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Abstract

Is it possible to apply some fundamental principles of quantum-computing to time
series classification algorithms?

This is the initial spark that became the research question I decided to chase
at the very beginning of my PhD studies. The idea came accidentally after
reading a note on the ability of entanglement to express the correlation between
two particles, even far away from each other.

The test problem was also at hand because I was investigating on possible
algorithms for real time bot detection, a challenging problem at present day,
by means of statistical approaches for sequential classification.

The quantum inspired algorithm presented in this thesis stemmed as an
evolution of the statistical method mentioned above: it is a novel approach
to address binary and multinomial classification of an incoming data stream,
inspired by the principles of Quantum Computing, in order to ensure the
shortest decision time with high accuracy.

The proposed approach exploits the analogy between the intrinsic correla-
tion of two or more particles and the dependence of each item in a data stream
with the preceding ones.

Starting from the a-posteriori probability of each item to belong to a particular
class, we can assign a Qubit state representing a combination of the aforesaid
probabilities for all available observations of the time series. By leveraging
superposition and entanglement on subsequences of growing length, it is possible
to devise a measure of membership to each class, thus enabling the system to
take a reliable decision when a sufficient level of confidence is met.

In order to provide an extensive and thorough analysis of the problem, a
well-fitting approach, found in literature, [23] for bot detection was replicated
on our dataset and later compared with the statistical algorithm to determ-
ine the best option. The winner was subsequently examined against the new
quantum-inspired proposal, showing the superior capability of the latter in
both binary and multinomial classification of data streams.

The validation of quantum-inspired approach in a synthetically generated
use case, completes the research framework and opens new perspectives in
on-the-fly time series classification, that we have just started to explore.

Just to name a few ones, the algorithm is currently being tested with en-
couraging results in predictive maintenance and prognostics for automotive,
in collaboration with University of Bradford (UK), and in action recognition
from video streams.
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PART I

Background and Proposed Approach

The first part of this thesis introduces the details of the research
question that the proposed quantum-inspired algorithm aims to
answer, analyzing in depth the most relevant state of the art ap-
proaches. Two different early decision approaches have been de-
veloped in my research activity: the first is a Bayes optimal ap-
proach, proposed by Wald in 1945 with the name of Sequential
Probability Ratio Test, whereas the second stems from a personal
proposal that the entanglement property of quantum mechanics
could somehow express the intrinsic nature of temporal sequences.
The theoretical foundation of the novel quantum-inspired algorithm
is described both in binary and multinomial settings.



1
Introduction

In the era of Big Data, huge amounts of data are collected at high velocity in
several industrial contexts, raising new challenges for data analysts and re-
searchers, with particular regard to timely recognition of anomalous or critical
behaviors, that can be detected only through continuous monitoring of incom-
ing data and proper decision making.

Whenever the collected data samples are indexed on time, the relevant data-
set represents a time series where each data sample is somehow related to its
neighbors: being able to automatically classify a sequence is a highly valuable
task and even more important is the ability to label a time series with the
fewest possible observations [66, 88].

There are areas of application for time series in which classification accuracy
is the essential point and no particular attention is given to the rapidity of
decision.

For instance, forgeries detection on signatures is an interesting application
that does not require on-the-fly classification but the highest possible accuracy
is the key performance metric. Conversely, timely decisions are requested on
an extrusion line in order to spot and fix possible defects before the product
integrity gets compromised.

These simple considerations puts in evidence the duality of time series ana-
lysis, which is reflected in the approaches that must be selected to tackle the
various problems. As pointed out in [65], the approaches can be divided in
offline, when a complete sequence is considered before labeling, or online (alias
on-the-fly), if the decision has to be taken as soon as possible on the base of
incoming measures.

The latter approach is commonly termed early classification of time series.
Examples of such challenging problems can be found in several industrial con-
texts, as shown in Table 1, and they are often related to the availability of new
sophisticated equipment or IoT sensors which enable harvesting huge amounts
of data, most frequently as a sequence of correlated events or measures.

Even a video source, despite more specific and effective techniques are avail-
able based on convolutional neural networks [10] architectures, could ideally
be treated as a sequence of time related events, each event being the video
frame.

2
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Table 1: Example of early classification problems for time series

Task Description

cyber-security on threat detection; being able to timely dis-
cover undesired access to web sites and cir-
cumvent misuse of network resources can pre-
vent fraudulent activities against service pro-
viders and the resulting economical and trust
loss;

disease prevention early recognition of a disease onset not only
can save or extend patients’ lives but also can
guarantee a better after treatment course and
limit the costs for medical care when it allows
for delaying chronic pathologies;

seizure alert monitoring some physiological parameters,
such as oxygen saturation or tachycardia, in
hospitalized patients may assist caregivers in
prompt recognition of physical deterioration
by raising preventative alerts;

predictive maintenance identification of unusual patterns in the beha-
vior of an industrial system can reduce both
the downtime and the maintenance costs, espe-
cially when the breakdown of a component af-
fects many dependent elements of the system.
Moving from a preventive approach, based on
service activities performed at regular inter-
vals, to a predictive one, that foresees main-
tenance intervention only when the likelihood
of breakage is above an appropriate threshold,
can lead to huge savings for companies in all
sectors;

toxic leaks detection timely identification of toxic compounds in air
is of fundamental importance for reducing the
risks associated to leakage of dangerous chem-
icals and it is crucial to prevent operators ex-
posure and enhance environment protection.
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In all the aforementioned cases, measures are collected over time and should
be analyzed in a timely manner to extract useful information about virtually
critical circumstances: traditional time series classifiers usually target the re-
cognition rate as main goal, but this is not enough for early classification or
prediction where earliness of decision becomes an indispensable key perform-
ance indicator.

A sequence of events that, for some reason, may end up compromising a
system should be identified in the shortest possible time, as any delay could
cause damages and unnecessary costs [53].

This thesis addresses the problem of on-the-fly early classification for on-
line data streams or time series, where data are usually statistically depend-
ent and inherently correlated over time due to causal constraints. The specific
cases analyzed herein are characterized as sequential decision problem on a
non-stationary data stream, which is substantially different from generic clas-
sification of time series or prediction. In the latter cases, the task can be either
assigning a stream to a certain class from a complete set of values or predicting
the next possible value from the preceding ones. Very consolidated statistical
and autoregressive models are available, such as ARMA or ARIMA [16], that
are highly effective on stationary time series, whereas the techniques for non-
stationary sequences are fewer and less accurate.

Nevertheless, the problems faced in this thesis are different from the above:
our aim is to be able to reliably label a temporal sequence of events, charac-
terized by multiple heterogeneous features, using the smallest number of ob-
servations. The task is thus configured as an early decision problem, based on
an incomplete set of events that requires on-the-fly evaluation and on an un-
defined time horizon: a critical aspect is finding the optimal trade-off between
decision speed and classification accuracy, which are conflicting constraints.

Methods for early discrimination of unwanted behaviors are valuable to sup-
port fruition of such data: this document introduces and analyzes a state-of-
the-art approach based on Discrete Time Markov Chain (DTMC) [23], the robust
and consolidated Sequential Probability Ratio Test (SPRT) [86] and presents a
novel method, inspired by the principles of quantum computing, that not only
is capable of classifying data streams with outstanding accuracy but also is
extremely rapid in taking the proper decision without even knowing the time
horizon of the data stream. This means that my approach is completely my-
opic and no delay cost estimate is required to constrain early decision because
it leverages the intrinsic structure of data to associate the proposed class label.

Needless to say that pre-processing of incoming data is definitely a major
issue to support the actions of the proposed quantum-inspired method, but
experimental results are significant and worth further insights.

The experimental validations considered so far are able to demonstrate the
robustness of proposed quantum-inspired method both in binary and multi-
nomial settings: the first one is based on the synthetic generation of multi-class
probability estimates and is aimed at proving the consistency and effectiveness
of the novel method, whereas the second one is a real application of binary
classification to the detection of autonomous web agents, also known as bots.
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On this topic, one important remark is that, to the best of our knowledge, no
freely distributable datasets are available for bot detection, making it difficult
to compare the presented results to other relevant studies; hence, the approach
proposed in [23] has been reproduced and assessed in relation to SPRT and then
SPRT has been compared with the quantum-inspired algorithm to confirm its
efficacy both in terms of classification metrics and decision time.

The remainder of this document is organized as follows:

chapter 2 introduces the terminology and defines the relevant meaning as
used in the present document;

chapter 3 presents an overview of the state-of-the-art approaches to early
decision;

chapter 4 describes the theoretical aspects of SPRT applied to early decision
tasks, for two classes;

chapter 5 introduces the theoretical background on quantum computing,
which is required to understand the proposed method and its multino-
mial generalization;

chapter 6 describes the validation process of the proposed method, based
on synthetically generated data streams, and the relevant experimental
results;

chapter 7 defines the problem of early identification of bots from web server
request logs, which is the operational context where this novel method
has been first applied;

chapter 8 analyzes the application of SPRT to real time bot detection from
web traffic logs;

chapter 9 describes the quantum-inspired algorithm application to the bot
detection problem and the relevant result;

chapter 10 presents concluding remarks, some cues for extending this re-
search and outlines other areas of possible application.



2
Background Context

A data stream can define two different types of sequences that are discrimin-
ated by the presence or absence of time dependence.

An ordered list of data related by some explicit or implicit rule can be
defined a data sequence and the order of the elements is important to represent
the informational content of the data stream. The order of elements in DNA is
fundamental to store the genetic code but by no means it is related to time.

Conversely, when the order of the data chunks depends on time, the stream
becomes a temporal sequence or a time series. In literature [47], there is a clear
distinction between the two definitions because a time series is said to be com-
posed by points that are equally spaced in time, nevertheless, for the scope of
present thesis, data streams will be referred to as time series or sequences inter-
changeably.

According to [15, 16], a time series is defined as a sequence of observations
xt, where each observation is associated to a specific time step t.

Time series can be categorized into discrete time, corresponding to a discrete
set of observations recorded at a constant sampling rate, and continous time,
where observations are continuously recorded over a given time interval. Since
most processing is currently performed by means of digital calculators and a
great amount of data are significant if aggregated over discrete time frames
(hours, days, months, etc.), this work will be focusing on discrete time time
series.

The sequences where each observation is described by a single scalar com-
ponent are named univariate [UTS] whereas, when each time sample is charac-
terized by a vector of features, the time series is defined as multivariate [MTS].

Analyzing a Multivariate Time Series as separate series for each feature and
processing each one independently disregards the correlation among the fea-
tures weakening the ability of classifiers to correctly label the stream [92].

Algorithms dealing with MTSs are specifically designed to process the whole
feature set at once, which can become a major issue in case of a large number
of features.

Time series analysis may have different objectives [14]:

6
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• prediction: utilize the observations available at time t to forecast the values
at time t+ i; key point in this task is also to be able to specify the accuracy
of forecasts and the estimate of risk associated to the relevant decision;

• transfer function estimation: relate an input process Xt to an output process
Yt to estimate the dynamic response of a system and eventually forecast
future output values through the estimated transfer function;

• unusual intervention events analysis: account for the effects of the presence
or absence of an event on a time series or measure the event impact in
relation to its degree of presence;

• multivariate time series analysis: consider individual feature sequences as
components of a vector time series in a joint model, thus leveraging the
relationship among features at each time step to improve the accuracy of
prediction;

• discrete control systems: implement continuous monitoring of a process
with discrete time models to automatically compensate fluctuations due
to noise or other irremovable causes in the input variables.

Time series classification refers to the process of assigning one or more class
labels to a time series, using all available observations, which means that all
instances have already been collected by the time of decision. Conventionally,
classification implies that only one label be assigned to each sequence.

Conversely, early time series classification aims at labeling the sequence us-
ing only the shortest amount of time or the smallest number of observations,
trying to assign the correct class as each observation is acquired.

It is worth noting that a classification task can also be used in prediction be-
cause a given sequence of observations may denote anomalous behaviors that
end up with a system failure, thus allowing to reliably forecast abnormal op-
erations.

An intrinsic feature of time series is that, typically, adjacent observations
are mutually dependent and the nature of this dependence is of considerable
practical interest: this innate characteristic is highly exploited by all analyzed
algorithms, as well as by the proposed quantum-inspired method, to improve
classification performance.

Moreover, another implication of early decision tasks is that each sequence
has variable length as it is often impossible to estimate how many observations
are required to take a reliable decision.

A time series is said to be stationary when the statistical properties of a pro-
cess generating the temporal sequence do not change over time. This implies
that its mean, standard deviation and auto-correlation remain constant over
time. On the other hand, when these properties change over time, the time
series is non-stationary.

An approach to non-stationary data streams is to firstly convert them into sta-
tionary ones, when possible, by means of such transformations as de-trending
or de-seasonalization: these are easier to model and analyze, but in case of real
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time classification for early decision, it is difficult to model the data source
from a set of observations that changes at each new instance.

Each feature of observation xt may be numerical, corresponding to a real
value, in which case standardization or normalization can be applied, or may
be associated to a limited set of valid symbols, therefore it is termed categorical,
and generally requires a one-hot remapping to be effectively represented and
used in a machine learning algorithm.

In a multivariate time series, features of both types can be found and signi-
ficant pre-processing is often required, especially when the features size can
pose serious limitations to the processing capabilities of the analytical plat-
form.

Finally, with regard to problem solving strategies, an algorithm is termed
greedy when its intent of finding a global optimum is pursued by choosing
locally optimal solutions at each stage. Even if a greedy strategy does not
usually yield an optimal solution, local optima are often able to approximate
it at a reasonable computational cost.



3
State of the Art on Early Decision

Many natural and industrial processes generate huge amounts of data over
time and, most often, time represents a way of expressing the evolution of a
process and the main index on which a sequence can be ordered, analyzed
and eventually classified.

Statisticians offered various methods for analyzing sequential data but most
statistical models, such as ARIMA [2], assume a linear model for the data which
implies that the time series be either stationary or convertible into stationary by
applying proper transformations. However, the statistical properties of a time
series most frequently vary over time, making them non-stationary and thus
requiring new approaches [96] that are capable of building a data model from
training data, such as Artificial Neural Networks (ANNs) [2].

Nevertheless, it is difficult to utilize classical machine learning techniques
with sequential data because many algorithms don’t take into account the
autocorrelation structure of a time series and are sensitive to noise, which
usually characterizes streams of data.

Despite the large number of effective time series classification approaches
available in literature [47, 88], early decision is a specific aspect that requires
additional focus for its unique characteristics and its importance in a whole lot
of industrial applications.

Early decision is a highly valuable and complex task that aims to analyze
streams of data received in real time from a data source and devise the earliest
moment in time when a reliable decision can be taken, according to a given
cost function. Our goal is making a reliable decision from an incomplete set
of temporally related data. Decision de facto means classification because the
act of deciding is related to selecting one option, or action class, out of all the
possible ones.

Moreover, early decision can be related to optimal stopping theory [59] as their
main goal is choosing the best time to take a given action based on sequential
observations of a random variable, but it requires an estimate of misclassifica-
tion or delay costs, that are usually difficult to quantify.

