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Preface

Neurogenesis is the process of new neuron (and glia) generation from Neural
Stem Cells (NSCs). NSCs self-renew and generate committed o�spring in a
tightly regulated fashion. The balance between NSC proliferation and di�er-
entiation guarantees brain formation, lifelong neurogenesis and prevents tumor
formation.

Regulation of neurogenesis is crucial but remains unclear. Understanding this
regulation has implications for comprehending brain (mal)formation, mainte-
nance of the capability to generate new neurons throughout life preventing
age-related disorders and brain cognition.

Adult hippocampal neurogenesis attracts considerable attention from neu-
roscientists and the general public because of its suggestive appeal and presumed
relevance for cognition in health and disease. It comprisesa complex cascade of
events, starting with the activation of quiescent residentNSC, followed by asym-
metric cell division, rendering a new stem cell and a daughter neural progenitor.
Neural progenitors then amplify through symmetric divisions and undergo cell
fate decisions, whereas some cells are depleted through apoptosis. The surviving
neural progenitors can then di�erentiate into immature neurons or astrocytes,
which over time, will mature and integrate into the pre-existing neuronal net-
work. Each of these steps in this cascade requires complex and rapid changes
in the molecular machinery, which usually comprise multiple levels of molecular
control.

The �eld of neurogenesis has been for long dominated by genetics, but protein-
coding genes account for only 2 % of the human genome. In contrast, 98 % of
the human genome encodes noncoding RNAs with gene-regulatoryfunctions
and nearly half of genome is comprised of Transposable Elements (TEs), which
are highly active during neurogenesis. Moreover,noncoding RNAs are par-
ticularly relevant for the regulation of neurogenesis bothin developing and in
the adult brain. It follows that a better understanding of noncoding RNAs is
essential to complete the puzzling mechanism of neurogenesis.

The aim of my PhD project is to better understand and characterize the
role of two classes of small noncoding RNAs, namely microRNAs (miRNAs)
and Piwi-interacting RNAs (piRNAs) in the regulation of adult neurogenesis.

The work reported in my thesis providesfundamental insight on the role of
small noncoding RNAs in adult neurogenesis : First , the discovery of a



crucial role of the Piwi-pathway in the maintenance of postnatal neurogenesis,
opens the possibility to targets this pathway for therapy inthe context of ageing
and age-related brain dysfunctions, such as neurodegeneration. Second, the
�nding that inhibition of miR-135, a miRNA that is key mediato r of physical
activity, in 2 years old (equivalent to 70 years old human) sedentary mice is
su�cient to rescue neurogenesis to young levels o�ers intriguing perspectives
towards therapeutic uses of miRN-135 inhibitors to delay or prevent brain aging
and related brain pathologies.
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Outline of this thesis

In the introduction chapter I will provide an overview of the three main topics
of my project. I will �rst introduce NSCs, adult neurogenesisand regulatory
mechanisms. Next, because small noncoding RNAs play an important role in
this regulation, I will introduce miRNAs and piRNAs.

The rationale and aims of the thesis (chapter 2) outlines the purpose of
research projects I have followed during my PhD and their potential impact in
the �eld of adult neurogenesis.

In chapter 3 and chapter 4 report the results I have obtained during the
last three years, which have been published in [1] and in Gasperini et al., 2019
(Manuscript submitted) and I will discuss the main results obtained.

Results will be divided in two chapters, one dedicated to thepiRNA project
(chapter 3) and the second on the miR-135 project (chapter 4). In chapter 3,
I will provide results of the �rst functional investigation of the Piwi pathway
and piRNAs in somatic stem cells of the mammalian brain. In particular, our
results indicate that Piwi proteins and piRNAs are enriched inaNPCs and have
an essential role in in the regulation of adult neurogenesis. Speci�cally, the Piwi
pathway sustains hippocampal neurogenesis and modulates global translational
machinery. I will discuss how the piRNA-pathway in brain mightbe an \epi-
genetic immunity" required to maintain lifelong neurogenesis. In chapter 4,
I will de�ne the role of miR-135 in running-induced adult neurogenesis. By
investigating miRNAs and their downstream pathways, we uncover that down-
regulation of miR-135a-5p mediates exercise-induced proliferation of aNPCs in
adult neurogenesis in mouse hippocampus.

In the concluding remarks (chapter 5), I will place the main results of the
two projects in the broader context of somatic stem cells, lifelong neurogenesis
and ageing. In particular, I will focus on the possible applications of piRNAs
and miR-135 to promote maintenance of the homeostasis of neurogenesis and
in aging.



Part I

State of art



1 Introduction

1.1 Adult neurogenesis

For most of the 20th century, adult brain has been considered limited in its regen-
erative capacity, believing that neurogenesis desisted after birth. The discovery
of adult neurogenesis was made in 1962, when Joseph Altman demonstrated
that mitotically active progenitors exist in adult rat brai n and give birth to
new neurons [2]. Starting from this evidence, several studies have then showed
that adult neurogenesis resides also in primates, including humans [3{5]. Neu-
rogenesis is the generation of new neuron (and glia) from Neural Stem Cell
(NSC), that can self-renew and generate committed o�spring in a tightly regu-
lated fashion. The balance between proliferation and di�erentiation guarantees
brain formation, life-long neurogenesis and prevents tumor formation.

Adult neurogenesis consists in several distinct stages, each of which is regulated
by gene expression and environmental factors granting tight temporal and spa-
tial regulation of the process in a speci�c microenvironment [6]. Adult Neural
Stem Cells (aNSCs) resident in the two main neurogenic nichesof the adult
mammalian brain: the SubVentricular Zone (SVZ) of the lateral ventricle and
the subgranular zone of the hippocampal Dentate Gyrus (DG),which is the only
region capable of neurogenesis under basal conditions in mammals, including in
humans (Figure 1.1).

Figure 1.1: Adult neurogenesis regions. (Left ) Human adult neurogenesis occurs under basal condi-
tions in the hippocampus (red) and the striatum (green). ( Right ) Murine adult neurogenesis occurs in the
hippocampus (red) and the subventricular zone (purple). Th e hippocampus serves as the only brain region
where adult neurogenesis is conserved across mammalian species [7].



1. Introduction

aNSCs in the DG have the capacity to self-renew and di�erentiate, giving rise
to both neurons and glia [8, 9]. aNSCs are radial-glia like cells mainly qui-
escent, but they can re-enter the cell cycle and become proliferative. aNSCs
express nestin, GFAP and Sox2 and possess a de�ning radial branch extend-
ing through the granule cell layer. Once activated, aNSCs canself-renew or
give rise to astroglia (s100b, GFAP and Sox2 positive cells) or early amplifying
neural progenitors (aNPCs). These cells undergo multiple rounds of symmetric
division, to expand the neurogenic pool and to mature in neurons (expressing
DCX and Prox1, markers of committed immature and NeuN later onduring
di�erentiation) (Figure 1.2).

Figure 1.2: Hippocampal neurogenesis niche and aNSC proces ses. (A ) Di�erent stages of adult
hippocampal neurogenesis with markers speci�c for each cel l type. ( B ) Overview of the neurogenic niche and
the transition of a NSC into a mature neuron. Modi�ed from [10 ].

Many aNPCs die shortly after birth by apoptosis, to avoid an excessive produc-
tion of new or un�t neurons [11, 12]. The remaining aNPCs become neurob-
lasts and, after neuronal di�erentiation, migration, and maturation, they will
integrate into the DG network. Adult neurogenesis in the hippocampus can
generate only one type of neuron: granule cells that are the excitatory principal
neurons of the dentate gyrus [13,14].

4



1. Introduction

The composition and functionality of the neurogenic nicheshas been most
extensively studied in rodents [6, 15]. Similar regions containing neurogenic
progenitor cells have been described in the SVZ and DG of the adult human
brain [4, 16, 17]. The neurogenic capacity of aNSCs decreasesthroughout life,
mainly due to a decline in proliferation and a loss of NSCs, probably through
astrocytic conversion [18]. Neurogenesis occurring in the human SVZ declines
during infancy [19], whereas several studies have pointed to a quite substantial
generation of DG neurons in humans throughout life [20,21].

Regulation of neurogenesis is crucial but remains unclear;understanding this
regulation has implications for comprehending brain (mal)formation, lifelong
neurogenesis and preventing age-related disorders.

1.1.1 Regulation of adult neurogenesis

There is a strong interest in understanding the mechanisms regulating adult
neurogenesis: research is motivated by the fact that the hippocampus is involved
in memory and learning, which led to the hypothesis that adult neurogenesis
could play an important role in cognition [7,22].

Hippocampal neurogenesis can be detrimental or bene�cial todisease outcome
(Figure 1.3). Indeed, altered hippocampal neurogenesis hasbeen linked to a
number of pathological conditions, such as ischemia- or epilepsy-induced insults,
mood disorders and neurodegenerative diseases [15]. Aging is also inuencing
adult neurogenesis: age-related neurogenesis decline coincides with an increas-
ing incidence of neurodegeneration and a decreased regenerative capacity after
injuries [23].

On the other side, adult neurogenesis can act as a bene�cial contributor for
treatment and symptom amelioration in depression [24]. Moreover, it is known
that neurogenesis contributes to more e�cient repair and regeneration during
stroke and traumatic brain injury [25,26].

A series of studies revealed that adult hippocampal neurogenesis in rodents can
be modulated by experiential and environmental conditionsas well as by aging
[27]. These studies strongly suggest that adult hippocampal neurogenesis is a
key regulator for disease progression and can be used as a target for therapeutic
drugs (reviewed in [7]).

The mechanisms of fate determination in aNSC lineage is a highly debated
topic [28,29] of fundamental importance. Indeed, understanding the molecular
mechanisms underlying lineage determination might provide new avenues to pre-
vent age-dependent loss of neurogenesis [18,30,31], or thepathological genera-
tion of undesirable cells such as activated glia upon trauma and epilepsy [32{34].

5



1. Introduction

Figure 1.3: Roles of adult neurogenesis in disease. Hippocampal neurogenesis can be bene�cial or
detrimental to disease outcome, with varying degrees of dat a to support these interpretations [7].

1.1.2 Epigenetic control of adult neurogenesis and noncoding RNAs

Adult neurogenesis involves multiple steps that have to be tightly regulated,
i.e., aNSC activation, proliferation, di�erentiation into neural progeny as well
as survival, migration, and functional maturation of the adult-born neurons.
Regulation of aNSC fate determination is known to be possibleat the transcrip-
tional level [35], but accumulating evidence indicates that additional control
layers, such as epigenetics and noncoding RNAs, are involved in this mecha-
nism [36{40].

Regulation of aNSC fate determination is known to be possibleat the tran-
scriptional level, but accumulating evidence indicates that additional control
layers, such as epigenetics and noncoding RNAs, are involved in this mecha-
nism. Among the most commonly used de�nitions, epigenetic isthe study of
changes in gene function that are mitotically and/or meiotically heritable and

6



1. Introduction

that do not involve a change in DNA sequence [41]. In this sense, genotyp-
ically identical cells can behave phenotypically di�erentthanks to epigenetic
alterations in chromatin organization and/or biochemicalchanges. The dy-
namic nature of epigenetic mechanisms provides a crucial layer of gene regu-
lation, controlling adult neurogenesis in response to environmental signals. As
shown in Figure 1.4, there are four major categories of epigenetic mechanisms,
which function as key regulators of gene expression also in adult neurogenesis:
chromatin remodeling, histone modi�cation, DNA methylation and noncoding
RNAs (ncRNAs)Figure 1.4.

Figure 1.4: Epigenetic mechanisms. Four major categories of epigenetic mechanisms: histone mo di�ca-
tion, chromatin remodeling, DNA methylation, and noncodin g RNAs (ncRNAs) [42].

Even if the main focus of my thesis will be this last category,a brief overview
of the other mechanisms is worth, given their relevance in the regulation of
neurogenesis. Several studies have shown how chromatin remodeling due to the
many types of histone modi�cations occurring on di�erent histone residues, con-
tributes to the regulation of neuronal di�erentiation, survival, and maturation.
For example, inhibition of histone deacetylase is able to induce neuronal di�er-
entiation of adult hippocampal neural progenitors [43]. Despite this study, the
function of individual histone deacetylases in adult neurogenesis is largely unre-
solved and more studies are required. However, it is temptingto speculate that
pharmacological inhibition of their activity might becomean e�ective clinical

7
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strategy for treating disorders related to adult neurogenesis, such as cognitive
decline, and promote neural repair [42]. Another example is the knockdown
of lysine-speci�c demethylase 1 (LSD1) in cultured adult NPCs and in adult
mouse DG, which resulted in a dramatically reduction of neural stem cell pro-
liferation [44].

Epigenetic modi�cations implicated in adult neurogenesiscomprise also DNA
methylation. This modi�cation is a major epigenetic mechanism for the estab-
lishment of parental-speci�c imprints during gametogenesis and gene silencing
of the inactivated X chromosome and retro- transposons [45],but it has been
shown to be crucial also during neurogenesis. Indeed, during the neural in-
duction of embryonic stem cells (ESCs) to NPCs, many pluripotency genes are
methylated and silenced [46]. Moreover, DNA methyl-transferases (DNMT) 3a
and 3b appeared to be essential for speci�cation of neurons and glia, during
the early phase of neurogenesis [47], and during later stages of neuronal matu-
ration and function [48, 49]. Another DNMT, the 1, is involved in JAK-STAT
signaling to control the timing of when precursor cells switch from neurogenesis
to gliogenesis during development. Through a chromatin remodeling process,
demethylation of genes in the JAK-STAT pathway leads to an enhanced acti-
vation of STATs, which in turn triggers astrocyte di�erentiation [50].

Lastly, among the epigenetic mechanisms, ncRNAs play an essential role in adult
neurogenesis. Recently, long noncoding RNAs (lncRNAs) have been linked to
regulation of stem cells and neural plasticity, although their mechanisms of ac-
tion are diverse and largely unknown [51, 52]. lncRNAs size is between 200 to
10 000 bases and may undergo splicing and polyadenylation, similar to protein
coding mRNAs [53]. In the human genome there are more than 30 000lncRNAs
and it seems that at least half of these are expressed in the Central Nervous Sys-
tem (CNS). Moreover, some of them show dynamic expression patterns during
cellular di�erentiation and brain development [54].

On the other hand, small noncoding RNAs have been extensively studied in
neurogenesis, given their small size and sequence complementarity, which allow
extreme versatility to target mRNAs for regulation of gene expression or chro-
matin structural modi�cation of targeted genes [42]. Indeed, several researches
have revealed small RNA pathways as key regulators of diversetypes of stem
cells, including neural stem cells [55].

Small noncoding RNAs can regulate gene expression by guiding Ago protein-
containing complexes in a nucleotide sequence-speci�c wayto di�erent sites for
molecular actions [56] (Figure 1.5). The Ago protein family isdivided into
the Ago and Piwi subfamilies, based on phylogenetic analysis. Ago subfamily
proteins bind miRNAs and small-interfering RNAs (siRNAs), whichare both

8
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made from double-stranded precursors. Ago subfamily proteins are ubiquitously
expressed in animal tissues and miRNAs and siRNAs bind to them to repress
gene expression, by promoting heterochromatin formation,mRNA turnover and
translational repression [57].

Figure 1.5: Small noncoding RNAs interacting with Ago prote ins. Biogenesis and regulatory
features of the miRNA ( a), siRNA ( b) and piRNA ( c) pathways [55].

Among ncRNAs, miRNAs are the best studied both in terms of their expression
pro�les and functions: a number of miRNAs are known to play important roles
in stem cells and development. For example, miR-9 and miR-124 are enriched
in the brain compared with other tissues. In fact, they are among the most
abundant miRNAs in the CNS.

In contrast, Piwi protein expression is mostly restricted to germ cells and
stem cells [58]. Piwi proteins bind to piRNAs which are processed in a Dicer-
independent manner from long single-stranded precursors [59{61]. piRNAs reg-
ulate gene expression at the epigenetic, post-transcriptional and translational
levels. Studies on animals from diversetaxa also demonstrate that Piwi pro-
teins have a conserved function in stem cells. Therefore, understanding how
Piwi proteins and piRNAs regulate gene expression could be thekey to under-
stand the regulation of stem cells identity, maintenance and di�erentiation, not

9



1. Introduction

only in the germline but also in the brain neurogenesis [62].

1.2 MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are a class of small RNAs, with an average 22 nucleotides
in length, that bind to speci�c mRNA targets, directing their degradation
and/or repressing their translation [63,64].

About half of all identi�ed miRNAs are intragenic and processedfrom introns
(the majority of them) and from exons (relatively few) of protein coding genes.
The other half comprises intergenic miRNAs, transcribed independently of a
host gene and regulated by their own promoters [65,66].

In most cases, miRNAs suppress target mRNAs expression interacting with
their 3 0UnTranslated Region (UTR). However, miRNA binding sites have been
detected in other mRNA regions, like the 50UTR, the coding sequence and
within promoter regions [67]. miRNAs exert their functions ina highly com-
binatorial way: one single miRNAs can regulate expression of multiple target
genes and biological processes [68], but also di�erent miRNAscan target one
gene simultaneously, repressing its expression in a more e�cient way [69].

1.2.1 Biogenesis of miRNA

miRNA biogenesis starts with the processing of RNA polymeraseII/III tran-
scripts post- or co-transcriptionally [70]. miRNAs are transcribed from DNA
sequences into primary miRNAs (pri-miRNAs); some pri-miRNAs arepoly-
cistronic and encode for diverse mature miRNAs [71]. In the nucleus, pri-
miRNAs are then processed into precursor miRNAs (pre-miRNAs) by the Mi-
croprocessor protein complex, which encloses Drosha and DiGeorge syndrome
critical region gene 8 (DGCR8) proteins. Pre-miRNAs are translocated in the
cytoplasm and further processed into mature miRNAs by Dicer, an RNase III-
like enzyme; studies on the genetic ablation for Dicer have been used to deter-
mine the importance of the miRNA system. Mature miRNAs are then loaded
onto Ago proteins to form the RNA-induced silencing complex (RISC) through
which they perform translational inhibition or mRNA degradation of speci�c
targets [72].

miRNAs can be produced also by non-canonical pathways, Drosha- or Dicer-
dependent. A non-canonical pathway was �rst described to take when miRNAs
originate from debranched introns that mimic the structural features of pre-
miRNAs to enter the miRNA-processing pathway omitting Drosha cleavage.
These non-canonical miRNAs have been termed mirtrons (pre-miRNAs/introns)
[73]. Drosha-mediated processing is also bypassed in the cases of small RNAs
derived from endogenous short hairpin RNAs, which are generated directly
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1. Introduction

through transcription and are further processed into miRNAs by Dicer [74].
Although most alternative miRNA pathways depend on Dicer, biogenesis of
miR-451 does not require Dicer and involves the catalytic activity of AGO2.
This miRNA is processed by Drosha and the pre-miRNA is directlyloaded into
Ago and is cleaved by the Ago catalytic centre [75,76] (Figure 1.6).

Figure 1.6: miRNA biogenesis and function. In the nucleus, pri-miRNAs are transcribed by RNA
polymerase II (RNA pol II). The canonical miRNA pathway is th ereafter followed by Drosha/Dgcr8 cleavage
into pre-miRNA. miRtrons are known to skip this step and are i nstead processed through intron splicing and
lariat debranching. After exportation of the pre-miRNA int o the cytoplasm, the canonical pathway continues
with cleavage by the RNA III nuclease Dicer into mature miRNA s. For the miRNA miR-451, this cleavage is
performed by Ago2 rather than Dicer. After unwinding of the m ature miRNA, one strand is incorporated into
the RNA- induced silencing complex (RISC) and recruits its t arget mRNAs. This binding is dependent on
sequence complementarity in the 3 0-untranslated region (3 0UTR) of the mRNA. Successful RISC processing
results in translation inhibition or degradation of the tar get mRNA [77].

