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Abstract— The on-line analysis and monitoring of a turbulent
flow across a channel is really important in a number of applica-
tions. Unfortunately, such a problem is difficult to address since
the flow is governed by the Navier-Stokes equation. Dynamic
mode decomposition is usually adopted to analyze such flows
via the on-line identification of local linear approximations
of spatio-temporal dynamics of the flow velocities, i.e., the
square matrix of a linear system. We propose a new approach
to mode decomposition based on moving horizon estimation
by providing a rigorous proof of stability for the estimation
error. Moreover, we address the problem of computing the
distance of a given estimated matrix to stability or instability.
Such information is important to measure the “degree” of
stability/instability for the purpose of control. Numerical results
obtained with an experimental dataset are presented and
discussed.

I. INTRODUCTION

In spite of the amount of research reported in the literature,

nowadays modeling of turbulent flows is still difficult since

flows are described by the Navier-Stokes equation, which

is a nonlinear, partial differential equation that has always

attracted a lot of investigations from both theoretical and

practical point of view but is still difficult to deal. Thus,

techniques such as dynamic mode decomposition (DMD)

have been proposed to analyze such flows. In this paper,

we propose a new approach to mode decomposition based

on moving horizon estimation (MHE), which is really well-

suited to being applied in this context for its intrinsic

robustness. In order to quickly detect transitions of boundary

layers in flows, we will address the problem of measuring

the distance of a given unstable matrix to stability and its

reverse, i.e., the distance of a stable matrix to instability.

Efficient methods based on linear matrix inequalities (LMIs)

will be presented to perform such tasks by using semidefinite

programming (SDP) [1].

Transition process of boundary layers is a complex phe-

nomenon that is pretty well studied in fluid dynamics [2]–[8].

Low-order models are adopted to reduce the computational

burden due to the large amount of measurements to deal with.

Such models enable to represent complex “structures” such

as vortices in the spatial and temporal distributions (see, e.g.,

[9]–[11]). Toward this end, DMD is often combined with

orthogonal decomposition (POD), as pointed out in [12].
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DMD allows to identify the main dynamics of a system

with direct measurements of the state variables by providing

a simpler representation of the response modes and their

evolution over time [13]. Using DMD, the dominant dy-

namics is extracted through the linear best-fitting mapping

of successive ensembles of snapshots, and hence it enables

to detect instability waves without solving the Navier-Stokes

equation [14]. The information raised by DMD regards the

estimation of modes as well as their frequency and growth (or

decay) rates [13]–[15]. The quality of the results provided by

such techniques depends on the complexity of the dynamics

of the fluid flow, which is time-varying and strongly affected

by external disturbances.

In this paper, we deal with the combination of mode

decomposition and MHE to estimate the approximate linear

dynamics on line. As compared with the literature on MHE,

the results presented here concern the extension of classical

results on MHE for linear systems [16], [17] to systems

having a square matrix as state. MHE has been successfully

applied to estimate the state of nonlinear systems [18]–[20].

Extensions of MHE to estimate the state of switching systems

are reported in [21], [22]. Uncertainties have been explicitly

considered in several works such as [23]–[26]. Fast MHE

based on imperfect optimization of descent algorithms [27]

enables to reduce the computational demand and hence deal

with a large amount of data in real time. The moving-horizon

strategy turns out to be robust to uncertainties due to forcing

incorrect modeling (linear instead of nonlinear). For such

reasons, the combination of MHE and mode decomposition

turns out to be successful, as it will be shown with the results

obtained by processing an experimental dataset of velocity

flow measurements.

The problem of measuring the distance of a given ma-

trix to stability/instability is pretty well-known (see, for

instance, [28] and the reference therein). Most of the results

concern continuous-time systems [29]–[31]. Only recently

the problem has been addressed for discrete-time systems

[32]. Concerning this topic, the main contribution of this

work consists in the formulation of LMI-based conditions

for the evaluation of such distances. Using LMIs and SDP

tools, the computation turns out be easily tractable, which

is particularly important when large matrices have to be

processed as in our case study.

The paper is organized as follows. The proposed approach

is presented in Section II, which includes a stability analysis

of the estimation error too. Section III concerns the LMI-

based methods we have developed to evaluate the distance

between an estimated mode-decomposition matrix and the



space of stable and unstable matrices. Numerical results

obtained with an experimental dataset are reported in Section

IV. Section V deals with conclusions and prospects of future

work.

