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Abstract 8 

This paper shows a new advanced control approach for operations in hybrid systems 9 

equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and 10 

standard proportional-integral techniques, controls the system during load changes avoiding failures 11 

and stress conditions detrimental to component life. This approach was selected to combine 12 

simplicity and good control performance. Moreover, the new approach presented in this paper 13 

eliminates the need for mass flow rate meters and other expensive probes, usually required for a 14 

commercial plant. Compared to previous works, better performance is achieved in controlling fuel 15 

cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap 16 

between cathode and anode sides (at least a 30% decrease during transient operations), and 17 

generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. 18 

This new control system was developed and optimized using a hybrid system transient 19 

model implemented, validated and tested within previous works. The plant, comprising the coupling 20 

of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to 21 

connect the compressor outlet with the turbine inlet duct for rotational speed control. Following 22 

model development and tuning activities, several operative conditions were considered to show the 23 

new control system increased performance compared to previous tools (the same hybrid system 24 
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model was used with the new control approach). Special attention was devoted to electrical load 25 

steps and ramps considering significant changes in ambient conditions. 26 

 27 

 28 
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1. Introduction 31 

Hybrid systems, consisting of a solid oxide fuel cell (SOFC) combined with a microturbine 32 

(mGT), are expected to have a significant role due to widespread distributed generation paradigm 33 

[1-4] and hydrogen economy [5-7]. More specifically, high performance aspects in small-size 34 

systems (ultra-high efficiency [8,9], ultra-low emissions [10], fuel flexibility [11,12] and co-35 

generative applications [13,14]) of these innovative plants are essential in terms of environmental 36 

and energy demand [15,16]. 37 

Despite the important results obtained for SOFC hybrid systems through both theoretical 38 

[17-19] and experimental [8,20,21] tools, only one prototype, developed by Siemens-Westinghouse 39 

[22], reached performance levels close to the expectations. This low rate of success for these kinds 40 

of plants is due to the high cost of components [7,23] and technical problems related to system 41 

integration [7,24,25]. An important technical issue not completely settled concerns the control 42 

system because SOFC hybrid plants are subject to several additional constraints as opposed to 43 

standard mGT plants [26]. More specifically, in addition to turbine constraints (maximum rotational 44 

speed, surge line and maximum thermal stress for components [27]), other risk situations must be 45 

addressed [26,28], including (I) excessive temperature or (II) thermal gradient in the fuel cell, (III) 46 

excessive pressure difference between cathodic and anodic sides and (IV) too low Steam-To-47 

Carbon Ratio (STCR) in the SOFC anodic side. These constraints must be considered not only for 48 

steady-state conditions, but also during time-dependent operations [29], such as load variations, 49 
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ambient temperature changes and start-up/shutdown phases [30]. More specifically, several 50 

challenges must be overcome to couple the very fast response of the mGT system (low mechanical 51 

inertia of the turbine shaft) with the slow thermal variations of the SOFC stack [31] (high thermal 52 

capacitance of fuel cell materials), while the different volume values of SOFC sides generate 53 

different time-dependent performance in terms of pressurization/depressurization delays (an 54 

important aspect to take into account in order to prevent excessive cathode/anode pressure 55 

difference during transient operations [25]). Moreover, the fluid dynamic and chemical responses of 56 

the anodic side, important aspects to avoid low STCR values, are usually not in line with the 57 

transient behaviour necessary to prevent other failures [32-34].   58 

Although in the last ten years several works [29,33,35-37] have been carried out on these 59 

control issues, the problem is not completely solved due to the large number of constraints to be 60 

considered and aspects related to costs that have not been completely optimized. For instance, even 61 

if some papers [33,36,37] presented effective control systems for SOFC hybrid plants, thermal 62 

stress on the fuel cell was not always prevented (significant thermal gradient: higher than 3 K/min 63 

[38] especially for large load steps) and expensive probes were used (e.g. mass flow rate meters in 64 

[33,35]). Moreover, the cathode/anode pressure difference was carefully considered only in [33], 65 

while other control systems showing interesting result neglected the constraints of this important 66 

property (see [26] for experimental aspects). Also the time-dependent aspects related to anodic 67 

recirculation were often neglected (considering constant recirculation ratios [38]) or based on very 68 

simple approaches [37]. Since the importance of anodic circuit response is essential in preventing 69 

failures (e.g. low STCR), it is imperative to develop a transient model of the anodic devices (e.g. an 70 

anodic ejector [26,39]) to study a reliable control system for the entire plant [33]. 71 

This work focused on the development of an advanced control system for SOFC hybrid 72 

plants. So, the control strategy presented in [33] was improved considering the coupling of 73 