The existence of alternative pathways reects the evolutionary exibility of
miRNA biogenesis. However, the majority of functional miRNAs are produced
by the canonical pathway, and only about 1 % of conserved miRNAs(i.e. miR-
320 and miR-451) are produced independently of Dicer or Drosha in vertebrates
[70]. However, canonical miRNAs in NSCs of developing mouse are only 58 %
of total mature miRNAs, suggesting that miRNA biogenesis is more complex
in the development of the nervous system, compared to other tissues [78].

Although this is not the focus of my thesis, it has to be mentioned that DGCR8
and Drosha can have alternative functions which include, but are not limited to
non-canonical alternative miRNA biogenesis pathways. Accumulating evidence
indicate that the Microprocessor mediated cleavage regulate mRNA levels and
also modulate alternative-splicing events [79]. Furthermore, DGCR8 promotes
cortical NPC self-renewal and repress their di�erentiationin vivo [78,80].
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1.2.2 miRNAs in adult neurogenesis

Approximately 70 % of known miRNAs are expressed in the mammalian brain
[81], and the level of many miRNAs changes dramatically duringbrain develop-
ment [82{84]. Indeed, based on observations obtained with cell culture models
in vitro, miRNAs have been implicated in the control of neural progenitor pro-
liferation, neurogenic and gliogenic di�erentiation, maturation and functional
integration of postmitotic neurons [72,85{90].

Furthermore, miRNAs play important roles in the regulation ofcell fate deci-
sions in the adult SVZ and SubGranular Zone (SGZ) [91, 92] and have been
linked to several diseases associated with these areas,e.g., epilepsy [93], stroke
[94], and neurodegenerative disorders [95].

The functional synergism of few miRNAs achieves gene regulation essential for
proliferation, cell fate determination, and survival in embryonic [89] and adult
NSCs [72,96,97]. Cooperation between co-expressed miRNAs might compensate
the �ne-tuned mRNA regulation mediated by a single miRNA, thus exerting
a broader impact on gene expression compared to a single miRNA.The posi-
tive interaction of two or more individual miRNAs, or one individual miRNA,
acting on multiple seed regions on the same 30UTR, is described as \miRNA
cooperativity" [98]. In this context, our lab have shown howthe cooperativty
of 2 miRNAs on the gene Foxp2 regulate the plasticity of the embryonic mouse
neocortex [99].

In recent years multiple miRNAs have been identi�ed to play a crucial role in the
transition between proliferative and di�erentiating state [10]. Moreover, several
studies suggest that miRNAs play a crucial role in ensuring proper numbers
of aNPCs by either directly silencing target genes, or forming a regulatory
loop with targets [100,101]. Accumulating evidence indicates that most of the
miRNAs can be divided in two groups, based on their roles: they promote either
proliferation, such as the miR-17-92 cluster, or di�erentiation such as miR-9 and
miR-124 (Figure 1.7).

However, the diversity and complexity of individual miRNAs in cell fate de-
termination appear to rely on di�erent species, speci�c regions in the nervous
system, distinct cell context, and mostly the availability and direct physical
interaction of their target genes. (reviewed in [102]).

In many cases, miRNAs can also act in concert with transcription factors and
chromatin modi�ers to control gene expression in NSCs, thereby a�ecting NSC
number and their ability to generate di�erentiated progeny.

By doing so, miRNAs provide an additional layer to control geneexpression
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programs and may help to ensure the robustness of such programs by bu�er-
ing perturbations and reducing noise [91, 92, 103, 104]. However, miRNAs may
even exert an instructive e�ect on cell fate as impressivelydemonstrated by the
�nding that miR-9/9* and miR-124 can induce neuronal conversion of �brob-
lasts [105].

Furthermore, global miRNA loss by Dicer depletion seems to evoke stronger
e�ects in di�erentiating cells than in self-renewing NSCs (derived from either
embryonic and adult origin), suggesting that cell fate transitions show a partic-
ular dependency on miRNA-based regulation [89,90,97].

Figure 1.7: Scheme of the roles of miRNAs in cell fate determi nation. List of miRNAs regulating
NSC self-renewal and proliferation, neuronal di�erentiat ion, astrogliogensis, and oligodendrocyte di�erentia-
tion [102]

1.3 Piwi proteins and piRNA

P-element-induced wimpy testis (Piwi) proteins are predominantly nuclear pro-
teins that represent a large subfamily of Ago proteins and areexpressed widely
from ciliates to mammals. Their expression is mostly restricted to the germline:
di�erent Piwi proteins exist and function in di�erent stages of the germline
cycle. The prototype of Piwi proteins is encoded by theDrosophila piwi (P-
element-induced wimpy testes) gene, originally identi�edas an essential gene
for germline development [58, 106]. InDrosophila there are three Piwi genes:
ago3, aubergine (aub), and piwi. Piwi and aub are required for both male and
female fertility, whereas ago3 is essential for female fertility [107,108].

The mouse genome expresses Miwi (Piwil1), Mili (Piwil2) andMiwi2 (Piwil4),
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but it lacks one of the four Piwi paralogs that is found in mostother mam-
mals, including primates and humans, Piwil3 [109]. In mice, Piwi proteins are
expressed at di�erent stages during spermatogenesis. Strikingly, none of the
murine Piwi proteins a�ect female fertility [110{112]. However, the expression
of Miwi and Mili has been detected in mouse oocytes, but they present only
relatively minor amounts of piRNAs [113,114].

The human genome encodes four Piwi proteins, HIWI (Piwil1), HILI (Piwil2),
HIWI3 (Piwil3) and HIWI2 (Piwil4). Given the conserved functions of Piwi pro-
teins in stem cell maintenance and germline development, most of the studies
on human Piwi proteins are carried out in germ cell-derived tumors. Thereafter,
it has been shown that Piwi proteins are expressed in a large number of hu-
man cancers, of both germline and somatic origin, such as seminomas, prostate,
hepatocellular, multiple myeloma, gastrointestinal, ovarian, breast and endome-
trial cancer [115{117]. In some of these cancers, the expression of Piwi proteins
correlates with a signi�cant worse prognosis. Even if the number of studies on
human Piwi proteins in somatic tissues is increasing, especially in pathological
conditions, their presence and role in brain remains still obscure.

Among di�erent organisms, the crucial role of Piwi proteins can be found from
the earliest stage of germline development (germline fate speci�cation) to late
stages of gametogenesis such as spermiogenesis, egg activation, and fertilization
[58]. Nonetheless, Piwi proteins were �rst characterized insomatic cells of the
Drosophila ovary and in early somatic cells of the testis [118]. Somaticfunction
of Piwi proteins is evident during early embryogenesis: embryos laid by piwi
mutant mothers, are somatic lethal [118, 119]. Moreover, Piwi was identi�ed
as essential for Germline Stem Cell (GSC) maintenance inDrosophila [108] by
mediating a highly conserved somatic signaling mechanism [106].

Piwi-interacting RNAs (piRNAs) are a novel class of noncoding RNAswhich
biogenesis and function depend on Piwi proteins. piRNAs are single stranded
small non-coding RNAs consisting of 24-31 nucleotides, with aphosphorylated
50 end and a 20 O-methyl (2 0 O-me) modi�cation at their 3 0 ends [61,120]. piR-
NAs associate with Piwi proteins to form e�ector complexes, piRNA-induced
silencing complexes (piRISC), which maintain germline genome integrity re-
pressing mainly transposable elements (TEs) but also genes, with a transcrip-
tional or posttranscriptional mechanisms [121].

Transposon regulation by piRNAs is conceptually similar to that in immune
systems, which can achieve \self" and \nonself" recognition. Indeed, piRNAs
use a complex mechanism to e�ectively select the nonself genes for regulation,
as with our immune systems [122]. Moreover, analyses of various eukaryotes
identi�ed piRNAs targeting protein-coding genes and piRNAs that are passed
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through generations to transmit a memory of past transposonactivity [123,124].

Even if transposons are the major targets of Piwi{piRNA pathway, how regu-
lation of transposons is connected to defects in gametogenesis is still unknown.
Activation of transposons in Piwi protein mutants could leadto the generation
of double-stranded DNA breaks within abortive or successfultransposition, ac-
tivating DNA damage checkpoint which results in a sterile phenotype [125].
Thus, tissue-speci�c and developmental timing{speci�c expression of Piwi pro-
teins and piRNAs may play major roles in maintaining the integrity of the
genome and fertility of the organism.

1.3.1 Biogenesis of piRNA

piRNAs are distinct from other noncoding RNAs such as miRNAs and siRNAs,
for their biogenesis and function. miRNAs and siRNAs processingfrom their
precursors requires cleavage by Dicer before loading onto Ago protein, instead
piRNAs are processed through Dicer-independent mechanisms [59,61,126].

The great majority of piRNAs is transcribed from genomic clusters of 1 to
127 kb, often within intergenic sequences. Initial analysis of piRNA sequences
revealed their extremely high complexity: there are hundreds of thousands, if
not millions, of individual piRNA sequences. Indeed, although the genomic lo-
cations of clusters are conserved, there is very little conservation at the level of
individual piRNA sequences [61,126].

Extensive analyses of piRNAs associated with Piwi proteins inies and mice
had identi�ed the genomic origins of piRNAs and led to the proposal of two
biogenesis pathways, summarized in Figure 1.8: in the nucleus long piRNA pre-
cursors are transcribed from piRNA clusters or transposon loci and processed
in the cytoplasm; here, piRNA precursors can enter in the primary pathway,
where they are processed as mature piRNAs and loaded into the Piwi proteins
(Miwi or Mili, according to their size). In the cytoplasm, piRNA precursors
can also enter in the secondary process, where piRNAs derived from sense or
antisense strand can be loaded into Mili or Miwi2 protein andperform the
so-called \ping-pong cycle", where the pool of piRNAs is ampli�ed according
to the transposable elements (and possibly the target mRNAs) present in the
cytoplasm [122, 127]. In the ping-pong cycle, Piwi proteinsutilize their slicer
activity to cleave antisense retrotransposons and generate new antisense piR-
NAs, which are immediately bound by another Piwi protein. In subsequent
steps, the antisense piRNA is trimmed to the length of the mature piRNA,
leading to a mature antisense secondary piRNA, which can, in turn, target
sense retrotransposon [122,128].

Primary piRNA-directed cleavage of transposon mRNAs creates the 50 ends of
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Figure 1.8: piRNA biogenesis. In the primary pathway, piRNAs are transcribed either from g enomic
regions called piRNA clusters, 3 0UTR of protein-coding genes or transposons, processed, and loaded onto
Piwi (Miwi) or Aub (Mili). Silencing takes place both in the c ytoplasm and nucleus. Together with AGO3
(Miwi2), the Aub(Mili){piRNA complex serves as a trigger to start the ping-pong ampli�cation pathway. The
ping-pong pathway silences the target transposon sequence and ampli�es the piRNA sequence at the same
time [121].

secondary piRNAs. This produces primary and secondary piRNA pairs that
overlap by 10 nucleotides at their 50 ends. The 50 Uridine (U) bias of pri-
mary piRNAs thus leads to an enrichment of an A at position 10 of secondary
piRNAs (Figure 1.8) [129]. Both mechanisms are important to form an active
piRNA-induced silencing complex (piRISC) that can recognizeand silence com-
plementary RNA targets, providing an e�ective defense against transposons. In
animals, endogenous siRNAs also silence TEs, but the piRNA pathway is at
the forefront of defense against transposons in germ cells.Indeed, in mice the
role of Piwi proteins and piRNAs seems to extend beyond post-transcriptional
silencing: evidence indicates that Piwi and piRNAs can play a crucial part in
epigenetic regulation. CpG DNA methylation, which is required for e�cient
transcriptional silencing of TEs such as LINE and LTR, is decreased in the
male germline of Mili and Miwi2 mice mutants. Genetic evidence suggests that
both mutants fail to establish de novo methylation of TE sequences during
spermatogenesis, leading to the hypothesis that the piRISCcan also guide the
de novomethylation machinery to TE loci [130{132].

1.3.2 piRNAs in Central Nervous System

Since its discovery, somatic functions of the Piwi pathway have long been doc-
umented. Originally, studies carried out inDrosophila showed that the role of
Piwi genes in germline depends on the somatic cells of the gonad [106]; later on
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several works reported an essential activity of Piwi proteins in stem cells [124].
Furthermore, in the CNS, piRNAs expression were �rstly detected in neurons of
the sea slugAplysia [133]. Lower eukaryotes, such asDrosophila and Aplysia,
constitute an excellent arena for the study of Piwi pathway, allowing to make
rapid progress on this topic. Therefore, several studies onrodents and primates
reported the expression of Piwi proteins and piRNAs in mammalian brain, and
their role in suppressing transposons [134{139].

It has been long considered that the majority of retrotransposition events occur
in the germline, while the mobility of TEs in somatic cells isstrictly suppressed.
In the last few years, however, su�cient data have been accumulated suggesting
that the TEs activity may be a common property of cells in somatic tissues,
even in brain [140]. Indeed, L1 (Long Interspersed Nuclear Elements 1) retro-
transposons have been studied widely in the CNS, showing thatthe neuronal
genomes are not static and might be mosaic because ofde novoL1 retrotranspo-
sition events [141]. Moreover, studies revealed that the L1expression increase
upon neuronal commitment and its retrotransposition a�ects the expression of
neuronal genes during neurogenesis [142,143]. Retrotransposition events caused
by misregulated mobile elements were also reported to occurin autism and other
neurological disorders [144,145].

However, an increasing knowledge about TEs is not leading to acomplete com-
prehension of the Piwi pathway functions in brain. Main limitation of these
studies is that Piwi proteins and piRNAs are low expressed in mammalian
brain compared to gonadal tissue.

piRNAs expression was �rst reported in mammalian nervous system by Lee et
al. in 2011. Using high throughput sequencing of small RNA libraries, they
identi�ed piRNAs in adult mouse hippocampus. These sequenceswere inter-
genic with unique genome location. They reported the presence of abundant
piRNA complexes in the dendritic spines; knockdown of piRNAs resulted in re-
duced spine density in the axons. Miwi expression was provenin hippocampus
by western blot, in situ hybridization and qRT-PCR. The expression of Mili
and Miwi2 was not detected in their study [134].

Furthermore, the same year, Dharap et al. showed that strokerapidly alters the
cerebral piRNA pro�les in rat model. They noticed that the expression levels
of 105 piRNAs were signi�cantly altered in the cerebral cortexof rats subjected
to transient focal ischemia [136]. One year later, studyingRett syndrome,
Carninci lab demonstrated that the absence of a functional MeCP2 in mouse
cerebellum leads to an increase in the total piRNAs, and this over-expressed
piRNAs function not only to silence retrotransposons, but also to �ne tune the
expression level of speci�c genes [145].
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Latterly, Zhao et al. (2015) revealed the expression of Miwiin cortical tissues
of developing mouse brain and its possible role in promotingneuronal polariza-
tion and radial migration, partly via modulating the expression of microtubule-
associated proteins (MAPs). Considering the known functionof Piwi proteins
in suppressing transposons, an interesting future question is whether MAPs are
the regulatory target of L1 retrotransposons, which are controlled by Piwi and
piRNAs: thus, this hypothesis lead to investigate whether Miwi promotes the
expression of MAPs indirectly by processing the mRNAs of retrotransposons
and suppressing their activity [137].

More recently, Carninci and Ravasi group conducted an almost exclusively com-
putational investigation for the identi�cation of piRNAs in a dult mouse brain.
In this study they identi�ed small RNA molecules that exhibit the hallmarks
of piRNA such as length and uridine bias at the �rst position. They demon-
strated that these piRNAs were similar to Mili-bound piRNAs with regards to
their length (26-27 nt) and, moreover, they predicted novelcandidate regulators
and potential targets of piRNAs in such system [135].

In humans, recent studies reported dysregulation of piRNA expression in Parkin-
son's disease (PD), AD and neurodegenerative tauopathies.Schulze et al.,
showed that Short-INterspersed Element (SINE)- and LINE-derived piRNAs
are highly downregulated in �broblasts, induced pluripotent stem cells (iPSCs)
and neuronal cells derived from patients with PD, together with an increased
expression of TEs [146]. In AD patients, transcriptome-widepiRNA pro�ling of
human brains revealed 103 piRNAs di�erentially expressed in the pathological
cases compared to healthy controls [147]. Moreover, Mallick Lab in 2017, found
that 1923 mRNAs were signi�cantly down-regulated in subject with AD and
were predicted targets of 125 up-regulated piRNAs [148]. Morerecently, Sun et
al. showed that reduced levels of Piwi proteins and piRNAs in neurodegenera-
tive tauopathies, drive TEs activation and promotes neuronal death [149].

Despite these evidences, functions and regulation of the Piwi pathway in the
central nervous system are still unclear and controversial. Given the increased
expression of TEs during neurogenesis [141, 150], it would be plausible to hy-
pothesize that piRNAs might constitute a negative feedback loop to counteract
excessive accumulation of transcripts arising from genomic repeats in neuro-
genesis, in turn allowing maintenance of NSCs. However, the �eld of piRNA-
mediated regulation of retrotranspositions in neuronal cells is still in its initial
stages and con�rmation of this hypothesis awaits formal validation. These stud-
ies have certainly the potential to identify not only biology of CNS- piRNA, but
also o�er the exciting possibility to explore the diagnostic and therapeutic val-
ues of these tiny RNA molecules in neurological disorders.
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2 Rationale and Aim of the thesis

The mammalian hippocampus is one of the \niches" in which adult neural pro-
genitor cells (aNPCs) persists throughout life [151]. Localgeneration of new
neurons in the human hippocampus has been documented until old age and this
process has implications for memory and age-related diseases, such as depres-
sion and Alzheimer's [152]. Adult neurogenesis is considereda form of structural
plasticity of the brain. Indeed, environmental stimuli, such as enrichment and
physical activity potentiate adult neurogenesis in rodents and this response is
maintained until old age [153{159]. The cellular and molecular mecha-
nisms underlying homeostasis of adult neurogenesis and its response
to environmental stimuli remain elusive. Noncoding RNAs, such as miR-
NAs, and other epigenetic regulations are likely involved in this control [96,160].

The �rst question I will address in my thesis is built on preliminary evidence
on the expression of piRNAs in somatic stem cells and their importance in
stemness maintenance in the germline. In this view, the �rstaim of my work
is to understand whether the Piwi-pathway plays any role in neural stem cells
and in postnatal neurogenesis. One of the possible scenariois that, since the
neuronal retrotransposition is an integral part of the neural development [150,
161], piRNAs might be highly active in the suppression of TEs inneurogenic
aNPCs and in the regulation of other genes involved in neuronal development
and di�erentiation processes.

The second question is to understand if Non-Coding RNAs (ncRNAs) have
any role in environment dependent response of adult neurogenesis.

The rationale of this second part of my project is built on evidence that run-
ning stimulates hippocampal NPC proliferation and alters miRNA expression
in rodents.

In particular, we selected miR-135a among a panel of miRNAs downregulated
in running mice compared to resting ones. miR-135a was the only dysregulated
miRNA which manipulation was able to reduce (overexpression) or increase
(silencing) the proliferation of cultured aNPCs.

