5. Indeed, acutely depleted 

neurons displayed both an increased complexity of neuritic arborization and altered 

synaptogenesis, processes in which the role of mTOR in well established (Hoeffer and 

Klann, 2010). Moreover, Depdc5KD2 neurons, whose Depdc5 depletion level was 

comparable to Depdc5+/- neurons, displayed most of the alterations observed in 

Depdc5KD1, including hyperactivation of mTORC1 pathway, increased soma size and 

increased frequency of mEPSCs, that were absent in heterozygous neurons. The less 

intense, but still severe, phenotype observed in Depdc5KD2 neurons suggests that also 

the acute deletion of Depdc5 plays a role in the establishment of the Depdc5-related 

phenotype.  

It is not clear, however, why the acute loss of 40% of Depdc5 in neurons generates a 

severe phenotype that is absent in constitutive heterozygous neurons. It has been 

reported that negative feedback from phosphorylated S6 to Akt could limit mTORC1 

hyperactivation under conditions of constitutive mTORC1 stimulation, such as chronic 

insulin exposure (Howell and Manning, 2011). Future studies are needed to address if 

the acute loss of Depdc5 could overcome this feedback.  This would be particularly 

important due to the dramatic phenotype given by somatic mutation of DEPDC5. 

In our models the synaptogenesis defect appears to affect only excitatory synapses, 

while inhibitory synapses develop normally. The greatly increased frequency and 

amplitude of mEPSCs, paralleled by increased density of excitatory synapses and 

expression of glutamate receptors, may generate an excitation/inhibition imbalance that 
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triggers epileptogenesis. These results differ from previous data in the zebrafish, where 

Depdc5 knockout was associated with deficits in the GABAergic systems 

(Swaminathan et al., 2018). Although this discrepancy could be due to the time-course 

of Depdc5 silencing or to species-specific differences, the overall result will be an E/I 

imbalance in both experimental models. 

Recently, it has been shown that Depdc5 mosaic knockout leads to growth of abnormal 

dendritic tree, increased amplitude of sEPSPs and local hyperexcitability of pyramidal 

neurons (Ribierre et al., 2018; Hu et al., 2018). Our data confirm these findings, 

suggesting that the hyperactivation of cortical networks can result from both increased 

number of excitatory synaptic connections and increased expression of postsynaptic 

excitatory receptors, leading to increased excitatory strength. The Depdc5-linked 

epileptogenic phenotype is also contributed by an increase in the intrinsic excitability 

and an enhancement of AP dynamics, partially consistent with what observed following 

mosaic inactivation of mouse Depdc5 by in utero electroporation (Ribierre et al., 2018).  

Indeed, in the latter, pyramidal neurons display a reduced firing frequency and no 

differences in the frequency of spontaneous events. However, the large increase in cell 

capacitance displayed by electroporated neurons, that is absent in Depdc5KD1 neurons, 

could account for the reduced firing pattern; this, in turn, could possibly influence the 

reduced frequency of spontaneous events. In any case, the significantly higher gain of 

firing frequency (slope of the F-I curve) above threshold of electroporated Depdc5 

knockout neurons is consistent with an increased intrinsic responsiveness to current 

injection and strongly suggests an increase in the excitability properties of pyramidal 

neurons in-vivo. Differences in the model systems, and compensatory effects arising 

after chronic knockdown could be, at least partially, responsible for the observed 

differences and further studies are needed to clarify this point.  
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Our results indicate that the hyperactivity of the mTOR pathway has combined effects 

at ion channel and synaptic levels that predominantly affect excitatory neurons, thereby 

leading to a severe imbalance between excitatory and inhibitory activity. 

