
UNIVERSITY OF GENOVA

Polytechnic School

Doctoral Program in Science and Technology for Electronic and Telecommunication

Engineering (XXXII cycle)

Energy-efficient embedded machine learning algorithms for

smart sensing systems

Mario Osta

Supervisor: Prof. M. Valle

A thesis submitted for the degree of

Doctor of Philosophy

February 2020

 i

 ii

ACKNOWLEDGMENTS

This Ph.D. journey is a combined effort of several individuals, including the scholars,

family members who supported me, and friends who were always accessible through this

journey.

First and foremost, I would like to express my gratitude to my marvelous thesis supervisor

Prof. Maurizio Valle whose support, guidance during these three years has made this thesis

possible. He gave me opportunities to improve my work through my learning path.

I am very grateful to my colleague Dr. Ali Ibrahim for his encouragement and extensive

support through my Ph.D. journey. His evaluation and suggestions were essential to solving

various bottlenecks in my research work innovatively. He influenced me to work hard and

persist in my determination.

During my Ph.D., I had the opportunity to work at the Swiss Federal Institue of Technology

in Zurich (ETH) as a visiting researcher. I am grateful to my internship mentor for making

this research work successful.

I would like to thank my friends and lab mates at the COSMIC lab for the lively discussion

and unforgettable adventures. I am also grateful to all my friends at the ETH IIS lab in

Zurich.

Last but not least, I would also like to thank my parents, my sister, and my brother, for their

advice and support throughout my life. This could not be achieved without them.

 iii

 iv

SUMMARY

Embedded autonomous electronic systems are required in numerous application

domains such as Internet of Things (IoT), wearable devices, and biomedical systems.

Embedded electronic systems usually host sensors, and each sensor hosts multiple input

channels (e.g., tactile, vision), tightly coupled to the electronic computing unit (ECU). The

ECU extracts information by often employing sophisticated methods, e.g., Machine

Learning. However, embedding Machine Learning algorithms poses essential challenges

in terms of hardware resources and energy consumption because of: 1) the high amount of

data to be processed; 2) computationally demanding methods. Leveraging on the trade-off

between quality requirements versus computational complexity and time latency could

reduce the system complexity without affecting the performance. The objectives of the

thesis are to develop: 1) energy-efficient arithmetic circuits outperforming state of the art

solutions for embedded machine learning algorithms, 2) an energy-efficient embedded

electronic system for the “electronic-skin” (e-skin) application. As such, this thesis exploits

two main approaches:

Approximate Computing: In recent years, the approximate computing paradigm became

a significant major field of research since it is able to enhance the energy efficiency and

performance of digital systems. “Approximate Computing”(AC) turned out to be a

practical approach to trade accuracy for better power, latency, and size [1],[2]. AC targets

error-resilient applications and offers promising benefits by conserving some resources.

Usually, approximate results are acceptable for many applications, e.g., tactile data

processing [3], [4] image processing [5], and data mining [6]; thus, it is highly

 v

recommended to take advantage of energy reduction with minimal variation in

performance [7]. In our work, we developed two approximate multipliers: 1) the first one

is called “META” multiplier and is based on the Error Tolerant Adder (ETA), 2) the second

one is called “Approximate Baugh-Wooley(BW)” multiplier where the approximations are

implemented in the generation of the partial products. We showed that the proposed

approximate arithmetic circuits could achieve a relevant reduction in power consumption

and time delay around 80.4% and 24%, respectively, with respect to the exact BW

multiplier. Next, to prove the feasibility of AC in real world applications, we explored the

approximate multipliers on a case study as the e-skin application. The e-skin application is

defined as multiple sensing components, including 1) structural materials, 2) signal

processing, 3) data acquisition, and 4) data processing. Particularly, processing the

originated data from the e-skin into low or high-level information is the main problem to

be addressed by the embedded electronic system. Many studies have shown that Machine

Learning is a promising approach in processing tactile data when classifying input touch

modalities. In our work, we proposed a methodology for evaluating the behavior of the

system when introducing approximate arithmetic circuits in the main stages (i.e., signal

and data processing stages) of the system. Based on the proposed methodology, we first

implemented the approximate multipliers on the low-pass Finite Impulse Response (FIR)

filter in the signal processing stage of the application. We noticed that the FIR filter based

on (Approx-BW) outperforms state of the art solutions, while respecting the tradeoff

between accuracy and power consumption, with an SNR degradation of 1.39dB. Second,

we implemented approximate adders and multipliers respectively into the Coordinate

Rotational Digital Computer (CORDIC) and the Singular Value Decomposition (SVD)

 vi

circuits; since CORDIC and SVD take a significant part of the computationally expensive

Machine Learning algorithms employed in tactile data processing. We showed benefits of

up to 21% and 19% in power reduction at the cost of less than 5% accuracy loss for

CORDIC and SVD circuits when scaling the number of approximated bits.