In the present chapter, the most interesting algorithms found in literature are
reported for an extensive, if not complete, overview of the plethora of different

9
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strategies that researchers have developed so far in a wide variety of industrial
sectors and applications.

In [57], the authors present a method for classifying a time series from in-
complete information and define the notion of reliability to describe the prob-
ability to be met when assigning an incomplete time series the same label that
would be attributed to the complete data stream.

Determining the reliability of classification is the added value for this method
compared to other approaches that simply assign a label to a time series as
early as possible.

Considering a subsequence z representing the observations of the complete
time series x and a classifier function g, the reliability of decision ĝ can be
estimated by means of

P(g(X) = ĝ|Z = z) =
∫

x s.t. g(x)=ĝ
p(x|z)dx (1)

where x and z are modeled as random variables X and Z associated to the
complete and incomplete data respectively. When the above integral is greater
or equal than an ad lib threshold τ the classification is considered reliable oth-
erwise it is necessary to wait for additional information and repeat the process.

Unfortunately, computing the above integral is computationally intractable,
therefore an approximated conservative approach is proposed as of the fol-
lowing rule:

g(X) = ĝ f or all x ∈ A f or some set A s.t. P(X ∈ A|Z = z) ≥ τ (2)

Implementing the simplified rule requires to fulfill three steps:

• estimate the conditional density p(x|z),
• construct an appropriate set A,

• check whether the rule is satisfied.

This approach can be extended to multinomial classifiers and requires to es-
timate the mean m and covariance R of the complete data X to be applied.

The authors also refer to SPRT [86] as an alternative to the proposed method
for binary classification, but point out the greedy connotation of this probabil-
istic model for sequential analysis, where the contribution of new observations
does not affect the cumulative log-likelihood calculated from previous ones, as
one can infer from:

Sk = Sk−1 + log p(g(x) = 1|zk)− log p(g(x) = 0|zk) (3)

SPRT has been extensively used in my PhD research activities on early decision
as a reference Bayes-optimal approach, under the assumption that all obser-
vations are independent, and its results have been compared to those from all
other considered techniques.

Considering the importance of SPRT in the context of sequential analysis
and specifically for my research activities, the relevant theory is detailed in
chapter 4.
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Another interesting approach is proposed in [89] where the authors ad-
dress the problem of early classification for some time-sensitive applications
in health-care through an effective 1-Nearest Neighbor (1NN) method. The 1NN

classifier has been selected because it does not require any feature selection,
pre-processing, training nor configuration parameters.

Their method focuses on determining the earliest time when a reliable clas-
sification is made available, while retaining the same accuracy that could be
achieved with a 1NN classifier on the complete time series. It is an instance
based classifier because predictions are generated based on similarities among
the input time series and the ones in the training set.

The choice of a distance measure is a critical issue but in general Euclidean
distance performs better in terms of accuracy than more complex similarity
measures, such as Dynamic Time Warping that can be more accurate on small
data sets.

They consider a time series as a sequence of pairs (timestamp, value), ordered
by timestamp in ascending order, and limit the discussion to sequences of
equal length L, for simplicity.

Assuming timestamp as positive integer values, they also introduce the
concept of minimum prediction length (MPL), representing the earliest timestamp
within the training observations when the classifier begins to provide reliable
class predictions for each training sequence.

At every new observation of an unclassified time series with timestamp n,
the 1-Nearest Neighbor classifier is applied to the training data truncated at the
same length n and the prediction is considered unreliable if the MPL is greater
than n, therefore no decision is taken and a new observation is awaited.

This paper proves the effectiveness of 1NN based approaches in retaining
classification accuracy while reducing the prediction time, but leaves open the
key issue on how to devise the optimal trade-off between accuracy and speed
of classification.

In [53], the problem of early classification is tackled with a method based
on probabilistic classifiers that learn the timestamps at which accuracy begins
to outperform a defined threshold. The prediction can then be issued only
when timestamp is at least equal to the learned values. Moreover, in order to
achieve a robust prediction, the decision is taken only if the difference between
the two largest class probability estimates exceed a specific threshold that has
been assigned in the training phase.

It is an Early Classification framework based on class Discriminativeness
and Reliability of Predictions (ECDIRE), that analyzes how the classes are dis-
criminated over time to learn the aforementioned decision triggers. The paper
focuses on a database of time series of equal length but it specifies that ECDIRE

can be applied to variable or unknown length sequences with minor changes.
The learning phase of ECDIRE is split into three tasks:

1. identify the timestamp whence a prediction can be made, for each class:
this means that no attempt to predict a label is made until the minimum
number of observations has been collected;

2. define a reliability value to assess predictions;
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3. train a set of probabilistic classifiers to label new time series.

In the first task, a timeline is built assigning at each time step the class labels
that can safely be predicted from that instant onward: only the classes in safe
state are considered by the classifier, thus limiting the computational effort
when processing a new time series.

At each new observation, the training of a multinomial probabilistic classi-
fier is performed by considering the full length time series and all classes in the
training set; the first instant at which accuracy meets the reliability threshold is
stored for each class, even if, according to the authors, this choice could result
in overfitting.

The reliability threshold is different for each class and is assigned according
to the characteristics of training set, eventually referring to domain specific
requirements with the ultimate goal of preserving accuracy without neglecting
decision speed.

According to the authors, the timeline is a valuable tool to yield a more
interpretable model of the early classification task.

In the second task, the probabilistic outputs are used to gauge the quality of
predictions by setting minimum difference between the selected label and the
remaining ones for each individual timestamp of the timeline.

Finally, in the third task, an ensemble of probabilistic classifiers, based on
Gaussian Process models, is trained using all available training instances to
subsequently classify the new sequences.

At time of prediction, the models available for the specified timestamp are
considered for the safe classes only: any non-safe labeling is ignored and addi-
tional data must be awaited.

The evaluation of results takes into account two conflicting measures:

• accuracy, commonly defined as the percentage of correct classifications,

• earliness, defined by the following equation, where N is the cardinality
of the test set, ti is the decision timestamp of each sequence and L is the
equal length of the full time series:

Earliness =
1
N

N

∑
i=1

ti

L
· 100 (4)

Another interesting approach is proposed in [36] for early odor identification
by means of electronic nose devices. A typical application of odor classification
can be found in air quality assessment where toxic leaks generate severe safety
risks to the involved personnel.

This method utilizes an ensemble of serially connected classifiers, with a re-
ject option, to analyze subsequent chunks of the sensor signal until a confident
label is assigned.

If the first classifier is not able to classify the initial chunk of the signal, it
defers the decision to following stage (reject option) that can either make a pre-
diction or pass it on to the next stage, processing another chunk of data until
a decision is taken if sufficient confidence is attained or the cost of postponing
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gets too high. The cost is assigned to the value 1 if the sequence is misclassified
or to a value d > 0 that includes both time delay and the cost of no decision,
when the reject option is triggered.

Hence, in a multi-class setting where Nc is the number of classes and c ∈
{1, . . . , Nc}, the reject option � for the sequence x depends on a threshold value
τ ∈ [0, 1) such that

dec =

c if P(c|x) > τ

� if P(c|x) ≤ τ
(5)

The approach uses an ensemble consensus of the classifiers to accept or reject
the decision therefore it is crucial that the classifiers be individually accurate
and diverse to ensure a better performance of the whole system.

According to the authors of [23, 66, 88], a plethora of different techniques
may be applied in early classification, but in most cases they require a vertical
approach, based on very elaborated feature engineering that cannot disregard
the nature of the problem itself.

One sample task, frequently referred to in early decision, is bot detection:
some interesting approaches have been specifically developed on this task and
will be analyzed in chapter 7.

Other approaches to early decision that can be considered of a more general
purpose, reported in the previously cited documents, are based on:

• analytical learning feeds a machine learning algorithm with the features of
each sample of the time series to estimate the likelihood that a particular
sample belongs to a given class;

• syntactical log analysis looks for particular information in the log files to
try and identify the class a specific sample belongs to.

Unlike other presented methods, these approaches do not consider the possib-
ility of not taking a decision and late classification on the whole sequence is
critical for the tasks considered so far.

Anyway, the requirement of a sequence to be entirely available before clas-
sification takes place seems to contradict the nature of the task: early decision
is effective if the process that is associated to observations has not ended yet.

The vast majority of early classification methods found in literature require
that the whole sequence be available before the process starts and apply to
Univariate Time Series, as reported in [88, 90], where 1-Nearest-Neighbor al-
gorithm with Euclidean or Dynamic Time Warping (DTW) distances proved
to be very effective. The approach gets more complicate on multivariate se-
quences where alternative distance measures have to be adopted [5] to con-
sider the correlation among features.

An alternative proposition [7, 8] suitable for multivariate time series, that
leverages the correlation property, combines:

• Principal Component Analysis (PCA) based similarity measures to seg-
ment an unclassified sequence;
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• a cost function to map each chunk to a real number and Dynamic Time
Warping distance to train the classifier.

They first consider that Multivariate Time Series (MTS) cannot be merely
examined as a collection of Univariate Time Series because the relation among
features is as important as the variables themselves and carries some hidden
information representing the real description of the process.

For this reason, they define a dissimilarity measure which combines the
strength of DTW and PCA similarity factor to cope with the variations in the
features’ correlation structure.

The method, named Correlation Based Dynamic Time Warping (CBDTW),
leverages the non-overlapping segmentation of a time series to take into ac-
count the alternation of latent variables and find homogeneous segments with
reference to any arbitrary cost function that maps each segment into a non-
negative real number. However, most of the segmentation algorithms are suit-
able for analyzing only one time-dependent feature but this is not sufficient
when correlation among features plays a major role.

The two critical aspects of this approach are:

• the number of principal components, to be selected in order to guarantee a
small reconstruction error;

• the number of segments, assigned according to the minimization of a weighted
modeling error.

Another interesting approach is based on statistical analysis and relies on
a penalty factor associated to decision delay, as already seen in [36]. In [19],
two costs are considered to balance the quality of prediction against the speed
of decision thus defining an adaptive non-myopic model. As in many other
classification approaches, being non-myopic requires the whole sequence to be
available at the time of decision, which is a limitation that the novel quantum-
inspired methods tries to overcome without sacrificing either the quality or the
rapidity of decision.

With regard to real time binary classification, one interesting algorithm,
defined in [23], builds a first-order Discrete Time Markov Chain (DTMC) [12, 60]
to compute the conditional probability of each class based on the likelihoods
of transition patterns and initial state. In this case, a minimum number of ob-
servations must be analyzed and a decision is taken when the absolute value
of the difference of the two log probabilities is greater than a given threshold.
The approach will be analyzed in full details in chapter 8 as, to the best of my
knowledge, is the most effective method available in literature for real time bot
detection.

Another SOA model is proposed in [30], where the authors define an Early
Classification Model (ECM) suitable for Multivariate Time Series, even though
specifically designed for biomedical data. The novelty of this method comes
from the integration of consolidated Hidden Markov Model (HMM) [62] and
Support Vector Machine (SVM) [26] models that were never used before in
early classification of Multivariate Time Series. HMM offers a generative model
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that exploits the temporal dependencies among observations whereas SVM

provides an efficient discriminative model.
This hybrid approach is applied to multivariate gene expression time series

where the HMM models are in charge of estimating the log-likelihood of tem-
poral segments and the selection of reliable estimates to classify a sequence is
delegated to SVM.

The model is trained using the whole time series but it is able to take a de-
cision on the testing data at very early timestamps with competitive accuracy,
slightly lower than the best results in literature, but with only 40% of the test
sequences on average.

From the same author, a completely different way of approaching early clas-
sification of Multivariate Time Series is proposed in [28], based on shapelets
and still focused on biomedical informatics.

The method, called Multivariate Shapelets Detection (MSD), can achieve highly
accurate classification rates analyzing up to 64% of the data sequence’s length.

A multivariate shapelet is defined as a set of segments, one for each feature
of the dataset, that distinctly characterize the target class and are effective for
early classification. Their effectiveness is quantitatively expressed by an utility
score that enables pruning the less representative shapelets.

Every new time series is classified on the best match within the shapelet
dictionary according to an Euclidean distance function to be minimized across
all features.

The multidimensional nature of the sequential data implies that the distance
between two subsequences is expressed by a vector of real values which are re-
lated to an array of thresholds, assigned in order to maximize the information
gain.

The main drawback of this approach is execution time, which grows expo-
nentially with the size of dataset and the length of sequences, thus limiting its
applicability to a reduced group of real world applications.

Another limitation of this solution lays in the definition of multivariate
shapelet which is made up of multiple segments, one for each feature, with
exactly the same starting and ending points. It is intuitive that distinct fea-
tures might have characterizing segments that are located in different positions
within the data stream, therefore being able to include the most distinctive pat-
terns may become a competitive advantage in early classification.

This challenge is tackled in [38] with a strategy that overcomes this restric-
tion by identifying the sub-clusters or sub-concepts that are typical of the same
class label.

In order to expose the inner structure of MTS, the feature variables are ana-
lyzed independently to identify the core shapelets to be used with the classi-
fier.

The authors observe that the length of a multivariate shapelet is a crucial
aspect because, regardless of whether it is too long or too short, a wrong size
may lead to non-characterizing sub-sequences.

The algorithm performs a full scan of the training sequences to dig out all
the shapelet candidates for each feature variable, tuning the required precision
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and recall metrics to avoid saving too many candidates. Nevertheless, only the
most representative ones are used to build the early classifier.

Shapelet selection, for each class label and for each feature, is achieved by
iteratively splitting the candidates into several clusters according to their Sil-
houette index and then merging them back into the nearest cluster, until con-
vergence.

Figure 1: Locally distinctive shapelets

The iteration continues until core
shapelets of all features are selec-
ted, including also some infrequent
ones to target the problem of sub-
concepts. Many shapelets can be
identified for each feature but not all
combinations are valid for classifica-
tion.

The MTS is classified either by find-
ing coherent and explainable rules
among the features of the data
stream or by a query by committee
approach that labels each sequence
component independently and as-
signs stream class by majority vote.

The extraction of interpretable shapelets is the major concern in [91] be-
cause some application domain expert are reluctant to trust unexplainable
decisions. In this case, early classification is achieved by means of locally dis-
tinctive shapelets that, being a sub-sequence of the input stream, are effective
for early classification and remain highly interpretable.

Some issues must be addressed to tackle this task:

• identify what type of shapelets are easy to understand: segments of the time
series are the best option because they lie in the same data space of the
input stream, thus allowing for better interpretability by the end users;

• define proper criteria to devise interpretable shapelets: sub-sequences of the
time series are able to express local similarities, identified by means of a
distance function;

• find a way to build effective shapelets: it is achieved throughout the extrac-
tion of variable length local shapelets, whence optimal ones are selected
on earliness and popularity.

The aforesaid principle of locality is the right approach to answer former
questions.