Electrophysiological recording of human neurons from TS pediatric patients presenting 

FCD revealed that spontaneous GABA synaptic activity was increased compared to 

glutamate activity (Cepeda et al., 2005). Pacemaker GABA activity, consisting of 

rhythmic synaptic events, was also frequently observed in FCD cases (Cepeda et al., 

2014). In addition, similar to cytomegalic pyramidal neurons, cytomegalic GABAergic 

interneurons are hyperexcitable and display spontaneous membrane depolarizations 

and bursting activity, making them potential generators of epileptic activity (Fauser et 

al., 2013). However, also GluA2/3 subunits of AMPA receptor and metabotropic 

glutamate receptors (particularly mGluR1 and mGluR5) are highly expressed in 

dysplastic neurons (Babb et al., 1998; Hilbig et al., 1999; Aronica et al., 2003), 

suggesting that an increased excitatory drive is also present in-vivo.  Overall, these 

results indicate that human brain samples of FCD display a condition of 

hyperexcitability, at least in a subset of neurons, which is a constant finding in both 

experimental models of TS and patients’ brain tissues and, therefore, could be regarded 

as a common denominator of mTOR-related FCDs. 

The molecular mechanism underlying these defects and their specificity for excitatory 

neurons in our model is still unclear. mTOR signaling has an important role in 

regulating the autophagy flux (Hall, 2008; Hosokawa et al., 2009; Jung et al., 2009; 

Kim et al., 2011; Yu et al., 2010). Autophagy is a homeostatic process that involves the 

turnover of intracellular organelles and proteins through the endolysosomal system 

(Glick et al., 2010). Recently, it has been shown that deficiency in mTOR-mediated 

autophagy could reduce synaptic pruning (Tang et al., 2014; Kim et al., 2017). 

Moreover, another report suggests that autophagy mediates the internalization of 
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glutamate receptors after chemical long-term depression (Shehata et al., 2012). Indeed, 

the enlargement of nerve terminal endosomes, consistent with the synaptic defects 

observed after acute Depdc5 silencing, could be mediated, at least in part, by a defective 

autophagy following mTOR hyperactivation. This is also in line with recent studies 

suggesting autophagy impairment in neurons from tuberous sclerosis complex 

(McMahon et al., 2012; Miyahara et al., 2013) and, more generally, in a wide spectrum 

of epileptic encephalopathies (Yasin et al., 2013; Park et al., 2018; Fassio et al., 2018).  
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7. Conclusions and future perspectives 
 

Overall, the data presented in this dissertation indicate that the acute, but not the 

constitutive, Depdc5 knockdown leads to a solid neuronal phenotype that is reminiscent 

of the somatic second-hit mechanism in patients with FCD (Ribierre et al., 2018). 

Indeed, growing evidences suggest that DEPDC5 somatic mutations are present in 

dysmorphic neurons and could be necessary to trigger FCD with mTOR 

hyperactivation. The data uncover a novel synaptic phenotype resulting from Depdc5 

knockdown and mTOR hyperactivity with increased excitatory strength and 

excitatory/inhibitory imbalance, highlighting the epileptogenic potential of its 

deficiency. In future experiments, we are planning to characterize short- and long-term 

plasticity of excitatory and inhibitory synapses in neurons lacking Depdc5, to assess 

the potential contribution of altered plasticity to the epileptogenic process.  

The severe neural phenotype observed after acute and pronounced Depdc5 knockdown 

supports the idea that loss of heterozygosity, and thereby significant loss of inhibitory 

brake on mTOR is necessary for the establishment of DEPDC5-related FCD. Our 

results also uncover an important developmental role for DEPDC5, showing for the 

first time that its acute deletion leads to morpho-functional alterations that are absent 

in chronic haploinsufficient neurons. Our future experiments in this direction will be 

aimed at clarifying the importance of the developmental loss of Depdc5 in the 

pathogenic process.  

Taken together, our results represent new insight into the Depdc5-related epileptogenic 

process and represent a starting point for further investigations aimed at identifying 

new targets for alternative therapeutic strategies for GATOR1-related neurological 

disorders.  
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Benfenati F. Acute knockdown of Depdc5 leads to synaptic defects in mTOR-related 

epileptogenesis. Under review. 

#: Equal contribution 

 

DEP-domain containing 5 (DEPDC5) is part of the GATOR1 complex that functions 

as key inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1). Loss-

of-function mutations in DEPDC5 leading to mTOR hyperactivation have been 

identified as the most common cause of either lesional or non-lesional focal epilepsy. 