This, we hypothesized investigating miR-135a, which is involved in running
induced neurogenesis, would allow the identi�cation of themost prominent
pathways that constrain NPC proliferative potential in the adult mouse hip-
pocampus.



2. Rationale and Aim of the thesis

With this approach, we aim to uncover the proteins and pathways acting within
this circuit-level context, hence providing a system-level biological understand-
ing of scienti�c and therapeutic value.

Understanding the involvement of small ncRNAs in neurogenesiswill provide
better comprehension of the molecular regulations allowing homeostatic control
of this process and its maintenance throughout life. This knowledge is a mile-
stone toward the use of piRNAs and miRNAs as possible therapeuticagents or
targets, to delay or prevent age-dependent loss of neurogenesis or pathological
conditions arising from misregulation of neurogenesis.
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3 The Piwi pathway

Data presented in this section have been submitted for publication:

\Mili function maintains hippocampal neurogenesis and implicate
Piwi pathway in polyribosome assembly and translation control"
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Abstract

piRNAs are small, 26-32 nt single-stranded non coding RNAs that associate
with P-element-induced wimpy testis (Piwi) proteins in various organisms. In
mammals, piRNAs and piRNA-pathway proteins, are mostly thoughtto be
restricted to germline cells, where they have been shown to repress transposable
elements (TEs). Recent evidence however suggests that LINE1is active in both
neural stem cells (NSCs) and neural precursor cells (NPCs), thus playing a role
of potential importance in genetic mosaicism and perhaps neuronal plasticity
in mature neurons [166]. Despite this evidence, functions Piwi protein and
piRNAs in the CNS are largely unknown.

Here, we �nd that Mili (Piwil2) and Mili-dependent piRNAs \the Piwi path-
way" are abundantly expressed in neural progenitor cells (aNPCs) but depleted
in di�erentiated progeny of the postnatal mouse hippocampus. Moreover, in-
hibition of the Piwi pathway impairs neurogenesis and increases generation of
reactive glia, while induction of aNPCs reactivity reduces the Piwi pathway lev-
els. Transcripts involved in ribosome assembly and translation are main targets
of the Piwi pathway in aNPCs. These results identify essential functions of the
Piwi pathway in brain, suggesting it controls protein synthesis in somatic stem
cells.

This study represents a pioneering research on the putativerole of Piwi proteins
and piRNAs in neurogenesis and neuronal di�erentiation, and has the intrinsic
potential to better understand piRNA-related mechanism in mammalian brain
both in physiological and pathological conditions.



3. The Piwi pathway

3.1 Hippocampal expression of Mili is restricted to neu-
ral progenitor cells (aNPC) and decreases in neuro-
genesis

To investigate expression of the Piwi pathway in brain, we compared the abun-
dance of Miwi and Mili, the principal proteins required for piRNA produc-
tion [167,168], in testis, whole hippocampus and primary cultures of hippocam-
pal aNPCs from postnatal mice. As expected Miwi protein was very abundant
in testis, but almost undetectable in hippocampus or aNPCs (Figure 3.1A). Mili
protein was almost undetectable in the hippocampus, but surprisingly its ex-
pression in aNPCs was about 40 % of testis (Figure 3.1B) and> 4 fold enriched
compared to hippocampal neurons (Figure 3.1C).

To con�rm this observation in vivo, we took advantage of a split-Cre viral ap-
proach [169] to label aNPCs and their progeny by Cre recombinase-dependent
activation of uorescent reporters [97, 170]. Five days post-injection (dpi) of
split-Cre viruses in the dentate gyrus (DG) of 8-week-old Td-Tomato Cre-
reporter mice, we found immunouorescence staining for Mili in Td-Tomato+
(Td+) aNPCs in the SGZ of the DG (Figure 3.1D). Next, to quantify Mili
expression in neurogenesis, we evaluated its transcript levels by quantitative
Real-Time PCR (qRT-PCR) in sorted Td+ aNPCs and di�erentiated progeny
upon split-Cre-injection in DG of Td-Tomato mice. Mili mRNA expression
was abundant in Td+ aNPCs (Figure 3.1E, 10 dpi) compared to Td- cells and
decreased in adult-born Td+ neurons (Figure 3.1E, 30 dpi).

To corroborate this observation at the protein level, we analyzed Mili protein
abundance in cultures of aNPCs in proliferative media (Figure3.1F, Days In
Vitro (DIV) 0) and upon induction of neuronal di�erentiation w ith virally trans-
mitted Achaete-Scute homolog 1 (Ascl1) expression vector [171] (Figure 3.1F,
DIV 7-21), an approach that allows to obtain> 90 % of neuronsin vitro [97].
These experiments con�rmed the enrichment of Mili in aNPCs and its decrease
along with neurogenesis, at both RNA and protein levels (Figure 3.1F).

Figure 3.1: Next page - (A ) Miwi and ( B ) Mili protein abundance in testis, hippocampus and culture d
aNPCs from adult mice. ( C ) Mili protein abundance in cultured hippocampal neurons an d aNPCs. ( D )
Representative images of Mili (green) expression in Td+ aNP C (red) in the hippocampal subgranular zone
(SGZ); arrows indicate Td+ and Mili double-positive cells. (E ) Mili mRNA expression in sorted Td+ and
Td{ cells at 10 or 30 days after in vivo transduction with spli t-Cre viruses in postnatal hippocampus. ( F ) Mili
protein abundance in aNPCs (in proliferative media, 0 DIV) a nd 4-14 DIV upon induction of neurogenesis.
Data are expressed as mean � Standard Error of the Mean (SEM), n=3 independent experimen ts. t-student
test or one-way ANOVA Bonferroni as post hoc: * p< 0:05, ** p< 0:01, **** p< 0:0001. GCL, granular cell layer;
H, Hilus. Scale bar 10 µm.
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3. The Piwi pathway

Figure 3.1: Hippocampal expression of Mili is restricted to n eural progenitor cells (aNPC) and
decreases in neurogenesis. Caption on previous page.
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3.2 PiRNA clusters are dynamically expressed in neuro-
genesis and one is conserved in mouse and human

To ascertain whether enrichment of Mili in aNPCs correlates with piRNA ex-
pression, we performed small RNA sequencing (RNA-seq) from cultured aNPCs
in proliferation (Figure 3.2A-C, DIV0) and at two time points upon induction
of neuronal di�erentiation (Figure 3.2A-C, DIV4, 7). Bona �de piRNA were
identi�ed by alignment on piRBase [172], showed an average length of 30 nt
(Figure 3.2A) and displayed U bias at the 50 end (Figure 3.2B), as previously
reported [135]. These piRNAs clustered in 298 genomic locations (Figure 3.6A)
and their level of expression was dynamic in neurogenesis, showing a transient
peak upon onset of neurogenic di�erentiation (Figure 3.2C, DIV 4 and Supple-
mentary Figure 3.6B).

We validated in vivo four of the most abundant piRNA clusters from the se-
quencing data in sorted Td+ cells, compared to Td- cells (Figure 3.2D) con-
�rming the enrichment of piRNA in aNPC of the DG (Figure 3.2D). In line
with this �nding, expression of piRNA clusters in short RNA-seqfrom RIKEN
FANTOM5 database [66] is enriched in human neural stem cells compared to
astrocytes (Figure 3.6C-D). Remarkably, one of the most abundant piRNA clus-
ter (hereafter referred as piR-cluster 1) in aNPCs and early-born neurons (Fig-
ure 3.2C), maps on mouse chromosome 8 (Chr8) and is conserved in human
Chr16, overlapping with two glycine-Transfer RNA (tRNA) genes(Figure 3.2E).

Importantly, a piRNA encoded by the piR-cluster 1 (i.e., piR-61648) was re-
cently found to be enriched in human and murine somatic tissues but depleted
in gonads [173], suggesting this cluster might be selectively expressed in somatic
stem cells. We found that piR-cluster 1 is also expressed in human neural stem
cells (Figure 3.6). These results suggest possible roles forthe Piwi pathway in
aNPCs maintenance and/or di�erentiation.

Figure 3.2: Next page - (A ) Size distribution of piRNA reads. ( B ) U bias at the 5 end of piRNAs. ( C )
Mean expression of 298 piRNA clusters in aNPC (DIV0) and upon induction of neurogenesis (DIV4-7). Arrows
indicate piRNA cluster 1 (piR-cluster 1). ( D ) Relative expression of four representative piRNA cluster s in
sorted Td+ and Td{ cells 10 days post injection (dpi) of split -Cre viruses in postnatal hippocampus. ( E )
(left) Scheme representing genomic location of piR-cluste r 1 in the mouse chromosome (Chr) 8 and human
Chr 16; (Right) location of the piR-cluster 1 in the intron 1 o f Vac14 gene in mouse and human and sequences
of piR-cluster 1 (1A and 1B, underlined red text) inside tRNA -Gly genes (underlined black text). Data are
expressed as mean� SEM, n=2 (A-C) and n=3 (D) independent experiments. t-stude nt test as post hoc:
* p< 0:05, ** p< 0:01.
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Figure 3.2: PiRNA clusters are dynamically expressed in neu rogenesis and one is conserved in
mouse and human. Caption on previous page.
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3.3 The Piwi pathway sustains neurogenesis and medi-
ates activation of aNPCs in the postnatal hippocam-
pus

To infer functions of the Piwi pathway in neurogenesis, we silenced Mili in aN-
PCs by transducingin vitro a lentivirus transcribing a short-hairpin RNA tar-
geted against mili transcript (shMili). As control, we used alentivirus transcrib-
ing a scramble short-hairpin RNA (shControl). Both vectors encoded EGFP re-
porters to select virally transduced cells by FACS. Levels of both Mili transcript
and protein were signi�cantly reduced in the aNPCs with shMili, compared to
shControl (Figure 3.3A).

To ascertain whether Mili KD in aNPCs led to piRNA depletion, wequanti�ed
by qRT-PCR four representative piRNAs from clusters abundantly expressed
in the RNA-seq data; all four were signi�cantly reduced compared to control
aNPCs (Figure 3.3B). Miwi transcript levels remained low in Mili KD aNPCs,
allowing to exclude potential compensatory e�ects on piRNA production due to
Miwi increase in these cells (Figure 3.7). Importantly, these results con�rmed
the enrichment of Mili (Figure 3.1) as well as the identity of the RNA-seq reads
as Mili-dependent piRNAs (Figure 3.2), in aNPCs.

Next, we cultured aNPCs expressing shMili or shControl in di�erentiation me-
dia, a condition that allows to obtain astrocytes and neurons in equal propor-
tions [97]. Mili KD led to a dramatic increase of Glial �brillary acidic protein
(GFAP) at both mRNA and protein levels, compared to control cells (Fig-
ure 3.3C). Increased GFAP levels are generally regarded as hallmark of reactive
glia [174,175]. To investigate whether Mili KD may led to astrocyte reactivity,
we injected bilaterally a synthetic oligonucleotide antisense to Mili (GapmeR,

Figure 3.3: Next page - (A ) Mili mRNA (left) and protein (right) levels in aNPCs treate d with a scrambled
shRNA (Control) or antisense to Mili (Mili KD). ( B ) Relative expression levels of four sequences highly
represented in piRNA clusters in control and Mili KD aNPCs. ( C ) Gfap mRNA (left) and protein (right)
levels in control and Mili KD aNPCs upon onset of di�erentiat ion. ( D ) Schematic representation of the
in vivo experiment. ( E ) Mili mRNA (left), protein (middle) and Gfap mRNA (right) le vels in dissected
DG of mice injected with scrambled (Control) or anti-Mili Ga pmeR (Mili KD). ( F ) Representative images
of a brain slice stained with anti-GFAP antibody from a postn atal mouse 30 days post injection (dpi) of
scrambled (Control, left hemisphere), or anti-Mili GapmeR (Mili KD, right hemisphere) in the DG. ( G )
(Left panels) Representative micrograph showing immunost aining for GFAP (green), BromodeoxyUridine
(BrdU) (red), NeuN (white) and nuclear DNA (blue) in the hipp ocampal SGZ of mice 30 dpi with scrambled
(control) or anti-Mili GapmeR (Mili KD); (Right Panels) qua nti�cation of the percentage of BrdU and NeuN
(white arrowheads), or BrdU and GFAP (yellow arrowheads), d ouble-positive cells over total BrdU+ cells
in hippocampal SGZ. ( H ) Relative expression of mRNAs (indicated) markers of react ive astrocytes in DG
from mice injected with Scrambled (Control) or anti Mili (Mi li KD) GapmeRs. ( I ) Mili mRNA (left) and
piR-cluster 1 (right) relative expression in sorted aNPCs f rom Nestin-GFP mice treated with Saline (Control)
or Kainic Acid (KA)). Data are expressed as mean � SEM, n=3 independent experiments ( in vitro ); n=5 (E);
n=7 (F, G); n=3 (H, I). t-student test as post hoc: * p< 0:05, ** p< 0:01, *** p< 0:001, **** p< 0:0001. Scale
bars: 1 mm (F); 100 µm (G).
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Figure 3.3: The Piwi pathway sustains neurogenesis and medi ates activation of aNPCs in the
postnatal hippocampus. Caption on previous page.
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Mili KD), or a scrambled GapmeR (control) in DG of 6 to 8 weeks old mice
(Figure 3.3D). 48 hours after, Mili was signi�cantly reducedin DGs injected
with GapmeR antisense to Mili, at both transcript and protein levels compared
to control DGs (Figure 3.3E). In the same samples, we found an increase in
Gfap mRNA expression upon Mili KD compared to controls (Figure3.3E),
con�rming in vitro results.

Moreover, immunohistochemistry analysis of brain sections30 days after Gap-
meRs injection revealed a marked increase in GFAP staining inthe ipsilateral
hippocampus injected with GapmeR antisense to Mili, compared to the con-
tralateral one injected with the control GapmeR (Figure 3.3F). To ascertain
whether Mili KD may lead to generation of reactive glia, in a second cohort
of mice immediately after GapmeR injections, we administered BrdU to label
dividing cells (Figure 3.3D). 30 days after GapmeR injection, we quanti�ed the
fate of BrdU-labeled cells and found that Mili KD resulted in an increased pro-
portion of adult-born GFAP/BrdU double-positive astrocytes (Figure 3.3G, H)
and to a decreased proportion of NeuN/BrdU double-positive neurons, com-
pared to control DG (Figure 3.3G, H). These results indicate that depletion of
Mili in postnatal DG, repress neurogenesis and result suggests aberrant gen-
eration of astrocytes. Indeed, levels of reactive astrocyte markers complement
component C3, Serpina3n and Cxcl10 [174,175] were increased in the DG upon
Mili KD, compared to control (Figure 3.3H), suggesting that Mili KD increases
astrocyte reactivity.

To further address this possibility, we administered KA in postnatal mice carry-
ing a GFP knock-in allele in the gene encoding the neural stem and progenitor
cells marker Nestin [176], a treatment that induces neuronalhyperexcitation
similar to epilepsy and known to accelerate conversion of hippocampal adult
neural stem cells into reactive astrocytes [170]. 3 days after KA administration,
we found a signi�cant decrease of Mili mRNA in sorted cells from Nestin-GFP
mice treated with KA compared to saline (Control) and a concurrent decrease
in the expression of piR-cluster 1 (Figure 3.3I). Altogether,these results indi-
cate that the Piwi pathway sustains neurogenesis and suggest it is involved in
preventing reactive gliosis in the postnatal hippocampus.

3.4 In silico piRNA target analysis predicts noncoding
RNAs and mRNAs involved in translation

In order to identify possible targets of Mili-dependent piRNAs in neurogenesis,
we did in silico analysis [135] of the piRNAs expressed in proliferating (Fig-
ure 3.4, DIV 0) and upon induction of neuronal di�erentiation (Figure 3.4, DIV
4-7). In gonads, piRNAs repress mainly TEs but also other genicRNAs [167].
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Hence, we aligned piRNAs to both noncoding RNA (Figure 3.4A, B) and mR-
NAs (Figure 3.4C).

Figure 3.4: In silico piRNA target analysis predicts noncoding RNAs and mRNAs inv olved in
translation. (A , B ) Pie plots showing proportions of noncoding RNAs that are pr edicted piRNA targets
in aNPCs (DIV0) and upon induction of neurogenesis cells (DI V4-7). ( C ) Tables summarizing genic RNAs
predicted piRNA targets in aNPCs (DIV0) or upon induction of neurogenesis (DIV4-7); Gene Ontology (GO)
biological process and Kyoto Encyclopedia of genes and geno mes (KEGG) pathway analysis of genic piRNA
targets, ID ENSEMBL and Full names of genic targets involved in translation control are indicated.

Surprisingly, Ribosomal RNAs (rRNAs), especially rRNA 5S, are main ncRNAs
predicted targets of piRNAs in proliferating aNPCs (47 %, Figure3.4A). Other
small ncRNAs, in particular tRNAs, are also very represented (40%, Figure
3.4A). This �nding corroborates previous evidence in other somatic tissues, but
not brain, indicating that the majority of small RNAs associated to the Piwi
protein HIWI2 are tRNA-derived piRNAs [177]. In contrast, the percentage
of predicted piRNA targets corresponding to TEs (here comprising endogenous
retroviruses long terminal repeats (LTR); L1s and SINEs increases in di�erenti-
ating cells (37 %, Figure 3.4B), at the expense of rRNAs and othersmall RNAs
but their percentage remains relevant (51 %, Figure 3.4B).

Given that observed increase of active L1s in neurogenesis [141,150], this �nd-
ing would be compatible with a higher proportion of TEs-derived piRNAs in
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di�erentiating aNPCs. Analysis of mRNA targets indicated a setof genes en-
coding proteins involved in translation, such as four ribosomal proteins RpLs
and the leucyl-tRNA synthetase Lars2 (Figure 3.4C). GO and KEGG analy-
sis con�rmed a prevalence of \translation" and \ribosome" pathways as main
biological processes. This analysis provides a new insighton Mili-dependent
piRNAs in aNPCs, suggesting a possible role of the Piwi pathway in the regu-
lation of translation in neurogenesis.

3.5 Depletion of Mili and Mili-dependent piRNAs en-
hances polysome assembly in aNPCs

To validate piRNA targets (Figure 3.4) we quanti�ed expression of some ncRNA
and mRNA upon Mili KD (Figure 3.5A, B). Mili KD signi�cantly elev ated levels
of �ve ncRNAs (LINE1, SINE B1, rRNA 5S) and mRNAs (Lars2, Rpl13a,
Rpl17a) in aNPCs and neurogenesis (Figure 3.5A) or in proliferating aNPCs
(Figure 3.5B) compared to control cells, validating them as Mili-dependent
piRNA targets.

To gain insight into a possible mechanism of the Piwi pathwayin neurogenesis,
we quanti�ed the abundance of total RNA and protein extractedfrom prolifer-
ating aNPCs upon Mili KD (Figure 3.5C). Total RNA content normalized on
the number of cells, was not signi�cantly altered between control and Mili KD
cells. However, the majority of samples from Mili KD cells hadan increased,
yet not statistically signi�cant, amount of soluble proteins compared to control
(Figure 3.5C). Increased association of ribosomes on mRNAs (i.e., polysomes)
is generally regarded as a hallmark of active translation. Therefore, we quan-
ti�ed the polysome assembly in proliferating aNPCs upon MiliKD by means
of STED Nanoscopy (Figure 3.5D-E), an approach that resolves polysomes but
not 40S, 60S ribosome subunits or monosomes [178]. Remarkably, Mili KD dra-
matically increased polysome assembly, as revealed by immunostaining for the
RPL 26, compared to control aNPCs (Figure 3.5D). In particularoccupancy,
concentration and size average of the particles were increased (Figure 3.5E). To
corroborate these �ndings we evaluated growth, proliferation and stemness of
Mili KD aNPCs in proliferative media and found no di�erences in any of these
parameters compared with control cells (Figure 3.7). These results support our
hypothesis that the Piwi pathway modulates protein synthesis in neurogenesis.