The example reported in Figure 1 shows that, even if shapelet 1A is shared
by 2 sequences of class A, it does not cover all instances of the class, whereas
shapelet 2A covers all sequences in class A and none in B therefore can be
selected as representative for early classification. Nonetheless, shapelet 1A is
still important for early classification of class A because it comes sooner than
2A.
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A sophisticated reasoning is proposed to learn distance thresholds that are
based either on Kernel Density Estimation [20] or on Chebyshev’s inequal-
ity [4] and are capable of maximizing classification precision. Alternatively,
it is possible to assign the desired precision and derive the relevant distance
threshold.

In addition to interpretability, another important property in early classific-
ation is the ability to measure the level of confidence of class prediction that is
estimating the decision uncertainty. An interesting contribution on this topic
is found in [29], where the authors extend their previous works on shapelets
classification by inferring the uncertainty U(c) of assigning class c to a time
series from a model of the relevant decision confidence C(c), as of:

U(c) = 1− C(c) (6)

The confidence about a shapelet S to be able to classify a time series T is
defined by two components:

• the confidence that distance between S and T is less than threshold δ;

• the precision of S in accurately classifying T.

The confidence value of a single shapelet is between 0 and 1 and, given
that each shapelet has a different distance threshold, we need to consider
the confidence of all shapelet matching the time series to obtain the overall
C(c). Hence, the confidence C(c) is greater than the confidence of each indi-
vidual shapelet because a sequence can be identified by more discriminating
elements. This approach generally gets better classification results by waiting
for a lower uncertainty shapelet to match the time series, possibly improving
even more when multiple shapelets can discriminate the sequence.

To the best of my knowledge, very few classification method inspired to
quantum computing are available, mainly focused on binary classification.

An original quantum inspired approach to binary classification is presented
in [70], where the idea of using the quantum formalism in classical computa-
tional contexts is explored. It is a very recent publication that confirms both the
growing interest on this line of research, that I’ve undertaken at the beginning
of my PhD studies, and its promising results.

Three steps are performed to implement the quantum approach into a clas-
sical classifier, namely

• Encoding: a density operator is used to associate a quantum object to an
equivalent density patterns;

• Classification: a quantum-inspired procedure is applied to label the density
patterns;

• Decoding: a reversal operator transforms the results of classification back
into the pattern domain.

Encoding of a real vector into a density pattern can be done in a variety of
different ways, most often dependent on the some specific characteristics of the
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dataset, which implies that no classifier can usually outperform its competitors
in all aspects.

The selected encoding is defined through the inverse of the standard stereo-
graphic projection [69] in order to map a real d-dimensional vector X into a
(d + 1)-dimensional pure state ρX.

A d-dimensional vector of real numbers X = (x1, . . . , xd) ∈ Rd can be
mapped into Z ∈ Rd+1 by means of the following transformation:

Z =
1

∑d
i=1 x2

i + 1
· (2x1, . . . , 2xd,

d

∑
i=1

x2
i − 1) (7)

Hence, the relevant density pattern can be expressed as ρX = Z† · Z, where
the symbol † represents the complex conjugation and transposition operation.

Classification is delegated to a binary classifier designed to solve the quantum
state discrimination problem as described in [39] by Helstrom, leveraging the
property that a quantum state provides less information than multiple copies
of itself.

From the density patterns of the training dataset, the quantum centroids for
the two target classes can be defined as mixed states, which do not match the
encoding of original dataset’s centroids, and used to classify the test dataset.

Finally, decoding is possible when the encoding function is invertible, but in
case of a classification process it is more meaningful to use the labels assigned
to the test dataset.

All experiments were executed on binary datasets extracted from Penn Ma-
chine Learning Benchmark repository [55], that includes real-world, simulated
and toy data, comparing the results against other frequently used classifiers:
the new supervised algorithm proved to outperform all selected classifiers, on
average.

Another quantum-inspired binary classifier, very effective on the MNIST
handwritten image database, as described in [81], is based on the estimation
of the density operators for each class, followed by the projective measurement
of quantum states and the consistent labeling of each data element.

Despite the apparent similarities of the latter with the approach proposed in
chapter 5, it does not address time series classification, nor it leverages the en-
tanglement property for classification, confirming the innovative connotation
of the classifier suggested in the present thesis.



4
The Sequential Probability Ratio Test

4.1 Theoretical background

One interesting approach to sequential analysis is based on Wald’s Sequen-
tial Probability Ratio Test (SPRT) [86], which is suitable for two-class sequential
decision making problems with independent identically distributed observa-
tions.

It is a sequential test of a statistical hypothesis that implements a specific
rule, valid at any observation of the sequence values, in order to make one out
of three possible decisions:

1. accept the null hypothesis

2. reject the null hypothesis

3. delay decision and consider an additional observation

This sequential procedure is continued until either the first or the second
options are selected. The number of observations required to make a decision
is not established a-priori but it is indeed a random variable itself, because it
depends on the outcome of previous tests.

In a binary sequential test, two types of error are possible:

• error of the first kind: the algorithm rejects a null hypothesis when con-
versely it is true;

• error of the second kind: the algorithm accepts a null hypothesis when an
alternative hypothesis is true.

The Sequential Probability Ratio Test has some optimal properties that make
it interesting for early decision problems:

• it is possible to set the upper boundaries for the two types of errors;

• the minimum number of observations required to make a decision can
be estimated and it is significantly smaller than with other methods;

• no probability distribution is required to execute the test.

19
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More formally, SPRT is a sequential decision strategy that takes all observa-
tions in a data stream, one at a time, and assigns a class label dec ∈ {0, 1,�},
where the symbol � means that no reliable decision can be taken and another
observation must be taken into account.

Let X be a sequence of events characterized by a non-observable class label
y ∈ {0, 1} that has to be determined from subsequent observations {x1, x2, . . . , xk}.

Two types of errors can be defined in binary classification tasks, which can
be related to:

• α: false negative rate or probability of committing an error of the first
kind, that is assigning class 0 to a sequence belonging to class 1 (null
hypothesis);

• β: false positive rate or probability of committing an error of the second
kind, that is assigning class 1 to a sequence belonging to class 0.

Considering the joint conditional probability p(x1, x2, . . . , xk|y = c) for c ∈
{0, 1} and the two constants A and B set according to the required probabilities
of error α and β, SPRT defines a decision strategy that outputs:

deck =


1 if Rk ≥ A % accept the null hypothesis

0 if Rk ≤ B % reject the null hypothesis

� if B < Rk < A % delay decision

(8)

where Rk is the likelihood ratio

Rk =
p(x1, x2, . . . , xk|y = 1)
p(x1, x2, . . . , xk|y = 0)

(9)

Optimal values of A and B are difficult to compute but can be approximated,
according to two theorems from Wald’s theoretical framework, whose proof is
detailed in chapter 11, by considering that

• A is upper bounded by 1−β
α and B is lower bounded by β

1−α : in practice,
Wald suggests to assign A and B to their boundary values, hence

A? =
1− β

α
, B? =

β

1− α
(10)

• when A? and B? are used as an alternative to the optimal values of A
and B, for the real error probabilities α? and β? holds

α? + β? ≤ α + β (11)

Note that in case of independent identically distributed (IID) samples, the prob-
ability of each class c is easily obtained from

p(x1, x2, . . . , xk|y = c) =
k

∏
i=1

p(xi|y = c) (12)
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The rigorous application of SPRT to real problems works under the naïve
bayes1 hypothesis and requires that a sequence be characterized by IID samples
but, even when this requirement is not verified, it is possible to apply the
algorithm under relaxed constraints and achieve valuable results, as shown in
chapter 8.

1 the naïve bayes hypothesis implies strong independence assumption among the features and
refers to very simple Bayesian models.



5
The Quantum-inspired Entangled
Multinomial Classifier

5.1 The initial idea

The current focus on Quantum technologies and their future developments on
actual problems, raised my initial interest towards understanding its perspect-
ive application to my PhD studies, with particular regard to my main topic,
that is time series classification.

I was fascinated and challenged by the claims on this innovative computing
technology, that promises to disrupt the traditional rules of computation and
bring new exceptional power to data processing.

I had the positive feeling that it would be possible to leverage in some way
the basic principles of Quantum computing [64] to express dependencies and
relationships among data series not detectable by any other method. But intu-
ition is not enough to ensure valuable results are obtained, therefore I started
to study the theoretical background of this new computational paradigm and
devise a way to map its fundamentals principles into my research area, giving
birth to a highly generalized approach that does not need to consider domain
specific aspects.

The research started in the binary setting with a multivariate problem and,
after probing its effectiveness on bot detection, it was subsequently extended
to other multi-class applications after a deep study on synthetically generated
data.

The name proposed for the classification algorithm I designed highlights its
main characteristics:

• it is inspired by the principles of Quantum computing,

• it applies to multinomial univariate or multivariate problems,

• it exploits entanglement to express the correlation among the observa-
tions in the time series.

The theoretical foundations of the proposed approach are explained in the
following sections where the algorithm is first introduced and explained in

22
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the binary configuration and then generalized for its application on multi-class
applications.

5.2 Theoretical background in the binary setting

Quantum computing [64] refers to the study of new computational systems that
make use of quantum-mechanical properties, such as superposition and en-
tanglement, to process data.

• Superposition is a fundamental principle of quantum mechanics, resulting
from linearity of the solutions of the Schrödinger equation. It states that
it is possible to add together any quantum states to obtain another valid
state and, conversely, any quantum state can be decomposed as the sum
of two or more valid states.

• Entanglement is a physical phenomenon that occurs when the quantum
state of each of two or more particles cannot be described independently
of the others.

The elementary information unit is the quantum bit or qubit, which is the
quantum analogue of the classical bit. A qubit is a two-state quantum mech-
anical system that, contrary to classical bit that must be either in state 0 or 1,
can be in a superposition of both states at the same time.

The quantum equivalent of classical 0 and 1 states is defined by the basis
states of a qubit, which can be represented in the ket notation by |0〉 and |1〉,
corresponding to the following column vectors [9, 52]:

|0〉 =
(

1

0

)
and |1〉 =

(
0

1

)

These two state vectors form an orthonormal basis, which means that their
inner products 〈x|y〉 are:

〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈1|0〉 = 0

The above statement introduces another operator, called bra, that is used to
write the inner product of a vector and represents the conjugate-transpose of
a ket, defined by means of the † operator as

〈x| = |x〉†

Complex-conjugation is obtained by replacing each element of a vector with
its complex conjugate value and ensures that, whenever the inner product is
applied to the same state, the result is a real number which can be associated
with a vector length.

Hence, a pure qubit state |ψ〉 can be expressed as the superposition of all
basis states

|ψ〉 = α |0〉+ β |1〉 (13)
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where |α|2 and |β|2 are the probabilities of |0〉 and |1〉 respectively, therefore

|α|2 + |β|2 = 1 (14)

The two coefficients of equation (13) α and β are called probability amplitudes
and are generally complex numbers because they can hold phase information.

The tensor product, represented by means of ⊗ operator, is used to compute
a composite state as the combination of two or more qubits [24], as in the
following example:

|011〉 = |0〉 ⊗ |1〉 ⊗ |1〉 (15)

As explained earlier in this section, superposition is a fundamental property
of quantum computing, along with entanglement, which is a property that al-
lows a set of qubits to express higher correlation than in classical systems.
This simple consideration lays the foundation of the basic idea of this theoret-
ical work as sequential data streams are usually characterized by an intrinsic
correlation among nearby samples.

By definition, a state is considered entangled if it cannot be factorized into
its more fundamental parts. In other words, two distinct elements of a system
are entangled if one part cannot be described without taking the other part
into consideration. A remarkable quality of quantum entanglement is that ele-
ments of a quantum system may be entangled even when they are separated
by considerable space [75].

For instance, two entangled qubits in equal superposition, or in CatState, can
be expressed by

|ψ〉 = 1√
2
(|00〉+ |11〉) (16)

and in this case both states |00〉 and |11〉 have equal probabilities | 1√
2
|2 =

1
2

.

The term CatState indicates a quantum superposition of two macroscopically
distinct states and is derived from the hypothetical Schrödinger cat’s experi-
ment.
It is also possible to entangle more than two qubits in CatState as shown in the
following equation:

|ψ〉 = 1√
2
(|00 . . . 0〉+ |11 . . . 1〉) (17)

There are four postulates in quantum mechanics that specify a general frame-
work for describing the behavior of a physical system [61]: the first two postu-
lates are related to the superposition and measurement principles, whilst the
third one defines the evolution of a closed quantum system in terms of the
Schrödinger equation. The fourth postulate of quantum mechanics describes
the allowable states for the composition of two or more subsystems and can
be reworded as: the state space of a composite quantum system is the tensor
product ⊗ of the state space of its components [33].
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If |ψ1〉 . . . |ψn〉 describe the state of n isolated quantum systems, the state of
the composite system is |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉.

The expression in equation (17) represents an entangled n-qubits state be-
cause it is not separable since it is impossible to write it as a tensor product of
its original states. The advantage of qubits is that, through superposition, it is
possible to encode more than one state

1√
2
(|0〉+ |1〉)⊗ |1〉 ⊗ |1〉 = 1√

2
(|011〉+ |111〉)

The proposed solution is based on these two fundamentals properties of quantum
computing, as explained hereinafter.

The last aspect to consider is how to measure the probabilities of |0〉 or
|1〉 from the resulting composite state, bearing in mind that the measurement
process alters the state of a real quantum system1, which turns into the pure
state corresponding to the outcome of the measurement. It can be viewed as an
interface from the quantum world to the classical one and it is the only way to
extract useful information from a quantum system [33]. According to the third
postulate of quantum mechanics, measurement can be performed by means of
a collection of measurement operators acting linearly on the state space of the
system, which is referred to as projective measurement. If a system has M valid
outcomes, it is possible to define a set of {Pm : m ∈ M} operators so that, if |ψ〉
is the state of the system before measurement, the probability of measuring m
is given by

p(m) = 〈ψ| P†
mPm |ψ〉 (18)

where the symbol † indicates the complex conjugation and transposition op-
eration.

The new state of the system is then

|ψnew〉 =
Pm |ψ〉√
〈ψ| P†

mPm |ψ〉
(19)

These operators satisfy the following condition:

∑
m∈M

P†
mPm = I (20)

and guarantee that the sum of the probabilities of all outcomes adds up to 1:

∑
m∈M

p(m) = ∑
m∈M
〈ψ| P†

mPm |ψ〉 = 〈ψ| I |ψ〉 = 1 (21)

For a single qubit, measurement can be done using the projectors P0 = |0〉 〈0|
or P1 = |1〉 〈1| to obtain the probability p0 and p1 of the two basis states |0〉 or
|1〉 respectively. Hence, the probability p0 of a qubit being in state |0〉 can be
obtained through projective measurement by the following equation

p0 = 〈ψ| P0 |ψ〉 (22)

1 Note that, in this case, the system state after measurement is not relevant as the probability
p(m) plays the most important role in the algorithm.
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Alternatively, when the post-measurement state is not relevant as in our case,
it is possible to define a density operator that describes the whole system [33]

ρ = ∑
i

Pi |ψi〉 〈ψi| (23)

under the two following conditions:

1. Trace Condition: Tr(ρ) = 1

2. Positivity Condition: ρ is a positive operator

The Trace is a linear operator, therefore in the case of a two state quantum
system, as for the present paper, the trace condition can be written as

Tr(ρ) = Tr(
1

∑
i=0

Pi |ψi〉 〈ψi|) = Tr(P0 |ψ〉 〈ψ|) + Tr(P1 |ψ〉 〈ψ|) (24)

It is easy to infer that the probability p0 of state |0〉 for the system can be
expressed by

p0 = Tr(P0 |ψ〉 〈ψ|) (25)

5.3 Generalization in the multinomial setting

The theoretical introduction reported in the previous section can be general-
ized for the classification of multinomial data streams, thus defining the struc-
ture of Quantum-inspired Entangled Multinomial Classifier (QEMC).