However, the precise mechanisms by which DEPDC5 loss-of-function triggers 

neuronal and network hyperexcitability are still unclear. In this study, we investigated 

the cellular mechanisms of hyperexcitability by comparing the constitutive 

heterozygous Depdc5 knockout mouse versus different levels of acute Depdc5 deletion 

(≈40% and ≈80% neuronal knockdown of Depdc5 protein) by RNA interference in 

primary cortical cultures.  While heterozygous Depdc5+/- neurons have only a subtle 

phenotype, acutely knocked-down neurons exhibit a strong dose-dependent phenotype 

characterized by mTOR hyperactivation, increased soma size, dendritic arborization, 

excitatory synaptic transmission and intrinsic excitability. The robust synaptic 

phenotype resulting from the acute knockdown Depdc5 deficiency highlights the 

importance of the temporal dynamics of Depdc5 knockdown in triggering the 

phenotypic changes, reminiscent of the somatic second-hit mechanism in patients with 

focal cortical dysplasia. These findings uncover a novel synaptic phenotype that is 

causally linked to Depdc5 knockdown, highlighting the developmental role of Depdc5. 

Interestingly, the synaptic defect appears to affect only excitatory synapses, while 

inhibitory synapses develop normally. The increased frequency and amplitude of 

mEPSCs, paralleled by increased density of excitatory synapses and expression of 

glutamate receptors, may generate an excitation/inhibition imbalance that triggers 

epileptogenesis. 
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Rocchi A, Sacchetti S, De Fusco A, Giovedi S, Parisi B, Cesca F, Höltje M, Ruprecht 

K, Ahnert-Hilger G, Benfenati F. Autoantibodies to synapsin I sequestrate synapsin I 

and alter synaptic function. Cell Death Dis. 2019 Nov 14;10(11):864. doi: 

10.1038/s41419-019-2106-z. 

 

Synapsin I is a phosphoprotein that coats the cytoplasmic side of synaptic vesicles and 

regulates their trafficking within nerve terminals. Autoantibodies against Syn I have 

been described in sera and cerebrospinal fluids of patients with numerous neurological 

diseases, including limbic encephalitis and clinically isolated syndrome; however, the 

effects and fate of autoantibodies in neurons are still unexplored. We found that in vitro 

exposure of primary hippocampal neurons to patient's autoantibodies to SynI decreased 

the density of excitatory and inhibitory synapses and impaired both glutamatergic and 

GABAergic synaptic transmission. These effects were reproduced with a purified SynI 

antibody and completely absent in SynI knockout neurons. Autoantibodies to SynI are 

internalized by FcγII/III-mediated endocytosis, interact with endogenous SynI, and 

promote its sequestration and intracellular aggregation. Neurons exposed to human 

autoantibodies to SynI display a reduced density of SVs, mimicking the SynI loss-of-

function phenotype. Our data indicate that autoantibodies to intracellular antigens such 

as SynI can reach and inactivate their targets and suggest that an antibody-mediated 

synaptic dysfunction may contribute to the evolution and progression of autoimmune-

mediated neurological diseases positive for SynI autoantibodies. 
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Esposito A, Falace A, Wagner M, Gal M, Mei D, Conti V, Pisano T, Aprile D, Cerullo 

MS, De Fusco A, Giovedì S, Seibt A, Magen D, Polster T, Eran A, Stenton SL, Fiorillo 

C, Ravid S, Mayatepek E, Hafner H, Wortmann S, Levanon EY, Marini C, Mandel H, 

Benfenati F, Distelmaier F, Fassio A, Guerrini R. Biallelic DMXL2 mutations impair 

autophagy and cause Ohtahara syndrome with progressive course. Brain. 2019 Dec 

1;142(12):3876-3891. doi: 10.1093/brain/awz326. 