3.6 Discussion

To the best of our knowledge, this is the �rst report of a functional a role for Mili
and Mili-dependent piRNAs in the mammalian brain. The enrichment of Mili
and piRNAs in aNPCs and the identi�cation of a piRNA cluster conserved in
mouse and human constitute a resource for future studies in brain. Speci�cally,
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Figure 3.5: Depletion of Mili and Mili-dependent piRNAs enhan ces and polysome assembly in
aNPCs. (A ) qRT-PCR validation of main classes (indicated) of noncodi ng RNA targets of piRNAs in aNPCs
(DIV0) and in neurogenesis (DIV4-7) upon treatment with a sc rambled shRNA (Control) or antisense to Mili
(Mili KD). ( B ) qRT-PCR validation of three representative mRNA targets o f piRNAs in neurogenesis upon
treatment with a scrambled shRNA (Control) or antisense to M ili (Mili KD). ( C ) RNA and protein abundance
relative to cell number in control or Mili KD aNPCs. ( D ) Representative micrograph showing magni�cation
of aNPCs cytoplasm immunolabeled with ATTO-488 against Rib osomal Protein (RPL)26 and imaged with g-
STED nanoscopy (middle cut). In the additional cuts, confoc al microscopy (bottom) and thresholding for the
analysis (top). Right panel: control and Mili KD aNPCs are co mpared plotting the normalized distributions
of the occupancy, concentration and average of particle siz e of each polyribosome particle. Scale Bar, 2 µm.
Data are expressed as mean � SEM, n=3 (7 in C) independent experiments. t-student test as post hoc:
* p< 0:05, ** p< 0:01.
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here we �nd that Mili sustains aNPCs neurogenic di�erentiation and modulates
glial reactivity, indicating that the Piwi pathway is requi red for hippocampal
neurogenesis. Mechanism of this regulation likely involves control of protein
translation.

Our study provides an unanticipated new role of the Piwi pathway in the reg-
ulation of protein synthesis in neural stem cells. A tight balance between qui-
escence, activation and di�erentiation is required for lifelong maintenance of
neural stem cells. The switch between quiescent and activated state crucially
depends on protein synthesis rate [179], while low translation maintains somatic
stem cells in undi�erentiated state [180].

In 2008, Sampath et al. found that global translation was lowin undi�erentiated
embryonic stem cells compared to embryonic body and that di�erentiation in-
duced an anabolic switch. The increase in translation in di�erentiated cells coin-
cides with a signi�cant increase in the content of total RNA (� 50 %), ribosomal
RNA ( � 20 %), and proteins (� 30 %). Remarkably, di�erentiation increases
polysome density compared to undi�erentiated embryonic stem cells [181]. in
2016, Blanco et al. showed that also skin stem cells have lower protein synthesis
than committed cells and that low translation functionallycontributes to their
maintenance [182]. More recently, it has been observed thatlow protein synthe-
sis rate in stem cells associates with their low cellular metabolism. Activation
for proliferation and commitment to di�erentiate requires a huge remodeling of
cellular metabolism leading to substantial variations in energy production and
consumption, which correlates with changes in the protein synthesis rate [179].

In fact, during steady state, transcriptional control is the main determinant
of the cellular proteome, whereas during early stages of state transition (such
as di�erentiation), translational control becomes the major determinant [183].
Translational control allows cells to promptly respond to internal and external
stimuli, even before a new transcription program starts [184]. In this view,
neurogenesis might also be controlled by protein synthesisrates, since it in-
volves transition of NPCs through multiple stages and requires adaptation to
the changing microenvironment, including metabolic switch.

At the mechanism level, Ribosomes are the center of the wholeprotein synthesis
machinery and key for �ne-tuning the proteome. Under physiological condition,
ribosome abundance is not considered a limiting factor for translation initiation
in stem cells, however, studies in Drosophila and mammals suggest that di�er-
entiation of stem cells relies on increased ribosomal biogenesis. In their study,
Ingolia et al. concluded that an increased expression of ribosomal proteins at
early stages of di�erentiation is required to boost the rateof global translation,
observed at later stages [183].
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Consistent with these �ndings, here we showed that aberrantactivation of aN-
PCs and reduced neurogenesis caused by Mili KD, correlates with an increased
expression of ribosomal biogenesis protein. In particular, we found the increased
expression of ribosomal RNA subunit 5s and mRNA encoding ribosomal pro-
teins L (RPL), Rpl3a, Rpl17 and Rpl26. These data suggest a role of the
Piwi-pathway in the regulation of translation machinery and, possibly, protein
synthesis. In addition to ribosomes, it is very likely that additional translational
factors contribute to translational control in stem cells.The initiation factors
eIFs are responsible for translation initiation, however there are only few stud-
ies on their role in stem cells. It has been reported that lackof eIFs in mouse
is often embryonic or perinatal lethal and has detrimental e�ects on stem cells
and normal development (reviewed in [180]). Interestingly, here we found that
eIF4A, which is required for the binding of the 40S ribosomal subunits to the
cap-complex of the mRNA, is one of the predicted piRNA targets indi�eren-
tiating aNPCs. Among the predicted piRNA targets in aNPCs we found also
tRNAs and TEs. Interestingly, tRNA fragments control translation in stem
cells [185] and TEs (i.e., L1s) regulate di�erentiation of adult NPCs [141,150].
Together, these results strongly suggest an involvement ofthe Piwi pathway in
the regulation of translation machinery.

Interestingly, tRNA-fragments control translation in stem cells [185] and TEs
(i.e., L1s) regulate di�erentiation of adult NPCs [141,150].

The study of piRNAs in neural stem cells and in mature neurons represents
a pioneering research on the potential role of these sncRNAs inneurogenesis
and cell di�erentiation: here, we speculate that the Piwi pathway may sustain
neurogenesis by simultaneous modulation of di�erent RNAs involved in control
of protein synthesis and di�erentiation. This evidence could open new insight
toward a better understanding of brain ageing and age-related pathological
conditions.
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3.7 Supplementary informations

Figure 3.6: Genomic distribution and expression of piRNA cl usters . (A ) Genomic locations of 100
piRNA clusters expressed in proliferating aNPCs. ( B ) Pairwise comparison of 298 piRNA clusters di�erentially
expressed in aNPCs (DIV0) or upon induction of neurogenesis (DIV4-7). ( C ) Relative abundance of piRNA
clusters identi�ed in Neural stem cells (NSC) or astrocytes . (D ) Relative abundance of piR-cluster1 in NSC
and astrocytes RPM: Reads per million.
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Figure 3.7: Mili KD does not a�ect aNPC proliferation and stem ness. (A ) Representative images of
proliferating aNPC treated with lentivirus for a scrambled shRNA (Control) or antisense to Mili (MILI KD),
stained with Nestin (white), Ki67 (purple), and nuclear DNA (blue). ( B ) Quanti�cation of the percentage of
Nestin or Ki67 positive cells over total cells. Data are expr essed as mean� SEM, n=3 independent experiments.
Scale bar 50µm.
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Data presented in this section have been published in Stem Cell Reports in
2019:
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Pons-Espinal M1* , Gasperini C1* ,Marzi MJ2, Braccia C3, Armirotti A 3, P•ozsch
A4,5, Walker TL 4,5, Fabel K4,5, Nicassio F2, Kempermann G4,5 and De Pietri

Tonelli D1

1. Neurobiology of miRNA, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
2. Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan,

Italy
3. Analytical Chemistry Facility, Istituto Italiano di Tecnologia (II T), Genoa, Italy
4. German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
5. CRTD { Center for Regenerative Therapies, Technische Universitat Dresden, Dresden,
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Abstract

Physical exercise stimulates adult hippocampal neurogenesis in mammals, and
is considered a relevant strategy for preventing age-related cognitive decline in
aging humans. However, its mechanism is controversial.

Here, by investigating miRNAs and their downstream pathways, we uncover
that downregulation of miR-135a-5p mediates exercise-induced proliferation of
adult NPCs in adult neurogenesis in the mouse hippocampus, likely by activa-
tion of phosphatidylinositol (IP3) signaling. Speci�cally, while overexpression of
miR-135 prevents exercise-induced proliferation in the adult mouse hippocam-
pus in vivo and in NPCs in vitro , its inhibition activates NPCs proliferation in
resting and aged mice. Label free proteomics and bioinformatics analysis iden-
ti�es 11 potential targets of miR-135 in NPCs, several of theminvolved in phos-
phatidylinositol signaling. Thus, miR-135a is key in mediating exercise-induced
adult neurogenesis and opens intriguing perspectives toward the therapeutic
exploitation of miR-135 to delay or prevent pathological brain ageing.

We hypothesize that exploiting these mechanisms is relevant for preventing age-
related cognitive decline in humans and that our animal models can contribute
to providing evidence-based recommendations for an activelifestyle for success-
ful aging.
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4.1 Running-induced proliferation downregulates miRNA
expression in Nestin-positive adult hippocampal NPCs
in vivo

To identify whether running alters miRNAs expression in adulthippocampal
neural precursor cells (NPCs), six-week-old mice, expressing the uorescent pro-
tein Cyan Fluorescent Protein /nuclear (CFP/CFPnuc) under thecontrol of the
regulatory elements of the Nestin gene (Nestin-CFP/CFPnuc), were housed un-
der standard conditions, or equipped with a running wheel for 10 days (Fig-
ure 4.1A). Consistent with previous data, we found in the hippocampal SGZ
of runner mice a signi�cant increase in the number of BrdU positive cells (Fig-
ure 4.1B; p=0:005) and of BrdU/Nestin-CFP/CFPnuc double-positive NPCs
(Figure 4.1D; p=0.007), also leading to an increased total number of Nestin-
CFP/CFPnuc-positive NPCs (Figure 4.1C;p=0:136), suggesting an expansion
of the proliferative NPCs pool.

We performed expression pro�ling of miRNAs in sorted Nestin-CFP/CFPnuc
positive NPCs from the DG of resting and running mice, by meansof Taq-
Man Low Density Array (TLDA) (three independent biological replicates, each
containing a pool of Nestin-CFPnuc positive cells isolated from 8 mice per con-
dition) and found 8 miRNAs that were reproducibly down-regulated in each
replicate sample from runners, compared to resting mice (Figure 4.8). Of rel-
evance, none of the miRNA identi�ed in the TLDA were reproducibly induced
in Nestin-CFP/CFPnuc positive NPC upon running (not shown). Thethree
most downregulated miRNAs in Nestin-CFPnuc positive NPCs from the DG of
running mice were miR-135a (mmu-miR-135a-5p), miR-190 (mmu-miR-190-5p)
and miR-203 (mmu-miR-203-3p) (Figure 4.1E). Next, we examined by in situ
hybridization [186, 187], the expression patterns of thesethree miRNAs in the
DG of adult C57BL/6J mice housed in standard cages. As controlfor ISH we
used a probe antisense to miR-9, a brain enriched miRNA known to be highly
expressed in NPCs and neurons in embryonic and adult mice [188]. We found
that miR-135a, miR-203 and miR-190 were expressed in the DG of adult mice,
but only miR-135a and miR-190 were preferentially enrichedin the SGZ, where
NPCs are localizedin vivo (Figure 4.1F).

Together, these results indicate that running decreases the expression of miR-
NAs in hippocampal aNPCsin vivo, opening the possibility that these miRNAs
might be involved in the mechanism underlying running-induced proliferation
of adult NPCs.

38



4. Exercise-dependent microRNAs

Figure 4.1: Running-Induced Proliferation Downregulates m iRNA Expression in Nestin-
Positive Adult Hippocampal NPCs In Vivo . (A ) Schematic representation of the experiment. ( B { D )
(B ) Total number of BrdU and ( C ) Nestin-CFP/CFPnuc positive adult neural progenitor cell s (NPCs), or
(D ) proportion of BrdU/Nestin-CFP/CFPnuc double-positive c ells counted from the hippocampal SGZ of
Nestin-CFP/CFPnuc mice under standard (STD) or running (RU N) conditions for 10 days; n=8 mice per
group. ( E ) Quanti�cation of relative expression levels of miR-135-5 p, miR-190-5p, and miR-203-3p by TLDA
in sorted Nestin-CFP/CFPnuc NPCs from the hippocampus of ad ult mice in STD or RUN conditions. ( F )
Representative micrographs showing expression of miR-9-5 p (positive control), miR-135-5p, miR-190-5p, and
miR-203-3p by in situ hybridization in the DG and cortex (CTX ) of 6-week-old C57Bl6J mice. H, hilus,
GCL, granular cell layer; SGZ, subgranular zone. Data are ex pressed as means� SEM, n=3 independent
experiments. One-way ANOVA Bonferroni as post hoc: ** p< 0:01. Scale bar, 100 mm (large panel), 50 µm
(small panel).

4.2 miR-135a inhibits cell cycle progression of cultured
adult NPCs

To investigate this possibility, we compared expression ofthe 3 miRNAs in
cultures of primary hippocampal NPCs [189] in quiescence andproliferative
conditions. Quiescence is here operationally de�ned as \non-proliferative" and
induced in vitro by the addition of Bone Morphogenetic Protein (BMP4) [190]
to the culture medium containing Fibroblast Growth Factor 2 (FGF2/bFGF).
Proliferation media was supplemented with both FGF2 and Epidermal Growth
Factor (EGF). As expected, proportion of BrdU-positive NPCs in proliferative
media was higher than in quiescence media (Figure 4.2A-B;p< 0:001) and, con-
sistent with miRNA pro�ling of running mice (Figure 4.1), proliferating NPCs
had signi�cantly lower levels of miR-135a, miR-190 and miR-203 compared to
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cells in quiescence (Figure 4.2Cp< 0:001).

Figure 4.2: miR-135a Levels in Adult NPCs Are Cell-Cycle Dep endent and Its Modulation
A�ects Cell Proliferation In Vitro . (A and B ) Representative micrographs showing ( A ) BrdU-positive
and (B ) quanti�cation in primary hippocampal adult NPCs cultured in proliferative medium (EGF + bFGF),
or quies- cence medium (BMP4 + bFGF). ( C ) Relative miRNA fold change expression. ( D and E) Represen-
tativemicrographs showing ( D ) Ki67-positive NPCs and ( E ) quanti�cation cultured in proliferative medium
(EGF + bFGF) upon transfection with 50 nM scrambled con- trol , miR-203-3p, miR-190-5p, miR-135a-5p
mimics, or upon transduction with lentivirus transcribing a sponge for miR-135a (sponge miR-135a, i.e. ,
loss of function) or virus expressing control (scrambled) R NAs. Data are expressed as means � SEM, n=3
independent experiments containing three replicates. One -way ANOVA Bonferroni as post hoc. ** p< 0:01,
*** p< 0:001. Scale bars, 50µm.
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To ascertain whether miR-135a, miR-190 or miR-203 a�ect adult NPC pro-
liferation, we transfected synthetic miRNA mimics or scrambled control into
NPCs in vitro and quanti�ed the proliferative marker Ki67 [191]. Overexpres-
sion of miR-135a, but neither miR-203, nor miR-190 was su�cient to reduce
the proliferation of NPCs (Figure 4.2D-E;p< 0:001). Conversely, inhibition of
miR-135a, upon transduction with a virus expressing a sponge (see below and
Figure 4.3A), led to a signi�cant increase in NPC proliferation(Figure 4.2D-
E). These results indicate an anti-proliferative functionof miR-135a in adult
hippocampal NPCsin vitro .

4.3 Validation of lentiviruses to overexpress / downreg-
ulate miR-135a in NPCs

To con�rm this result in vivo, we transduced lentiviruses expressing either a
short-hairpin precursor of miR-135a (sh-miR-135, gain of function), or a sponge
for miR-135a (loss of function), or scrambled control RNA sequences in NPC
cultures (Figure 4.3A). Expression of miR-135a in NPCs was higher upon trans-
duction with sh-miR-135a and signi�cantly reduced upon transduction with
sponge for miR-135a, compared to controls (Figure 4.3A).

We injected the miR-135a sponge or a scrambled control lentivirus, in the DG of
6-8-week-old Nestin-CFPnuc mice housed under standard (resting) conditions.
Ten days after injection, we found a higher percentage of Nestin-CFPnuc+
NPCs upon miR-135 inhibition, compared to mice injected withthe scrambled
control using ow cytometry (Sponge 1.6%, Figure 4.9A; Control 1.2%, Fig-
ure 4.9B). In another set of experiments (Figures 4.3-5), we administered BrdU
(3 injections, every 2 hours) ten days after virus injectionand killed the mice 24
hours after the �rst BrdU administration. We found in both control and miR-
135a sponge-injected mice that> 90 % of the BrdU-positive cells also expressed
Nestin-CFPnuc (Figure 4.3B-D) and GFAP (Figure 4.3B), indicating that the
majority of BrdU-positive cells in the SGZ of these mice werebona �de NPCs.

Figure 4.3: Next page - (A) ) Relative expression levels of mature miR-135a in primary N PCs transduced
in vitro with lentivirus transcribing the immature short-hairpin p recursor of miR-135a (sh-miR- 135a, i.e. ,
gain of function), or a sponge for miR-135a (sponge miR-135a , i.e. , loss of function), or control viruses
expressing scrambled RNAs. ( B ) Representative micrographs showing immunostaining for N estin-CFPnuc
(green), BrdU-positive cells (red), and GFAP-positive cel ls (white), and nuclear DNA with DAPI (blue) in the
hippocampal SGZ of 6- to 8-week-old Nestin-CFPnuc mice, inj ected with lentiviruses (same used in A), kept
10 days under standard conditions and sub- jected to three in jections of BrdU 24 hours before sacri�ce. ( C )
Representative micrographs showing immunostaining for Ne stin-CFPnuc (green), BrdU-positive cells (red)
and nuclear DNA with DAPI (blue) in the hippocampal SGZ of 6- t o 8-week-old Nestin-CFPnuc mice, in-
jected with miR-135a sponge or scrambled- sponge lentiviru s, kept 10 days under standard conditions, and
subjected to three injections of BrdU 24 h before sacri�ce. ( D ) Percentage of BrdU and Nestin-CFPnuc
double-positive cells over total BrdU+ cells in the SGZ of mi ce injected with lentiviruses. Data are expressed
as means � SEM, n=7 mice per group. One-way ANOVA Bonferroni as post hoc . ** p< 0:01, *** p< 0:001.
Scale bars, 50µm (B) and 25 µm (C).
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Figure 4.3: Validation of Lentiviruses to Overexpress/Dow nregulate miR-135a in NPCs in vitro
and in vivo . Caption on previous page.
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4.4 miR-135a Mediates Running- Induced Proliferation
in the Hippocampal SGZ in vivo

Next, we assessed the e�ect of miR-135a manipulation on NPC proliferation in
vivo. We injected viruses expressing sh-miR-135, sponge or scrambled controls
into the DG of 8-week-old C57BL/6 mice and placed them in standard cages,
or in cages equipped with a running wheel for ten days, followed by BrdU
administration (Figure 4.4A).