Proportional-Integral (PI) controllers with feed-forward approaches to prevent thermal stress in the 74 

fuel cell and to reduce the peak values of cathode/anode pressure difference and STCR. Since the 75 
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thermal capacitance of the stack is very high, the PI controller necessary to maintain constant stack 76 

temperature must be a very slow response device (as done in [33]) to avoid unstable behaviour. 77 

However, this approach cannot prevent significant thermal gradients (higher than 3 K/min) in the 78 

fuel cell (responsible of serious stress on ceramic material) because the new rotational speed set-79 

point is generated only after an excessive temperature oscillation. On the other hand, the coupling 80 

with feed-forward technique (in a system equipped with load variation smoothing devices: a battery 81 

package or an electrical grid) can obtain the new rotational speed with the requested time 82 

performance and without instability problems. Moreover, this is a simple approach (in comparison 83 

with multiple-input and multiple-output controllers), which can combine possible corrective actions 84 

for disturbances (e.g. variations of ambient conditions) with less oscillations in plant critical 85 

properties.  Even if the same basis shown in [33] was maintained (e.g. the mGT speed control was 86 

carried out with a compressor/turbine bypass valve), the results obtained with a Matlab
®

-Simulink
®
 87 

transient model shows better performance in terms of thermal and mechanical stress on the 88 

components. The Matlab
®

 version used in this work is the R2010a (7.10.0.499), which is coupled 89 

with version 7.5 of the Simulink
®

 tool.  90 

This work demonstrates improved control performance, over previous works [29,32,33,41], 91 

which can prevent failures and increase component life, also broadening the types of transient 92 

operations (e.g. variations of ambient conditions) carried out with a previously validated model 93 

[42,43].  94 

2. Plant Layout and Control System 95 

The hybrid system considered in this work (continuous lines in Fig.1) is based on Siemens-96 

Westinghouse [22,33] technology for a global size in the range of 300 kW. The plant layout 97 

comprises the coupling of a tubular pressurized SOFC with a recuperated microturbine. On the 98 

cathodic side air is compressed by a radial machine, preheated by the recuperator and fed to the fuel 99 

cell, while in the anodic ducts fuel (methane) is converted into a hydrogen rich mixture by a 100 
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reformer unit located upstream of the stack. The anodic side is based on a recirculation system 101 

carried out by a single-stage ejector: methane is pre-heated with the plant exhaust flow and fed into 102 

the ejector primary duct, while a part of the SOFC exhaust (anodic flow) is recirculated by the 103 

ejector (secondary nozzle). The flow comprising the mixture of this recirculation and methane is fed 104 

to the stack anodic side. Finally, the anodic circuit outlet flow is mixed with the cathodic exhaust 105 

flow in the off-gas burner to increase turbine inlet enthalpy. The expander can produce the power 106 

needed for the compressor and an useful power additional to the fuel cell generation. On the 107 

electrical side the system is equipped with a battery package in case of stand-alone operation mode 108 

(in case of grid connected operations, the electrical grid can substitute the battery function). The 109 

main property values of the plant at design conditions are reported in Tab.1. 110 

 111 

Table 1. Design values of main plant properties. 112 

Net electrical power of the entire hybrid system [kW] 284.8 

Stack electrical power [kW] 231.3 

Net electrical power of the turbine [kW] 53.5 

Power consumed by the fuel compressor [kW] 9.4 

Global net electrical efficiency [-] 0.637 

Fuel utilization factor 0.85 

Current density [mA/cm
2
] 423.9 

Stack average temperature [K] 1229.8 

Fuel mass flow rate in the ejector primary duct [kg/s] 0.009 

Anodic ejector recirculation ratio [-] 7.18 

Air mass flow rate [kg/s] 0.658 

Compression ratio [-] 3.85 

Recuperator effectiveness [-] 0.89 

Turbine inlet temperature [K] 1080.1 

Turbine outlet temperature [K] 847.6 

Shaft rotational speed [rpm] 68000 

 113 

The control strategy considered in this work is shown in Fig.1 using dotted lines. It is based 114 

on the coupling of standard PI controllers (as in [33]) with a feed-forward technique. The latter 115 

approach is necessary to prevent the high thermal gradient values shown in [33] and in other 116 

previous works (e.g. in [38]). Since the stack thermal capacitance is very high, a possible simple 117 
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solution to avoid temperature oscillations (and thermal gradients higher than 3 K/min) is the 118 

application of the feed-forward technique (based on interpolation tables) because it can obtain the 119 

requested rotational speed change without the unstable behaviour typical of a feedback-based 120 

controller. However, this new approach can produce the expected performance if load variation is 121 

smoothed by a battery or an electrical grid. The numbers of control lines is selected in accordance 122 

with [33]. For this reason, where this new approach allows removing a control line in comparison 123 

with [33], the related number is not used. This layout is based on a bypass valve for direct 124 

connection between the compressor outlet and the turbine inlet ducts. This approach (proposed in 125 