 2) Parallel Computing Platforms (PCP): Exploiting parallel architectures for

near-threshold computing based on multi-core clusters is a promising approach to improve

the performance of smart sensing systems. In our work, we exploited a novel computing

platform embedding a Parallel Ultra Low Power processor (PULP), called “Mr. Wolf,” for

the implementation of Machine Learning (ML) algorithms for touch modalities

classification. First, we tested the ML algorithms at the software level; for RGB images as

a case study and tactile dataset, we achieved accuracy respectively equal to 97% and

83.5%. After validating the effectiveness of the ML algorithm at the software level, we

performed the on-board classification of two touch modalities, demonstrating the

promising use of Mr. Wolf for smart sensing systems. Moreover, we proposed a memory

management strategy for storing the needed amount of trained tensors (i.e., 50 trained

tensors for each class) in the on-chip memory. We evaluated the execution cycles for Mr.

Wolf using a single core, 2 cores, and 3 cores, taking advantage of the benefits of the

parallelization. We presented a comparison with the popular low power ARM Cortex-M4F

microcontroller employed, usually for battery-operated devices. We showed that the ML

algorithm on the proposed platform runs 3.7 times faster than ARM Cortex M4F

(STM32F40), consuming only 28 mW. The proposed platform achieves 15× better energy

efficiency than the classification done on the STM32F40, consuming 81mJ per

classification and 150 pJ per operation.

 vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

SUMMARY iv

LIST OF FIGURES x

LIST OF TABLES xiii

CHAPTER1. Introduction 1

1.1 Introduction 1

1.2 Embedded Machine Learning 3

1.2.1 Power/Energy Consumption………………………………………………....3

1.2.2 Latency……………………………………………………………………….4

1.2.3 Memory storage……………………………………………………………...4

1.2.4 Algorithm complexity………………………………………………………..5

1.3 Machine Learning On Embedded Hardware Platforms 5

1.4 Energy-Efficient Techniques for ML/DL Processing 6

1.4.1 Parallelism and Data Reuse…………………………………………………..8

1.4.2 Approximations………………………………………………………………8

 1.4.2.1 Algorithmic Level……………………………………………...…10

 1.4.2.2 Architecture Level……………………………………………..….11

 1.4.2.3 Circuit Level………………………………………………………11

1.4.3 Network Sparsity………………………………………………………...….12

1.5 Context of the Work 12

1.6 Thesis contributions 13

1.7 Organization of the thesis document 15

 viii

CHAPTER2. Low Power Approximate Arithmetic Circuits 17

2.1 Introduction 17

2.2 Background on Adders and Multipliers 18

2.2.1 Representation of signed integers…………………………………………...19

2.2.2 Basic Adders………………………………………………………………..20

 2.2.2.1 Ripple-Carry Adder……………………………………………….20

 2.2.2.2 Carry-Chain Adder………………………………………………..20

 2.2.2.3 Carry-Lookahead Adder………………………………………….22

2.2.3 Multiplication……………………………………………………………….22

 2.2.3.1 Partial Product Generation………………………………………..22

 2.2.3.2 DADDA Multipliers………………………………………………23

 2.2.3.3 WALLACE Multipliers……………………………………….….24

 2.2.3.4 Baugh-Wooley Multiplier………………………………………..26

2.3 Background on Approximate Adders and Multipliers 28

2.3.1 Approximate Adders………………………………………………………..28

2.3.2 Approximate Multipliers…………………………………………………....29

2.4 Low Power Approximate Adders and Multipliers 30

2.4.1 Approximate Adders Circuits…….………………………………………....31

2.4.2 Approximate Multipliers Circuits…..……………………………………....35

 2.4.2.1 Approximate META Multiplier……………………………….….36

 2.4.2.2 Approximate Baugh-Wooley Multiplier………………………….42

2.5 Results 46

2.5.1 Hardware Implementation of META Multiplier…………………………….54

2.5.2 Hardware Implementation of Approximate Baugh-Wooley Multiplier……..61

2.6 Conclusion 61

CHAPTER3. Approximate Computing Circuits for Tactile Data Processing 63

3.1 Introduction 63

3.2 E-skin system 64

 ix

 3.2.1 Sensor array………………………………………………………………...65

 3.2.2 Interface electronics………………………………………………………...66

 3.2.3 Signal and data processing………………………………………………….66

3.3 Methodology for Approximating Tactile Sensing 67

3.4 Approximations in Digital Signal Processing 69

3.4.1 Experimental Setup Description……………………………………….……69

3.4.2 Finite Impulse Response Filter Structure……………………………………70

3.4.3 Filtered Output Tactile Data……………………………………………..….72

3.5 Approximations in Data Processing 73

3.5.1 CORDIC Algorithm…..……………………………………………………....74

3.5.2 CORDIC Circuits……………………………………………………………..75

3.5.3 Hardware Implementation of Approximate CORDIC……………………..….78

3.5.4 Singular Value Decomposition………………………………………….……82

3.5.5 Hardware Implementation of Approximate SVD………………………….….86

3.6 Conclusion 92

CHAPTER4. Machine Learning Algorithms for Tensorial Tactile Data

Processing 94

4.1 Introduction 94

4.2 Tactile data based on the tensorial approach 95

4.3 Machine Learning Approaches for Touch Recognition 96

 4.3.1 Pattern Recognition Based on Kernel Methods…………………………….97

 4.3.2 Exploiting Kernel Functions for Tensorial Approach……………………..101

4.4 Experimental Setup and Results 105

 4.4.1 The Model Choice for Touch Recognition……………………………..…105

 4.4.2 Dataset……………………………………………………………………107

 4.4.2.1 RGB Image……………………………………………………..107

 4.4.2.2 Tactile Data…………………………………………………….108

 4.4.3 Data Preprocessing………………………………………………….……108

 4.4.4 Validating SVM Algorithm……………………………………………....109

 x

 4.4.4.1 Image Classification…………………………………………...109

 4.4.4.2 Touch Modalities Classification…………………………….....110

 4.4.5 Prediction Phase………………………………………………………....111

4.5 Conclusion 112

CHAPTER5. Energy-Efficient System for Touch Modalities Classification 114

5.1 Introduction 114

5.2 PULP processing unit 116

5.2.1 SoC Domain………………………………………...……………………..116

5.2.2 Cluster Domain…………………………………………...……………….119

5.3 SVM based Tensor Kernel Algorithm on the PULP Architecture 120

 5.3.1 Inference Implementation………………………………………………...120

 5.3.2 Fixed-Point Implementation…………………………………………...….123

 5.3.3 Parallelization and Memory Management Strategy……………………….124

5.4 Experimental Results and Performance Assessment 127

 5.4.1 Performance…………………………………………………………...….128

 5.4.2 Power Consumption…………………………………………………..….129

5.5 Conclusion 131

CHAPTER6. Conclusion and future extensions 132

APPENDIX 136

Bibliography 141

 xi

LIST OF FIGURES

1.1 Energy-efficient methods for embedded machine learning…………………..............2

1.2 An overview of some energy-efficient techniques at the algorithmic, architecture, and

circuit-level for embedded Machine and Deep Learning

Algorithms………………...8

2.1 Ripple-carry adder………………………………………………………………..…19

2.2 Carry-chain adder……………………………………………………………….…..21

2.3 Partial products for unsigned numbers……………...………………………………22

2.4 Partial products for two’s complement numbers …………………………………...23

2.5 Dot diagram for an 8×8 DADDA multiplier………………………………………...24

2.6 Dot diagram for an 8×8 WALLACE Multiplier…………………………………….25

2.7 Block diagram of the Baugh-Wooley multiplier…………………………………….26

2.8 General hardware architecture for approximate adder circuits……………………...30

2.9 Approximate adder circuits…………………………………………………………31

2.10 Block diagram of the META approximate multiplier………………………………35

2.11 Block diagram of ETA adder……………………………………………………….36

2.12 Architecture of approximate Baugh-Wooley multiplier……………………………38

2.13 Probability of acceptance versus minimum acceptable accuracy for S-META and S-

MRCA……………………………………………………………………………………44

2.14 Probability of acceptance versus minimum acceptable accuracy for U-META and U-

MRCA…………………………………………………………………………................45

2.15 Error percentage distribution for the two approximate multipliers………………....46

2.16 Probability of acceptance of S-META for different bit sizes……………………….47

2.17 Probability of acceptance of U-META for different bit sizes………………………48

2.18 Average power consumption and delay of META multipliers……………………..50

 xii

2.19 Instantaneous power consumption and delay of META multiplier………………...50

2.20 Percentages of outputs versus relative error distance for different inexact multiplier

circuits……………………………………………………………………………………52

2.21 Variation of NMED(a), MRED(b) and PASS RATES(c) with respect to the number

of bits approximate bits…………………………………………………………………..53

2.22 Power consumption, delay and MRE of exact and approximate multiplier

designs……………………………………………………………………………………54

3.1 Block diagram of the e-skin system………………………………..……………….59

3.2 Sensor array…………………………………………………………………………60

3.3 Proposed methodology for approximate tactile sensing system…………………….63

3.4 Experimental Setup…………………………………………………………………65

3.5 a). Functional block diagram for quality evaluation of FIR filter based approximate

multiplier b) Design of 16-tap low pass finite impulse response filter using approximate