In resting mice miR-135a inhibition led to a signi�cant increase in the number of
BrdU-positive cells in the SGZ, compared to controls (Figure 4.4B-C; p< 0:01).
In contrast, no signi�cant di�erences in the number of BrdU-positive cells upon
overexpression of miR-135a were observed (Figure 4.4B-C). The latter result
could be explained by a saturation of the system due to the high expression levels
of the endogenous miR-135a in NPCs (Figure 4.1). Importantly,we found that
overexpression of miR-135a prevented the running-inducedNPC proliferation
in the SGZ (Figure 4.4B-C;p< 0:05).

To corroborate these results, we analyzed the proportion ofcells exiting the cell
cycle upon manipulation of miR-135a in resting and running mice, by quantify-
ing BrdU-positive cells that were negative for Ki67 in the SGZ(Figure 4.4B-D).
Consistent with the antiproliferative function of miR-135a, we found a signif-
icant decrease in cell cycle exit upon injection with the miR-135a sponge in
the DG of mice housed under standard conditions (Figure 4.4D;p< 0:05). In
contrast, overexpression of miR-135a signi�cantly increased cell cycle exit in
running mice (Figure 4D;p< 0:01). In sum, these results indicate an antiprolif-
erative function of miR-135a in NPCs and that its downregulation is necessary
for the running-induced proliferation in the SGZ of adult mice.
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Figure 4.4: miR-135a Mediates Running- Induced Proliferatio n in the Hippocampal SGZ in
vivo . (A ) Schematic representation of the experiment. ( B ) Representative micrographs showing BrdU (green),
Ki67 (red), or double-positive cells (yellow arrowheads) i n the hippocampal SGZ of 6- to 8-week-old C57BL/6
mice, injected with scrambled, sponge miR-135a, or sh-miR- 135a virus under standard or running conditions
for 10 days and subjected to three injections of BrdU 24 h befo re sacri�ce. White arrowheads, BrdU+ Ki67
cells; yellow arrowheads, BrdU+ Ki67+ cells. ( C ) Number of BrdU-positive cells per DG volume (mm 3 ). ( D )
Percentage of BrdU+Ki67 over total BrdU+ cells as a measure o f cell-cycle exit. Data are expressed as means
� SEM, n=6 mice per group. One-way ANOVA Bonferroni as post hoc . * p< 0:05, ** p< 0:01, *** p< 0:001.
Scale bars, 50µm.
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4.5 Transient miR-135a inhibition stimulates hippocam-
pal neurogenesis, but not astrogliogenesis in vivo

Next, we asked whether an increased proportion of proliferating NPCs, upon
miR-135a inhibition, would also increase neurogenesis (Figure 4.5). Since con-
stitutive inhibition of miR-135a prevents neuronal di�erentiation of NPC [192],
we used synthetic \antagomiRs" to transiently inhibit miR-135a (anti-miR-
135a), or scrambled control inhibitors in DG of resting miceand followed the
fate of NPCs with BrdU (Figure 4.5A). As expected, injection of anti-miR-
135a dramatically reduced endogenous miR-135a levels compared to control
mice (Figure 4.5B;p< 0:0001) and increased NPC proliferation, as indicated by
higher number of BrdU+ cells in SGZ of mice (Figure 4.5C,D;p< 0:0001).

Next, to evaluate the fate of NPCs, we quanti�ed the proportionof cells co-
expressing BrdU and the immature neuronal marker doublecortin (DCX), or
the postmitotic neuronal marker NeuN in the DG three weeks after antagomiRs
injection. Interestingly, we found that inhibition of miR-135a increased propor-
tions of BrdU+DCX+(Figure 4.5E-G; p< 0:0001) and BrdU+NeuN+ neurons,
compared to control mice (Figure 4.5F-H;p< 0:05). This result indicated that
increased NPC proliferation, upon transient inhibition of miR-135a, leads to
enhanced neurogenesis thus phenocopying running [159].

In contrast, miR-135a inhibition did not alter the proportion of BrdU+ cells ex-
pressing astrocyte markers such as Glial �brillary acidic protein (GFAP) (Fig-
ure 4.10A-B), or glutamate transporter GLT-1 (i.e., Solute Carrier Family 1
Member 2, SLC1A2) (Figure S4.3C-D) or the GLutamate ASpartate Trans-
porter GLAST ( i.e. Solute carrier family 1 glial high-a�nity glutamate trans-
porter member 3, SLC1A3) (Figure 4.10E-F). The latter result isconsistent
with our previous �nding that adult hippocampal NPCs can undergo astrogli-
ogenesis in absence of miRNAs [192].

Figure 4.5: Next page - (A) ) Schematic representation of the experiment. ( B ) Relative expression levels
of mature miR-135a in hippocampal DG of mice injected with co ntrol scrambled or anti-miR-135a 48 h
after the injection. ( C and D ) ( C ) Representative micrographs showing BrdU (black or red) ce lls 6 days
after injection of control (scrambled) or anti-miR-135a an d (D ) the number of BrdU+ NPCs per volume
mm3 ) in the hippocampal SGZ of 6-week-old C57BL/6 mice. ( E and F ) Percentage of BrdU+DCX+( E),
BrdU+NeuN+( F ) over total BrdU+ cells in the hippocampal SGZ of 6-week-old C57BL/6 mice 3 weeks after
the injection with scrambled or anti-miR-135a antagomiRs. (G and H ) Representative micrographs showing
staining for BrdU (red), DCX (G, green) or NeuN (H, green); an d nuclear DNA with DAPI (blue); arrowheads
indicate double-positive cells. H, hilus, GCL, granular ce ll layer; SGZ, subgranular zone. Data are expressed
as means � SEM, n=7 mice per group. One-way ANOVA Bonferroni as post hoc . * p< 0:05, **** p< 0:0001.
Scale bars, 50 mm and 25 mm (G, high magni�cation)
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Figure 4.5: Transient miR-135a Inhibition Stimulates Hippo campal Neurogenesis In Vivo . Cap-
tion on previous page.
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4.6 Inhibition of miR-135a reactivates proliferation in
the hippocampal SGZ of aged mice and stimulates
the re-entry of quiescent aNPCs into a proliferative
state

The age-associated reduction in adult neurogenesis has been attributed both to
exhaustion of the NPCs pools and/or to an increased state of quiescence of the
remaining NPCs [18,157,193,194]. Environmental stimuli have been shown to
counteract the age-associated loss of adult neurogenesis in rodents, suggesting
that a reversible cell cycle arrest of aged NPCs is possible atleast to some
extent. We hypothesized that miR-135a inhibition could restore proliferation
in the SGZ in aged mice.

To verify this possibility, we injected either a lentivirustranscribing the sponge
for miR-135a or the scrambled controls in the DG of eight-week-old (young)
or 90-week-old (aged) C57BL/6 mice housed under standard conditions. Ten
days later, we administered BrdU (3 injections, every 2 hours) and killed them
24 hours after the �rst injection (Figure 4.6). Remarkably, upon injection of
the miR-135a sponge, both young and aged mice exhibited a similar signi�cant
increase in the number of BrdU-positive cells in the SGZ of thehippocampal
DG compared to mice injected with the scrambled controls (Figure 4.6A). This
result suggests that inhibition of miR-135a is su�cient to reactivate proliferation
in the hippocampal SGZ of aged-mice.

To investigate whether inhibition of miR-135a stimulates cell cycle re-entry
of quiescent NPCs, we infected primary cultures of hippocampal NPCs in vitro
with lentivirus expressing the sh-miR-135a, the miR-135a sponge, or a scramble
control RNA (Figure 4.6B-E). Quiescent NPCs have been proposedto accumu-
late genetic and epigenetic changes in histone and DNA over time [190]. To
mimic this scenario, proliferating NPCs were �rst cultured in quiescence media
for 72h, followed by 48h culture in new proliferative media (Figure 4.6B). Then,
we measured the capacity of these cells to re-enter into a newproliferative state
(Figure 4.6C-E), by quantifying the proportion of NPCs that were positive for
BrdU (2h pulse, Figure 4.6C-D) or Ki67 (Figure 4.6C, E). Overexpression of
miR-135a impaired NPCs proliferation re-entry, as shown by the lower per-
centage of BrdU- and Ki67- positive NPCs (Figure 4.6C-E), compared to cells
infected with the scrambled control (Figure 4.6C-E;p< 0:001, normalized to
scrambled sh-control).

In contrast, inhibition of miR-135a upon infection with the miR-135a sponge,
stimulated re-entry of NPCs in proliferation, as shown by higher percentage
of BrdU- and KI67- positive NPCs, compared to the scrambled control (Fig-
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ure 4.6C-E; p< 0:05, normalized to scrambled sponge control). Consistently,
cell cycle analysis using propidium iodide staining and FACS revealed that in-
hibition of miR-135a signi�cantly increased the proportion of cells in S phase
(10:24 % vs. 20:63 % p< 0:05) and G2/M phases (9:63 % vs. 12:61 %; Fig-
ure 4.11A-B;p< 0:05), at the expense of the G1/G0 phase (80:12 % vs. 66:55 %;
Figure 4.11A-B; p< 0:01), as compared to NPCs infected with the scrambled
control.

Figure 4.6: Inhibition of miR-135a Re-activates Proliferat ion in the Hippocampal SGZ of Aged
Mice and Stimulates Cell-Cycle Re-entry of Quiescent NPCs. (A ) Number of BrdU+ NPCs per
DG volume (mm 3 ) in the hippocampal SGZ of 8-week-old (young) and 90-week-o ld (aged) C57BL/6 mice,
injected with lentiviral sponge for miR-135a (loss of funct ion), housed for 10 days under standard conditions,
and subjected to BrdU administration (three injections eve ry 2 h) 24 h before sacri�ce. ( B ) Schematic repre-
sentation of the in vitro experiment. Primary hippocampal N PCs were allowed to re-enter the cell cycle after
72 h in quiescence medium and �xed 2 h after BrdU administrati on. (C ) Representative micrographs showing
BrdU (green) and Ki67 (red) double-positive cells (yellow, arrowheads) of hippocampal NPCs infected with
control sh-scrambled RNA, sh-miR-135a (gain of function), control sponge, or sponge miR-135a lentiviruses.
(D ) Percentage of BrdU+ cells relative to total cells (DAPI) no rmalized to controls. ( E ) Percentage of Ki67-
positive cells relative to total cells (DAPI) normalized to controls. Data are expressed as means � SEM, n=3
independent experiments containing three replicates. One -way ANOVA Bonferroni as post hoc. * p< 0:05,
*** p< 0:001. Scale bars, 50µm.
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Moreover, inhibition of miR-135a in NPCs led to a signi�cant increase in the
expression of transcripts encoding several markers of proliferation such as Ki67
and Mcm2, as well as candidate genes involved in cell cycle regulation such as
cyclins A and cyclin E (Figure 4.11C).

Together, these results indicate that inhibition of miR-135a is su�cient to re-
activate proliferation in the SGZ of aged mice, and that thismight occur by
stimulating quiescent NPCs re-entry into the proliferativestate.

4.7 Phosphatidylinositol signaling acts downstream of miR-
135a

To dissect proteins and pathways modulated by miR-135a in adult hippocampal
NPCs, we �rst infected them with lentiviruses transcribing either the immature
precursor or miR-135a (sh-miR-135), or the sponge for miR-135a and corre-
sponding scrambled RNA controls (sh-control; sponge, control) in vitro , we then
performed shotgun label-free proteomics analysis of extracts from these cultures.
Upon overexpression of miR-135a, we found 431 up-regulated proteins (thresh-
old > 1:5-fold, Table S1) and 101 down-regulated proteins (threshold < 0:5-fold;
Figure 4.7A and Table S1, available in the online version of the publication);
while upon inhibition of miR-135a we found 326 proteins up-regulated (> 1:5-
fold, Figure 4.7A and Table S2) and 109 down-regulated (< 0:5-fold; Table S2).

To understand which mechanisms are a�ected by miR-135a in NPCs, we per-
formed in silico GO analysis using DAVID bioinformatics resources [195,196] on
all the proteins that were di�erentially expressed upon miR-135a manipulation
(Tables S1 and S2). Top GO functions were: protein transport(GO: 001503 p-
value sh-miR-135a 5.59E-06; p-value miR-135 sponge 3,29E-04); vesicle-mediated
transport (GO:0016192; p-value sh-miR-135 5.34E-05; p-value miR-135 sponge
2.10E-03); transport (GO:0006810; p-value sh-miR-135 9.65E-03; p-value miR-
135 sponge 5.10E-03) and nervous system development (GO:0007399; p-value
sh-miR-135 9.79E-03; p-value miR-135 sponge 2.81E-02).

MiRNAs are mostly post-transcriptional repressors, hence, to identify the po-
tential miR-135a targets in NPCs we focused on the proteins that were down-
regulated upon overexpression of miR-135a and compared with those up-regulated
upon its inhibition (Figure 4.7A-B). We found 17 proteins thatwere consistently
a�ected by miR-135a levels in both data sets (Figure 4.7A-B). GO and KEGG
pathway analysis of these proteins revealed that they are mostly involved in
Intrinsic apoptotic signaling pathway in response to Endoplasmic reticulum
stress (GO:0070059, p-value 0.0021, Figure 4.7C) and phosphatidylinositol sig-
naling system (mmu:04070, p-value 0.0249, Figure 4.7C). Proteins predicted
to be involved in these processes were inositol 1,4,5-trisphosphate (IP3) re-
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Figure 4.7: Phosphatidylinositol Signaling Proteins Are Mo dulated by miR-135a in NPCs. (A
and B ) Venn diagram indicating the number of downregulated prote ins (purple, < 0:5-fold) upon overexpres-
sion of miR-135a (sh-miR-135a), or upregulated proteins (y ellow, > 1:5-fold) upon inhibition of miR-135a
(Sponge-miR-135a), and the 17 di�erently expressed protei ns (table in B) found in both datasets, in cultured
primary hippocampal NPCs. ( C ) In silico GO analysis and KEGG pathway analysis. ( D ) Alignment of
mouse and human miR-135a-5p and miR-135b-5p. ( E ) Predicted targets of miR-135 according to MiRWalk.
Position and length of predicted target sites of miR-135a-5 p and miR-135b-5p are shown for each transcript
(Ensembl ID).
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ceptor 1(ITPR1) and BRSK2, or inositol polyphosphate-4-phosphatase, type
I (INPP4A), respectively. Interestingly, the transcript encoding for Human
INPP4A (Transcript ENST00000409016; Gene IDENSG00000040933) is an ex-
perimentally validated target of miR-135a-5p (Target siteposition: chr2:98590068-
98590095, DIANA-Tarbase v8.0) [197] in human brain cortex [198]. This gene
encodes an Mg++ independent enzyme that hydrolyzes the 4-position phos-
phate from the inositol ring of phosphatidylinositol 3,4-bisphosphate, inositol
1,3,4-trisphosphate, and inositol 3,4-bisphosphate.

To identify additional potential miR-135a targets amongstthe 17 candidate
proteins, we used prediction software miR-Walk 3.0, [199].Since both miR-
135a-5p and miR-135b-5p share identical seed regions and are conserved in
human and mouse (Figure 4.7D), we searched targets in both human and mouse
databases (Figure 4.7E). We found that 11 of 17 a�ected proteins upon miR-
135a manipulation are predicted targets of this miRNA (Figure4.7E). Finally,
we repeated the same analysis workow for the proteins upregulated (> 1:5-fold,
Table S1) upon miR-135a overexpression and downregulated upon miR-135a
inhibition ( < 0:5-fold, Table S2). We found 23 proteins that were consistently
a�ected by miR-135a levels in both data sets, but in contrastonly 4 of them
(17 %), were predicted targets of (either human or mouse) miR-135a-5p or miR-
135b-5-p (not shown), suggesting these proteins are indirectly modulated by
miR-135.

4.8 Discussion

In this study, we identify miR-135a as the �rst noncoding RNA essential mod-
ulator of the brain response to physical exercise. We reportthat overexpression
of miR-135a in the DG prevents running-induced NPC proliferation. On the
other hand, miR-135a inhibition stimulates NPC proliferation leading to in-
creased neurogenesis, but not astrogliogenesis, in DG of resting mice. Remark-
ably, miR-135a inhibition reactivates NPC proliferation in DG of aged mice,
likely by stimulating quiescent NPC pools to re-enter the cell cycle.

Several studies reported altered hippocampal miRNA expression in response to
physical exercise [162, 163, 165], orpathological conditions [96]. To our knowl-
edge, this is the �rst study reporting a functional role of one miRNA under-
lying the exercise-mediated increase in adult neurogenesis. Functions of the
two members of the miR-135 family are poorly described in themammalian
CNS. In postmitotic neurons, miR-135 regulates axon growth/regeneration and
mediates long-term depression [200, 201]. miR-135a expression is high in the
amygdala of stressed mice [202], and in the mouse raphenucleus (functionally
connected to the hippocampus) it is a key regulator of serotoninergic networks
and antidepressants action [203]. However, since miR-135 association with
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depression- and anxiety-related phenotypes in patients isvery variable [204],
its role in the pathological mechanism of these diseases remains unclear. In
the adult mouse hippocampus, miR-135 is rapidly upregulated after prolonged
kainic acid-induced seizures [40].

Physical exercise is a potent trigger of adult hippocampal neurogenesis in both
young and aged mice, but cellular and molecular mechanisms underlying this
phenomenon remain controversial. Cellular mechanisms include recruitment of
quiescent neural stem cells, acceleration of the cell cycleof NPCs, increased
number of cell divisions, and reduction of cell death [205].At the molecu-
lar level, physical exercise has been shown to increase levels of growth factors
BDNF, IGF, FGF-2, and VEGF, leading to the activation of MAPK/ERK and
PI3K-Akt signaling pathways [206]. We report that INPP4A, a keyenzyme
for phosphatidylinositol metabolism and known target of miR-135 in the cor-
tex [198], is one of the top proteins modulated by miR-135 in NPCs. ITPR1,
another di�erentially expressed protein identi�ed in our analysis, is also a key
player in IP3 signaling.

Hence, phosphatidylinositol signaling could represent a prominent constraint
to NPC proliferative potential. This hypothesis is consistent with previous
studies indicating that the PI3K-Akt signaling pathway is activated by exer-
cise in rodents [207, 208]. However, while these studies concluded that the
PI3K-Akt pathway primarily mediates the e�ect of exercise onthe survival of
newly generated DG neurons and the associated increase in synaptic plasticity,
our results suggest that miR-135/phosphatidylinositol signaling could mediate
exercise-induced proliferation of NPCs.