[33]) is necessary to control the mGT rotational speed (point 1 in Fig.1) solving the issue related to 126 

the difference between the small mechanical inertia of the microturbine shaft and the very high 127 

thermal capacitance of the fuel cell stack. While the fractional opening (FO) design value is low 128 

(0.05) to achieve good efficiency in steady-state conditions, this valve is managed by a PI controller 129 

to maintain the mGT rotational speed at its set-point value. 130 

The system input is the power demand (point 2) for the entire plant. The actual power 131 

requirement is calculated considering a control device capable of smoothing the input variations 132 

with a battery package as in Fig.1 or through the electrical grid. Also in this work the electrical 133 

dumper is controlled by a PI equipped with a previous step block (see Fig.2 for details) capable of 134 

reducing power change effects; different solutions are available. The coefficient of the integral part 135 

of this PI is calculated through an interpolation table on the basis of the bypass valve FO (this 136 

approach is necessary to reduce fuel cell pressure difference by decreasing the response speed of 137 

power variation smoothing when FO is significantly different from its design value). Then, the 138 

power requested to the SOFC is calculated by multiplying the input signal by a sharing-out 139 

coefficient (point 3) as presented in [33]. However, unlike [33], an initial improvement is obtained 140 

through a feed-forward approach used to evaluate this coefficient to keep the bypass valve set-point 141 

value at 0.05. Instead of a slow response PI controller [33] being responsible for a very significant 142 

FO oscillation (linked with a cathode/anode pressure difference high peak), a table of data coming 143 
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from steady-state analysis is interpolated on the basis of the hybrid system power demand, ambient 144 

conditions, anodic recirculation temperature and fuel temperature. The SOFC power demand (point 145 

5) is used to evaluate stack current (point 7) calculated by a fast response PI controller. This control 146 

device operates to nullify the difference between the SOFC power demand and the effective power 147 

generated by the fuel cell (point 6). The remaining electrical demand (point 8) is satisfied by the 148 

mGT generator. Fuel flow rate is managed by a valve located upstream of the ejector primary ducts 149 

whose FO value (point 12) is calculated through a second feed-forward controller (a second table of 150 

data interpolated on the basis of the hybrid system power demand, ambient conditions, anodic 151 

recirculation temperature and fuel temperature), instead of a PI device as carried out in [33]. With 152 

this new approach, it is possible to keep constant (0.85 at off-design conditions) the fuel utilization 153 

factor inside the SOFC, avoiding an expensive fuel mass flow rate probe (necessary device to 154 

operate as in [33] with a slow-response PI). Moreover, this second feed-forward controller can 155 

significantly reduce the fuel utilization factor oscillations in comparison to the results obtained in 156 

[33]. A final controller is necessary to maintain constant SOFC average temperature value. Also in 157 

this case, a feed-forward approach is used to calculate the rotational speed set-point (point 11), 158 

replacing the slow response PI controller proposed in [33]. This control type change is necessary to 159 

avoid significant oscillations in SOFC average temperature, which can generate dangerous thermal 160 

stress on ceramic material (especially with thermal gradient values higher than 3 K/min [40]). To 161 

ensure the flexibility needed to achieve the response of this controller, the table of data interpolation 162 

(including the effects of ambient condition, anodic recirculation temperature and fuel temperature) 163 

is carried out including a delay for the hybrid system power demand. This delay unit is based on a 164 

slow-response PI controller where the plant power demand is operated as a set-point and the 165 

controller output is used as a feedback signal input (see Fig.2 for details). The complete diagram of 166 

a PI controller coupled with a previous step block is shown in Fig.2. This configuration can operate 167 

as a delay (including the proportional part) of the input value because the previous step block 168 

generates the PI set-point value equal to the PI output calculated during the previous calculation 169 
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step. It also includes an optional input line that is used when it is necessary to change the integral 170 

part coefficient. At steady-state condition the output value converges with the input value. This 171 

solution was selected instead of a transfer function to utilize similar control devices within the 172 

system, thus simplifying the approach: just PI controllers, interpolation tables and algebraic blocks. 173 

However, the same effect can be obtained with a first-order transfer function. 174 

The values implemented in the interpolation tables shown in Fig.1 were obtained by steady-175 

state calculations carried out considering different values in plant power demand and other 176 

influence properties (the main results of this steady-state analysis was reported in [44]) or (for the 177 

coefficient factors related to the PI integral part for battery management) from preliminary 178 

simulations. The typical limitation of the feed-forward approach (no corrective actions from 179 

disturbances) was solved including interpolation table variation (with apt corrective factors) in case 180 

of variations of measurable disturbances (ambient conditions, fuel temperature and fuel 181 

composition). For this reason Fig.1 includes the following inputs: ambient conditions (temperature, 182 

pressure and humidity), fuel temperature and anodic recirculation temperature (its variation can 183 

show the effect of fuel composition variation to be compensated in the interpolation tables). 184 