multipliers ……………………………………………………………………………….66

3.6 Sorted signal-to-noise ratio for the exact and approximate multipliers……………...67

3.7 Waveforms of tactile signals generated from the sensor array using FIR filters based

on approximate multipliers……………………………………………………………….68

3.8 Architecture of the CORDIC in rotation mode……………………………………...71

3.9 Percentages of outputs versus relative error distance for different inexact adder

circuits……………………………………………………………………………………73

3.10 Power consumption, delay, and MRE of exact and approximate adder designs…..74

3.11 Approximate SVD block diagram………………………………………………….76

3.12 Accuracy of the eigenvalues of the approximate SVD for an input matrix of size

(5×5)……………………………………………………………………………………...77

3.13 Accuracy of the eigenvalues of the approximate SVD for an input matrix of size

(8×8)……………………………………………………………………………………...78

3.14 Performance and Error resilience analysis of the Singular Value Decomposition for

an input matrix of size (5×5) (a) and (8×8) (b)……………………………………………81

4.1 Schematic of tactile acquisition system………………………………………..……86

 xiii

4.2 Support vector machine……………………………………………………………..88

4.3 Tensor unfolding……………………………………………………………………92

4.4 Non-linear SVM………………………………………...………………………...…97

4.5 Sample images…………………………………………………………………….100

4.6 Touch modalities. (a) Finger sliding; (b) washer rolling……………………...……101

4.7 Schematic of the algorithm box…………………………………………………....105

5.1 Block Diagram, including the tactile sensor array, the sensor’s interface, and the

processing platform………………………………………………………………….….107

5.2 High-Level Mr. Wolf architecture…………………………………………..………108

5.3 Mr. Wolf SoC block diagram………………………………………………………109

5.4 Mr. Wolf cluster block diagram………………………………………………...….111

5.5 Mr. Wolf Board……………………………………………………………..……..112

5.6 Online computation of the SVM based tensor kernel algorithm……………..…….117

5.7 L2 memory allocation sequence…………………………………………….……..122

5.8 Power consumption and energy efficiency comparison of the online computation

algorithm on the ARM Cortex M4 and Wolf……………………………………...…….126

5.9 Power consumption and energy efficiency of each function of the online computation

algorithm on Mr. Wolf…………………………………………………………………..127

 xiv

LIST OF TABLES

1.1 Energy-efficient embedded machine/deep learning algorithms on different hardware

platforms………………………………………………………………………………7

1.2 Approximate computing methods at different abstraction levels…………………....10

2.1 Output of Sum and Carry bits For Different Cases……………………………….….41

2.2 Simulation results of 8-bit multipliers………………………………………………49

2.3 Accuracy metrics for different approximate multipliers designs……………………51

2.4 Area, PDP, and PDP-MRED of multipliers designs………………………………...55

3.1 Accuracy Metrics For Different Approximate Adders Designs………………..……72

3.2 Full adder versus approximate adders based CORDIC circuits……………………74

3.3 Percentage relative error of Approximate SVD……………………………………..78

3.4 Relative error of the eigenvalues resulted from the approximate SVD for an input

matrix of size (8 ×8)………………………………………………………………………79

4.1 Results of model selection and accuracy obtained for image

classification……………………………………………………………………………103

4.2 Results of model selection and accuracy obtained for touch modalities

classification…………………………………………………………………………....104

5.1 Characteristics of Mr. Wolf…………………………………………………..……109

5.2 Q16.16 format range……………………………………………………….………120

5.3 Algorithm memory…………………………………………………………...……122

5.4 Algorithm memory for different size of tensors……………………………………123

5.5 Performance of the tensorial kernel online computation on Wolf platform. Cyc, T, Sp

stand for cycles, Time and speed-up………………………………………………….…125

 1

CHAPTER 1. INTRODUCTION

1.1 Introduction

Over the past decade, a new wave of intelligent computing systems driven by machine

learning algorithms has been deployed in many applications such as the Internet of things

and security systems. IoT devices ought to effectively decode a large amount of raw data

coming from miniaturized sensors providing vital information. The extracted information

is transmitted onto the wireless channel, and it is usually used to close the loop in control

systems providing real-time response. Besides, the small size form of these embedded

devices (e.g., wearable sensors) limits the battery size and hence the energy availability.

Furthermore, intelligent devices could move “closer to the sensor,” thereby eliminating the

latency of cloud access and reducing limitations in communication bandwidth by

employing sophisticated methods (e.g., Machine learning). Machine learning is considered

as dominant paradigms making intelligent tasks and providing information about the

observed phenomenon. However, deploying Machine Learning algorithms in embedded

devices poses several challenges in terms of hardware resources and energy consumption

because of 1) the high amount of data to be processed significantly affecting the real-time

functionality, and 2) the complex processing tasks involve computationally demanding

methods imposing an additional burden in terms of power consumption. Therefore, aiming

to implement powerful machine and deep learning algorithms within a power range of

microwatt requires an essential improvement in processing energy efficiency.

 2

Leveraging on the trade-off between quality versus computational complexity and

latency would reduce the system complexity (see Fig.1.1) without affecting the system

functionality. Such an approach can be achieved by several energy-efficient techniques

(Parallelism and data reuse, Approximate Computing, Network Sparsity) on embedded

machine learning systems. In this perspective, this chapter aims to present an overview of

the energy-efficient implementation of machine learning algorithms on hardware platforms

highlighting the main challenges when embedding such algorithms. Moreover, it reports

the techniques that could be applied to improve energy efficiency, such as approximate

computing, by reviewing the effective methods used to overcome the challenges at the

circuit, architectural, and algorithmic levels. Further, it describes the main factors to be

taken into consideration when choosing the appropriate platform. Lastly, this chapter

Fig.1.1. Procedure for implementing an energy efficient embedded machine learning algorithm

 3

describes the context of the work and the mains contributions achieved during the Ph.D.