 

Ohtahara syndrome, early infantile epileptic encephalopathy with a suppression burst 

EEG pattern, is an aetiologically heterogeneous condition starting in the first weeks or 

months of life with intractable seizures and profound developmental disability. Using 

whole exome sequencing, we identified biallelic DMXL2 mutations in three sibling 

pairs with Ohtahara syndrome, belonging to three unrelated families. Siblings in 

Family 1 were compound heterozygous for the c.5135C>T (p.Ala1712Val) missense 

substitution and the c.4478C>G (p.Ser1493*) nonsense substitution; in Family 2 were 

homozygous for the c.4478C>A (p.Ser1493*) nonsense substitution and in Family 3 

were homozygous for the c.7518-1G>A (p.Trp2507Argfs*4) substitution. The severe 

developmental and epileptic encephalopathy manifested from the first day of life and 

was associated with deafness, mild peripheral polyneuropathy and dysmorphic 

features. Early brain MRI investigations in the first months of life revealed thin corpus 

callosum with brain hypomyelination in all. Follow-up MRI scans in three patients 

revealed progressive moderate brain shrinkage with leukoencephalopathy. Five 

patients died within the first 9 years of life and none achieved developmental, 

communicative or motor skills following birth. These clinical findings are consistent 

with a developmental brain disorder that begins in the prenatal brain, prevents neural 

connections from reaching the expected stages at birth, and follows a progressive 

course. DMXL2 is highly expressed in the brain and at synaptic terminals, regulates v-

ATPase assembly and activity and participates in intracellular signalling pathways; 

however, its functional role is far from complete elucidation. Expression analysis in 

patient-derived skin fibroblasts demonstrated absence of the DMXL2 protein, revealing 

a loss of function phenotype. Patients' fibroblasts also exhibited an increased 

LysoTracker® signal associated with decreased endolysosomal markers and 

degradative processes. Defective endolysosomal homeostasis was accompanied by 

impaired autophagy, revealed by lower LC3II signal, accumulation of 
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polyubiquitinated proteins, and autophagy receptor p62, with morphological alterations 

of the autolysosomal structures on electron microscopy. Altered lysosomal homeostasis 

and defective autophagy were recapitulated in Dmxl2-silenced mouse hippocampal 

neurons, which exhibited impaired neurite elongation and synaptic loss. Impaired 

lysosomal function and autophagy caused by biallelic DMXL2 mutations affect 

neuronal development and synapse formation and result in Ohtahara syndrome with 

profound developmental impairment and reduced life expectancy. 
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Lugarà E, De Fusco A, Lignani G, Benfenati F, Humeau Y. Synapsin I Controls 

Synaptic Maturation of Long-Range Projections in the Lateral Amygdala in a Targeted 

Selective Fashion. Front Cell Neurosci. 2019 May 21;13:220. doi: 

10.3389/fncel.2019.00220. 

 

The amygdala, and more precisely its lateral nucleus, is thought to attribute emotional 

valence to external stimuli by generating long-term plasticity changes at long-range 

projections to principal cells. Aversive experience has also been shown to modify pre- 

and post-synaptic markers in the amygdala, suggesting their possible role in the 

structural organization of adult amygdala networks. Here, we focused on how the 

maturation of cortical and thalamic long-range projections occurs on principal neurons 

and interneurons in the lateral amygdala (LA). We performed dual electrophysiological 

recordings of identified cells in juvenile and adult GAD67-GFP mice after independent 

stimulation of cortical and thalamic afferent systems. The results demonstrate that 

synaptic strengthening occurs during development at synapses projecting to LA 

principal neurons, but not interneurons. As synaptic strengthening underlies fear 

conditioning which depends, in turn, on presence and increasing expression of synapsin 

I, we tested if synapsin I contributes to synaptic strengthening during development. 

Interestingly, the physiological synaptic strengthening of cortical and thalamic 

synapses projecting to LA principal neurons was virtually abolished in synapsin I 

knockout mice, but not differences were observed in the excitatory projections to 

interneurons. Immunohistochemistry analysis showed that the presence of synapsin I 

is restricted to excitatory contacts projecting to principal neurons in LA of adult mice. 

These results indicate that synapsin I is a key regulator of the maturation of synaptic 

connectivity in this brain region and that is expression is dependent on postsynaptic 

identity. 
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Articles published by Antonio De Fusco during the PhD course due to previous 

work. 

 

Biagioni F, Gaglione A, Giorgi FS, Bucci D, Moyanova S, De Fusco A, Madonna M, 

Fornai F. Degeneration of cholinergic basal forebrain nuclei after focally evoked status 

epilepticus. Neurobiol Dis. 2019 Jan;121:76-94. doi: 10.1016/j.nbd.2018.09.019. 