Moreover, the not measurable disturbances (e.g. degradation of plant components) can also be 185 

compensated with the same approach. In this case, it is necessary to use available measurements to 186 

detect the degradation (and the degradation level). For instance, the stack degradation can also be 187 

detected by anodic recirculation temperature. In this case, feed-forward components can be adapted 188 

modifying the interpolation tables on the basis of this property, maintaining, also in case of stack 189 

degradation the target temperature value of the SOFC.    190 

3. Model 191 

The control system development and testing were carried out with a transient model 192 

implemented in Matlab
®

-Simulink
®
 environment. Although in this work the control system is 193 

completely new, the same models of [33] were considered for plant components to highlight the 194 
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good performance achieved by this new control system compared to the previous one [33]. This 195 

model was developed using the TRANSEO tool [45,46], a visual, user-friendly modular program 196 

based on a library of components for off-design, transient and dynamic analyses [47] of energy 197 

systems. 198 

The modelling technique for the main part of the plant components is based on a 0-D 199 

approach (balance equations integrated just between inlet and outlet of devices) called "lumped 200 

volume". Each component (except the recuperator that is based on a quasi-2-D technique [47]) is 201 

modelled with an off-design calculation software connected to a constant section pipe model for 202 

fluid dynamic delay [44]. This simplified approach is essential to reach reasonable computational 203 

time, ensuring that calculation performance is satisfactory for plant level simulations, as 204 

demonstrated in several previous validation works carried out with this modelling technique 205 

[42,43]. More specifically, 0-D approaches were demonstrated [19,32,33] to be very effective in 206 

control system development and assessment. As stressed in [33,45], models of all plant components 207 

include thermal loss and transient response related to changes in chemical composition. 208 

3.1 Fuel Cell Model 209 

This paper is based on a fuel cell tubular geometry, similar to the design proposed in 210 

[33,45], and on surrounding facilities (reformer, pre-heating tube, anodic recirculation, etc.) 211 

connected as presented in [49]. The fuel cell model is based on the following hypotheses: adiabatic, 212 

uniform voltage, chemical reactions at equilibrium, CO electrochemical reaction neglected. As 213 

presented in [50], the fuel cell model includes: voltage calculation subtracting ohmic and activation 214 

losses from Nernst's potential, equilibrium of reforming and shifting chemical reactions, mass 215 

balances of anodic and cathodic flows (including the effect of reactions), energy balances of flows 216 

(this calculation includes: the anodic gas, the flow within the pre-heating quartz tube and the 217 

cathodic air, the energy balance related to the tube and  the solid PEN  (positive(P)-electrolyte(E)-218 

negative(N)) structure. A time-dependent first-order differential equation is used to calculate the 219 
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stack material average temperature considering thermal balances and the total stack thermal 220 

capacitance. 221 

This model was validated at stack level considering a wide result comparison against a 222 

detailed 1-D model (previously validated against experiments) in both steady-state and transient 223 

conditions [50]. The assessment presented in [50] showed that the 0-D approach used for the fuel 224 

cell model can generate reliable results for plant level analysis and control system development.  225 

3.3 Models for Plant Components 226 

Special attention was devoted to the ejector transient model. It was developed in previous 227 

works [42,45,46] and validated against experimental data at both steady-state and transient 228 

conditions [42]. Given the importance of this component for the anodic side performance [51-53], a 229 

detailed validation was carried out for recirculation systems using experimental data obtained 230 

through reduced-scale emulator rigs [42,54]. 231 

Models for the compressor and turbine are based on the interpolation of characteristic non-232 

dimensional curves. Although this is a typical approach for these kinds of machines [55-57], several 233 

previous works [45-48] carried out with TRANSEO tool validated these models in transient 234 

operations too. The recuperator model is based on a quasi-2D approach to achieve reliable results. 235 

Previous works [46,48,58] demonstrated that this technique based on 10 calculation nodes is a good 236 

compromise between result performance and computational time. Moreover, the recuperator model 237 

was validated against experimental data in [48,58]. 238 

Finally, validation activity was carried out at system level using the hybrid system emulator 239 

rig of the NETL - U.S. DOE located in Morgantown (WV). This plant was able to validate all the 240 

cathodic-side models (compressor, turbine, shaft, generator, recuperator, cathodic volume and off-241 

gas burner) at both steady-state and transient conditions [43]. 242 
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4. Results 243 

To compare the performance obtained with this new control system to the results obtained in 244 