The overview work presented in this chapter was published in [129], [131].

1.2 Embedded Machine Learning

Machine learning has emerged in different scientific fields and everyday tasks in today’s

electronic systems and smartphones. ML paradigms have been effectively used to address

standard regression and classification problems. Furthermore, deep learning methods

represent state-of-the-art technology addressing the task of extracting structured

information from complex domains such as object/face recognition, object tracking, etc.

However, employing such paradigms for embedded platforms imposes challenges in terms

of time latency, energy consumption, and storage.

1.2.1 Power/Energy Consumption

Energy consumption is the power consumed during the runtime of the algorithm when

targeting embedded implementations. It is the energy consumed during the execution of

the algorithm, basically composed of computing energy, IO operations, and necessary

energy for memory storage. Energy efficiency is considered an essential metric, especially

when dealing with applications such as portable, medical/biomedical IoT devices.

Moreover, integrated circuits must embed ML instead of power-hungry FPGA-based

microprocessors in order to meet the low power budget constraint in wearable or

implantable devices [8],[9]. To emphasize the critical need of this metric, we take an

example of the implemented tensorial SVM on the FPGA device for classifying different

touch modalities, as shown in [10]. The proposed implementation is feasible for real-time

classification while the amount of power consumed is 1.14 W. Similarly, as shown in

 4

[8],[9] ML must be embedded into dedicated platforms in order to reduce the power

envelope constraint in wearable devices to the range of mW. Therefore, the critical

challenge is to improve power consumption while preserving the real-time constraints for

longer battery life. Improving energy efficiency will provide longer battery life, and then

more extended functionality within the same energy source.

1.2.2 Latency

Real-time operation is a principal requirement in many application domains for embedded

ML[11]. Latency is defined as the time difference between the generated output data and

the input data provided to the system. The time latency depends on the number of

operations performed in a unit of time, such as operations per second (OPS) or floating-

point operations per second (FLOPS). In many real-time applications such as deep brain

stimulation[12]and vital sign monitoring[13], the response time of the machine learning

algorithm must be adequately fast. Moreover, [14] and [15] ML/DL algorithms take more

than 1 second to classify different objects. This fact highlights the latency problem faced

in IoT devices when implementing ML/DL algorithms; since the application must meet

real-time constraints.

1.2.3 Memory Storage

Memory is a big challenge in embedded machine learning and deep neural networks

today[16],[17]. Memory subsystems expend significant time and energy in computing

platforms due to the frequent high data transfer between processors and off-chip

memory[18]. Researchers are combatting with the DRAM devices having limited capacity

and memory bandwidth. The memory is employed for storing a high amount of training

 5

data, and parameters such as weights in DNN and support vectors in SVM. The higher the

number of training data, the harder the memory challenge. For example, more than 900M

operations of memory read, and writes are needed in [19].

1.2.4 Algorithm Complexity

Concerning the complexity of the algorithm, it depends on the number of mathematical

operations and instructions executed by the algorithm in the embedded space. For instance,

ANN requires energy consumption less than SVM since the ANN model takes five times

fewer operations than SVM [20].

1.3 Machine Learning On Embedded Hardware Platforms

This section describes the steps to follow when implementing ML on embedded hardware

platforms [21]. A model with few operations should be selected since some networks, e.g.,

AlexNet and GoogleNet[22], [23], are not designed for the embedded space. Then, a

performance study must be applied on the selected ML algorithm, which depends on some

characteristics such as: 1) the number of layers, 2) fps (frames per second) requirements,

3) the number of bits used in the algorithm, 4) memory storage and 5) number of operations.

The final step is to look for processors supporting some significant features (e.g.,

quantization, sparsity, etc.). For example, different software architectures of CNN have

been designed in[24] in order to find only one suitable architecture having the lowest

complexity.

Moreover, the activation of the hidden layers with the parameters of the selected CNN,

which will be implemented, must be regularly stored and accessed. Then, the low power

 6

microcontroller from the MSP430FR series is selected as the target platform. It is

characterized by a ferromagnetic memory of 256 kB, which reduces power consumption

by three times and increases the speed up of the data movement by 100x. Similarly, in[25],

the DNPU processor characterized by a LUT-based multiplier dedicated to quantization is

considered optimal for the implementation of CNN and RNN. Thus, reducing off-chip

memory access and improving the energy efficiency consequently by 4.5x with a negligible

accuracy loss. Therefore, by following the flow diagram, the selected processor will feed

the requirements of the selected algorithm, leading to an efficient implementation.