Together, this evidence opens the possibility that the miR-135-IP3-axis might
represent a novel target of therapeutic intervention to stimulate adult neurogen-
esis and therapeutic exploitation of miR-135 might o�er intriguing perspectives
to delay or prevent pathological brain aging. One unanswered question aris-
ing from our study is how running decreases miR-135 levels inadult NPCs.
miR-135 is a tumor suppressor [209, 210], which is downregulated in several
cancers [211{215].
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4.9 Supplementary informations

Figure 4.8: Fold change expression of miRNAs in Nestin-CFPn uc positive NPCs sorted from
adult hippocampus of mice in standard (STD) or running (RUN) conditions for 10 days . (A )
Expression levels of miRNAs and normalizators (Ct values) b y TLDA from each independent experiment
(EXP; n=3 independent biological replicas each of them cont aining a pool of Nestin-CFPnuc positive cells
isolated from 8 mice, per condition). ( B ) Normalized values from each independent experiment and pl ots.
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Figure 4.9: Inhibition of miR-135a increases the number of Ne stin-CFPnuc positive NPCs in
vivo . (A -B ) Fluorescent sorting of CFPnuc positive cells from 6-week- old Nestin-CFPnuc mice after 10 days
upon stereotaxic injections of lentivirues encoding contr ol (A ), or miR-135a ( B ) sponge in the hippocampal
DG of adult mice. n=10 mice per group, pooled before sorting.
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Figure 4.10: Transient inhibition of miR-135a does not alte r the astrogliogenesis in hippocampal
SGZ . (A -F ) Representative micrographs showing BrdU (red), GFAP (A), GLT-1 (C) or GLAST (E) (white)
cells in hippocampal SGZ of 6-weeks-old C57BL/6 mice, injec ted with control scrambled or anti-miR-135a,
subject to BrdU administration (2 injections every day per 5 days) and sacri�ced 2 weeks after the last BrdU
injection. (B) Quanti�cation of the proportion BrdU+GFAP+ (B), BrdU+GLT-1+ (D) or BrdU+GLAST+
over total BrdU+ cells. H, hilus. Data are expressed as mean p mSEM, n=7 mice per group. One-way ANOVA
Bonferroni as post hoc. * p< 0:05, **** p< 0:0001. Scale bars, 25µm.
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Figure 4.11: Downregulation of miR-135a regulates prolife ration and cell cycle -dependent
genes in NPCs in vitro . (A ) Representative cell cycle analysis of propidium iodide st aining by ow
cytometry. ( B ) Percentage of NPCs in G0/G1, S and G2/M phases upon infectio n with viral-encoded control
or sponge for miR-135a in vitro . (C ) Quanti�cation of relative mRNA expression of cell cycle-d ependent
genes normalized to Actin in NPCs cultured in proliferative (bFGF+EGF), or quiescence (bFGF+BMP4)
media upon transduction with viral-encoded control, and in proliferative media upon transduction with viral-
encoded miR-135a sponge. Data are expressed as mean � SEM, n=3 independent experiments containing
three replicates. One-way ANOVA Bonferroni as post hoc. * p< 0:05, ** p< 0:01, *** p< 0:001.

56



5 Conclusions and perspectives

Lifelong maintenance of neurogenesis has implication for memory, ageing and
age-related diseases. Interestingly, newborn neurons arestill generated in old
human brains, and the aged mouse brain retains some ability to regulate neuro-
genesis in response to macroenviromental changes, such as exercise [216]. Mech-
anisms proposed to explain the age-related drop of adult neurogenesis include
deforestation of aNPC through their conversion into reactive astrocytes [18], a
phenomenon accelerated by epilepsy [34] and neurodegeneration [217,218].

One hallmark of brain aging and age associated neurodegenerative disorders is
gliosis: reactivity in astrocytes typically increases their inammatory pheno-
type and cause loss of their neuro-supportive functions, thus rendering neurons
vulnerable to hypo-metabolic states, excitotoxicity and oxidative stress [219].
Aging is associated with increased levels of Reactive oxygenspecies (ROS),
oxidized products and reactive nitrogen species (RNS) in di�erent tissues. In-
deed, the oxidative stress theory of aging is based on the hypothesis that age-
associated functional losses are due to the accumulation ofreactive oxygen and
nitrogen species (RONS) -induced damages. RONS are importantregulators
of cellular metabolism, gene expression, and other molecular responses, playing
key roles in the control of various physiological processes. Oxidative stress is
involved in several age-related conditions (i.e., cardiovascular diseases, chronic
obstructive pulmonary disease, chronic kidney disease, neurodegenerative dis-
eases, and cancer), including sarcopenia and frailty [220,221]. Therefore, it
becomes clear that understanding the regulation of RONS in aging is crucial.

Within this context, our results indicate that the Piwi pathway prevents glial
reactivity in the postnatal hippocampus. Glial reactivity causes loss of their
neuro-supportive functions, thus rendering neurons vulnerable to metabolic and
oxidative stress [219]. In addition, dysregulated expression of the Piwi pathway
has been associated with various neuronal disorders, such as Alzheimer's disease
and Rett Syndrome; moreover, piRNAs could represent potential therapeutic
targets and appropriate diagnostic markers of these diseases [139]. Interestingly,
a piRNA-miRNA signature in circulating exosomes has been recently proposed
as a hallmark of human neurodegeneration: this is an important �nding, useful
to detect Alzheimer's disease on the basis of cerebrospinal uid samples and it
may also help to predict conversion of mild{cognitive impaired patients [222].

Another important aspect of aging is its direct link to DNA damage, which may
be caused by the transposition of TEs. TEs are powerful drivers of genome
evolutionary dynamics but are principally deleterious to the host organism by



5. Conclusions and perspectives

compromising the integrity and function of the genome. The Piwi pathway can
be considered also as a widespread strategy used by most animals to e�ectively
suppress transposition [223]. In the absence of active Piwipathway, aging so-
matic cells tend to increasingly lose heterochromatin, which normally maintains
TEs under transcriptional repression [224,225]. Even if TEs are not the major
targets of Piwi pathway in aNPCs, our data indicate an increased proportion of
TEs-derived piRNAs in di�erentiating neuroblasts, comparedwith proliferating
cells. This evidence is in line with previous data reportinga high expression and
activity of TEs during neurogenesis [141,150]. Additional studies will be needed
to caratterize the regulation of TEs activity and DNA damage in brain aging,
to better understand the possible role of Piwi pathway in protecting somatic
stem cells from TE-mediated mutagenesis.

Beside piRNAs and among various epigenetic events, also miRNAs turned out
to be important players in controlling ROS and aging: miRNAs can generate
rapid and reversible responses and, therefore, are ideal players for mediating
an adaptive response against stress through their capacityto �ne-tune gene
expression [226]. About 70 miRNAs are upregulated in murine brain aging,
starting from 18 months of age [227]. Consistent with this evidence, our study
showed that miR-135a inhibition reactivates aNPC proliferation in DG of aged
mice, likely by stimulating quiescent aNPC pools to re-enterthe cell cycle.

A possible mechanisms to explain the rescue of proliferation in the hippocampal
stem cell niche of aged mice upon miR-135 downregulation, isprovided from
the recent identi�cation of a Wnt/miR-135a auto-regulatory loop in brain devel-
opment, which could modulate di�erentiation of forebrain [228] and dopamin-
ergic neurons [229, 230]. Moreover, Wnt/TGFb/BMP pathways are known to
inuence long- term maintenance of NPC pools in the adult hippocampus, age-
associated cognitive decline, and brain dysfunctions [231,232]. Furthermore, we
recently found that miR-135a is one of the 11 miRNAs required and su�cient
to sustain the neurogenic lineage fate of NPCs [97]. Hence, it appears that
miR-135 is required to regulate multiple aspects of adult hippocampal neuro-
genesis, suggesting that further studies on miR-135 in the brain response to
physiological and pathological conditions are warranted.

As mentioned before, pathological conditions such as epilepsy and neurodegen-
eration worsen the drop of adult neurogenesis in brain aging. Adult hippocam-
pal neurogenesis is strongly a�ected by epilepsy, in terms of enhanced network
excitability, increased short-term and reduced long-termproliferation rate of
NSCs, due to their direct conversion into astrocytes. In addition, newborn neu-
rons also display morphological and functional alterations (reviewed in [10]).
Several studies reported an alteration of global miRNA expression in epileptic
brains from a variety of animal models and humans. Most of these miRNAs are
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already known to regulate hippocampal neurogenesis and areinvolved in cel-
lular processes relevant to the disease, such as cell proliferation and migration,
neuroinammation, and neuronal apoptosis (reviewed in [233]).

In this view, many researchers are struggling to use miRNA mimic or inhibitor
sequences as possible therapeutic molecules in epilepsy, although several limits
are emerging (i.e., targeted delivery, multi-targeting e�ect). Latterly, a r ecent
study reported upregulated level of miR-135a in neurons within the epileptic
brain. Targeting miR-135ain vivo with antagomirs after onset of spontaneous
recurrent seizures, can reduce their insurgence in chronicepilepsy [234]. These
data support the exciting possibility that miRNAs can be targeted to treat
epilepsy.

Outstandingly, we found dysregulated expression of the Piwi pathway in hip-
pocampal aNPCs after treatment with kainic acid, that induces neuronal hyper-
excitation similar to epilepsy. Our data correlates aberrant gliosis and depletion
of the Piwi pathway in normal and impaired hippocampal neurogenesis. This
evidence opens new intriguing prospective in the use of Piwiproteins and piR-
NAs as modulators of aNPCs homeostasis.

In sum, we uncovered the role of noncoding RNAs (piRNAs and miR-135a) in
the regulation of gliosis and exercise-mediated proliferation within adult neuro-
genesis. Several studies have shown other mechanisms able to promote neuroge-
nesis and improve rodent cognitive function in the aged brain, such as restoring
trophic factors [3], decreasing humoral aging factors [235] or injecting plasma
from younger animals [236].

These �ndings imply that aged stem cells may still have the potential to aid
in recovery from injury and disease but are restricted in howmuch they can
grow and for how long [237]. Indeed, our results contribute to the identi�cation
of the mechanism involved in age- and pathology-related cognitive decline and
could enhance the application of adult neurogenesis for therapeutic use. Further
studies on the brain-Piwi pathway and the miR-135a neuronalfunctions in
health and disease are warranted.
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6 Experimental Procedures

6.1 Animals and running

Male and female C57BL/6, Td-Tomatoox/wt knock-in reporter mice (Jackson
Laboratory stock number 007908) [238] and Nestin-GFP mice [176], were housed
under standard laboratory conditions at Istituto Italiano di Tecnologia (IIT),
the Center for Regenerative Therapies Dresden (CRTD), the Medizinische-
Theoretisches Zentrum (MTZ) Dresden or at the Swammerdam Institute for
Life Sciences, University of Amsterdam. All experiments and procedures were
approved by the Italian, German and Dutch authorities (permit nos. 056/2013,
214/2015-PR, 24-9168.11-1/2013-15, and AVD1110020184925), and were con-
ducted in accordance with the Guide for the Care and Use of Laboratory An-
imals of the European Community Council Directives, in accordance to Eu-
ropean Union (EU) directive 2010/63/EU. Mice were maintained under a 12
hours light/dark cycle with food and water ad libitum.

Running: nine-week-old Nestin-CFPnuc mice or WT C57BL/6J were double
housed under standard conditions or in cages equipped with arunning wheel
(TSE System, animal facility of CRTD; or ENV-044 [Med Associates], Animal
facility of IIT) for 10 days before sacri�ce. 24 hours beforesacri�ce, mice
received one administration of 50 mg=kg BrdU (B9285, Sigma).

6.2 aNPCs preparation and culture

Hippocampal NPCs were prepared and expanded as described previously [97,
189,239]. Briey, DG was isolated from 8-10 wild-type C57BL/6 mice at the age
of 6-8 weeks. After dissection in Hanks Balanced Salt Solution(Hank's Balanced
Salt Solution (HBSS), Gibco) medium, the tissue was enzymatically dissociated
with papain (2:5 U=ml), dispase (2:5 U=ml) and DNaseI (250 U=ml) for 20 min
at 37 � C. During incubation, the tissue was repeatedly trituratedwith a �re
polished Pasteur pipette. The cell suspension was centrifuged at 130 g for 5 min
and the pellet was re-suspended in bu�er solution (1x HBSS, 30mM Glucose,
2mM HEPES pH 7.4, 26mM NaHCO3) followed by a centrifugation at 130 g for
5 min. aNSCs were isolated using 22 % Percoll gradient solution.

After further centrifugation for 5 min at 130 g the cell pelletwas re-suspended
in 2 ml of culture medium containing Neurobasal (Invitrogen), Glutamax (In-
vitrogen), 1 % penicillin and streptomycin (Invitrogen), B27 without retinoic
acid (Invitrogen), FGF (20 ng=ml; PeproTech) and EGF (20 ng=ml; PeproTech).
The dissociated DG tissue was plated into PDL/Laminin (Sigma/Roche) coated



6. Experimental Procedures

wells and incubated at 37� C with 5 % CO2. To further remove excess debris,
the growth medium was exchanged 24 hours later. Every 2 days half of the
growth medium was exchanged with fresh medium to replenish the growth fac-
tors. aNSCs were passaged once they reached 80 % conuence.

Proliferation medium: Neurobasal, Glutamax, 1 % penicillin and streptomycin,
B27 without retinoic acid, supplemented with FGF (20 ng=ml) and EGF (20 ng=ml).

Retrovirus-mediated inducible neuronal di�erentiation:viral construct express-
ing Ascl1-ERT2 and infections conditions were previously described [171]. Neu-
ronal di�erentiation was induced by growth factor withdrawal in the presence
of 0.5 mM OHTAM (Sigma) for 2 days. The medium was changed every 2{3
days. Cells were �xed at 4, 7, 14 or 21 days after the exposition to OHTAM.

Neuronal/astrocytic di�erentiation: aNPCs were plated at 1,2*10E4 cells/cm2

in culture medium supplemented with FGF (20 ng=ml) 24 hours. Then medium
was exchanged with medium containing B27 with retinoic acidand FGF (5 ng=ml)
for 24 hours and FGF (1 ng=ml) during the next four days. Cells were di�eren-
tiated in culture for 7, 14 and 21 Daysin vitro (DIV).

6.3 miRNA Manipulation

Scrambled miRNA mimics (50 nM; QIAGEN) or miRNA antagomiRs (150nM;
QIAGEN) were nucleofected (Amaxa) in proliferating or quiescent NPC cul-
tures. Then, 48 h after nucleofection, 10 mM BrdU was added tothe medium
for 2 h, followed by �xation (4 % ParaFormAldehyde (PFA)) or RNA/p rotein
extraction. MiRNA mimics (Qiagen): Syn-mmu-mir-135a-5p, MSY0000147;
Syn-mmu-miR-203-3p, MSY0000236; or Syn-mmu-miR-190a-5p,MSY0000220.
MiRNA antagomirs (Qiagen): Anti-mmu-miR-135a-5p, MIN0000147; Anti-mmu-
miR-203-3p, MIN0000236; or Anti-mmu-miR-190a-5p, MIN0000220.

To constitutively overexpress or inhibit miR-135a-5p, NPCswere infected at
Multiplicity Of Infection (MOI)=5 with lentiviruses and se lected with 1µg=ml
puromycin (Sigma). Cell cycle distribution was monitored by propidium iodide
staining of cells and uorescence-activated cell sorting (FACS).

6.4 Protein extraction and Western blot

For total protein extraction, adult testis or hippocampus or cell pellets were
homogenized in RIPA bu�er. Testis and hippocampus were sonicated (10 short
pulses) and left on ice for 15 min. Cell pellets were clari�edby centrifugation at
20 000 g, and the protein concentration was determined usinga Bradford Assay
kit (Bio-Rad).
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Antibody Host Company Catalog Dilution
MILI Mouse Hannon Lab 1:100
MIWI Rabbit Hannon Lab 1:200

ACTIN Rabbit Abcam ab13970 1:1000
GADPH Rabbit Santa Cruz sc-25778 1:1000
GFAP Rabbit Dako Z-0334 1:1000

Table 6.1: List of antibodies used for WB

For blot analysis, equal amounts of protein (30µg) were run on homemade 10 %
polyacrylamide gels and transferred on nitrocellulose membranes (GE Health-
care). Membranes were probed with primary antibodies (listed in the table
below) followed by HRP-conjugated secondary antibody anti-rabbit or mouse
(Invitrogen, A16104, A16072; 1:2,000). LAS 4000 Mini ImagingSystem (GE
Healthcare) was used to digitally acquire chemiluminescence signals, and the
band intensities were quanti�ed using Fiji.

6.5 Virus injection and tissue preparation

Virus injection: to label aNPCs in adult DG, 8 weeks-old mice Td-Tomatoox/wt

were anesthetized with isourane and 1µl of virus mix (Split-Cre N-Cre:C-Cre)
per DG was stereotaxically injected at the following coordinates: � 2:0 ante-
rior/posterior, � 1:6 medial/lateral, and � 1:9 to � 2:1 dorsal/ventral relative
to bregma (in millimeters) as previously described [169]. Mice were single-
housed under standard conditions or in cages equipped with running wheels for
10 days. For piRNA project, animals were sacri�ced 10 days or 1month after
BrdU injections and used for DG extraction and molecular analysis or histology.
For miR-135 project, after virus injection, mice received three BrdU intraperi-
toneal injections per day (100 mg=kg, every 2 h) and sacri�ced 24 h later. After
injection of oligos, mice received two BrdU intraperitoneal injections per day
(50 mg=kg) for 5 days and sacri�ced 2 h (6 days post injection of oligos) or 2
weeks after the last BrdU injection (21 days post injection of oligos).

Virus used:mmu-miR-135a-5p sponge: MISSION® Lenti microRNA Inhibitor
Mouse (MLTUD0048, Sigma); mmu-miR-135a-5p overexpression: MISSION®

Lenti microRNA Human (HLMIR0200, Sigma) or control lentivirus: MISSION®

TRC2 pLKO.5-puro Non-Mammalian shRNA Control (SHC202, Sigma).

Oligos used:miRCURY LNA miRNA Custom Power Inhibitor I-MMU-MIR-
135A-5P and NEGATIVE CONTROL (339146, Qiagen). Mice were single-
housed under standard conditions. To assess the e�ect of miR-135 inhibition, a
�rst group of mice (n=4) were sacri�ced 48 hours after the injection and the DG
dissected for RNA extraction and miR-135 quanti�cation. 24 hours after the
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oligos injection another set of animals received 2 BrdU intraperitoneal injections
per day for 5 days (50 mg=kg) (one every 12 hours). 5 mice were then sacri�ced
2 hours after the last BrdU injection and the remaining 7 weresacri�ced 2
weeks after the last BrdU injection (in total, 21 days after oligos injection).
Brains were collected as previously described and used for RNA extraction or
immunouorescence analysis.

Dentate Gyrus extraction: Mice were sacri�ced by decapitation and the brains
were extracted. Immediately after extraction the brains were placed on ice-cold
HBSS and the dentate gyri were micro dissected and rapidly frozen using dry
ice for RNA or protein quanti�cation.

Histology: mice were anesthetized with intraperitoneal administration of ke-
tamine (90 mg=kg) and xylazine (5-7 mg=kg), and subsequently perfused with
PBS followed by 4 % PFA. Brains were harvested, post�xed overnight in 4 %
PFA, and then equilibrated in 30 % sucrose. 40µm brain sections were gener-
ated using a sliding microtome and were stored in a� 20� C freezer as oating
sections in 48 well plates �lled with cryoprotectant solution (glycerol, ethylene
glycol, and 0.2 M phosphate bu�er, pH 7.4, 1:1:2 by volume).

6.6 Fluorescence-Activated Cell Sorting (FACS) and im-
munostaining analysis

FACS: For RNA extraction and cDNA preparation, six to ten Td-Tomatoox/wt

mice were euthanized 10 or 30 days after the split cre virusesinjection. DG cells
were dissociated with the Neural Tissue Dissociation Kit P (Miltenyi Biotec)
and FACS-sorted as previously published [205]. FACS-sorted cells were imme-
diately processed for RNA extraction. The immunostaining onbrain slices was
performed on sections covering the entire dorsal hippocampus: Bregma,� 1:06
to � 2:18 mm [240].