[33], initial simulation tests were carried out considering a 10% load step decrease and a 5% load 245 

step increase. In both cases, the same hybrid system model shown in [33] was used to perform a 246 

control system comparison. Then, the new control system was used to analyse the effect of changes 247 

in ambient conditions in conjunction with electrical load ramps (to simulate real plant operations). 248 

4.1. Load Step Decrease 249 

This paragraph presents a simulation carried out with the model using the new advanced 250 

control system based on the interpolation tables shown in Fig.1: a feed-forward (FF) approach is 251 

implemented for some controllers. To compare the results to the performance obtained with a 252 

previous PI based control system [33], a 10% load step was considered (as in [33]) for the entire 253 

hybrid plant: from about 284.8 kW to 256.3 kW at constant ambient conditions (air at 60% relative 254 

humidity,  288.15 K temperature and 1.013 bar pressure). Many simulations were carried out before 255 

obtaining the results presented here. This preliminary work was necessary to implement the 256 

parameter values especially for the coefficient table of the battery PI controller and for the response 257 

of the rotational speed set-point calculator. The results shown in [33] (for PI coefficients coming 258 

from Ziegler-Nichols technique [59] followed by a significant tuning activity) were a starting point 259 

to maintain the controller in stable condition. However, in this work, extensive activity based on 260 

trial-and-error technique was carried out to improve results. More specifically, it was very difficult 261 

to synchronize the very different dynamics of the following parameters: fuel cell load, turbine 262 

rotational speed and fuel mass flow rate. For instance, to maintain constant SOFC average 263 

temperature (with maximum gradient lower than 3 K/min) it is necessary to adapt turbine rotational 264 

speed as quickly as load changes on the stack. However, a strong limitation is present to avoid an 265 

excessive large bypass valve (decreasing plant efficiency) or surge problems. For this reason, high 266 

temperature gradients were not prevented in [33,38]. Moreover, the different anodic loop dynamics 267 
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(mainly due to the different volumes of the cell sides) can generate excessively high differential 268 

pressure values if fuel flow rate is not changed with the same time scales. Unfortunately, if this 269 

mass flow rate variation is carried out too quickly (especially in case of load increase) the constraint 270 

related to the STCR parameter is not satisfied, generating values lower than 1.8 during the transient 271 

operations. So, the battery controller was tuned to obtain the fastest possible response and to reach a 272 

compromise between battery operation time decrease (linked with cost decrease due to limited 273 

installation of battery components due to maximum power decrease requested by this component) 274 

and system, operated in accordance with the various constraints (including the SOFC time-275 

dependent thermal gradient constraint, usually neglected in several previous works [38]). 276 

The global management of the plant obtained with the control system is shown in Fig.3. 277 

Since the electrical demand (for the whole hybrid system) is decreased by the 10% step at time 0 of 278 

Fig.3, the battery package is used to smooth this load decrease: both SOFC and mGT can slowly 279 

reduce slowly their load values, while the additional power produced by the plant is absorbed by the 280 

battery (negative power means battery re-charging phase). However, if the plant can be connected 281 

to an external electrical grid, the same behaviour (same power variation smoothing) can be obtained 282 

without battery costs. Since the battery smoothing effect has a time response longer than the thermal 283 

one (mainly due to the SOFC high thermal capacitance), the effect of fluid dynamic response (also 284 

including pressurization/depressurization volume response) is negligible in the results presented in 285 

this work. Furthermore, as shown in Fig.4, the rotational speed oscillation typical of load step 286 

response (as shown in [33]) is also not present because load demand variation on the mGT is 287 

smoothed by the battery. Figure 4 also includes fuel cell inlet pressure at the cathodic side 288 

(downstream of the air pre-heating tube) showing a pressure decrease trend due to rotational speed 289 

decrease. These trends, compared to the results obtained in [33] (see Fig.4), show a slow-response 290 

decrease due to a slow decrease in rotational speed set-point (signal 11 in Fig.1) driven by the PI 291 

connected to a previous step block. This approach is necessary to produce a proper delayed 292 

response to keep constant the SOFC temperature (Fig.5). The good performance of this controlling 293 
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solution is well demonstrated by Fig.5 because SOFC average temperature is maintained almost 294 

constant (0.7 K maximum variation during this test) and time-dependent temperature gradient is 295 

almost negligible. The load change smoothing obtained using the battery and the good rotational 296 

speed set-point calculation carried out through the feed-forward (FF) approach can avoid significant 297 

SOFC temperature oscillations. This is a significant improvement considering that the previous 298 

solution [33] based on a PI controller generated a high temperature maximum gradient (about 10 299 