1.4 Energy-Efficient Techniques For ML/DL Processing

Table 1.1.: Energy efficient embedded machine/deep learning algorithms on different hardware platforms

Energy Efficient

Technique
Design Approach

M.L and D.L algorithms Hardware Platforms Performance Application

Parallelism and data

reuse

Intra-layer approach[14] DCNN Orlando SoC Speed up: 14.21x

Parallelization on 8 cores[35]
 PULP-Mr.Wolf Energy: 83.2Uj

Power: 10.4 mW

EEG

Parallelization on 2 cores[36] Tensorial SVM PULP-Mr.Wolf 15× energy savings E-skin

Row stationary-Exploiting

local data reuse[26]

CNN Eyeriss Chip 1.4×-2.5× energy

savings

Iot Devices

Pipeline through HLS

directives[27][28]

Linear SVM

FPGA

 9.9×-speed up

Melanoma

detection

Decision Tree Character

recognition

OpenCL (parallelism)[29]

KNN

DE5 FPGA

3× energy efficiency

KDD-CUP2004

Quantum physics

set

Approximations

Algorithmic level[25], [43]

CNN and RNN

DNPU

4.5×-20×energy saving

ConvNet 100x-energy savings Wearable devices

Algorithmic, architecture and

circuit levels [54]

Neural Networks

ASIC

5% till 87% power

savings

CIFAR as

benchmark

Architecture and circuit levels

[30],[54]

Neural Network TSMC 65nm 43.9% till 62.5% energy

savings

Convolution Network ASIC-28nm silicone 2-9 TerraOps/w/s Real-time

embedded scene

labeling

Network Sparsity

Skipping Sparse

operations[31]

ConvNet Envision Platform 10 TOPS/W-efficiency Wearable devices

Energy aware pruning [56] CNN ASIC 70%-power reduction Wearable devices

and Smartphones

Width and Resolution

reduction[32]

Mobilenets ASIC 88% mult-add reduction

1% accuracy

degradation

Image processing

Removing zero operand

multiplication [33]

DCNN

ASIC

1.24×-1.55×

performance

improvement

3333333333333333333333

 7

Selecting the appropriate hardware platform can be incorporated with other optimization

techniques that could be applied to embedded Machine learning implementations.

Table 1.1 reports some of the most significant energy-efficient techniques employed in the

literature at different levels, for embedded ML/DL algorithms on different hardware

platforms (FPGA, Parallel platforms, an ASIC). It highlights the use of some relevant

techniques by presenting the followed design approach. Then an analysis of the impact of

these techniques on different applications is reported. These techniques include (1)

Parallelism and data reuse[26],[27],[28],[29] (2) Approximations[30], and (3) Network

Sparsity[31],[32],[33] (see fig.1.3). However, the main challenge is to find the optimal way

of choosing a technique or a combination of multiple techniques that can be implemented

at different abstraction levels.[27] This can further reduce the power/energy consumption

while obeying the target application requirements.

Fig.1 Fig.1 Flow diagram of selecting Machine learning algorithms on

embedded platforms [9]

Fig. 1.2. An overview of some energy efficient techniques at algorithmic, architecture and circuit level

for embedded Machine and Deep Learning Algorithms

 8

1.4.1 Parallelism and Data Reuse

Parallelism is one of the most used solutions to simplify this challenge. For instance, many

computations within the same function of the algorithm can share common resources, as

shown in [14], [34]and [35]. Authors in [14] took advantage of the multicore architecture

offered by Orlando SoC to parallelize the convolution operations on tensors, achieving a

speedup of 14.21x. In [34], [35], the PULP platform, an efficient ultra-low-power

processor, is used for EMG signal and nano drones, where power consumption and energy

efficiency have been reduced to below 64 mW by utilizing the available eight cores in [34].

Also, in [36], relatively low power consumption less than 28 mW and an energy efficiency

improvement of 15x have been recorded when parallelizing the tensorial SVM on two cores

of the PULP platform.

1.4.2 Approximations

Due to their inherent error resiliency, machine learning methods may scarify a part of their

accuracy at the benefit of performance improvement. In this regard, recent researches have

relied on approximate computing methods to address the embedded implementation of ML

algorithms. Approximate computing methods have been applied at various levels of the

system abstraction, i.e. algorithmic, architecture, and circuit levels. Table 1.2 reports some

relevant works presented in the literature at different levels [37]. It highlights the used

approximate computing technique and the followed design approach with the analysis of

the impact of the results on the application. The analysis is basically focused on the gain in

performance represented by the power and latency savings on the one hand, and by the

accuracy degradation on the other hand. Approximate Computing (AxC) is the idea of a

 9

trade-off between accuracy and efficiency. It allows the system to expose inexactness to

the application layer of an error-resilient system in return for conserving some resources.

Therefore, selecting an AxC technique for an embedded machine learning algorithm

requires careful analysis in order to maintain a low accuracy degradation with a noticeable

reduction in power consumption.

1.4.2.1 Algorithmic Level

At the algorithmic level[38],[39], approximations are applied to the loops and functions

constituting the program/software which describes the application. These approaches

enable the approximation by reducing the number of iterations in an iterative algorithm.