For a N classes problem, the reference orthonormal basis can be defined by
the following column vectors:

|0〉 =


1

0
...

0

 |1〉 =


0

1
...

0

 . . . |N − 1〉 =


0

0
...

1


Hence, a pure qubit state |ψ〉 can be expressed as a superposition of the N

basis states according to equation:

|ψ〉 = α0 |0〉+ α1 |1〉+ · · ·+ αn−1 |N − 1〉 (26)

where |αi|2 represents the probability of state |i〉 and ∑ |αi|2 = 1
At each time step t, let fi(xt), i ∈ [0, N − 1] be the class conditional probab-

ilities of the current observation xt in the data stream.
By defining

αi,t =
√

fi(xt) (27)



5.3 generalization in the multinomial setting 27

it is possible to represent the T subsequent observations of class i as a T-qubit
entangled state |ψi〉 by means of:

|ψi〉 = αi |ii . . . i〉 = αi,0 |i〉 ⊗ αi,1 |i〉 ⊗ · · · ⊗ αi,T−1 |i〉 (28)

For instance, the entangled state |ψ0〉 for a hypothetical class 0 at the fifth
observation can be computed through:

|ψ0〉 = α0 |00000〉 = α0,0 |0〉 ⊗ α0,1 |0〉 ⊗ α0,2 |0〉 ⊗ α0,3 |0〉 ⊗ α0,4 |0〉

The state |ψ〉 representing the whole data stream of length T can then be ex-
pressed as the superposition of N entangled states, each featuring some cor-
relation among collected observations of the relevant class, according to:

|ψ〉 = |ψ0〉+ |ψ1〉+ · · ·+ |ψN−1〉 (29)

Thus, by measuring the state of the resulting quantum system |ψ〉 at every
time step t, we can obtain the individual class probabilities pi(t), i ∈ [0, N − 1]
and, given a task dependent level of confidence C, make appropriate decisions
as:

dect =

i if pi(t) ≥ C

� if pi(t) < C
(30)

If � is still output when the session ends, it is eventually classified as unde-
cided and considered an error.

Undecided sessions appear as a separate indicator to be considered when
tuning the appropriate level of confidence C. As a matter of fact, undecided
sessions represent the inability of the classifier to fulfill its purpose but, even if
it is clear that the correct class cannot be designated, none of the wrong ones
can be elicited as most representative without committing a mistake.

Eventually, as the probabilities pi(t) measured on state |ψ〉 are normalized,
for any value of C greater than 0.5, the condition expressed by equation 30

becomes necessary and sufficient for a mutually exclusive decision.
Similarly to SPRT, QEMC is also characterized as a greedy algorithm, as it tries

to achieve the best classification results by analyzing local probability maxima,
which are not guaranteed to be optimal overall.



PART II

Validation and Applications

The second part of this thesis describes the experimental approach
used to validate the proposed quantum-inspired method and the
comparison of the best-of-breed approach for bot detection found
in literature with the two alternative solutions based on SPRT and
QEMC respectively. Other real world applications are being tested,
but results are still too rough to be reported in the present docu-
ment as a significant contribution.



6
Validation of Quantum Classifier on
Synthetic Data

6.1 Synthetic data generation

In order to validate the applicability of the proposed quantum inspired clas-
sifier, neglecting any dependencies on the originating task, a specific tool was
developed to generate synthetic datasets of probabilities for any desired num-
ber of classes.

The tool, written in Python, offers a simple interface to define the structure
of the generated dataset, as visible in Figure 2

Figure 2: Probability generator tool

The synthetic datasets simulate the results of an element-wise stream clas-
sification, therefore they contain a list of N class probabilities for a specified
number of sessions having variable length up to the desired maximum number
of samples.

In order to ensure a sensible bias for a specific class, every session is ran-
domly assigned a ground truth value and, for each sample, the probability ptrue

of the True class is randomly taken from a continuous uniform distribution in
the [0, 1) interval.

29
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Figure 3: Synthetic probability generation algorithm

1: Input:
2: nseq . number of sequences
3: nmax . maximum length of the sequences
4: nclasses . number of classes
5: Output:
6: plist . list of probabilities
7: procedure generate-probs(nseq, nmax, nclasses)
8: for s = 1 . . . nseq do
9: seq_size← random integer in [2, nmax]

10: true← random integer in [1, nclasses]
11: for j = 1 . . . seq_size do
12: ptrue ← random f loat in [0, 1)
13: pres ← 1− ptrue

14: p_row← nclasses random f loats s.t. ∑(p_row) = pres

15: p_row[true]← p_row[true] + ptrue

16: plist.append(p_row) . append the new row to plist

17: return plist

The residual probability value, pres = 1− ptrue, is then used in combination
with a Dirichlet distribution to generate N random values that add up to pres:
these likelihoods are allotted to each class and ptrue is added to the True class.

A numerical example, based on three classes, is reported to demonstrate the
procedure used to generate each observation of a sequence:

1. let 1 be the True class

2. randomly assign its probability p1; let p1 = 0.5614

3. calculate pres as pres = 1− 0.5614 = 0.4386

4. randomly define 3 probabilities that add up to 0.4386:
[p0, p1, p2] = [0.0957, 0.0305, 0.3124]

5. increment the element in class 1 by 0.5614:
[p0, p1, p2] = [0.0957, 0.5919, 0.3124]

The complete description of the probability generation algorithm is reported
in Figure 3.

Even if a single event line doesn’t express a clear statement on which is the
True class, the session becomes clearly biased and this is what the algorithm is
supposed to exploit in order to make a timely decision.

Table 2 displays the structure of a N classes data stream, which is saved by
the tool as a Comma Separated Values (CSV) file.
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Table 2: Example of generated probabilities

Session Class0 Class1 . . . ClassN−1 Class Label

0 0.49 0.01 . . . 0.22 0

0 0.44 0.02 . . . 0.19 0

1 0.03 0.12 . . . 0.03 1

1 0.02 0.13 . . . 0.02 1

1 0.02 0.21 . . . 0.05 1

. . . . . . . . . . . . . . . . . .

6.2 Measuring the quantum state

In chapter 5, the measurement process for determining the qubit state has
been addressed from the theoretical viewpoint, but it is also useful to add
some practical considerations about the actual implementation in software.

Measurement is the only way to extract useful information from a quantum
system and, in the real world, it exhibits some peculiar properties that should
in principle be replicated in software simulations. These are:

1. in a real quantum system, the measurement process alters the state of
the system;

2. after measurement, the system turns into the pure state associated to the
outcome of measurement.

This means that, in a real system, it is impossible to estimate the likelihood of
all possible basis states because, once measured, the qubit no longer contains
information about the others.

Simulation software usually measures the quantum states by generating a
random number and reading the associated output, which is what quantum
theory would impose.

Nevertheless, in our quantum inspired case, we are not concerned about
using a strictly rigorous approach to measurement and conversely we employ
the density operator described in Equation 25 to assess the integrated probability
of each individual basis state and return the top value and its associated basis
state.

The normalization of the resulting quantum state before measurement takes
place ensures that all probabilities add up to one and therefore the classifica-
tion threshold can be constrained within zero and one.

6.3 Experimental setup

All experiments were executed on a PC Intel Core i7 3.4 GHz, with 16GB RAM,
running Microsoft Windows 10 operating system with no CUDA support.
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The software procedures were developed in Python language [84], at ver-
sion 3, with additional support of the following standard distribution libraries:
Numpy [54], Matplotlib [41], Scikit-Learn [58], Pandas [50].

Extensive testing was executed on three synthetically generated datasets,
containing from two to four fairly balanced classes respectively, totaling 10.000

sessions whose individual length does not exceed 100 observations. The de-
tailed breakdown of the sessions by class label is reported in Table 3.

Table 3: Number of sessions per class in synthetically generated datasets

Count for class 0 class 1 class 2 class 3

2 classes 5053 4947 − −

3 classes 3333 3335 3332 −

4 classes 2465 2526 2513 2496

The proposed algorithm has an intractable exponential space complexity
due to the use of the tensor product. In order to get around this issue, a sliding
window mechanism was set up to limit the number of observations considered
when calculating the entangled states. This workaround was termed peep, for
it acts as a peephole on the data stream, and it was verified by applying grid
search to model tuning that peep values (window lengths) greater than 8, in
most cases, don’t bring any improvement to the overall classification scores
which tend to flatten for peep values greater than or equal to 4. As an exception,
in the binary case (2 classes), it is possible to compute the entangled states with
a simpler procedure not dependent on peep. With more than three classes,
experiments show that accuracy reaches its upper limit before exceeding the
greatest bearable peep value, which was upper bound to the value of 10 on our
target platform.

6.4 Results on synthetic data

The problem is basically setup in order to optimize two contrasting objectives:

• maximize classification accuracy

• minimize the number of observations to make a decision

A possible approach to such problem is based on multi-objective optimiz-
ation, also known as Pareto optimization [56], to select the optimal threshold
with regard to the selected indicators and the optimization objectives.

The possible solutions in the decision space are evaluated according to mul-
tiple objective functions with the ultimate goal to find a solution which is
optimal in some sense.

The strategy proposed by Pareto aims at defining a set of non-dominated
solutions that cannot be improved on one objective without degrading at least
one of the others.
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In the case of two objective functions, it is possible to display the solution
space on a plot and visualize the set of Pareto optimal solution, also called
Pareto frontier.

Grid search was applied to collect the summary indicators required to plot
the relevant Pareto frontier and select the optimal solutions according to the
desired objectives.

The searched parameters are:

• the confidence level C, or decision threshold DT, with values
C ∈ {0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.998}

• the sliding window size with peep ∈ {4, 8}

For each test executed during the grid search, the following parameters and
summary indicators were logged:

• DT, decision threshold on probabilities; valid values range from zero to
one,

• PEEP, sliding window size,

• EXU, exclude undecided flag; when True the undecided sessions are re-
moved from the calculation of accuracy,

• TOTSS, total number of sessions analyzed; this should be constant on all
tests but it is logged to make sure all sessions have been considered,

• TOTUC, total number of undecided sessions,

• ACC, average classification accuracy, including or excluding undecided
sessions according to EXU; excluding undecided sessions may take to
the misleading result of 100% classification accuracy, which can be less
significant because it only states that all classified sessions have been
correctly recognized,

• F1, the F1 score, always excluding undecided sessions,

• PR, the precision score, always excluding undecided sessions,

• RE, the recall score, always excluding undecided sessions,

• LDS, length of the longest decision sequence; this means that at least one
session required LDS steps to be classified; the average number of obser-
vations required to make a decision in the tests performed is between 3

and 5.

Table 4 reports, for a peep value equal to four, the parameters and their rel-
evant metrics for those points on the Pareto front that maximize classification
accuracy, minimize the number of undecided sessions or the length of the de-
cision sequence. In order to consider the worst case, undecided sessions were
included in the accuracy score.

It is evident that with low values of the decision threshold, we have contrast-
ing results depending on the aim of Pareto optimization, whereas on more se-
lective thresholds the performance metrics are exactly the same on both sides.
On low threshold values, it is possible to zero the number of unclassified ses-
sions, renouncing to about 5% accuracy to the advantage of decision speed,
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Table 4: Classification results for 10.000 sessions with 3 classes

Aim DT TOTUC %ACC %F1 %PR %RE LDS

Min LDS 0.550 0 82.84 82.84 82.84 82.84 3

Min LDS 0.998 251 97.49 100.00 100.00 100.00 27

Min TOTUC 0.800 0 87.52 87.52 87.53 87.52 5

Min TOTUC 0.998 251 97.49 100.00 100.00 100.00 27

even if the greatest number of sessions is classified within the second or third
observation.

At higher thresholds, the accuracy increase exceeds the 14.5% at the cost
of having 251 undecided sessions, which definitely compensates the number
of erroneously classified ones of the former scenarios. This situation can be
seen as a limitation at first sight but, if the algorithm were analyzing a real
time data feed instead of a fixed size dump file, further observations might be
considered on undecided sessions and sooner or later make a reliable decision.

Another interesting viewpoint is the analysis of classifier performance, for
the same settings, on an increasing number of classes, which can be easily
obtained with synthetic data generator. The common settings for the reported
metrics are DT = 0.995, PEEP = 4 and the results are summarized in Table 5.

The indicators reported in the header row of Table 5 have the following
meaning:

• #CL, number of classes,

• OBS, number of observations,

• TOTUC, number of undecided sessions,

• ERR, classification errors,

• ACC-I, accuracy including undecided sessions,

• ACC-X, accuracy excluding undecided sessions,

• C70, number of decision steps required to classify the 70% of sessions,

• C90, number of decision steps required to classify the 90% of sessions,

• LDS, longest decision sequence,

• ADS, weighted average decision step on classified sessions

ADS is defined as the average over the total number of sequences N of all
decision timestamps ti weighted by the number of sequences classified at a
given instant ni, that is:

ADS =
1
N

N

∑
i=1

ti · ni (31)

Even if the number of undecided sessions cuts down the overall accuracy,
its value stays above 97% with very few classification errors in the binary
case. If we didn’t consider unclassified streams, as if we could wait additional
observations until a whatsoever trustful decision is made, we could ideally
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reach 100% accuracy for three and four and 99.98% for two classes respectively,
with only 27 observations analyzed in the single worst case.

Table 5: Classification results for 10.000 sessions with 2-3-4 classes

#CL OBS TOTUC ERR %ACC-I %ACC-X C70 C90 LDS ADS

2 513601 261 2 97.37 99.98 5 8 25 4.45

3 510571 271 0 97.29 100.00 5 8 27 4.64

4 513901 111 0 98.89 100.00 3 4 11 3.08

It is noteworthy that seventy percent of classified sessions is correctly defined
within the fifth observation and QEMC needs only 8 steps to classify ninety per-
cent.

According to specific goals of the classification task, it is possible to tune the
threshold to favor either accuracy or LDS, given that in all cases ADS indicator
denotes high classification speed on average.

This initial experimental session pointed out an intrinsic limitation of the
proposed quantum-inspired approach, allegedly due to the hardware specific-
ations of target platform. Basically, in addition to the exploding complexity
related to the sequence length, also the number of classes represents a sort of
barrier that hinders the adoption of QEMC method.