We will adopt the following notation. The minimum and

maximum eigenvalues of a real, symmetric matrix P are

denoted by λmin(P ) and λmax(P ), respectively. Moreover,

P > 0 (P ≥ 0) means that P is positive definite (semidef-

inite). Given a real matrix M , the spectral norm of M

is |M |2 :=
(

λmax(M
⊤M)

)1/2
=
(

λmax(MM⊤)
)1/2

. The

Frobenius norm of a real matrix M is |M |F :=
√

tr(M⊤M).
Given a complex matrix C, C∗ denotes its Hermitian trans-

pose. Finally, I denotes the identity matrix of appropriate

dimension.

II. MODE DECOMPOSITION BASED ON MHE

DMD enables to fit a series of velocity measurements

with the temporal or spatial evolution of a fluid flow by

providing the best linear transformation in the the sense

of least squares. In practice, we get the “best” linear state

equation that accounts for a flow field snapshot sequence

into the successive one. The snapshots can be collected over

space or time.

Following [13], let us denote by Vk the collection of N
snapshots from k −N + 1 to k, i.e.,

Vk := col(vk−N+1, vk−N+2, . . . , vk)

where vi ∈ R
n, i = 1, 2, . . ., represents a single snapshot.

The DMD fitting results from the solution of the minimiza-

tion problem

Sk = argmin
S∈S

|Vk+1 − VkS|2F (1)

where the unknown S is a transformation matrix of appro-

priate dimension, and in canonical form it is given by

S =















0 0 · · · · · · a1
1 0 · · · · · · a2

. . .
. . .

...

1 0 aN−1

0 1 aN















, a ∈ R
N

and S denotes the set of all real matrices in companion form

with N ≥ 2. Thus, DMD is based on Algorithm 1.

Algorithm 1 has been successfully employed to detect flow

transition [33]. In this paper, instead of (1) we will propose

a new decomposition method based on MHE by considering

the cost function

Jk(S) = µ|S − S̄k|2F + |Vk+1 − VkS|2F (2)

where µ ≥ 0 and S̄k ∈ R
N×N is a given prediction. A

suitable choice of S̄k is just that of Sk obtained at the

previous step. The parameter µ enables to weight our trust in

the outputs w.r.t. the prediction, i.e., we may select a “small”

µ with a little uncertainty on the measurements. By contrast,

Algorithm 1: given Vk, apply

1) compute the singular value decomposition of Vk, i.e.,

two unitary matrices U and W and a diagonal matrix

Σ s.t. Vk = UΣW ∗

2) compute the projection of the matrix Sk on the POD

modes given by Mk = U∗V2WΣ−1

3) construct the matrices of the eigenvectors and eigen-

values of the matrix Mk, i.e., X and D (diagonal)

4) construct the matrix of the DMD modes Θ = UX
5) construct the diagonal matrix Zk of the log-

arithms of the DMD eigenvalues of Mk, i.e.,

Zk := log(D)/(2π∆t), where ∆t is the time between

two consecutive snapshots

and get Zk.

we have to increase µ in case of outputs corrupted by a lot

of noise. It is easy to verify that the solution of

Ŝk = argmin
S∈R

N×N

Jk(S) (3)

is given by

Ŝk =
(

µI + V ⊤
k Vk

)−1 (

µS̄k + V ⊤
k Vk+1

)

(4)

where k = N,N + 1, . . . with S̄k = Ŝk−1 and some initial

“a priori” S̄N .

To prove stability, let us assume the following.

Assumption 1: There exists S◦ ∈ R
N×N such that

Vk+1 = Vk S
◦ +Wk , k = N,N + 1, . . .

with |Vk|F ≤ vmax and |Wk|F ≤ wmax for some VN ∈
R

n×N , vmax, wmax > 0.

The solution given by (4) provides an exponentially

bounded estimation error ek :=S◦ − Ŝk ∈ R
N×N , i.e., there

exist α ∈ (0, 1) and β > 0 such that |ek|F ≤ |eN |F αk−N +
β, k = N+1, N+2, . . .. More specifically, we can state the

following.

Theorem 1: Let Assumption 1 hold

δ := inf
k≥N+1

λmin

(

V ⊤
k Vk

)

(5)

be strictly positive. If

µ

µ+ δ
<

1√
N

, (6)

the estimation error is exponentially bounded with

α :=
µ
√
N

µ+ δ
β :=

vmaxwmax

√
N

(

1−
√
N
)

µ+ δ
.