K/min) usually not sustainable by the fuel cell stack. 300 

During the test, the sharing-out coefficient (Fig.6) and the fractional opening (Fig.7) of the 301 

bypass valve show decreased oscillating behaviour and a slower response variation compared to the 302 

results reported in [33]. Also their trends are due to the battery smoothing effect coupled with a 303 

feed-forward approach for the sharing-out coefficient calculation too. Using the interpolation table 304 

(instead of the PI controller shown in [33]) to calculate this coefficient value is an effective solution 305 

to maintain the 0.05 fractional opening value at steady-state condition, avoiding efficiency (defined 306 

in Eq.1) decay due to high mass flow rate bypassed from compressor to turbine. The good 307 

performance obtained with this new control system is shown by the plant net efficiency (Fig.8). In 308 

comparison with results calculated in [33], it is possible to avoid significant efficiency decays at 309 

transient condition too. 310 
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The performance obtained with the interpolation table needed to manage the fuel valve is 313 

reported in Fig.9. Both current and fuel mass flow rate decreases are slower in comparison with 314 

previous results [33] because the battery can smooth the load change on the fuel cell. This approach 315 

allows maintaining almost constant fuel utilization value (see Eq.2 for its definition) with 1% 316 

maximum decay during the transient response (reaching the 0.85 design value at steady-state 317 
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condition). This behaviour is significantly different from the results discussed in [33] where a 17% 318 

Uf decay is shown immediately after the 10% load decrease step. 319 

As mentioned in the Introduction, an effective control system for hybrid plants must be able 320 

to prevent critical values also for the following parameters: STCR, anode-cathode differential 321 

pressure, Turbine Inlet Temperature (TIT) and compressor surge margin. Even if it is very difficult 322 

to maintain all these parameters within the constraints during time-dependent operations, the 323 

smoothing effect of the battery coupled with the feed-forward technique can produce the requested 324 

performance. So, the new control approach presented in this paper compensates for the different 325 

dynamics responsible for possible critical conditions during transient operations. More specifically, 326 

Fig.10 shows that this new control system can prevent low STCR (see Eq.3) values and non-327 

sustainable fuel cell differential pressure. In comparison with results shown in [33], it is possible to 328 

obtain smaller variations increasing the possible plant operation field (larger load steps are 329 

acceptable) and to reduce mechanical stress on the stack. The maximum peak of differential 330 

pressure value is significantly reduced (maximum peak absolute value from 17.6 mbar to 9.4 mbar) 331 

using this new control system based on interpolation tables (feed-forward approach for three 332 

parameters). For the other critical properties (TIT and Kp), Fig.11 shows that this new control 333 

system can prevent TIT peaks and surge conditions. In comparison with [33], the behaviour is less 334 

oscillating also for TIT and surge margin (see Eq.4 for its definition). However, no significant 335 

thermal stress is generated by this load step (larger steps can be acceptable) because the TIT design 336 

value has a significant safety margin (higher than 100 K for standard commercial mGTs) and the 337 

temperature increase shown in Fig.11 is very small (about 5 K). Moreover, surge risk is prevented 338 

because Kp parameter significantly increases in comparison with its design value. 339 
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Another important aspect to check in these kinds of plants is chemical stress on the fuel cell 342 

due to significant chemical composition variation. For this reason, Fig.12 shows mass fractions of 343 

the anodic outlet flow (upstream of the off-gas burner) referenced to their design values (each mass 344 

fraction is divided by its design value to better show the time-depended variation). The design 345 

values are: 0.518 for CO2, 0.004 for H2, 0.438 for H2O and 0.040 for CO. To better present the 346 

performance obtained with this new control system, attention is focused (Fig.12) on the results 347 

obtained with the feed-forward (FF) approach. The chemical composition variation was maintained 348 

fairly constant because the variations of mass fractions were always lower than 5%. Moreover, for 349 

the most significant components (CO2 and H2) in the flow, Fig.12 shows a variation lower than 350 

0.4%. Similar stable performance was obtained on the cathodic side (with a plot not shown here for 351 

sake of brevity). 352 

To complete the evaluation of this new control system performance, the same simulation 353 

(10% load step decrease) was carried out removing the battery (or the connection to an electrical 354 

grid) from the system. In comparison with [33] (based on just feedback technique for all the 355 

controllers), the results obtained in this case showed a better control of SOFC average temperature 356 

(4 K oscillation instead of 29 K obtained in [33]) for the application of the feed-forward approach. 357 

However, some parameters are significantly critical: anode-cathode differential pressure reached 77 358 

mbar at the beginning of this transient operation, STCR showed an excessively large oscillation 359 

(from 2.23 to 3.44) with possible risk values (lower than 1.8) increasing the load, and also an 360 

important oscillation in surge margin (possible risks in other transient phases). So, even if the 361 

coupling of PI controllers with a feed-forward approach can produce interesting results, the correct 362 

behaviour of the plant (preventing risks) is obtained when a smoothing device is connected on the 363 

electrical side (a battery or connection to an external grid), as shown in Fig.1.    364 
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4.2. Load Step Increase 365 