On our machine, whose technical specifications are reported in section 6.3,
up to 10 classes could be detected simultaneously without compromising over-
all system performance: alternative hierarchical approaches are possible but
major changes to the proposed classification architecture are required to sup-
port two or more levels of refinement. For instance, if we were to predict pos-
sible component failures on a cyber-physical system, it would be possible to
implement a first classification level capable of discriminating among the po-
tentially affected subsystem and then pass only the involved data streams to a
specialized classifier that is fine tuned for the given subsystem.

Such hierarchical approach in principle allows to cope with multinomial
classification problems of any size, even on edge computers with extremely
limited resources.



7
The Bot Detection Problem

7.1 Introduction

The advent of Internet and mobile technologies gave rise to a transformation in
our everyday life activities, such as social live, interpersonal communication,
shopping or quest for any type of information, that are moving from their
mainstream connotation to virtual platforms.

Meanwhile, Web analytics and online marketing tools have been increas-
ingly used to gain competitive advantage in this blooming market to support
the creation of tailored Web-based applications capable of providing added
value services and up-to-date information, collected in real time by autonom-
ous software agents, named bot.

A Web bot, also known as Internet robot, Web agent, or intelligent agent, is a
software program that can execute a wide variety of tasks on the net, crawling
through the hyper-texts according to a predefined algorithm [27]. However,
next to several harmless and useful bots, such as search engine crawlers or link
checkers that support website managers in discovering broken or backlisted
links, many others are inherently malignant and raise serious concerns about
ethics or users’ privacy as they are able to steal sensitive data, inject malware,
generate Distributed Denial of Service (DDoS) attacks and many other harmful
tasks.

A non negligible portion of the overall Web traffic is caused by bots and, ac-
cording to [95], malware is the prevailing share among them. Bad bots tend to
alter their identities by impersonating legitimate Web browsers and ignoring
the file robots.txt, that contains website access rules for bots [31, 77, 95]. Iden-
tification of bot traffic on Web servers becomes a difficult task and the basic bot
detection strategies, like matching IP addresses or user agent strings against
a blacklist of known bots, are simple but sometimes ineffective approaches. A
request stream may be also assessed for some atypical statistical properties,
such as extremely short inter-arrival times, but these tests are often ineffective
because bots tend to mimic human behavior to counteract automated identi-
fication systems.

36



7.1 introduction 37

These techniques can only be beneficial in the recognition of a limited frac-
tion of bots, mainly the well-known ones or those whose aggressive behavior
is easily characterized, like in DDoS attacks. The Completely Automated Pub-
lic Turing test to tell Computers and Humans Apart (CAPTCHA) [85] is an
identification procedure and a powerful tool to contrast the aforementioned
limitations with a challenge-response test that can presently be solved only by
human beings, but it is quite bothering for Web users experience and some-
times limiting for people with disabilities.

Hence comes the quest for new transparent approaches that are able to
tell bots and humans apart without distracting end users from their main
tasks. Extensive research has been carried out on analysis, characterization
and classification of robot traffic records to devise automated bot detection
frameworks, even though the great majority of solutions target the offline scen-
ario and the processing of historical session data. However, to the best of our
knowledge, very few studies have addressed the issue of on-the-fly bot identi-
fication, while the web agent is still actively accessing the server.

Real time Web robot discovery is of crucial importance for cyber-security
and Web server operations making it possible to mitigate threats before the end
of bot visits and reduce the negative impact of the malicious ones. As a matter
of fact, this requires new methods for early detection of Web bots in real time,
based on information collected during their visits. A source of data that proved
to be very informative in bot discrimination comes from HTTP request logs,
which expose very representative features and relationships about ongoing
sessions.

Recent studies on HTTP workload of Web servers report that robots are re-
sponsible for most of the traffic and this trend is constantly growing [23,
95]; moreover, the share of bad bots with malicious goals, such as imperson-
ators, scrapers, spammers and hacking tools, is greater than 50%. Whilst good
autonomous agents abide by the directives of the robots exclusion protocol, as
of file robots.txt, the typical behavior of malicious bots is aimed at mingling
with legitimate clients to go unnoticed through the websites, therefore only a
small portion of Web bots are easily identified.

Investigations on the differences between bots and humans in Web traffic
patterns, typically based on Web server access logs [21, 22, 48, 77], showed dis-
similar behaviors, that pushed further research towards defining classification
approaches supported by statistical analysis of navigational patterns [23, 34,
49].

In this area, most effort has been directed to the use of classification tech-
niques, such as Bayesian classifiers [72, 79], decision trees [46, 80], support
vector machines [32], association rule mining [42], or ensemble methods [71].
Some studies aimed at comparing the efficiency of various classification al-
gorithms [13, 67, 73]. Furthermore, unsupervised classification techniques re-
vealed a high potential for differentiating between bots and humans [74, 94].

Preliminary results on offline classification of Web sessions, reported in [65],
showed that, due to some intrinsic behavioral differences, machine learning
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techniques may be effective in discriminating bots from humans even in an
unsupervised setting.

Offline bot detection means that, in order to take any decision, the whole
navigation session must be analyzed but, even though this approach allows to
gain a deeper understanding of bot traffic traits and assess its impact on server
performance and security, it does not provide valuable support to detect them
as they access the website and eventually apply proper enforcement policies.

7.2 Problem statement

In order to verify the proposed approaches to early detection of Web bots,
traffic from a Web server hosting an e-commerce website has been used as
source of data at the HTTP protocol level [11, 25], defined at the application
layer of the ISO-OSI stack.

All Web clients access server resources by means of HTTP protocol, issuing a
request and then waiting for a response to complete the transaction. Basically,
a simple request message from a client consists of the following components:

• a request line to get a required resource, using one possible request
method, such as GET, POST, or HEAD;

• headers containing some meta-information like the user agent string that
identifies the client;

• an optional message body.

whereas the relevant response contains:

• a status code related to requested resource;

• headers;

• an optional message body.

Human users can access Web servers with browsers or mobile applications
and the interaction typically implies downloading pages sequentially linked
together: a set of consecutive HTTP requests is generated by a browser to access
the page description file and the embedded objects like scripts, style sheets
and images. Conversely, intelligent agents can traverse the site according to a
specified strategy, neglecting the hyper-text structure, and possibly requesting
only some types of resources.

HTTP is a stateless protocol, therefore no permanent connection is established
between a server and a client: other mechanisms are available to track sessions
in customers’ visits, e.g. cookies [44] but they may not be standardized across
Web applications nor easy to obtain from site managers.

It is then common practice [13, 23, 71–73] to define a session, whose length
may vary from two to several thousands items, as a sequence of incoming HTTP

requests subject to the following conditions:

1. are associated to the same IP address;
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2. can be related to the same user agent string;

3. the time interval between any two subsequent requests does not exceed
30 minutes.

The problem of real-time session classification on a Web server can be stated
as an instance of early classification of multivariate data streams, which means
labeling each sequence in the shortest possible time. Since a session corres-
ponds to a single visit of a given client, it is sensible to assume that, within a
session, the website is accessed in a consistent style, hence the corresponding
data stream might be thought of as generated by a stationary source; how-
ever, statistical dependencies in human navigational patterns, though difficult
to model, are reflected in class conditional probabilities estimated by the first
stage of the proposed framework, highlighting a non-stationary process.

It is then possible to formalize online Web bot detection as the task of identi-
fying whether a sequence of HTTP requests within a session can be labeled as
performed by a bot or human before the sequence ends. In principle, it is a
binary classification task with sequentially sampled inputs, but the unpredict-
able length of sessions requires to account for a no-decision state whenever a
session ends before the system selects a valid target label.

7.3 State of the art on bot detection

The advancements of the last few years in bot capabilities impelled the quest
for disruptive detection approaches to tackle the different applications. Sev-
eral methods investigate the statistical discrepancy between bots and humans
behavior, detectable in some application dependent features.

For instance, [97] proposes detection of click frauds in pay-per-click advert-
ising by identifying duplicate clicks using group Bloom filters. Another ap-
proach described in [63] leverages a set of relational, behavioral, and linguistic
features to spot malware and applications subject to search rank frauds in
Google Play. Artificial actors in e-dating are detected by means of specific in-
dicators relating posted messages and the types of interaction between users.
Several supervised classification techniques have been also applied to specific
facets of the problem, such as Support Vector Machine (SVM) to detect spam-
bots [37], decision trees to recognize blog bots [18], or Bayesian classifiers to
deal with chat bots [31] and click frauds [87].

All cited methods are tailored for specific tasks and cannot prescind from
application domain knowledge to select custom features, whereas more in-
dependent approaches based on HTTP traffic collected at Web servers resulted
good at discovering bots [22, 48]. Analyses of data records from Web server ac-
cess logs [13, 21, 77, 80], display evident discrepancies in navigational patterns
of bots and humans but bot requests have some representative traits that could
be used to improve classification rates, such as requiring less images, different
order in resource access [23, 45, 78], lower data volume in HTTP responses and
an increased rate of unassigned referrers, HEAD or erroneous requests.
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Most bot detection algorithms that implement traffic pattern analysis re-
quire that the whole session be available to perform an offline classification,
supported by probabilistic models built upon some statistical properties of
HTTP requests.

Conversely, when machine learning is used, the applied techniques may
differ by selected features, algorithms, or session extraction paradigm or even
experimental evaluation.

Supervised session classifiers have been implemented with decision trees [6,
13, 32, 46, 73, 80], neural networks [13, 65], logistic regression [13], support vec-
tor machines [32, 42, 65, 67, 73], Bayesian classifiers [42, 67, 73, 79], k-Nearest
Neighbor (kNN) [67, 73], and ensemble methods [71]. Unsupervised classific-
ation approaches have used several algorithms such as k-means and Graded
Possibilistic c-Means (GPCM) [65], Particle Swarm Optimization (PSO) cluster-
ing [3], Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[93], Self-Organizing Maps (SOM) [35, 74], Modified Adaptive Resonance The-
ory 2 (ART2) [74], and Markov clustering (MCL) algorithm [94].

The prominent results achieved with the aforementioned literature approaches
reasserted the inherent variations on bot and human generated traffic, even if
some bots tend to imitate human behavior to avoid being discovered, making
it more difficult to recognize covert Web crawlers than those which accomplish
some explicit attack [1, 40, 43].

Concerning real-time detection, very few studies investigated the problem
of on-the-fly bot detection and generally a constraint on the minimum number
of requests to be observed before taking a decision is set, limiting their efficacy
on very short sessions.

In this context, the most relevant study is [23], which proposes an approach
based on a first-order Discrete Time Markov Chain (DTMC) [12, 60] model that
analyzes transition patterns of resource requests to label each session in real
time, achieving significant classification accuracy. For this reason, it has been
selected for a comparative study versus the approaches developed during my
PhD.

The algorithm is based on a first-order Discrete Time Markov Chain (DTMC)
[12, 60], used to compute the conditional class probability of each request pat-
tern. Every state of the DTMC represents a resource aggregation and, for each
possible decision, a transition matrix encodes the probabilities pij that a re-
source of type i is followed by another of type j. Considering sk as the probab-
ility of a session to begin with a resource of type k, the probability of a session
being human or robot generated is then computed, at every new request, by
multiplying sk by the pij of all the following resource transitions. To prevent
possible issues due to small probability values, the log-probabilities are used
and the product is replaced by a sum.

The session could therefore be classified according to the highest logarithmic
probability between the classes but, in order to guarantee a reliable decision,
two new parameters must be taken into account to control detector’s selectiv-
ity; these are:
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• k, the minimum number of request that should be analyzed before mak-
ing a decision

• ∆, which expresses the minimum difference that must be present between
the class log-probabilities

A decision is taken only after k request have been received at the web server
and when the absolute value of the probabilities difference is greater than ∆.

Other studies labeled the sessions leveraging decision trees but considering
the user clicks on web pages instead of the stream of HTTP requests, like in [80],
where a reasonably high accuracy on early decision was determined according
to a minimum number of page requests to be considered to identify Web bots.
Also in [6], a fixed minimum number of page requests must be observed before
a decision can be taken, hence their performance on a real Web server dataset
not available. My approach aims at overcoming the limitation on the minimum
number of observations by defining early decision algorithms that are capable
of assigning a reliable classification based on a partial incremental view of user
agents’ behavior, as expressed by the log records.

This goal is reflected also in the classification scores which are evaluated in
terms of the number of requests sufficient to classify a session.

7.4 Methodological framework

7.4.1 System architecture

The general framework of the proposed approach, shared between both clas-
sification methods, is illustrated in Figure 4 and it is logically divided into two
main processing lines.

Figure 4: A graphical sketch of the implemented framework.

The back-end line gathers all activities that are performed periodically, activ-
ated by specific performance considerations, such as pre-processing of histor-
ical HTTP log records, training of Artificial Neural Network model, retrieving
the classification scores to detect downgrades in performance and eventually
trigger a re-training phase on the ANN.
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The front-end line collects activities performed on-the-fly for each incoming
request or, more specifically, feature extraction and two-stage classification.
At each new request within a session, the ANN estimates its class conditional
probability which is used to tentatively make a decision about a target class.
If the confidence on possible decisions is too low a new request is awaited to
integrate additional information but whenever a session ends before deciding,
it is labeled as undecided and possibly processed according to some application-
specific policy: for instance, a CAPTCHA might be displayed to manually verify
the user agent, or off-line analysis is applied.

7.4.2 Request features used in classification

As shown in the front-end processing line of Figure 4, the HTTP request headers
supply ready-to-use descriptive features, listed in Table 6, which can have any
out of three data types, each requiring different pre-processing actions:

• numerical features (N) are standardized by subtracting the mean and
scaling to unit variance;

• categorical features (C) are one-hot encoded, i.e., represented as a bit vec-
tor of all zeros except one

• boolean features (B) are represented by 0 for false and 1 for true.

Although data for real-time processing are obtained directly from requests,
historical data for classifier training may also be collected from log databases
maintained at the server (Figure 4, back-end line).

After feature extraction and pre-processing, each request at the server is
represented as a 25-feature vector, which is then submitted to the two-stage
classification process.

7.4.3 The idea behind two-stage classification

The task under consideration is a binary classification problem whose goal is
to state whether a sequence of observed Web server requests is relatable to a
human or a bot agent.

Even if the HTTP protocol has no notion of session and each request is
handled independently, their order is by all means dependent on the visiting
agent [80].

At time point t, let x1, . . . , xt be a sequence of observations from the same
user agent and c ∈ [0, 1] the possible target labels, then the probability p1(t)
that the sequence belongs to class 1 is

p1(t) =
Pr(c = 1)

Pr(x1, . . . , xt)
· Pr(x1|c = 1) ·

t

∏
i=2

Pr(xi|x1, . . . , xi−1, c = 1).
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Table 6: Original Request Features before Pre-Processing

Name Type Description

inter_arrival_time N int Time interval between timestamps of the
current request and the preceding one (in
seconds)

method C string HTTP method specifying an action to be
performed on a given resource (e.g., GET,
HEAD)

response_status C int HTTP response status code (e.g., 200, 403,
404)

response_size N double Volume of data in the HTTP response (in
kilobytes)

is_referrer_empty B bool Whether the HTTP referrer is known (false)
or not (true)

is_page B bool Whether the requested resource is a page
description file (true) or an embedded ob-
ject file (false)

is_graphic B bool Whether the requested resource is a graphic
file (true) or not (false)

is_script B bool Whether the requested resource is a script/-
program file (true) or not (false)

is_style B bool Whether the requested resource is a style
sheet file (true) or not (false)

is_datafile B bool Whether the requested resource is a specific
data file (e.g., a zipped file) (true) or not
(false)

This model however has intractable complexity, thus it is commonly simpli-
fied by considering, according to Markov assumption, a fixed number of past
observations, usually one:

p1(t) ∝ Pr(x1|c = 1)
t

∏
i=2

Pr(xi|xi−1, c = 1).