 

Status epilepticus (SE) of limbic onset might cause degenerative phenomena in 

different brain structures, and may be associated with chronic cognitive and EEG 

effects. In the present study SE was evoked focally by microinfusing picomolar doses 

of cyclothiazide+bicuculline into the anterior extent of the piriform cortex (APC) in 

rats, the so-called area tempestas, an approach which allows to evaluate selectively the 

effects of seizure spreading through the natural anatomical circuitries up to secondary 

generalization. In the brain of rats submitted to SE we analyzed neuronal density, 

occurrence of degenerative phenomena (by Fluoro-Jade B-FJB- staining) and 

expression of heat shock protein-70 (HSP-70) in the piriform cortex, the hippocampus 

and ventromedial thalamus. We further analyzed in detail, the loss of cholinergic 

neurons, and the presence of FJB- and HSP-70 positive neurons in basal forebrain 

cholinergic areas, i.e. the medial septal nucleus (MSN, Ch1), the diagonal band of 

Broca (DBB, Ch2 and Ch3) and the Nucleus basalis of Meynert (NBM, Ch4). In fact, 

these nuclei are strictly connected with limbic structures, and play a key pivotal role in 

different cognitive functions and vigilance. Although recent studies begun to 

investigate these nuclei in experimental epilepsy and in persons with epilepsy, 

conflicting results were obtained so far. We showed that after severe and long-lasting, 

focally induced limbic SE there is a significant cell loss within all of the 

abovementioned cholinergic nuclei ipsi- and contra-laterally to the infusion site. In 

parallel, these nuclei show also FJB and heat shock protein-70 expression. Those 

effects vary depending on the single nucleus assessed and on the severity of the SE 

seizure score. We also showed the occurrence of cell loss and degenerative phenomena 

in limbic cortex, hippocampus and limbic thalamic areas. These novel findings show 

direct evidence of SE-induced neuronal damage which is solely due to seizure activity 

ruling out potential confounding effects produced by systemic pro-convulsant 
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neurotoxins. A damage to basal forebrain cholinergic nuclei, which may underlie 

cognitive alterations, is documented for the first time in a model of SE triggered focally. 
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Moyanova S#, De Fusco A#, Santolini I, Celli R, Bucci D, Mastroiacovo F, Battaglia 

G, Nicoletti F, Tchekalarova J. Abnormal Hippocampal Melatoninergic System: A 

Potential Link between Absence Epilepsy and Depression-Like Behavior in WAG/Rij 

Rats? Int J Mol Sci. 2018 Jul 6;19(7). pii: E1973. doi: 10.3390/ijms19071973. 

#: equal contribution 

 

Absence epilepsy and depression are comorbid disorders, but the molecular link 

between the two disorders is unknown. Here, we examined the role of the 

melatoninergic system in the pathophysiology of spike and wave discharges (SWDs) 

and depression-like behaviour in the Wistar Albino Glaxo from Rijswijk (WAG/Rij) 

rat model of absence epilepsy. In WAG/Rij rats, SWD incidence was higher during the 

dark period of the light-dark cycle, in agreement with previous findings. However, 

neither pinealectomy nor melatonin administration had any effect on SWD incidence, 

suggesting that the melatoninergic system was not involved in the pathophysiology of 

absence-like seizures. Endogenous melatonin levels were lower in the hippocampus of 

WAG/Rij rats as compared to non-epileptic control rats, and this was associated with 

higher levels of melatonin receptors in the hippocampus, but not in the thalamus. In 

line with the reduced melatonin levels, cell density was lower in the hippocampus of 

WAG/Rij rats and was further reduced by pinealectomy. As expected, WAG/Rij rats 

showed an increased depression-like behaviour in the sucrose preference and forced 

swim tests, as compared to non-epileptic controls. Pinealectomy abolished the 

difference between the two strains of rats by enhancing depression-like behaviour in 

non-epileptic controls. Melatonin replacement displayed a significant antidepressant-

like effect in both WAG/Rij and control rats. These findings suggest that a defect of 

hippocampal melatoninergic system may be one of the mechanisms underlying the 

depression-like phenotype in WAG/Rij rats and that activation of melatonin receptors 

might represent a valuable strategy in the treatment of depression associated with 

absence epilepsy. 