Focusing on the loops, loop perforation[40] trades accuracy for time latency/power

Table1.2. : Approximate computing methods at different abstraction levels

Level Technique Design Approach Application Results (Energy Savings/Latency)
Accuracy

Degradation

Algorithmic

Synaptic Pruning

and Quantization

Scale computational precision /apply on

accelerator circuits [38]

Convolutional Neural

Networks

Energy reduction up to 30×

No loss

Prune the synaptic weights / reduce the bit

width of the synapses [54]
DNN 80% energy saving < 0.2%

Approximating

Networks

Approximate Neural Network by

approximating neurons [39]

Neuromorphic

Systems
1.14X-1.92X energy savings

< 0.5%

Reduce the number of hidden layers and the

number of neurons [54]
DNN 83.23% energy savings 0.178%

Approximate

processing

Skip reading specific rows in weight matrix

of several neurons [6]
ANN 34.11% ∼ 51.72% energy savings < 5%

Architecture

Selective

Approximation

QUORA vector processor with approximate

processing elements [46]

Programmable

processors
1.05X-1.7X energy savings < 0.5%

Scalable

Hardware

Scaling number of bits in data path between

MAC and FIFOs [47]
SVM 1.2X-2.2X energy savings no loss

Data Storage

Approximation

Perform approximate storage on the

unreliable cache sets [48]
MLC STTRAM 7%-19% energy savings 0.22% to 0.43%

Circuit

Approximate

Multipliers

simplified shift and add operations [46] DNN 18% till 27% power savings < 0.4%

inexact logic minimization approach [15] Neural Network 43.9% till 62.5% energy savings Mean square error

from 0.14 to 0.2

Approximate

Adders

alternate circuits for Full Adder [37] CNN Reduction the area delay product by

50% for LOA

13%

divides the p-bit addition(m+n=p)[55] Neural Network

Approximate

memory

-hybrid 8T-6T SRAM cell [54] Deep fully connected

network

Reduction of the operating voltage

from 0.85 V to 0.8V

< 0.5%

quality configurable memory array [49] [50

]

8 machine- learning

benchmarks

applications

19.5% energy savings Accuracy loss than

0.5%

approximate memory compression [18] 1.28x energy savings

11.5% reduction in execution time

1.5% accuracy loss

Quantization

substitute the floating point multiplications

with lookup table search [51]

Voice recognition 3x energy savings

2.6x improvement in time delay

0.2% accuracy loss

Lowering the precision of network weights

[52]

Deep convolution

network

Reduction of the compute requirement

by ∼3×

7% to 23.4%

Reduced data precision [45] [53] CNN and DNN 1%.

 10

consumption by transforming loops to limit the execution of a subset of the iterations. The

loop perforation is only applied to the tunable loops producing acceptable accuracy. Data

Format Modification is another AxC technique that is widely used. It includes the transition

from floating-point to fixed-point representation. For instance, data samples in voice

applications are represented using 16-bit precision [41], while a 12-bit precision is often

sufficient for image processing applications [42]. Authors in [43] embedded ConvNet in a

wearable device while running a benchmark using a 1-9b fixed-point representation. An

energy efficiency improvement of 100x with an accuracy loss of 1% has been recorded. As

for fixed-point precision-based neural networks, a quantization methodology presented in

[44] can be applied to find a suitable representation of each layer of the network [45] in

order to maintain an acceptable accuracy.

1.4.2.2 Architecture Level

The goal of approximation at the architectural level [46],[47], is to use relaxed

specifications on circuits able to support inexactness during execution and storage.

Concerning data storage, a writing mechanism has been proposed recently [18], enabling

the approximate data storage. Authors in [40] proposed a mechanism based on trading off

accuracy/writing speed in multilevel cell accesses[48]. Approximate storage leverages the

properties of a wide range of memories, such as spintronic memories [49] or solid-state

memories.

1.4.2.3 Circuit Level

At this level[50],[51],[52],[53],[45] hardware designers focus on designs producing

approximate results through synthesizing inexact circuits. Such paradigms have been used

 11

mainly to design arithmetic circuits [54]. The use of approximate arithmetic module blocks

has been considered as a relevant solution aiming to develop energy-efficient and high-

performance machine learning algorithms. For computation, multiplication operations are

central arithmetic units characterized by intricate logic design. Therefore, a number of

approximate multipliers for machine learning have been proposed in the literature

[54],[6],[15], and [55]. In[54], the authors evaluated the use of ASM multiplier in a deep

neural network. The conventional multiplication is substituted by simplified shift and add

operations. The power consumption has been reduced by 18% to 27% at the cost of

accuracy loss less than 0.4%; after carrying out the re-training to the network to compensate

for the loss in accuracy added through the approximations. The approach adopted in[54]

has been proposed in[15],where the energy efficiency is improved by 43.9% to 62.5% after

implementing the inexact multiplier using the inexact logic minimization approach in a

neural network. But the mean square error reported has been increased from 0.14 to 0.2.