The above model, presented in section 8.2, is the basis for the reference
method [23] selected for comparative evaluation despite the authors followed
a naive variation that neglects the conditional dependencies over subsequent
observations, leading to:

p1(t) =
t

∏
i=1

Pr(c = 1|xi).

At first stage, each individual HTTP request is assessed to estimate a likeli-
hood of being bot or human generated, then at the second stage a sequential
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classification approach is used as a probability integrator for multiple observa-
tions such that we take the final decision as soon as the degree of confidence
is satisfactory.

The naive assumption corresponds to the hypothesis that, given an appropri-
ate description, looking at the mix of request types is sufficient to discriminate
between bots and humans. Experiments confirm that this approach achieves
very good results, outperforming the reference while featuring less model
parameters to be fitted.

7.4.4 The two-stage classification model

Figure 5 depicts the schematic representation of classifier’s main building
blocks, made up of an Artificial Neural Network juxtaposed to the sequen-
tial classification model, which can be either the Sequential Probability Ratio
Test or Quantum-inspired Entangled Multinomial Classifier. The advantage
of this solution is that both blocks could be replaced by any equivalent one,
providing that the interface between them, defined as a sequence of estimated
class conditional probabilities, remains the unchanged.

Figure 5: The two-stage model

While the alternative Stage 2 models are analyzed in depth in the following
chapters, a brief overview of the first stage is sufficient to understand how
the input features are transformed to obtain an a-posteriori class conditional
probabilities for each individual observation.

The ANN at the first stage outputs an estimate of likelihood fbot(xt) that any
given observation xt belongs to class bot.

The corresponding fhum(xt) = 1− fbot(xt) is the likelihood of xt being from
human. This is done without considering any context information, regardless
of any previously received request, according to the naive assumption previ-
ously described.

Experimental considerations on classification metrics led to selecting a multi-
layer perceptron, whose architecture has been empirically optimized both in
terms of number of layers and of hidden units: it has a 25-unit input layer, cor-
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responding to the input features size, followed by two 50-unit hidden layers
with ReLU activation function and cross-entropy as cost function for training.
To output the class-conditional likelihood, the final layer uses softmax units.

The second stage of the classifier’s architecture is responsible for managing
the sequential nature of sessions in order to try and label the time series at
every new request. The modular structure of the system supports experiment-
ation of multiple algorithms based on the same estimated likelihoods that are
treated as sequences of a-posteriori probabilities by the two approaches selec-
ted.

7.4.5 Dataset description

Access logs from an online bookshop1 provided the HTTP requests database
for our experiments. The online store offers a plethora of different physical
and digital items, such as books or computer games but also audiobooks or
multimedia content.

With regard to the technical details, the website is based on the osCommerce
platform, hosted on a Linux server with the LAMP (Linux, Apache, MySQL,
PHP) open source stack. The site access data are recorded according to NCSA
Combined log format and cover the period from April 1

st to 30
th, 2014. The

whole request dataset contains 1 397 838 HTTP request entries, totaling 13 395
sessions reconstructed according to the procedure described in section 7.2.
Sessions with only one request were discarded due to their negligible inform-
ational content.

Additional details about dataset preparation and class breakdown will be
provided in subsection 8.3.1.

1 The website identity cannot be revealed, due to a non-disclosure agreement.
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Bot Detection with SPRT

8.1 Sequential classification

As introduced in the previous chapter, the second stage of the classifier acts as
a probability integrator to devise a sufficient degree of confidence about the
decision to be taken, whenever possible.

In the present chapter, we will discuss the benefits of applying Wald’s Se-
quential Probability Ratio Test (SPRT) [86] to estimate the class posterior prob-
ability while new requests are received by the system.

The original test is based on the assumption of statistical independence
among the observations therefore it is considered suitable for the case at hand,
which can be simplified under relaxed constraints.

As explained deeply in chapter 4, the application of SPRT to bot detection
is implemented considering the k-th observation xk in input at the first stage,
to gauge the posterior probability f1(xk) of class 1 (bot) and consequently
compute f0(xk) = 1− f1(xk) for class 0 (human).

The ratio of these probabilities at step k is:

Rk =
p1(k)
p0(k)

=
∏k

i=1 f1(xi)

∏k
i=1 f0(xi)

=
k

∏
i=1

f1(xi)

f0(xi)
(32)

or, to reduce sensitivity and improve numerical precision in case of strongly
imbalanced values, it can be transformed in terms of cumulative log-likelihoods
as:

Lk = log p1(k)− log p0(k) =
k

∑
i=1

(log f1(xi)− log f0(xi)) . (33)

Given two pre-defined threshold values T0 and T1, T0 < T1, defined accord-
ing to probabilities of false positives α and false negatives β by Equation 10,
the decision output by sequential classification stage at step k is:

deck =


1 if L ≥ T1

0 if L ≤ T0

� otherwise.

(34)

46
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where the symbol � indicates an undecided state that implies considering
additional observations, if available.

Under ideal assumptions, the SPRT approach is guaranteed to converge to a
decision with the minimum number of observations for a given pair (α, β) but
in this case the efficacy is weakened by two issues:

• the number of request in a stream cannot be controlled and may not
suffice to make a decision at the desired confidence level, thus causing a
three-state output due to the reject option for undecided sessions [17];

• the probability estimates retrieved with the black-box approach at first
stage, introduce a non-quantifiable error in the values of f1 and con-
sequently of f0, along with possible additional errors in the evaluation of
Lk due to the naive assumption

The first issue impacts validation of experimental results, as of section 8.4,
whereas the second one determines an approximation error in Equation 10

that cannot be evaluated in advance therefore a better choice for values of T1

and T0 can be attained from the training data (see subsubsection 8.1.0.1).

8.1.0.1 Optimal thresholds selection

The selection of threshold values T1 and T0 is crucial to balance classification
confidence with earliness of decision: it is a multi-objective classification prob-
lem, that can be approached considering the Pareto optimality concept [51, 56].

Rather than arbitrarily composing multiple scores into a single objective,
a search space across possible solutions is explored, highlighting the non-
dominated ones that represent the so-called Pareto Frontier. A non-dominated
solution cannot improve one objective without degrading the quality of the
second objective. The Pareto Frontier is a powerful tool to select the method-
specific parameter values a-posteriori in order to achieve the desired balance
between objectives [68].

Section 8.3.3 describes this process and includes plots for the two methods.

8.1.1 The algorithm

The algorithm in Figure 6 describes the decision process that takes the t-th
HTTP request of a session as a multivariate input xt to obtain the class likeli-
hoods f1(xt) and f0(xt) from procedure nnet. The likelihoods for observations
from 1 to k are then used to compute L according to Equation 33 which is
compared to the selected threshold values T1 and T0 to decide one out of three
possible options. If no decision can be taken at step t, further observations are
considered until a reliable decision is made or the session ends, in which case
it is marked as undecided.
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Figure 6: SPRT bot detection algorithm

1: Input:
2: S = {x1, x2, . . . xt} . session (seq. of t requests)
3: T1 and T0 . the decision thresholds
4: Output:
5: dec . decision on session
6: k . number of steps taken
7: procedure classify-session(S)
8: L← 0
9: for k = 1 . . . t do

10: dec, L← classify-request(xk, L)
11: if dec 6= None then
12: return dec, k
13: return �, t . undecided session
14: procedure classify-request(x, L)
15: f0(x), f1(x)← nnet(x)
16: Compute L using (33)
17: if L ≥ T1 then
18: dec← 1 . decision is bot
19: else if L ≤ T0 then
20: dec← 0 . decision is human
21: else
22: dec← None . no decision
23: return dec, L
24: procedure nnet(x)
25: Estimate f1(x) with neural network
26: Assign f0(x) = 1− f1(x)
27: return f0(x), f1(x)
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8.2 A reference bot detection method

In order to fairly evaluate the proposed early classification approaches, the
only method that, to the best of my knowledge, can be compared to my pro-
posals is presented in [23], a recently published paper that uses HTTP request
features to try and achieve the earliest possible classification with reasonable
accuracy.

The reference approach has been reconstructed and applied exactly to the
same datasets used in our experiments.

The authors proposed a technique based on a Discrete Time Markov Chain
(DTMC) to model the resource request patterns for the two classes. Each server
asset is uniquely identified by its Universal Resource Identifier (URI) and it
is categorized into a summary resource type, depending on its file extension.
For the e-commerce site under examination, not all types analyzed in the ori-
ginal paper were present, nonetheless a consistent taxonomy devoid of unused
directory content is:

• web for web page and script files (e.g., html, htm, php, cgi, asp, jsp, js),

• text for text-formatted files (e.g., txt, xml, sty, tex, c, cpp, java, css),

• doc for rich-text documents (e.g., doc, xls, ppt, pdf),

• img for images (e.g., bmp, jpg, png, tiff, raw, ico),

• av for multimedia files (e.g., avi, mp3, mpg, au),

• prog for program files (e.g., exe, dat, bat, dll, msi, jar),

• compressed for compressed files (e.g., zip, gz, 7z, rar),

• malformed for malformed requests or unknown file extensions.

Basically, a session is represented as a sequence of resource types associated
to each HTTP request, which defines a resource request pattern, modeled through
a first-order Discrete Time Markov Chain in the state space of resource types
contained in the training dataset.

The model is described by the pair (s, P) , where s is a vector whose elements
si are the probabilities that a session starts with a resource of type i and P is
a matrix whose elements pij are the transition probabilities that a resource of
type j follows a one of type j.

Let S = (x1, . . . , xt) be the resource request pattern of a session with t re-
quests observed on the server. The probability that a DTMC will generate S at
step k ≤ t can be‚ defined by:

Pr(S|s, P) = sx1 +
k

∑
i=2

pxi−1,xi (35)

Being a binary classification problem, at training phase, two separate DTMC

models are built, R = (sr, Pr) and H = (sh, Ph), for bots and humans respect-
ively, so that we can estimate the corresponding probabilities Pr(S|R) and
Pr(S|H).
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The algorithm reported in Figure 7 requires only two parameters to be set:

• kmin, which is the minimum number of requests that must be considered
before any decision to contrast fluctuations in probabilities on the very
first requests;

• ∆, which is the threshold to be exceeded to make a decision for a session.

Figure 7: DTMC bot detection algorithm

1: Input:
2: S = {x1, x2, . . . xt} . session (seq. of t requests)
3: kmin and ∆ . the decision parameters
4: Output:
5: dec . decision on session
6: k . number of steps taken
7: procedure classify-session(S)
8: for k = 1 . . . t do
9: dec← classify-request(xk)

10: if dec 6= None then
11: return dec, k
12: return �, t . undecided session
13: procedure classify-request(x)
14: update Pr(S|R) and Pr(S|H) for new x
15: if k ≥ kmin then
16: compute D = log Pr(S|R)

Pr(S|H)

17: if |D| > ∆ then
18: if D ≥ 0 then
19: dec← 1 . sign is positive, decision is bot
20: else
21: dec← 0 . sign is negative, decision is human

22: return dec
23: return None

Similarly to the algorithm in Figure 6, whenever a session ends before a
classification is made, it is labeled as undecided, but the main difference from
my approach is that in this case undecided sessions are passed to an offline clas-
sifier that takes all observations into account. Even though this step is sensible
from the performance evaluation perspective, it is not viable when applied to
a real-time environment where timely decision is crucial, hence those sessions
are left undecided for a fair comparison of the two methods.
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8.3 Experimental evaluation

8.3.1 Data preparation

The first and most important step for the preparation of our dataset is the al-
location of a ground truth label, as bot or human, to every observation of each
session. This task is by no means easy and takes a lot of manual effort: it has
been accomplished by inquiring two online databases containing user agent
strings and IP addresses, publicly recognized by experts as representing either
bots or legitimate Web browsers, encompassing also heuristics concerning ses-
sion features indicative of a bot [78].

A primary source was the Udger online database [82], containing 2832 and
843 known user agent strings of bots and browsers respectively, as well as
996 657 known bot IP addresses. A supplementary source was User-agents
online database [83] with 2459 known user agent strings.

According to information retrieved, a few labeling rules were stated:

1. A session was labeled as bot if at least one of the following conditions
was met:

• the user agent was classified in the Udger database as "crawler",
"e-mail client", "library", "validator", "multimedia player", or "offline
browser";

• the user agent was classified in the User-agents database as a robot;

• the user agent contained a keyword suggesting a bot, such as "spider",
"crawler", "robot", "worm", "search", "track", "harvest", "hack", "trap",
"archive", "scrap", etc.;

• the IP address was classified in the Udger database as "crawler",
"fake crawler", "known attack source – http", "known attack source
– mail", or "known attack source – ssh";

• at least one of the following indicators was true: zero image to page
ratio, 100% of page requests with empty referrers, 100% of response
status codes of type 4xx, or 100% of requests with HEAD method;

• the file robots.txt was requested.

2. A session was labeled as human if the user agent was classified in the
Udger database as "browser" or "mobile browser".

Any other session that didn’t match the listed conditions remained un-
labeled and were subsequently excluded from the dataset. The final break-
down of the labeled dataset was 6190 bot sessions and 7200 human ones which
means the classes were roughly balanced for our analysis.

The proportion between classes was preserved when training the ANN es-
timator with 10-fold cross-validation technique over data splits containing 619

bot and 720 human sessions respectively.
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8.3.2 Performance evaluation

The experiment conducted for both SPRT and DTMC approaches on the dataset
described in subsection 8.3.1, using the same training and test splits, were
compared on the same scores with regard to the following scenarios:

Scenario 1: Performance scores are determined only on account of the
sessions classified as bot or human: no undecided sessions are considered.

Scenario 2: Performance scores are determined taking into account un-
decided sessions. Since the goal is bot detection, undecided sessions can
be considered a failure of the classifier in detecting bots, hence they are
always labeled as human-generated.

The overall classification results are reported by means of a confusion mat-
rix, considering bot-generated sessions as positive and human-generated ones
as negative; as explained, undecided sessions are ascribed to humans and there-
fore included into negatives, thus increasing FN with undecided bot sessions
and TN by undecided human ones. However, the number of undecided sessions
is still reported as an additional measure of classifiers’ performance.