A second transient response tested with this new control system is a load step increase. To 366 

carry out a comparison with the previous control approach proposed in [33], a 5% step increase was 367 

considered starting from about 256.3 kW hybrid system load (90% of design value). At time 0, the 368 

electrical demand was increased with a step to about 270.6 kW (95% of design value) and the 369 

simulation was completed when system reached a new steady-state condition. As shown in [33], 370 

feedback-based controlling approaches cannot prevent temperature increase peaks because the 371 

rotational speed set-point increase is obtained with a measured temperature (in [33] anodic 372 

recirculation temperature was used) higher than the set-point. In case this variation is significant (in 373 

Fig.13 the PI approach shows a 13.6 K increase), the stack can be damaged (if maximum 374 

temperature constraints is exceeded) also at low thermal gradients conditions. On the other hand, a 375 

feed-forward approach can produce the necessary coupling between fuel cell load and machine 376 

rotational speed especially if a battery is used to smooth effects related to load changes. For these 377 

reasons, Fig.13 shows that this new control system can maintain constant SOFC average 378 

temperature (Fig.13) also during load step increases avoiding risks due to temperature peaks and 379 

stress related to high thermal gradient (always lower than 0.1 K/min with the FF control approach). 380 

While results reported in [33] showed a temperature increase which forces to operate the cell with a 381 

significant temperature safe margin (from the maximum), Fig.13 shows an almost constant trend 382 

obtained with the new approach. Moreover, all the critical parameters were maintained by the 383 

control system inside safe ranges. In details, STCR minimum value is 2.08 with a significant 384 

margin from 1.8 [60], anode-cathode differential pressure has a -8.4 mbar peak, TIT shows a peak 385 

at 1092 K maintaining a significant margin from the mGT maximum sustainable value, surge 386 

margin decreases with a minimum value of 1.107 that is higher than the design one. 387 
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4.3. Ramps for Load and Ambient Conditions 388 

In this final calculation the control system was tested with ramps for ambient conditions 389 

(temperature, pressure and humidity) and electrical load considering one hour and a half (5400 390 

seconds). In details, conditions typical of morning operations were reproduced (one new value at 391 

the end of every 900 s periods connected with a linear trend): significant temperature and load 392 

demand increase (see Fig.14). The other properties (pressure and relative humidity) were managed 393 

simulating a good weather morning (Fig.14). 394 

The power values obtained with the model (Fig.15) focus the attention on battery 395 

performance, necessary to have this smooth behaviour. During this load increase ramp battery is 396 

discharged to satisfy load demand with peaks (up to 14.7 kW). Other results show that this new 397 

control system is able to manage the plant avoiding stress and risk conditions. For instance, Fig.16 398 

shows that fuel cell average temperature is maintained almost constant (±1.3 K maximum variation) 399 

with a rotational speed increase (from 58234 rpm to 64961 rpm) avoiding high thermal gradients 400 

(maximum values less than 0.3 K/min). The other critical properties were maintained inside safe 401 

range conditions. For instance, Fig.17 shows that STCR is always higher than 2.6 (significant safe 402 

margin from 1.8 [60]) and maximum anode-cathode differential pressure is lower than 10 mbar 403 

(considering its absolute value). Moreover, also the other properties, not reported here for sake of 404 

brevity, were well controlled inside safe conditions. For instance, TIT maximum peak is about 1100 405 

K (significant safety margin from its maximum value) and Kp is always higher than 1.1 (1.13 406 

minimum value during the test). 407 

5. Conclusions  408 

This work is related to the development and testing of a new advanced control system for 409 

hybrid plants with pressurized SOFCs. Even if the calculations are presented considering a stand-410 

alone application, the same approach can be used for grid connected systems where the battery 411 

operations are substituted by the electrical grid. The control logic is based on the coupling of PI 412 
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controllers with feed-forward approaches necessary to avoid significant temperature variation in the 413 

cell (responsible of thermal stress problems) and to reduce the peak values of cathode/anode 414 

pressure difference and STCR. So, this work is able to demonstrate improved controlling 415 

performance for SOFC hybrid systems, in comparison with previous works [29,32,33,41]. In 416 

details, the same component models of [33] were used to compare the good performance obtained 417 

with this new controller with the results obtained with the old one shown in [33]. The main 418 

conclusions and results presented in this paper are: 419 

· This new control strategy is able to improve SOFC temperature management because it is 420 

able to maintain almost constant this property, avoiding significant thermal gradients (maximum 421 

values lower than 0.2 K/min for a 10% load step decrease). 422 

· The results obtained with the model show that anode-cathode differential pressure can be 423 