Proof. Since S̄k = Ŝk−1, from (4), it is straightforward to

get

Ŝk − S◦ = µ
(

µI + V ⊤
k Vk

)−1
(

Ŝk−1 − S◦
)

+
(

µI + V ⊤
k Vk

)−1
VkWk . (7)

Since
(

µI + V ⊤
k Vk

)−1 ≤ I

µ+ δ
,



from (7) it follows that
∣

∣

∣

(

µI + V ⊤
k Vk

)−1
∣

∣

∣

2

≤ 1

µ+ δ
.

Using the bound | · |F ≤
√
N | · |2, we obtain

|ek|F ≤
µ
√
N

µ+ δ
|ek−1|F +

vmaxwmax

√
N

µ+ δ

and hence

|ek| ≤
(

µ
√
N

µ+ δ

)k−N

|eN |+
vmaxwmax

√
N

µ+ δ

k−N−1
∑

i=0

(

µ
√
N

µ+ δ

)i

≤
(

µ
√
N

µ+ δ

)k−N

|eN |+
vmaxwmax

√
N

(1−
√
N)µ+ δ

for k = N + 1, N + 2, . . ., which allows to conclude.

Remark 1: The condition δ > 0 requires matrices Vk of

full rank since otherwise the r.h.s. of (5) turns out to be zero.

Condition (6) can be guaranteed by choosing a sufficiently

small µ. Generally speaking, the choice µ = 0 would

correspond to the best transient behavior and asymptotic

bound but in practice provides poorly robust estimates since

such a bound is quite conservative. Indeed, the choice of

µ should be traded between a fast transient given by a

“small” µ and a robust steady-state behavior with a “large”

µ compatible with (6), i.e., µ < δ/(
√
N − 1).

Summarizing, we will rely on the computational procedure

given by Algorithm 2, where we combine MHE and POD

projection.

Algorithm 2: given Vk, apply

1) compute the minimum Ŝk of the cost functional Jk(S)
defined in (2) using the equation (4)

2) compute the projection of the matrix Ŝk on the POD

modes, i.e., Mk = W ∗ Σ Ŝk Σ
−1 W where Σ and W

are the matrices obtained by the SVD decomposition

of Vk, i.e. Vk = UΣW ∗

3), 4), 5) as in Algorithm 1

and get Zk.

Since we aim at identifying the transition from unstable

to stable regime or vice versa, a further goal may be that

of minimizing (2) under stability or instability constraints

on the minimizer, i.e., for matrices S ∈ R
N×N that are

(Schur) stable or unstable. Unfortunately, the solution of

these problems is difficult but we may get information about

the “degree” of stability and instability by computing the

distance between a given unstable matrix and the subset of

the matrices that are stable or its reverse. This is the topic

of the next section.

III. MATRIX DISTANCE

Concerning the methods proposed to compute matrix

distance to stability/ instability, the reader is refereed to [34],

[35]. In [34] a method to project a given unstable matrix

on a convex subset of the space of the stable matrices is

proposed. This approach is motivated by the fact that the

space of the stable matrices is nonconvex. The problem to

find the largest value of instability measures over the admis-

sible uncertainties is addressed in [35], where a sufficient

condition for establishing upper bounds on the considered

measures is presented and an LMI-based procedure is given

to compute such bounds.

A. Distance to stability

Given any unstable matrix A ∈ R
m×m, we may evaluate

the distance to stability by finding a “small” E ∈ R
m×m such

that A+E is Schur. Using a formulation based on Lyapunov

inequalities, the problem can be rewritten as follows

min |E| w.r.t. E,P ∈ R
m×m s.t. (8a)

(A+ E)⊤P (A+ E)− P < 0 , P > 0 (8b)

where | · | is any submultiplicative norm in R
m×m. Using

homogeneity and some pretty well-known LMI technicality,

(8) can be equivalently formulated as follows

min |Y | w.r.t. Y, P ∈ R
m×m s.t. (9a)

(

A⊤PA+A⊤Y + Y ⊤A− P Y
Y ⊤ −P

)

< 0 , P > I

(9b)

with Y = PE since, owing to the condition P > I , it follows

|E| ≤
∣

∣P−1Y
∣

∣ ≤
∣

∣P−1
∣

∣ |Y | ≤ |Y |
and hence the minimization of |Y | induces to minimize |E|.
The solution is given by E = P−1Y , which is to be regarded

as the “smallest” stabilizing matrix for A. It is worth noting

that (9) can be solved by standard optimization tools based

on SDP and hence to deal with large matrices efficiently.