The following metrics were used to assess classifiers performance, averaged
over the 10 cross-validation folds:

• Recall = TP
TP+FN , fraction of positive sessions that are correctly classified;

• Precision = TP
TP+FP , fraction of positive decisions that are correct;

• F1, harmonic mean of recall and precision, overall quality of the classifier;

• Accuracy = TP+TN
TP+TN+FP+FN , fraction of correct classifications;

• k90, the 90th percentile of k, maximum number of steps required to classify
90% of non-undecided sessions; indicates the ability to take up early
decisions;

• Pc(k), percentage of sessions classified at step k;

• Pu(k), percentage of undecided sessions that ended at step k;

• CPc(k) = ∑k
i=1 Pc(k), cumulative percentage of sessions classified in less

than k steps;

• CPu(k) = ∑k
i=1 Pu(k), cumulative percentage of undecided sessions that

ended in less than k steps;

• Pc, percentage of classified sessions.
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8.3.3 Tuning the parameter values

As already explained, two threshold values, T0 and T1, must be tuned for the
SPRT based method to balance the trade-off between confidence in classification
and earliness of decision. This impacts the metrics listed in the previous section
with particular regard to maximization of F1, preferred to Accuracy due to the
slight imbalance of the dataset, and concurrent minimization of k90. Similar
considerations apply to the selection of proper values for kmin and ∆ in the
reference DTMC approach.

Figure 8: Pareto frontier for SPRT.

Figure 9: Pareto frontier for DTMC.
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A grid search was performed for SPRT, with T0 ranging from −5.5 to −0.2
and T1 from 0.1 to 5.4, recording the solutions in order to build a bi-dimensional
search space over the two contrasting objectives (maximization of F1 and min-
imization of k90) that form our Pareto frontier.

Analogous analysis was done on DTMC where the search space was set de-
pending on varying values of ∆, from 0.01 to 1.9, and kmin, from 1 to 21.
Figure 8 and Figure 9 report the resulting Pareto frontiers for both methods.
Please note that only values of ∆ from 0.01 to 0.29 are displayed for DTMC

because greater values led to unacceptably low values of F1.
Those tuning experiments were carried out for scenario 2 which can be con-

sidered the most detrimental because it also includes undecided sessions in
the computation of performance metrics.

As displayed in the SPRT plot, our solution yielded extremely good results:
for all combinations of the threshold values, F1 exceeds 0.92, which indicates
very high rates of both recall and precision. Moreover, k90 is stably below
3.2, which means that a decision was made well before the 4th request in 90

percent of classified sessions. The extreme points on Pareto frontier, which
indeed contains 18 non dominated solutions, are those where either the speed
of decision or F1 are the highest. For T0 = −2.2 and T1 = 1.9, the best earliness
was achieved with k90 equal to 1 and the corresponding F1 equal to 0.93,
whereas maximum accuracy equal to 0.96 was gained for T0 = −5.4 and T1 =
4.6 with a corresponding k90 equal to 3.

Conversely, the plot for DTMC show much higher sensitivity to the variations
of its parameter values, with performance scores much worse than for SPRT.
Even if its Pareto frontier covers a more extensive set of values over the two
parameters, only the best solutions are plotted, for F1 greater than 0.4 and k90

lower than 17. Some points are overlapping: for kmin = 1 and ∆ ranging from
0.01 to 0.15 there are 15 coincident solutions with minimal k90 equal to 1 and a
very poor F1 equal to 0.51. The maximum F1, equal to 0.78, was obtained with
kmin = 2 and ∆ ranging from 0.18 to 0.2 with the relevant k90 equal to 4.

8.4 Results and discussion

In this section, Pareto optimization [56] is exploited to determine the optimal
values for method-specific parameters and subsequent analysis of classifica-
tion results is accomplished with an eye to computational overhead and im-
plementation issues.

Out of the Pareto-optimal solutions, direct comparative analysis was made
selecting the options with maximum value of F1, including additional criteria
on highest accuracy and smallest number of undecided sessions to settle equi-
valent points. According to this formulation, the parameter values for experi-
mental phase have been set as T0 = −5.4, T1 = 4.6 for SPRT and kmin = 2, ∆ =
0.18 for DTMC.

Table 7 reports a summary of the overall results, in order to support our
analysis on decision earliness of the two methods, with regard to the rates



8.4 results and discussion 55

Figure 10: CPc(k) – Cumulative percentage of classified sessions

Figure 11: Pc(k) for SPRT Figure 12: Pc(k) for DTMC

Table 7: Classification results (10-fold cross-validation)

Metric (avg.) SPRT DTMC

#TP 577.3 429.2

#TN 710.5 494.7

#FP 9.5 50.4

#FN 32.5 58.5

#undecided – bots 9.2 131.3

#undecided – humans 0 174.9

k90 3.0 4.0

Pc 99.31 77.13

of classified and undecided sessions. The SPRT algorithm was able to make
a decision on nearly all active sessions, leaving undecided only 0.69% of the
them, that were incidentally bot generated. The rate of undecided sessions is
much higher for DTMC where 22.87% of test dataset was not classified before
sequence end, further detailed in 21.2% bots and 24.3% humans.

Figure 10 shows cumulative percentage of sessions classified with reference
to the number of requests processed before making a decision. As reported,
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Figure 13: CPu(k) – Cumulative percentage of undecided sessions

Figure 14: Pu(k) for SPRT Figure 15: Pu(k) for DTMC

SPRT was able to classify 99% of sessions within six requests, with 16.7% being
classified at the first step and another 67.5% at the second step.

Figure 11 illustrates percentages of sessions classified by SPRT at each step,
labeled according to the target classes. The plot shows that nearly all visitors
identified at the first request, consisting in 15% of classified sessions, were bots,
whereas at the second step 67% of visitors are correctly labeled, subdivided
into 25% bots and 42% humans. Furthermore, the maximum number of re-
quests to be observed before making a decision with SPRT was 19, as shown in
Figure 10.

By contrast, the DTMC algorithm managed to classify only 75% of sessions
within the sixth request, with no further improvements on the cumulative
percentage of classified sessions, that doesn’t benefit of additional observations
(see Figure 12), even after fifty requests.

Most importantly, given kmin = 2, the DTMC algorithm could not take any
decisions at the first step and Figure 13 shows a number of classified sessions
increasing constantly along with the number of request observed.

For both methods, the vast majority of undecided sessions were the extremely
short ones, up to three requests long, and a detailed breakdown of their com-
positions points out a considerable preponderance of bots (see Figure 14 and
Figure 15)
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Figure 16: Cumulative performance scores vs decision steps (scenario 1 - excluding
undecided sessions)

a) Recall b) Precision

c) F1 d) Accuracy

The plots in Figure 16 and Figure 17 respectively report the evolution of
performance scores, incrementally obtained by considering true and false neg-
atives and positives at each new observation, versus the number of steps that
were sufficient to take a decision for both scenario 1 and scenario 2.

With regard to the quality of decisions, Table 8 summarizes the performance
scores for both experimental scenarios.

Looking only at classified sessions, as of scenario 1, Table 8 presents very
high efficiency for both methods, even if the proposed SPRT approach clearly
outperforms DTMC being able to correctly identify 97% of web agents, com-
pared to 89% of the referenced solution.

Moreover, a recall value of 0.95 confirms the ability of SPRT to well detect
bots on-the-fly, while precision (0.98), which in our case measures the extent
of humans erroneously identified as bots, is even higher than recall, indicating
that there is no detriment on human visitors. For the sake of completeness,
recall and precision of DTMC are set only to 0.88 and 0.90, respectively.

In scenario 2, undecided sessions were considered as undetected bots thus
sensibly decreasing the performance scores of SPRT and dramatically worsen-
ing DTMC ones, except for precision that was not impacted in both approaches.
Yet, SPRT was able to detect 93% of all bots on-the-fly, whereas the fraction of
bots identified by DTMC was limited to 69%. Finally, the values of 96% achieved
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Figure 17: Cumulative performance scores vs decision steps (scenario 2 - with unde-
cided sessions counted as humans)

a) Recall b) Precision

c) F1 d) Accuracy

Table 8: Performance scores (with 10-fold cross-validation)

Evaluation scenario Metric (avg.) SPRT DTMC

Recall 0.95 0.88

Scenario 1 Precision 0.98 0.90

(excluding undecided sessions) F1 0.96 0.89

Accuracy 0.97 0.89

Recall 0.93 0.69

Scenario 2 Precision 0.98 0.90

(including undecided sessions) F1 0.96 0.78

Accuracy 0.96 0.82

on F1 and accuracy with SPRT are far better than the relevant scores for DTMC,
assigned to 78% and 82% respectively.

These considerations give evidence to the effectiveness of my approach for
bot identification (SPRT). This works in a real-time interaction with a Web
server in real-life operating conditions. In this case, the comparison algorithm
either misclassifies the sessions or leaves them undecided. Basically, scenario 2
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is more realistic than 1 because undecided sessions represent cases where the
classifiers failed to detect bots, hence scores computed under these assump-
tions are more revealing of actual robustness of classifiers.

Figure 17 confirms the excellent efficiency of SPRT upon receiving the initial
requests over the great majority of test sessions, which is the main goal of an
early classification task. This is verified by F1 score, ranging from 0.96 to 0.98,
that achieves the highest values at the very first requests, slightly decreasing
as time goes by.

Observing the trend of recall, the highest values are achieved on the first
three steps, with 0.998, 0.979, and 0.964, respectively, whereas precision always
remains above 0.98. Anyhow, all performance scores for SPRT flatten at about
the 7th step, where most sessions have already been identified.

Same flattening behavior can be observed for DTMC on cumulative perform-
ance scores, in line with the conclusions drawn in [23], but at smaller values.
The farthest decision step for SPRT was the 19th, contrary to DTMC that not only
had to analyze long sessions till their end, but also was not able to make a
decision (Figure 17).

8.4.1 Computational overhead

From scalability point of view, an on-the-fly bot detection solution should be
unobtrusive to the Web server and introduce only a minimal computational
overhead to real-time processing of incoming requests.

The SPRT approach uses data available in HTTP request header without re-
quiring any additional pre-processing, therefore it fosters its integration in
server architectures.

From the computational complexity perspective, classification of a single
request is performed in constant time. The neural network model, presented
in Figure 5, has a fixed structure, allowing to compute the likelihoods f1(xt)

and f0(xt), at a given time step t, in O(1) time and space.
The incremental log-probability values log p1(t) and log p0(t) can be man-

aged as session variables on the server therefore, for a session of length k,
Sequential Probability Ratio Test can be estimated in at most O(k) time. For
N sessions the complexity does not significantly increase due to the possible
parallelism offered by a multi-threaded implementation of the classifier.

Similar considerations apply to DTMC model, but the improved ability of
SPRT in early classification with fewer observations, makes the expected com-
putational overhead smaller.



9
Bot Detection with QEMC

9.1 The quantum early classifier module

An advantage of the proposed two-stage early classification model is the pos-
sible substitution of each stage independently of the other, providing that the
communication interface remains the same. The Sequential Probability Ratio
Test (SPRT) approach presented in the previous chapter is now replaced by
Quantum-inspired Entangled Multinomial Classifier (QEMC), an innovative ap-
proach inspired to the principles of quantum mechanics.

In the present chapter, QEMC is applied to on-the-fly bot detection, deriv-
ing its application to the topic from the theoretical background presented in
section 5.2 for the binary setting.

Being a binary problem, we can define an orthonormal basis to indicate the
two target classes, namely |0〉 for humans and |1〉 for bots, as:

|0〉 =
(

1

0

)
|1〉 =

(
0

1

)

Let xt be a sequence of HTTP request samples associated to a specific session
and y ∈ {0, 1} be the corresponding ground truth, which is obviously the
same across each request in a session. The probability of request i being bot or
human generated is estimated by means of the Multi-Layer Perceptron (MLP)
at stage one and is stored in pci, where c ∈ {0, 1} is the class label index.

As clarified earlier in chapter 5, quantum entanglement is a property that
can be used to express a higher level of correlation among quantum states,
therefore, as each request in a session belongs to a specific class across the
whole sequence and they are reasonably correlated because they are gener-
ated by the same agent, it sounds sensible to hypothesize that quantum entan-
glement be capable of capturing and exposing the intrinsic correlation within
each session, which is extremely difficult to model.

The probabilities of both classes, estimated by the Artificial Neural Network,
can be used to build a quantum entangled representation of all subsequent
requests in a session. The MLP classifier does not capture any temporal in-
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formation but here it is used to assign the class likelihood of each individual
sample.

Since the request order in each sequence is preserved to reflect the web
navigation pattern, QEMC deals with correlation by means of entanglement.

As expressed by Equation 13, given the probabilities of the i-th observation
in the sequence of length T, they can be related to the two basis states |0〉 and
|1〉 by computing the coefficients αi and βi as

αi =
√

p0i and βi =
√

p1i (36)

and then create the T-qubits entangled states |ψ0〉 and |ψ1〉, according to Equa-
tion 15, from|ψ0〉 = α |00...0〉 = α0 |0〉 ⊗ α1 |0〉 ⊗ · · · ⊗ αT−1 |0〉

|ψ1〉 = β |11...1〉 = β0 |1〉 ⊗ β1 |1〉 ⊗ · · · ⊗ βT−1 |1〉
(37)

The state represented by a stream of T requests can be then expresses as the
superposition of the two entangled states from Equation 37:

|ψ〉 = |ψ0〉+ |ψ1〉 (38)

In order to tell whether the current sample was generated by a bot or a
human, it is necessary to measure, from the entangled state |ψ〉 by means of
Equation 22 or Equation 25, the probabilities of the basis states |0〉 and |1〉 and
compare those measurements against a properly tuned threshold C to take a
decision, if enough information is contained in the given |ψ〉.

If no decision can be taken at current time step, then another observation is
added to compute a new |ψ〉, until one of the measures meets the threshold or
session ends, thus leaving the classification output as undecided.

The proposed approach works on normalized probabilities across the whole
classification process, hence only one degree of freedom is sufficient to dis-
criminate between classes. The peep mechanism introduced to manage memory
space issues does not represent an actual degree of freedom because it is not
related to data structure but rather to hardware specifications.

In order to experiment an additional degree of freedom, a variation of the
main implementation of QEMC has been tested by computing the probability
amplitudes, as of Equation 36, by means of

α
grade
i with grade ∈ R+ (39)

Even if α
grade
i cannot be considered a probability amplitude anymore, this

option acts like a fuzzyness index, and it is beneficial to improve the classifica-
tion results and tune the output of quantum classifier.

For instance, a proper value of grade applied in evaluation of optimal solu-
tion according to Pareto analysis allows to dramatically reduce the number
of unclassified sessions. Moreover, when grade = 0.5, the solution is perfectly
equivalent to the formal theory.
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9.2 Experimental results and discussion

9.2.1 The test scenarios

The effectiveness of proposed method can be demonstrated with respect to
the most representative performance metrics for the analyzed dataset and it is
helpful to compare the algorithm with one that shows optimal results on the
same problem.

In chapter 4, we showed that Sequential Probability Ratio Test from Wald
[86] is able to outdo the allegedly best algorithm for real-time bot detection
[23], therefore it has been compared with QEMC on the same probabilities pre-
viously used in the chapter mentioned above.