Immunouorescence:sections were washed with 0.1M PBS during 40 min and
pretreated with 2N HCL at 30:2 � C for 30 min. After extensive washings with
0.1M PBS, sections were permeabilized with 0:3 % PBS-T (PBS-Triton X-100)
for 10 min followed with 20 min with 0:1 % PBS-T. To detect Ki67 staining, cit-
rate bu�er 10 mM pH = 6 treatment during 10 min at 95 � C was used. Sections
were blocked during 1 h with 0:1 % PBS-T and 5 % Normal Goat Serum (NGS)
at RT followed by incubation with primary antibodies in a blocking solution
overnight at 4 � C. The next day, after washing extensively with 0:1 % PBS-T
sections were subsequently incubated for 1 h with the corresponding secondary
uorescent antibodies (1:1000; Goat Alexa 488, 568, and 647 nm, Invitrogen).
Sections were counterstained with Hoechst (1:300), mountedand cover slipped
with Prolong reagent. Confocal stack images of brain slices(40µm) were ob-
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Antibody Host Company Catalog Dilution
MILI rabbit Hannon Lab 1:100
BrdU rat Abcam ab6326 1:200
KI67 rabbit Abcam ab15580 1:250

GFAP rabbit Dako Z-0334 1:1000
RPL26 rabbit Abcam Ab59567 1:500
GFP chicken Abcam ab13970 1:500

GLAST rabbit Abcam ab416 1:200
GLT-1 rabbit Abcam ab41621 1:200
DCX rabbit Abcam ab18723 1:1000

NEUN mouse Millipore MAB377 1:250

Table 6.2: List of antibodies used for IF/IHC

tained with the Confocal A1 Nikon Inverted SFC with 20x objective. Cell quan-
ti�cation and analysis was performed using NIS-Elements software (Nikon) and
the Cell-counter plugin in FIJI (Macbiophotonics, Fiji is Just ImageJ). For each
stacked-confocal image we drew and measure the area of the DGfollowing the
position of the nuclei stained with DAPI and in that particular area we counted
the positive cells. To obtain the number of cells in the volume, the density of
positive cells was multiplied by the thickness of the slice (40µm). Final cell
number was corrected after checking along z-stack that no overlapping cells
were counted twice.

Immuohistochemistry:30-DiAminoBenzidine (DAB) staining was performed as
previously reported [241]. Briey, sections were incubated with peroxidase
block (Vectashield, SP-6000) for 15 min at room temperature, permeabilized
with 0:3 % PBS-T for 15 min followed with 30 min with 0:1 % PBS-T. Sections
were blocked during 1 h with 0:1 % PBS-T and 5 % NGS at RT, washed 3
times for 15 min with 0:1 % PBS-T and then incubated with primary antibodies
in a blocking solution overnight at 4� C. The next day, after washing exten-
sively with 0:1 % PBS-T sections were subsequently incubated for 2 h with
the corresponding biotinylated secondary antibodies (1:1000 Goat anti-rabbit,
Invitrogen B2770). Signal ampli�cation was performed using the ABC com-
plex (Vectashield, PK-6100), according to manufacturer'sinstructions. Slices
were washed 3 times for 15 min with PBS and then incubated withthe solution
for DAB reaction (Sigma, D3939). Sections were counterstained with Hoechst
(1:300), mounted and cover slipped with Vectashield reagent (VECTOR Labs).
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6.7 RNA extraction and Real-time PCR

Total RNA was extracted from aNPCs (proliferating and di�erentiating con-
ditions), or DG dissected from adult C57BL/6 or Td-Tomatoox/wt mice with
QIAzol protocol (Qiagen) according to the manufacturer's instructions. cDNA
synthesis was obtained with ImProm-II reverse transcriptase (Promega) and
was quanti�ed with a QuantiFast SYBR Green PCR Kit (Qiagen) on a ABI-
7500 Real-Time PCR System (Applied Biosystems). A 3-step PCRprotocol
(95 � C for 5 min, then 40 cycles of 95� C for 30 sec, 57� C for 30 sec and 72� C for
30 sec, followed by 95� C for 15 sec and 80� C for 15 sec) was used. Each sample
was normalized to Actin levels. Expression analysis was performed using the
comparative cycle threshold (Ct) method.

The primers (both forward and reverse) were designed using NCBI/UCSC
Genome Browser and Primer3 software tools and then checked in PrimerBLAST
for their speci�city to amplify the desired genes. List of primer in the table be-
low.

6.8 Small RNA library preparation, processing of sequenc-
ing data and piRNAs analysis

Cells are lysed in QIAzol lysis reagent and total RNA was isolated using the
miRNeasy Mini kit, according to the manufacturer's instructions. Quantity
and quality of the total RNA were measured by Nanodrop spectrophotometer
and Experion RNA chips (Bio-Rad). RNA with RNA integrity number (RIN)
values � 9:5 was considered accepted for the study. 1µg of high quality RNA
for each sample was used for library preparation according to the Illumina
TruSeq small RNA library protocol. Briey, 3 0 adapters were ligated to 30 end
of small RNAs using a truncated RNA ligase enzyme followed by 50 adaptor
ligation using RNA ligase enzyme. Reverse transcription followed by PCR was
used to prepare cDNA using primers speci�c for the 30 and 50 adapters. The
ampli�cation of those fragments having adapter molecules on both ends was
carried out with 13 PCR cycles. The ampli�ed libraries were pooled together
and run on a 6 % polyacrylamide gel. The 145-160 bp bands (which correspond
to inserts of 24-32 nt cDNAs) were extracted and puri�ed using the Wizard
SV Gel and PCR Clean-Up System (Promega). The quality of the library was
assessed by the Experion DNA 1K chips (Bio-Rad). Small RNA sequencing
using HiSeq2000 (Illumina Inc., CA) was performed at the Center for Genomic
Science of IIT@SEMM.

Processing of sequencing data:Illumina reads were trimmed to remove the 30

adapter using Cutadapt, with parameters -m 25 -q 20. Since piRNA size ranges
from 26 to 31 bases, all sequences with length� 24 bases were discarded. Reads
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Primer name Sequence (5 0-3 0)
Actin Fw GGCTGTATTCCCCTCCATCG
Actin Rv CCAGTTGGTAACAATGCCATGT
Mili Fw GGCCAGCATAAATCTCACAC
Mili Rv TAGCTGGCCATCAGACACTC
Miwi Fw TAATTGGCCTGGAGTCATCC
Miwi Rv GAGGTAGTAGAGGCGGTTGG
Gfap Fw GGGGCAAAAGCACCAAAGAAG
Gfap Rv GGGACAACTTGTATTGTGAGCC
Complement C3 Fw CCAGCTCCCCATTACGTCTG
Complement C3 Rv GCACTTGCCTCTTTAGGAAGTC
Serpina 3n Fw ATTTGTCCCAATGTCTGCGAA
Serpina 3n Rv TGGCTATCTTGGCTATAAAGGGG
Cxcl10 Fw CCAAGTGCTGCCGTCATTTTC
Cxcl10 Rv GGCTGGCAGGGATGATTTCAA
Malat1 Fw TAGGTTAAGTTGACGGCCGT
Malat1 Rv CGAACTCAGAAATCCGCCTG
Vac14 Fw AAGTGGCTCTACCATCTCTACAT
Vac14 Rv ACAACCTCATCAGATTCGTCAGA
Lars2 Fw CATAGAGAGGAATTTGCACCCTG
Lars 2 Rv GCCAGTCCTGCTTCATAGAGTTT
Rpl13a Fw AGCCTACCAGAAAGTTTGCTTAC
Rpl13a Rv GCTTCTTCTTCCGATAGTGCATC
Rpl17 Fw ATCAAGAGGGTCAAACCTTCGT
Rpl17 Rv CCACCATTATACCGCCGGAA
Actin Fw GGCTGTATTCCCCTCCATCG
Actin Rv CCAGTTGGTAACAATGCCATGT
Ki67 Fw ATTTCAGTTCCGCCAATCC
Ki67 Rv GGCTTCCGTCTTCATACCTAAA
Cyclin E Fw GATCCAGAAAAAGGAAGGCAAA
Cyclin E Rv TGAAGAAATTGCCAAGATTGACA
Cyclin A Fw GCCTTCACCATTCATGTGGAT
Cyclin A Rv TTGCTGCGGGTAAAGAGACAG
Cyclin D Fw GCGTACCCTGACACCAATCTC
Cyclin D Rv CTCCTCTTCGCACTTCTGCTC
CDK1 Fw CAGAGCTGGCGACCAAGAA
CDK1 Rv GATTGACCAGCTCTTCAGGATCTT
Mcm2 Fw ATCCACCACCGCTTCAAGAAC
Mcm2 Rv TACCACCAAACTCTCACGGTT

Table 6.3: List of primers used for rtPCR
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mapped to known non-coding RNAs (RNAcentral v6.0 Small NucleolarRNA
(snoRNA), UCSC tRNA, miRBase Release 21 miRNA hairpin and mature
miRNA annotation, NCBI complete ribosomal DNA unit) [242{244]were re-
moved from the datasets. The comparison was performed usingNCBI BLASTN
v2.6.0 with parameters -maxhsps= 1, -max target seqs= 1, -percidentity= 80,
mismatches� 1, qcovhsp� 90 [245]. Subsequently, the reads were aligned on
the non-repeat-masked UCSC release 9 of the mouse genome (MM9) [246] using
bowtie2 [247] v2.2.6 with the sensitive preset option and allowed a maximum
100 alignments. All the reads that aligned to the genome were retained and
used for subsequent analysis.

DE analysis: piRNA clusters were identi�ed collapsing overlapped piRNA se-
quences (piRBase Release 1) [172] into one cluster (mergeBed with preset op-
tions) [248]. piRNA clusters and all the reads that aligned tothe genome were
intersected (intersectBed with option -f 1). Intersection�les were then parsed
using a custom perl script in order to evaluate alignment counts. Di�erential
expression was assessed using DESeq2 [249]. piRNA clusters were considered
di�erentially expressed when the adjusted p-value was� 0:05, and down- and
up-regulation was established in the range of� � 1 to � 1 log2 fold-change,
respectively.

piRNA analysis: Total RNA enriched in the fraction of small RNAs, was ex-
tracted using miRNeasy Mini Kit (Qiagen) following the manufacturer's in-
structions from aNPCs, DG extracted from C57BL6/J or Td-Tomatoox/wt

mice. cDNA was obtained using the TaqMan MicroRNA Reverse Transcrip-
tion Kit (Thermo Fisher, 4366596) according to the manufacturer's instructions
and quanti�ed using the Custom TaqMan Small RNA Assay (Thermo Fisher,
4440418) on a ABI-7500 Real-Time PCR System (Applied Biosystems). Each
sample was normalized to U6 snRNA level (Thermo Fisher, 001973). Cluster
sequences used for probe design are available upon request.

6.9 Mili Knock down

To constitutively downregulate mili expression in vitro, NPCs were infected
at MOI=5 with a lentivirus encoding for shMili (plKO.1, Sigma), or control
lentivirus (SHC202, Sigma) both decorated with an eGFP reporter. GFP-
positive cells were �rst selected by FACS after three passages, and then plated
in proliferating or di�erentiating media, as previously explained. For the si-
lencing in vivo, 6 weeks-old mice were anesthetized with isourane and 1:5µl of
antisense LNA GapmeR for mili KD or negative control (Mili 339511, Control
339515, Qiagen) per DG was stereotaxically injected at the following coordi-
nates: � 2:0 anterior/posterior, � 1:6 medial/lateral, and � 1:9 to � 2:1 dor-
sal/ventral relative to bregma (in millimeters) as previously described [169].
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Mice were single-housed under standard conditions.

To assess the e�cacy of mili inhibition, a �rst group of mice (n=5) were sac-
ri�ced 48 hours after the injection and the DG dissected for RNA or protein
extraction. 24 hours after the oligos injection another setof animals received 2
BrdU intraperitoneal injections per day for 5 days (50µg=kg) (one every 12
hours). Animals were sacri�ced 10 (n=5) or 30 days after oligos injection
(n=7) for histological analysis, as previously described.Mice were anesthetized
with intraperitoneal administration of ketamine (90 mg=kg) and xylazine (5-
7 mg=kg), and subsequently perfused with PBS followed by 4 % PFA. Brains
were harvested, post�xed overnight in 4 % PFA, and then equilibrated in 30 %
sucrose.µm brain sections were generated using a sliding microtome and were
stored in a � 20� C freezer as oating sections in 48 well plates �lled with cry-
oprotectant solution (glycerol, ethylene glycol, and 0.2 Mphosphate bu�er, pH
7.4, 1:1:2 by volume). Slices were used for immunouorescence and immuno-
histochemical analysis as previously described.

6.10 in silico piRNA targets prediction

For piRNA targets analysis, we divided the sequencing data inone set of 100
piRNA clusters enriched in proliferating aNPCs (DIV0) and a second set of 198
clusters speci�cally expressed at DIV4/7 stage. The Di�erential Expression
analysis for piRNAs mapping on REs showing trends for enrichment of piRNAs
mapping on repeat elements (REs) in DIV4 and DIV7 compared to DIV0 was
done using EdgeR software package [250].

Identi�cation of piRNA targets was divided in: piRNAs mapping on REs
only / piRNAs mapping on GENCODE elements / piRNAs mapping on REs
within GENCODE elements / unannotated piRNAs / piRNAs clusters. Gene
Ontology analysis for piRNAs mapping on GENCODE protein-coding genes
(but NOT mapping on REs) has been done with the R package GOFuncR
(https://bioconductor.org/packages/release/bioc/html/GOfuncR.html).

6.11 Kainic acid administration, single cell suspension
and enrichment of NSC using FACS

Kainic Acid was administered as described before [241]. Briey, 50 nl of 2.22mM
Kainic Acid dissolved in PBS (pH 7.4) was injected bilaterallyinto the hip-
pocampus at the following coordinates (AP� 2:0, ML � 1:5, DV � 2:0 mm) (be-
tween 9AM and 1PM) to elicit tonic, non-convulsive epilepticseizures reaching
a max score of 3 on the Racine scale. Control animals were administered saline
(pH 7.4).

69



6. Experimental Procedures

Single Cell Suspension:Bilateral dentate gyri from 3 animals per condition were
pooled to allow su�cient recovery of NPCs. A single cell suspension was created
using a Neural Tissue Dissociation kit (Miltenyi Biotec), according to the manu-
facturers protocol. Briey, tissue was dissociated and thesingle cell suspension
was passed through a 40µm �lter and DNAse was added (1250 units/mL).
The suspensions were centrifuged at 300xG for 11 min, and thecell pellet was
resuspended in 50µl PBS containing 1 % BSA and kept on ice.

Enrichment of Neural Stem and Progenitor Cells using FACS:In order to en-
rich aNPCs from the DG, we made use of the endogenous GFP expression
driven by the Nestin promotor in combination with FACS. Propium Iodide
(5 µg=ml) was added to the single cell suspension to assess cell viability. Cells
were sorted using a FACSAriatm III system (BD) with 488 nm excitation laser.
Propium Iodide was detected within the PE/Texas Red channelwith a 610/20
bandpass �lter and GFP within the FITC channel with a 530/30 band pass
�lter. Cell duplets were removed based on forward and side scatter and viable
cells were selected based on propium iodide negativity. GFP-positive (corrected
for autouorescence) cells were sorted (50000 cells/pool)and collected in PBS
containing 1 % FBS. After collection, the NPC-enriched cell suspensions were
spun down at 300xG for 11 min. Supernatants were removed, leaving approxi-
mately 250µl of 1 % FBS-PBS. 0:75 ml Trizol LS (Thermo Scienti�c) was added
and after resuspension samples were snap-frozen and storedat � 20� C.

6.12 Total RNA and soluble proteins measurement

To compare protein content in control and Mili KD aNPCs, we plated the
GFP+ cells sorted after lentiviral transduction (scrambledcontrol and Mili KD)
in proliferating media; after 48 hours we collected the cells using the StemPro
Accutase (Gibco, A1110501), we resuspend the pellet in PBS andwe divided
it by FACS in three fractions containing the same number of cells (600k). We
proceeded with DNA, RNA and protein extraction from the fractions of control
and Mili KD samples (n=7).

Genomic DNA was extracted using the DNeasy Blood & Tissue Kits (Qiagen,
69504) according to the the manufacturer's instructions and quanti�ed by Nan-
odrop spectrophotometer. Total RNA was extracted from cell pellets using the
RNeasy Micro Kit (Qiagen, 74004) according to the manufacturer's instruc-
tions and quanti�ed by Nanodrop spectrophotometer. Solubleproteins were
extracted from cells using RIPA bu�er and the concentrationwas measured
using the Bradford Assay kit (Bio-Rad). We normalized the amount of RNA
and protein on the number of cells counted by the FACS.
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6.13 Immunouorescence, STED nanoscopy and particle
analysis

aNPCs were plated on glass coverslips 24 h before �xation. Cells were �xed with
PFA 4 %, permeabilized with PBS-Triton 0:1 %, blocked 1 hour at room tem-
perature with PBS-T 0:1 % NGS 5 % and incubated according to the dilution
suggested by the manufacturer's instructions with 0:01µg=ml rabbit polyclonal
antibody against the N terminus of RPL26 (Abcam) for 1 h at roomtempera-
ture. Cells were washed extensively and incubated with the secondary antibody
goat anti{rabbit ATTO-488 (0 :005{1µg=ml; Sigma-Aldrich) for 45 min. Nuclei
were stained while mounting the coverslip with DAPI-Prolongantifade (Invit-
rogen).

Confocal and STED images were acquired at 23� C with a TCS SP5 STED gated
(Leica) operated with Leica's microscope imaging software. All of the images
have 14 nm pixel size and 37µs pixel dwell time. The ATTO-488 uorescence
was excited at 488 nm by means of a supercontinuum- pulsed laser system,
and the uorescence depletion was performed by a 592 nm cw-laser beam. The
maximal focal power of the STED beam was 120 mW. Both beams were focused
into the 1.4 NA objective lens (HCX PL APO 100x1.40 NA Oil STED Orange;
Leica). Fluorescence was collected by the same lens, �lteredwith a 592 notch
�lter, and imaged in the spectral range 500{550 nm by hybrid detector with a
time gating of 1:5 ns. We performed the analysis of polysome clusters in aNPCs
over 26 images of 16 di�erent cells. Image analysis was performed using the Fiji
software.

6.14 In Situ Hybridization

Mice were anesthetized and perfused transcardially with cold 4 % paraformalde-
hyde in 1x PBS. Brains were removed and post-�xed in the same �xative for
5 hours at 4� C. Tissues were washed several times in 1x PBS prior to de-
hydration with 30 % sucrose in 1x PBS, overnight (or until they sink) at 4 � C
and carefully dried before proceeding with the ash freezing protocol: tissues
were placed in a metal beaker �lled with isopentane (Sigma),located in a foam
cooler or laboratory ice bucket and surrounded with crusheddry ice. 18-20µm
brain slices were collected using a cryostat and attached onglass slides. Slices
were permeabilized by treating twice for 10 min with RIPA bu�er (NaCl 150
mM, NP-40 1 %, Na deoxycholate 0:5 %, Sodium Dodecyl Sulfate (SDS) 0:1 %,
EDTA 1 mM, Tris pH 8.0 50 mM) and post-�xed for 10 min in 4 % PFA in
1x PBS, followed by washes in 1X PBS to remove the excess PFA. The posi-
tive charges in the tissue were blocked by treating slides for 15 min with acetic
anhydride (Sigma) (0:25 % �nal concentration) in triethanolamine bu�er (tri-
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ethanolamine 100 mM, acetic acid pH 8.0), followed by washeswith 1x PBS.