B. Distance to instability

Let us assume that the matrix A ∈ R
m×m is Schur. In

[36], the evaluation of the “nearest” unstable matrix has been

addressed through the determination of the “smallest” desta-

bilizing matrix for A. A matrix E ∈ R
m×m is destabilizing

for A, if A+E is not Schur. Since, by the simple observation

in [36],

σmin(A− λI) = min
E
{|E|F : det (A+ E − λI) = 0}

where σmin(A−λI) is the smallest singular value of A−λI ,

it is clear that we are interested in the determination of

β(A) := min
|λ|≥1

σmin(A− λI) .

In general the evaluation of β(A) is not easy, and one can try

to bound this quantity from above by looking at destabilizing

matrices that satisfy the sufficient condition for instability:

(A+ E)⊤P (A+ E)− P ≥ 0 . (10)

Such a condition implies that the quadratic Lyapunov func-

tion is nondecreasing but it is still difficult to be treated.

However, we may rely on a stronger condition that can be

solved by using LMIs. Specifically, since E⊤PE ≥ 0 and

(A+ E)⊤P (A+ E)− P = A⊤PA+A⊤PE + E⊤PA



+ E⊤PE − P ,

it follows that

A⊤PA+A⊤PE + E⊤PA− P ≥ 0 (11)

ensures that (10) holds. To reduce the conservativeness of

(11), we can exploit the bound

E⊤PE ≥ λmin

(

E⊤PE
)

I

by using Algorithm 3, where, likewise in Section III-A, we

get the minimization of |E| by minimizing |Y | owing to the

additional constraint P > I and with a sufficiently small

∆λ > 0.

Algorithm 3: given A and ∆λ, apply

1: i← 0
2: P ← 0
3: Ei ← 0
4: λ← −∆λ
5: while λ < λmin

(

E⊤
i PEi

)

6: do

7: λ← λ+∆λ
8: i← i+ 1
9: solve min |Y | w.r.t. P > I , Y

s.t. A⊤PA+A⊤Y + Y ⊤A− P + λI ≥ 0
10: Ei ← P−1Y
11: end do

12: E ← Ei−1

and get E as output.

Fig. 1. Illustrations of the application of the proposed methods for matrix

distance evaluation, where Ek is the solution of (9) with A = Ŝk; S̃′

k

results from the solution of (9) A = S̃k; S̃′′

k
is the projection of S̃′

k
on the

segment with initial/final points given by Ŝk and S̃k .

Next section will concern the results obtained with an

experimental dataset.

IV. NUMERICAL RESULTS

The results presented in the following are based on

experiments performed in the open-circuit low-speed wind

tunnel of the aerodynamics and turbomachinery laboratory

of the University of Genoa, Italy. The experimental setup

consists of a thick flat plate, where the flat part of the

plate includes the leading edge, which is 200mm long and

Fig. 2. Sequence of instantaneous perturbation velocity vectors (Re
decomposition), case Re = 75000, FSTI = 0.65%.

300mm wide. The plate has been installed between two

contoured walls producing an adverse pressure gradient. The

boundary layer developing along the rear part of the plate has

been surveyed by means of a Dantec time-resolved particle

image velocimetry (TR-PIV). The measuring domain extends

from x/c = 0.315 to x/c = 0.9 and the test section throat is

located at x/c = 0.285, where c denotes the plate length.

A dataset of 3100 instantaneous velocity fields has been

acquired at a sampling rate of 3100 Hz. The high-frequency

resolution and the long sampling period (1 s) of the dataset

allow to follow the dynamics leading to the generation of the

large scale coherent structures, and hence to the transition.

The tests have been carried out with subsonic flow

condition at a Reynolds number of 75000 (based on the

plate length and the inlet flow velocity) and a free-stream

turbulence intensity level of 0.65% (measured at the leading

edge of the plate), as shown Fig. 2. In the first instants, a

clock-wise rotating vortex denoted by CWV arises. Next,

large counter-clockwise rotating vortical structures denoted

by CCV1 and CCV2 can be observed as well.