Presently, to the best of our knowledge, the SPRT method, proposed in [76],
outperforms all other state-of-the-art approaches.

The main focus of the present work is not necessarily showing that the new
approach perform better than state-of-the-art methods, but proving the effect-
iveness of a new paradigm that exploits quantum properties to take timely
and reliable decisions.

The implemented two-stage model was beneficial to support the deployment
of both Sequential Probability Ratio Test and Quantum-inspired Entangled
Multinomial Classifier, along with the synoptical comparison of the respective
results.

Three scenarios have been chosen to fairly and extensively compare the pro-
posed and the reference approaches and possibly highlight any weaknesses in
the new method, as visible in Table 9.

Table 9: Experimental scenarios

Scenario Validation peep Lower Thr. Upper Thr. grade

A 50% 4 0.039 0.9 0.2⇒ 2.6

B 70% 4 0.05⇒ 0.25 0.75⇒ 0.95 0.5

C 70% 6 0.10 0.85 0.1⇒ 2.6

The number of sessions used for training has been gradually reduced down
to the 30% of entire dataset and the peep and grade hyper-parameters are valid
for the Quantum-inspired approach only.

Moreover, given that SPRT has been implemented by means of logarithmic
expressions, the thresholds reported in Table 9 are transparently converted
into their log equivalent.

It is worth noting that the peep mechanism, although required to control the
computational impact, represents a disadvantage for QEMC algorithm because
it bounds the method’s look-back memory.

For each scenario described in Table 9, the same performance indicators have
been considered:

• LDS: length of the decision sequence; low is good;
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• ACC: accuracy of classification, defined as the total number of correct
assignments divided by the total number of sessions; high is good;

• TUC: total number of unclassified sessions left; to be minimized

These metrics represent three objective functions that ideally should be op-
timized simultaneously for proper decision making. Pareto front plots have
been used to balance these contrasting goals because our aim is accuracy max-
imization against minimization of decision steps and unclassified sessions.
This means that multiple solution can optimize the desired objectives and
every non-dominated solutions is Pareto optimal (see subsubsection 8.1.0.1) and
represents an acceptable solution to the problem.

In the present work, only extrema are considered as they represent the best
solution on at least one observable metric.

9.2.2 Scenario A - classification accuracy vs grade

This scenario has been setup to assess the impact of variable values of grade
on the performance indicators. Since, this hyper-parameter only affects the
outcome of quantum-inspired approach, the results of SPRT are constant in the
comparison. Specifically, classification on SPRT ends with ACC equal to 0.9422,
leaving only 4 unclassified sessions and using 3 steps for LDS.

Figure 18: Scenario A - Accuracy vs Grade.

The decision thresholds have been set to fixed values, identified as optimal
by means of Pareto analysis, and 50% of available sessions have been set aside
for model validation.

Concerning QEMC, different values of grade have been tested, as shown in
Figure 18 but, according to the Pareto frontier plot in Figure 19, the optimal
points to consider for the comparison with SPRT correspond to grade 0.4, which



9.2 experimental results and discussion 64

Figure 19: Scenario A - Pareto front analysis.

maximizes the accuracy, and 2.6 which minimizes the length of decision se-
quence to the same value as SPRT.

At grade 0.4, ACC value is 0.9585, the highest for this setting, but the number
of unclassified sessions is 50, which is extremely high compared to SPRT, and
LDS is 10.

Conversely, at grade 2.6, accuracy is only slightly less than in the previous
case (ACC=0.9512 with a variation ∆ = −0.0073) but LDS is exactly the same
as in SPRT and the number of unclassified sessions drops to zero. Nevertheless,
in both cases, classification accuracy is greater QEMC (worst case variation has
∆ = 0.009).

9.2.3 Scenario B - dependence on thresholds

This scenario evaluates the classification results with regard to variable threshold
values on 70% of sessions used for validation with grade set at 0.5, which is the
default value for QEMC.

In order to make the two approaches comparable with regard to hyper-
parameters selection, a modified version of QEMC binary classifier was tested,
adding a selection threshold for eventually restricting the decision options. In
this case the class label at request k is assigned by changing Equation 30 as
follows:

deck =


1 if pi(k) ≥ T1

0 if pi(k) ≤ T0

� if T0 < pi(k) < T1.

(40)

The best results for SPRT were achieved with lower and upper thresholds
set to the logarithm of 0.1 and 0.85 respectively; in this configuration, ACC is
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Figure 20: Scenario B - Accuracy vs Decision Step

0.9205, TUC is 8 and LDS is 3. The metrics for QEMC at the same thresholds
values are slightly better in accuracy (0.9302), which means that the overall
number of correctly classified sessions is greater, but it might take longer to
make a decision (LDS = 5), even if in both cases the 90% of sessions is classified
at the first step, and the number of unclassified sessions is almost doubled
(TUC = 15).

The best threshold pair for QEMC is 0.25 for the lower and 0.95 for the upper
threshold where, despite even greater values of LDS (7) and TUC (23), the
accuracy sensibly rises to 0.9527 (∆ = +0.0322 versus best SPRT) and the 90%
of sessions is classified within the second step. For these threshold values, the
accuracy of SPRT is slightly lower (0.9204) than the best case, but the number
of unclassified sessions decreases to 4 while maintaining the same LDS value.
Despite the lower number of undecided sessions, the lower accuracy value
indicates that SPRT has actually a greater number of misclassified sessions.

For the current setting, Figure 20 visualizes the rate of correctly classified
sessions for the two methods: SPRT identifies a greater percentage at the first
two requests but no great improvement is achieved on the third and last step.
Conversely, QEMC takes over at the third request and the overall performance
is nearly 1% greater than the reference method.

9.2.4 Scenario C - variable grade with larger peep

The third scenario compares the performance indicators when varying grade at
constant thresholds, optimal for SPRT, and with peep = 6, which is expected to
improve accuracy of QEMC by considering longer sub-sequences in the decision
process.
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The configuration of current scenario is unchanged from the previous one,
with a non negligible reduction in the training dataset with regard to scenario
A. Since the peep mechanism only applies to the quantum-inspired approach,
the results for the probabilistic method remain unaltered with ACC = 0.9205,
TUC = 8 and LDS = 3, while conversely the expedient improves QEMC scores
at the Pareto optimal values of grade.

Figure 21: Scenario C - Accuracy vs Grade.

Figure 22: Scenario C - Pareto front analysis.

The optimal grade value to maximize accuracy is 0.2, as shown in 22, where
accuracy is 0.9589, a bit higher (∆ = +0.0004) than in Scenario A with peep at 4,
showing that it is possible to achieve better classification rates by considering
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more samples at the expense of computational effort. This is also paid for in
terms of LDS, that grows up to 15, TUC that spikes to 91 and on the number
of steps required to classify the 90% of the sessions which becomes 3.

On the other side, the optimal value of grade to minimize LDS is 2.4, which
not only requires at most 2 samples to take a reliable decision but also allows
to achieve zero on the total number of unclassified sessions. The good point
here is that accuracy is only 10−4 worse than for SPRT, with only 1 request
needed to classify 90% of the sessions in both cases.

The three scenarios proposed above are representative of the various com-
binations of post-training hyper-parameters and expose both the pros and cons
of the novel quantum-inspired approach.

Classification accuracy for Quantum-inspired Entangled Multinomial Clas-
sifier can be sensibly boosted by properly selecting the peep and grade values,
at the same threshold conditions, by means of Pareto analysis. Moreover, the
same parameters can be tuned to target some specific objectives, such as zero
unclassified sessions or a shorter decision sequence, while preserving the per-
formance indicators that, in the worst case, are fairly equal to those from Se-
quential Probability Ratio Test. In fact, by adjusting peep and grade, it is possible
to increase the convergence speed of the classification algorithm and reduce
the number of requests needed to take a decision to an even smaller value than
SPRT.

It is worth noting that a reduction in the training size of the dataset has a
minimal impact on classification accuracy for quantum-inspired algorithm, in
the same testing conditions.

Experimental evidence shows that, with a validation ratio of 50%, accuracy
is 0.9573 for QEMC and 0.9421 for SPRT whereas, when 30% of the sessions is
used for training, the corresponding values are 0.9535 and 0.9204 respectively.
Hence ∆QEMC = −0.0038 and ∆SPRT = −0.0217, which is nearly 6 times greater
than the former.

Another important consideration is related to the peep value: the adoption of
such mechanism is imposed by the computational performance downgrade on
long sequences when the decision process requires to consider many requests
to meet the desired confidence level.

However, regardless of the length of a session, the number of samples that
have to be taken into account, as shown in section 6.4 and section 9.2, it is often
limited to 4 to 6 samples. Greater peep values do not bring any benefit to the
classification performance but increase the computational effort, making the
approach less suitable for a real-time application.

Nonetheless, being bot detection a binary problem, it was possible to con-
firm the above assertion by a modified implementation software that relies
on simplified math instead of the tensor product required in the multi-class
setting. This alternative solution can handle sequences of any length without
going to the peep workaround. Results from such experiments guarantee the
same exact level of accuracy achieved with tensor implementation, even if at a
sensibly higher speed: unfortunately in the multinomial setting it is not pos-
sible to devise an alternative lightweight computational approach.
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Finally, while SPRT is designed as a binary classifier and requires a modified
approach to be applied in a multi-class problem, the QEMC method is natively
suited for multinomial problems by simply expanding the orthonormal basis
through the addition of further basis states.
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Conclusions and Final Remarks

The present thesis is the result of my PhD studies and research activities, that
started with a very specific research question, such as on-the-fly bot detection
from HTTP request logs.

As my understanding of the task was progressing, my interest in finding
a generalized approach that could solve similar problems also increased in
parallel.

After analyzing the state-of-the-art methods and implementing an effective
solution based on Sequential Probability Ratio Test, the growing attention of
the Computer Science community towards quantum-computing and its ap-
plications to solve complex problems, made me wonder if it would be possible
to take advantage of its underlying principles in time series classification.

The study of quantum mechanics properties and qubit simulation was the
first step into developing the proposed quantum-inspired classifier, termed
Quantum-inspired Entangled Multinomial Classifier (QEMC), that was initially
designed into the bot detection binary setting and subsequently extended into
a multi-class version, with reject option, for more generic purposes.

In the present thesis, the general structure of a temporal sequence of data
was analyzed, highlighting the benefits of real time classification for stationary
and non-stationary data streams.

In the chapter 8, a novel method for Web bot detection on a Web server in
real time was proposed, based on a two-stage classifier that combines a neural
network model and the Sequential Probability Ratio Test to classify an active
visitor as a bot or human as early as possible.

The extensive experimental study, tested on traffic streams from an actual
Polish server, showed that SPRT is able to detect as much as 93% of all bots on-
the-fly and is especially powerful given a very limited number of observations.

Contrarily to other bot detection approaches [6, 23, 80], SPRT does not set
a minimum number of HTTP requests to be observed before allowing for a
decision. Moreover, 0.98 in precision asserts that very few human visitors are
erroneously classified as bots: this is a very important aspect for transparency
to human users of bot detection mechanisms.
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In fact, the Sequential Probability Ratio Test classifier can be implemented as
a lightweight extension to Web server software or integrated with other similar
tools, like CAPTCHA.

The theoretical formulation of the algorithm states that it is possible to es-
timate the number of observations required to achieve a given error rate, but
current implementation does not support this feature, which could be included
in future research works.

As a different approach from SPRT, an innovative quantum-inspired multi-
nomial classifier for early detection of significant events on time series, that
has been validated both in a synthetic experimental setting and in the bot
detection application.

The present study confirms that the proposed technique, which relies on
superposition and entanglement to integrate the class probabilities, estimated
by an upstream stage, of every collected event in a time series, can produce an
overall score capable of supporting trustful decisions even in case of a limited
number of events, both in the binary and in the multinomial setting.

The effectiveness of this method has also been successfully compared with
other approaches and specifically with SPRT on bot detection, algorithm that
was proven to outperform some consolidated state-of-the-art techniques.

Similarly, its results were analyzed with reference to the contrasting object-
ives of classification accuracy, number of undecided sessions and speed of
decision, showing that the proposed quantum-inspired algorithm, in my opin-
ion, natively covers an area of application (non-stationary data stream classi-
fication) that so far has not yet found reliable and performing approaches.

With regard to the methods analyzed in chapter 3, some additional notes
are worth reporting:

1. QEMC is tolerant against non-standardized numerical features, which is
usually considered a compelling transformation for machine learning
tasks;

2. with QEMC, it is possible to dramatically reduce the number of training
sequences with no significant drop of classification scores;

3. in current configuration of the classification framework, solutions are not
interpretable, therefore some areas of application might be precluded to
QEMC;

4. no estimate on reliability of decisions is currently available in QEMC;

5. dependencies on grade parameter have not been explored in depth, but
could open the way to a fuzzy flavor of the classifier.

In my opinion, the last three items represent interesting areas of investiga-
tion, where near future research should be directed.

Replacement of the Artificial Neural Network with explainable ways to com-
pute the probability estimates of observations might open new perspectives
for the quantum-inspired technique, especially if accompanied by a measure
of decision reliability.
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Last but not least, we are starting to apply QEMC to other industrial sec-
tors, such as automotive, and to lay the basis for future research activities on
multinomial time series classification.



PART III

Appendix



11
Appendix on Wald’s Theorems

The present appendix provides the mathematical proof of the two theorems
from Wald that are cited in chapter 4, with implicit reference to the symbols
and formalism used therein.

11.1 Proof of equation 10

Theorem: A is upper bounded by 1−β
α and B is lower bounded by β

1−α

Proof
For each sample {x1, . . . , xm} such that deck = 1, as of Equation 8, holds

p(x1, . . . , xm|y = 1) ≥ p(x1, . . . , xm|y = 0)

Since this equation is valid for all samples assigned to class 1, for the probab-
ilities holds

P(dec = 1|y = 1) ≥ P(dec = 1|y = 0)

The left term represents the probability of correctly labeling a sequence in class
1, that is 1− β, whereas the right term is the probability of incorrect labeling
for class 0, which is α.

Hence we can write 1− β ≥ A · α, which leads to

A ≤ 1− β

α
(41)

A similar reasoning can be applied to the lower bound, which proves that
B ≥ β

1−α .

11.2 Proof of equation 11

Theorem: When A? and B? are selected instead of optimal values A and B, for
the real error probabilities α? and β? holds that α? + β? ≤ α + β
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Proof
When assigning the values of A? and B? as of Equation 10, we can write

α?

1− β?
≤ 1

A?
=

α

1− β

Multiplying both sides by (1− β?) · (1− β), we obtain

α? · (1− β) ≤ α · (1− β?)

whence we can write

α? − α?β ≤ α− αβ? (42)

Similarly, from

β?

1− α?
≤ B? =

β

1− α

after multiplying both sides by (1− α?) · (1− α), we have

β? − αβ? ≤ β− α?β (43)

Finally, summing together the inequalities in 42 and 43, we obtain the expected
result

α? + β? ≤ α + β (44)
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