In order to block aspeci�c sites, a pre-hybridization step with 200-250µl hy-
bridization solution (Formamide 50 %, SSC 5X, Denhardts 5x, Salmon sperm
DNA (500µg=ml, yeast RNA 250µg=ml) was carried out. After 1 hour, a hy-
bridization solution containing 160 nM (miR-135, miR190, miR203) or 100 nM
(miR9) of the DIG-labeled LNA probe (Exiqon) was added and incubated ON.
The next day, slides were washed for 1 hour with a post-hybridization solution
(Formamide 50 %, SSC 2X, Tween-20 0:1 %). For the immunological detection,
slides were incubated twice for 5 min and once for 20 min at RT in bu�er B1
(Maleic acid 100 mM pH 7.5, NaCl 100mM, Tween-20 0:1 %) and then blocked in
bu�er B2 (10 % Normal Goat Serum in B1) for 1 hour. The anti-DIG antibody
(Roche) was diluted 1:2000 in B2 bu�er and incubated ON at 4� C. For develop-
ment of the color reactions, two di�erent alkaline phosphatase substrates were
used: NBT/BCIP (Roche) or Fast Red TR/Naphthol AS-MX solution (Sigma),
according to manufacturer instructions. The reaction was stopped by several
washes with 0:1 % Tween 20 in 1x PBS. Sections were mounted using mount-
ing resins (Thermo Fisher) or in VECTA-Shield mounting medium(VECTOR
Labs) including DAPI, and imaged using conventional bright-�eld microscopy
or a confocal microscope with the Cy-3 �lter.

6.15 Proteomics

NPCs (three independent experiments) were lysed with RIPA bu�er, and 50 mg
of proteins was collected from all the samples and processedas previously de-
scribed [251]. Protein pools were processed for liquid chromatography-tandem
mass spectrometry analysis.

6.16 Statistical analysis

Data are presented as mean pmSEM and were analyzed using Prism 6 (Graph-
Pad). Statistical signi�cance was assessed with a two-tailed unpaired t test
for two experimental groups. For experiments with three or more groups, one-
way ANOVA with Bonferroni's multiple comparison test as post hoc was used.
Results were considered signi�cant whenp< 0:05.
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Review Process

Reviewer 1 { Prof. Carlos Fitzsimons

Content: In this thesis, the candidate centrally evaluates the role of small
noncoding RNAs in mammalian adult neurogenesis, using mouse models. In
this context, the candidate's main �ndings are two-fold:

1. The Piwi Pathway, active in neural stem/precursor cells, prevents the
generation of reactive glia cells in the postnatal hippocampus, possible by
controlling protein synthesis;

2. The microRNA miR-135a is a key regulator of the e�ect of physical exer-
cise on adult hippocampal neurogenesis, possible acting on speci�c targets
involved in phosphatidylinositol signaling.

The �ndings described and discussed in this thesis are of interest and relevance
for a vast audience of (neuro)scientists interested in the regulation of adult
hippocampal neural stem cells under and pathological conditions and have im-
plications for a deeper understanding of the cellular changes induced by physical
exercise in the hippocampus, which may be related to its bene�cial cognitive
e�ects.

Structure: The thesis is composed of a thorough introduction, including clearly
formulated hypotheses and objectives; a materials and methods section with a
clear description of the procedures used to generate the results described and dis-
cussed in two main experimental chapters; and a �nal section including general
conclusions and future perspectives and implications for the �eld.

Evaluation: The thesis is clearly written in the English language and is easy
to follow and read. It describes in detail a sequence of experiments that, using
state-of-the-art techniques, starts with the validation and extension of concepts
previously demonstrated by the De Pietri Tonelli Lab, continues with a thorough
study of the Piwi pathway and one speci�c microRNA singled out from expres-
sion pro�ling in puri�ed adult neural stem cells, and ends with the validation of
a key role of small non-coding RNAs in the regulation of postnatal hippocampal
neurogenesis.

The results described in the two experimental chapters are discussed and put into
perspective into a well-structured and interesting �nal discussion section that
integrates them into the pre-existing literature. Finally, a number of interesting
perspectives for future experiments are given, which will help to advance the
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�eld.

Conclusion: The thesis describes, elaborates and extends a number of crucial
observations that have been published in the high rank scienti�c journals of
the �eld by the De Pietri Tonelli Lab. Crucially, It includes a detailed and
novel description of the hitherto unknown expression and function of the Piwi
pathway in somatic neural stem cells. The novel observations in this thesis are
of crucial relevance to understand the regulation of neural stem cell proliferation
and di�erentiation in pathophysiological conditions, i.e. after epileptic seizures
and the cellular changes induced by physical exercise in the hippocampus. Given
the global prevalence of epileptic syndromes, these observations are of relevance
and will be most probably published in �rst rank international peer-reviewed
journals.

Grade suggestion: Based on the amount of work presented in this thesis, its
perceived relevance and taking into account the evaluation standards applied to
doctoral theses at the University of Amsterdam, I �rmly support the acceptance
of the thesis and the evaluation of Caterina Gasperini as doctoral candidate,
and suggest to proceed to the thesis defense.

Author answer I wish to thank very much Dr. Fitzsimons for the time he
dedicated to the critical reading of my thesis and his insightful comments. I
am very pleased about his positive comments, the support to my study and for
acknowledging its novelty and interest for the (neuro)scienti�c community.

Reviewer comment #1: Minor corrections suggested: The evaluated version
of this thesis contains some format issues, such as irregular or absent page
numbering, some typos and minor grammatical mistakes.

Author answer to comment 1: I have revised the manuscript according to
the minor corrections suggested. In particular, all the formatting issues have
been �xed.

Reviewer comment #2: Conceptually, the reasons to select speci�cally miR-
135a for the studies described in the second section of the thesis, entitled miR-
135a, should have been more explicitly presented in the section 2, rationale
and aim of the thesis. As it is explained in page 36 that this speci�c mi-
croRNA was singled out as result of pro�ling experiments, it would have been
perhaps better for the logical structure of the thesis to name the second section
"Exercise-dependent microRNAs" (or similar) instead of "miR-135a" a title
that contrasts in its speci�city with the more general title of the �rst section
"The Piwi pathway".

Author answer to comment 2: In chapter 2 (rationale and aim of the thesis),

103



Review Process

I better explain and justify why we selected speci�cally miR-135a for this study.
The revised text:

\[. . . ] The rationale of this second part of my project is built on evidence that
running stimulates hippocampal NPC proliferation and alters miRNA expres-
sion in rodents. In particular, we selected miR-135a among apanel of miR-
NAs downregulated in running mice compared to resting ones. miR-135a was
the only dysregulated miRNA which manipulation was able to reduce (overex-
pression) or increase (silencing) the proliferation of cultured aNPCs. This, we
hypothesized investigating miR-135a, which is involved inrunning induced neu-
rogenesis, would allow the identi�cation of the most prominent pathways that
constrain NPC proliferative potential in the adult mouse hippocampus. [. . . ] "

According to reviewer's suggestion, I have changed the titlefrom "miR-135a" to
"Exercise-dependent microRNAs". I agree the new title is moreconsistent with
the one of the �rst section, "The Piwi pathway". Thanks for this suggestion.
Indeed, a general title for this section is more appropriatesince we performed
microRNAs pro�ling experiments on sorted cells from the hippocampus of rest-
ing and running mice, founding 8 miRNAs downregulated in running mice,
compared to the control ones. Then we focused our attention on the three most
down-regulated ones, miR-135a, miR-190 and miR-203. Finally, as mentioned
before, among these miRNAs, only the manipulation of miR-135awas able
to reduce (overexpression) or increase (silencing) the proliferation of cultured
aNPCs, thus we decided to investigate deeper this speci�c miRNA.
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Reviewer 2 { Prof. Giuseppe Testa

This is an outstanding thesis, parts of which have already been published in
highly relevant journals, so both the PhD student and her supervisor should be
highly commended for the reach and relevance of this work.

Not being accustomed to the practices of IIT or the University of Genoa in PhD
thesis evaluation, I have listed below some remarks that I hope will be useful for
�nalizing the process.

Author answer: I thank Dr. Testa for reading my thesis and for his precious
suggestions. I am really enthusiastic about his appreciation for this work and
I agreed with the remarks he pointed out. Indeed, I have improved the revised
version of my thesis according to his comments and �xed the minors. Speci�c
point by point reply follows.

Reviewer Comment #1: the �ndings that Mili and Mili-dependent piRNAs
depletion enhances polysome assembly in neural progenitors are of potentially
enormous signi�cance. For this reason, a longer, deeper andsharper discus-
sion would be warranted (it is currently limited to less thanone page, at p.31)
to esh out the implications of these �ndings and also to givethe reader the
needed intellectual context to evaluate its signi�cance (including with reference
to translation regulation in the CNS and, vis a vis, in other stem cell compart-
ments). The same applies to the ncRNAs and mRNAs listed in section3.6 as
downstream of Mili, which are listed without a clear albeit cursory recap of
their functions. Author Answer to comment 1: I thank the reviewer for this
comment, I am aware that the potential role of the Piwi pathway in transla-
tion regulation in aNPCs could have exceptional implications and I agree that
it deserves a deeper discussion. Thus, I have strengthened this point in the
discussion, chapter 3.6.

\[. . . ]. In 2008, Sampath et al. found that global translation was low in undif-
ferentiated embryonic stem cells compared to embryonic body and that di�eren-
tiation induced an anabolic switch. The increase in translation in di�erentiated
cells coincides with a signi�cant increase in the content oftotal RNA ( � 50 %),
ribosomal RNA (� 20 %), and proteins (� 30 %). Remarkably, di�erentiation
increases polysome density compared to undi�erentiated embryonic stem cells
(Sampath et al., 2008). in 2016, Blanco et al. showed that also skin stem cells
have lower protein synthesis than committed cells and that low translation func-
tionally contributes to their maintenance (Blanco et al., 2016). More recently,
it has been observed that low protein synthesis rate in stem cells associates with
their low cellular metabolism. Activation for proliferation and commitment to
di�erentiate requires a huge remodeling of cellular metabolism leading to sub-
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stantial variations in energy production and consumption,which correlates with
changes in the protein synthesis rate (Baser et al., 2017).

In fact, during steady state, transcriptional control is the main determinant of
the cellular proteome, whereas during early stages of statetransition (such as
di�erentiation), translational control becomes the majordeterminant (Ingolia
et al., 2011). Translational control allows cells to promptly respond to internal
and external stimuli, even before a new transcription program starts (Liu et al.,
2016). In this view, neurogenesis might also be controlled by protein synthesis
rates, since it involves transition of NPCs through multiplestages and requires
adaptation to the changing microenvironment, including metabolic switch.

At the mechanism level, Ribosomes are the center of the wholeprotein synthesis
machinery and key for �ne-tuning the proteome. Under physiological condition,
ribosome abundance is not considered a limiting factor for translation initiation
in stem cells, however, studies in Drosophila and mammals suggest that di�er-
entiation of stem cells relies on increased ribosomal biogenesis. In their study,
Ingolia et al. concluded that an increased expression of ribosomal proteins at
early stages of di�erentiation is required to boost the rateof global translation,
observed at later stages (Ingolia et al., 2011).

Consistent with these �ndings, here we showed that aberrantactivation of aN-
PCs and reduced neurogenesis caused by Mili KD, correlates with an increased
expression of ribosomal biogenesis protein. In particular, we found the increased
expression of ribosomal RNA subunit 5s and mRNA encoding ribosomal pro-
teins L (RPL), Rpl3a, Rpl17 and Rpl26. These data suggest a role of the
Piwi-pathway in the regulation of translation machinery and, possibly, protein
synthesis. In addition to ribosomes, it is very likely that additional transla-
tional factors contribute to translational control in stem cells. The initiation
factors eIFs are responsible for translation initiation, however there are only
few studies on their role in stem cells. It has been reported that lack of eIFs in
mouse is often embryonic or perinatal lethal and has detrimental e�ects on stem
cells and normal development (reviewed in (Tahmasebi et al., 2019)). Interest-
ingly, here we found that eIF4A, which is required for the binding of the 40S
ribosomal subunits to the cap-complex of the mRNA, is one of thepredicted
piRNA targets in di�erentiating aNPCs. Among the predicted piRNA targets
in aNPCs we found also tRNAs and TEs. Interestingly, tRNA fragments con-
trol translation in stem cells [172] and TEs (i.e., L1s) regulate di�erentiation of
adult NPCs [132, 141]. Together, these results strongly suggest an involvement
of the Piwi pathway in the regulation of translation machinery [. . . ] "

Reviewer Comment #2: p. 25, section 3.4 It would have been preferable
to include one additional shRNA construct targeting Mili, in addition to the
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scrambled control, so as to con�rm the phenotype, so it wouldbe useful to
briey comment on why this experimental design (i.e. only 1 shRNA) was
chosen and to comment on the caution needed in interpretation vis a vis the
literature on RNAi kd, so that the student shows full awarenessof these issues.

Author Answer to comment 2: I thank the reviewer for raising this crucial
point, we spent a lot of time discussing the best strategy to perform Mili KD in
aNPCs in vitro and in vivo. These cells rapidly divide in proliferating conditions
and a synthetic oligonucleotide, like a siRNA, would be diluted in few days.
Moreover, aNPCs are not easy to transfect and our purpose was to obtain a
permanent rather than transient silencing e�ect. Thus, thechoice of viral short-
hairpin RNA (shRNA) construct was dictated by the need of a stable integration
of the arti�cial RNA molecule into the cell genome, to performlong-term KD
of Mili RNA (and protein) in cultured aNPCs. In addition, since the shRNA
construct encodes also for a GFP reporter, after the transduction we were able
to FACS-sort the cells that were transduced with the virus. This allowed us to
obtain \a pure" population of aNPCs to screen for the silencing. We choose a
commercially available shRNA against MILI sequence and it appeared to work
nicely in vitro. After the virus transduction and the FACS-sorting, Mili mRNA
and protein levels were signi�cantly reduced in the cells treated with shMILI
compared to the control ones. Within this system we then investigated cells
proliferation and di�erentiation.

In parallel, in order to validate the in vitro result, we usedanother strategy
that we previously used for the miR-135a project in vivo: we designed 5 di�er-
ent single-stranded antisense oligonucleotides (LNA GapmeRs) which are highly
potent in catalyze RNase H-dependent degradation of complementary RNA tar-
gets. The GapmeRs o�er high stability and a�nity for targets in vitro as well
as in vivo: the incorporation of lock nucleic acids (LNA) into oligonucleotides
has been shown to improve sensitivity and speci�city for many hybridization-
based technologies. Indeed, for miRNAs in situ hybridization(see miR-135a
project, Fig. 4.1) we chose probes with the same technology and we obtained
valuable results even in the detection of low-abundant miRNAs.We validated
the silencing e�ciency of the 5 GapmeRs in vitro, by measuring the level of
Mili mRNA and protein in proliferating aNPCs 48 and 72 hours after transfec-
tion (data not shown in this thesis). We chose the 2 GapmeRs that gave the
best silencing e�ect (named GapmeR1 and GapmeR3) and we injected them
in di�erent cohorts of mice. All the in vivo data showed in this thesis have
been obtained after the injection of GapmeR1 and the negative control. The
experiments with GapmeR3 are still on going.

Reviewer Comment #3: the term epigenetic is used through the text with-
out a de�nition of the speci�c meaning or set of meanings relevant for this work,
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something that is instead quite important given the multiplicity of meanings at-
tached to this term. Author Answer to comment 3: I completely agree with the
reviewer and I apologize for this oversight. I have revised the manuscript and
I have inserted in the introduction three paragraph (below)about epigenetics
(1.1.2 Epigenetic control of adult neurogenesis and noncoding RNAs).

\[. . . ] Regulation of aNSC fate determination is known to be possible at the
transcriptional level, but accumulating evidence indicates that additional con-
trol layers, such as epigenetics and noncoding RNAs, are involved in this mech-
anism. Among the most commonly used de�nitions, epigenetic is the study
of changes in gene function that are mitotically and/or meiotically heritable
and that do not involve a change in DNA sequence (Wu and Morris,2001).
In this sense, genotypically identical cells can behave phenotypically di�erent
thanks to epigenetic alterations in chromatin organization and/or biochemical
changes. The dynamic nature of epigenetic mechanisms provides a crucial layer
of gene regulation, controlling adult neurogenesis in response to environmental
signals. As shown in Figure 1.4, there are four major categories of epigenetic
mechanisms, which function as key regulators of gene expression also in adult
neurogenesis: chromatin remodeling, histone modi�cation,DNA methylation
and noncoding RNAs (ncRNAs) (Figure 1.4).

Even if the main focus of my thesis will be this last category,a brief overview
of the other mechanisms is worth, given their relevance in the regulation of
neurogenesis. Several studies have shown how chromatin remodeling due to the
many types of histone modi�cations occurring on di�erent histone residues, con-
tributes to the regulation of neuronal di�erentiation, survival, and maturation.
For example, inhibition of histone deacetylase is able to induce neuronal di�er-
entiation of adult hippocampal neural progenitors (Hsieh etal., 2004). Despite
this study, the function of individual histone deacetylases in adult neurogenesis
is largely unresolved and more studies are required. However, it is tempting
to speculate that pharmacological inhibition of their activity might become an
e�ective clinical strategy for treating disorders relatedto adult neurogenesis,
such as cognitive decline, and promote neural repair (Hsieh and Zhao, 2016).
Another example is the knockdown of lysine-speci�c demethylase 1 (LSD1) in
cultured adult NPCs and in adult mouse DG, which resulted in a dramatically
reduction of neural stem cell proliferation (Sun et al., 2010).

Epigenetic modi�cations implicated in adult neurogenesiscomprise also DNA
methylation. This modi�cation is a major epigenetic mechanism for the estab-
lishment of parental-speci�c imprints during gametogenesis and gene silencing
of the inactivated X chromosome and retro- transposons (Jaenisch and Bird,
2003), but it has been shown to be crucial also during neurogenesis. Indeed,
during the neural induction of embryonic stem cells (ESCs) to NPCs, many
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pluripotency genes are methylated and silenced (Mohn et al., 2008). Moreover,
DNA methyl-transferases (DNMT) 3a and 3b appeared to be essential for spec-
i�cation of neurons and glia, during the early phase of neurogenesis (Feng et al.,
2005), and during later stages of neuronal maturation and function (Feng et al.,
2010; Levenson et al., 2006). Another DNMT, the 1, is involved in JAK-STAT
signaling to control the timing of when precursor cells switch from neurogenesis
to gliogenesis during development. Through a chromatin remodeling process,
demethylation of genes in the JAK-STAT pathway leads to an enhanced ac-
tivation of STATs, which in turn triggers astrocyte di�erentiation (Fan et al.,
2005).

Lastly, among the epigenetic mechanisms, ncRNAs play an essential role in
adult neurogenesis. [. . . ] \

Reviewer Comment #4: Minor: there are several typos/ English mistakes
throughout, so an accurate proofreading is recommended. I list below just a
few examples: p. 25: The reference to Figure 3.2 A is erroneous, as the RNAi
experiment is shown in Figure 3.3A p. 29: \target" should be replaced by
\targets" p. 55: \cause" should be replaced by \causes"

Author Answer to comment 4: I have revised the manuscript according to
the minor corrections suggested. In particular, all the typos and mistakes have
been �xed.
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