The proposed MHE-based decomposition is applied to

this large dataset of measurements provided by the TR-PIV.

When both streamwise and wall-normal velocity components

is available, it has been shown that the wall-normal velocity

component is more representative of the change of regime

since before transition starts it is almost null [37] and thus,

for the sake of space limitation, we will focus only on

such a component. Both components are instead considered

to compute frequencies and growth rates, as the whole

information is needed to obtain a satisfactory accuracy.

The MHE algorithm described in Section II is applied to

the sequence of snapshots from k = k0 to k = kf with

k0 = 40 and kf = 160. The length N of the MHE window

is chosen equal to 38. At each k, the exact solution Ŝk

minimizing (2) is computed using (4). The initial matrix S̄k0

is chosen by performing the classical DMD. Based on the

current estimate Ŝk, we compute the residual norm

rk := |Vk+1 − VkŜk|F



and, following [13], we project Ŝk on the POD modes by

obtaining

Mk = W ∗ Σ Ŝk Σ
−1 W (12)

where Σ and W are the matrices obtained by the SVD

decomposition of Vk , i.e. Vk = UΣW ∗. The matrices of

the eigenvectors and eigenvalues of Mk are then computed

as described in the Algorithm 2. Notice that the resulting

matrix Ŝk is not companion due to the presence of the first

term in (2).

The frequency information is contained in the imaginary

part of such eigenvalues, while the real part provides the

growth/decay rate of the dynamic structure identified by

the corresponding DMD mode. Positive values of the real

part of the DMD eigenvalues indicate growing structures,

corresponding to unstable waves. Stable regimes such as the

pre-transitional region and the fully turbulent one are instead

characterized by negative or null growth rates.

The results obtained by applying Algorithm 2 with µ =
100 and N = 38 are shown in Figs. 3 and 4. Fig. 3 illustrates

the growth rate, corresponding to the maximum real part

of the eigenvalues of Mk for each value of k. It is clearly

visible that the growth rate is negative in the stable region

as no unstable eigenvalues have been observed. Then, the

growth rate increases its value and reaches a maximum in the

unstable region where becomes positive, and then decreases

again in the turbulent stable regime as expected.

In Fig. 4 the residual norm is depicted. It is possible

to notice a decreasing trend in the stable regime since the

pre-transitional region is ruled by linear effects and low

velocity fluctuations, so that the residual norm decreases

when the number of snapshots increases. The decreasing

trend is followed by an increasing one in the transitional

regime, where the velocity fluctuations increase significantly

and hence the residuals grow as well. Finally, the residual

norm still decreases in the turbulent regime when linear

instability ends and is definitively damped by the nonlinear

terms.

Fig. 3. Growth rate corresponding to the maximum real part of the
eigenvalues of Mk .

According to Section III-A, the matrix Ŝk computed at

each k is projected on the convex subset of the space

Fig. 4. Residual norm resulting from the application of the MHE algorithm.

of the stable matrices and the corresponding distance is

thus evaluated, as shown in Fig. 5. The distance is zero

in the linear stable regime and in the turbulent one since

the corresponding matrices are stable. In the pre-transitional

unstable regime, the value of the distance increases until

a maximum (in correspondence of the largest instability)

and then decreases until it becomes zero in the turbulent

region. Similarly, following Section III-B, the bound on the

distance of the matrix Ŝk to the set of unstable matrices is

computed, as shown in Fig. 6. The distance is large in the

first laminar regime and becomes zero in the unstable one.

In the turbulent region the distance is different from zero,

but smaller with respect to laminar region since in this flow

regime reminiscent effects of instability can be still present

into the flow, even though they are dominated by nonlinear

effects.

Fig. 5. Distance of the matrix Ŝk to the set of the stable matrices with
µ = 100.

V. CONCLUSIONS

The results obtained by applying the proposed MHE-based

decomposition to an experimental dataset are quite good. The

method to find the distance of an estimated unstable matrix

to stability performs quite well too. By contrast, the approach

for computing the distance to instability needs to be refined.

However, a promising direction.

As a topic of future investigation, we will address the

reduction of the computational effort by using fast MHE



Fig. 6. Upper bound on the distance of the matrix Ŝk to the set of the
unstable matrices.

techniques [27], which need to be redesigned since the state

is given by large square matrices.
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