maintained at sustainable values during transient operations too (maximum values lower than 10 424 

mbar for a 10% load step decrease). 425 

· This new control system can keep all the critical properties inside safe conditions. STCR, 426 

turbine TIT and Kp are always calculated with a significant safety margin from critical values. For 427 

instance, STCR minimum value is 2.18 in the 10% load step decrease, while its limit value is 428 

usually 1.8 [60]. 429 

· The tests carried out considering ramp variations in load and ambient conditions proved that 430 

typical plant operations can be tolerated by this new advanced control system with good 431 

performance (ramp test main results: thermal gradient in the cell lower than 0.3 K/min, anode-432 

cathode differential pressure lower than 10 mbar, STCR minimum value higher than 2.05). 433 

Additional activities are being developed at TPG on hybrid system controllers. More 434 

specifically, an emulator plant [61] is being operated to test control approaches in hardware-in-the-435 

loop configuration, considering not only traditional approaches, but also innovative ones (e.g. 436 

model predictive control logics [62], which is considered promising in co-generative plants [63]). 437 

 438 
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Nomenclature  443 

Acronyms 

AC Ambient Conditions 

DOE Department Of Energy 

DS DeSulfurizer 

FC Fuel Cell 

FF Feed-Forward 

HS Hybrid System 

mGT micro Gas Turbine 

NETL National Energy Technology Laboratory 

PI Proportional-Integral controller 

REC RECuperator 

SOFC Solid Oxide Fuel Cell 

TPG Thermochemical Power Group 

Variables 

Coeff power sharing-out coefficient [-] 

diff_p anode-cathode differential pressure [Pa] 

eff plant net efficiency [-] 

FO valve Fractional Opening [-] 

LHV Low Heating Value [J/kg] 

Kp surge margin [-] 

Kp proportional coefficient for a PI controller [-] 

i electrical current density [A/m
2
] 

m  mass flow rate [kg/s] 

n molar flow rate [mol/s] 

N rotational speed [rpm] 

p pressure [Pa] 

P power [W] 

RH Relative Humidity [%] 

STCR Steam-To-Carbon Ratio [-] 

T temperature [K] 

Ta ambient temperature [K] 

TIT Turbine Inlet Temperature [K] 

Uf fuel utilization factor [-] 

XMA mass fraction [-] 

Greek symbols 

b compression ratio 

tI integral coefficient for a PI controller [-] 

Subscripts 

ar anodic recirculation 

aux auxiliaries 
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cath cathodic 

dp design point 

f fuel 

FC Fuel Cell 

in inlet  

mGT micro Gas Turbine 

out outlet 

s.l. surge line 

 444 
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Figure 1. Plant and control system layouts. 614 
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 616 
Figure 2. Diagram of PI controller including the previous step block. 617 

 618 
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 620 
Figure 3. 10% load step decrease: electrical power produced by FC and mGT coupled with battery 621 

charging (negative values). 622 
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Figure 4. 10% load step decrease: rotational speed and cathode inlet pressure compared to previous 630 

results [33]. 631 
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 635 
Figure 5. 10% load step decrease: SOFC average temperature, including temperature gradient, 636 

compared to previous results [33]. 637 
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 643 
Figure 6. 10% load step decrease: power sharing-out coefficient compared to previous results [33]. 644 
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Figure 7. 10% load step decrease: bypass valve FO compared to previous results [33]. 651 
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Figure 8. 10% load step decrease: plant net efficiency compared to previous results [33]. 656 
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Figure 9. 10% load step decrease: fuel cell current density and fuel mass flow rate in the ejector 661 

primary duct compared to previous results [33]. 662 
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 669 
Figure 10. 10% load step decrease: fuel cell STCR and fuel cell differential pressure (between 670 

anode and cathode sides) compared to previous results [33]. 671 
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Figure 11. 10% load step decrease: TIT and compressor surge margin (Kp) compared to previous 675 

results [33]. 676 
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 680 
Figure 12. 10% load step decrease: mass fractions of anodic outlet flow (referenced to their design 681 

values) for this new control system (FF). 682 
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 689 
Figure 13. 5% load step increase: SOFC average temperature, including temperature gradient, 690 

compared to previous results [33]. 691 
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 693 
Figure 14. Ramps for load and ambient conditions: input values. 694 
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 709 
Figure 15. Ramps for load and ambient conditions: electrical power produced by FC and mGT 710 

coupled with battery charging (negative values). 711 
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 716 
Figure 16. Ramps for load and ambient conditions: SOFC average temperature and the related 717 

gradient. 718 
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 723 
Figure 17. Ramps for load and ambient conditions: fuel cell STCR and fuel cell differential pressure 724 

(between anode and cathode sides). 725 
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