However, the degradation in quality shown is higher (5%) after implementing another

architecture of an approximate multiplier in an artificial neural network. Through

ApproxANN, the approximation is applied for both computation and memory accesses.

The proposed multiplier has a tunable output of (n + k) bits, where n represents the bit-

width of input data. The results reported a reduction in terms of power, around 45.9% for

the MNIST application having an MP24 configuration.

Besides the multiplication operation, addition block is considered as a fundamental block

having significant influences over the performances of the system. Therefore, in[37],

authors have selected five approximate adders configurations from the approximate

IMPACT adder configurations. After evaluating every adder configuration, the results

 12

indicate that the average of the accuracy for all the fives adders configurations in a deep

CNN architecture based on the LeNet-5 is around 87%. On the other side, the performances

could be improved, as shown in[55].Authors have proposed the use of Lower-part-OR

Adder(LOA) and BAM multiplier in a neural network for face recognition applications.

The architecture Lower-part-OR Adder (LOA) is based on dividing a p-bit addition into

two m-bit and n-bit smaller parts (m+n=p) . While the structure of the BAM multiplier is

similar to that of an array multiplier. The area delay product of the model has been

decreased around 50% after combining the approximate adder and multiplier into the

model.

1.4.3 Network Sparsity

For an embedded deep neural network, there is a probability that some weight values are

equal to zero. This presents a large sparsity in the network, thus assisting in improving

energy efficiency. After skipping the unnecessary sparse operations in [43],[17], the

ConvNet processor archives an efficiency up to 10 TOPS/W at the same throughput.

Another promising solution towards efficient neural networks is pruning the layers of a

CNN with the most power requirements [56]. This method achieved a 70% reduction in

power consumption, surpassing the previous efforts done in reducing the model size of a

CNN.

1.5 Context of the work

Energy-efficient circuits have become a substantial need for designing embedded

computing systems for such application domains as the Internet of Things (IoT), Wearable

Devices, and biomedical applications. In the “Prosthetics” application [57], a dedicated

 13

portable electronic system is needed for developing wearable devices. Portable prosthetic

systems contain autonomous and networked sensors; each sensor hosts multiple input

tactile sensors tightly coupled to the embedded processing unit and power supply [58]. The

embedded processing unit locally extracts meaningful information by employing

sophisticated methods, e.g., Machine Learning [3], which deals with large dimensions of

datasets. Nevertheless, this imposes challenges on the real-time operation and adds a

burden regarding power consumption. The demands of the electronic-skin are not satisfied

since, as shown by [59], the estimated energy/power is not feasible, i.e., 100 pJ/op, time

latency (i.e., around 7 s) is very high and the computational load is of about 1.2 GOPS.

Therefore, since the implementation of tactile data decoding algorithms for touch

modalities classification requires a high amount of power consumption [10],then our

primary goal in the thesis is to implement energy-efficient techniques for embedded

machine learning algorithms used for tactile data processing in the e-skin .

1.6 Thesis contributions

The contributions in this thesis, are summarized as follow:

• Two signed approximate multipliers have been designed and implemented. The

first one is a rounder multiplier called the “META” multiplier [60] and is based on

the Error Tolerant Adder (ETA), which has been implemented instead of the exact

adder. While the second one is called “Approximate Baugh-Wooley(BW)”

multiplier[61] and is based on the architecture of the exact Baugh-Wooley

multiplier, where the approximation is enabled after introducing the approximate

adder in the computation of the partial products . The proposed circuits have been

 14

implemented using RTL description in VHDL Hardware Description Language for

Virtex-7 xc7vx485tffg1157-1 FPGA device. 10000 inputs have been uniformly

selected and simulated in order to compute the accuracy metrics of the designs. The

relative error (RE) and the mean relative error (MRE) metrics have been calculated

to assess the performance of the approximate multipliers. Results show that

approximate-BW is the most efficient design between the approximate multipliers

achieving a relevant reduction in power consumption and time delay around 80.4%

and 24% respectively with respect to the exact BW multiplier and an improvement

of power consumption reduction by 68.1% with respect to other state of the art

solutions.

• Implementing approximate arithmetic circuits into the Coordinate Rotational

Digital Computer (CORDIC)[62] algorithm and the SVD[63] circuits in order to

reduce the power consumption of ML algorithms; since CORDIC and SVD circuits

take part of the real-time ML algorithm for tactile data processing. Approximate

CORDIC and approximate SVD have been implemented using RTL description in

VHDL Hardware Description Language for Virtex-7 xc7vx485tffg1157-1 FPGA

device. ETA and LOA have been implemented instead of the entirely precise adder

(RCA) into the CORDIC algorithm aiming to study the performance of CORDIC

in terms of slices, power and time latency after employing approximate circuits.

ETA and LOA in the CORDIC design allow respectively a dynamic power

consumption saving up to 13% and 21% with respect to CORDIC-RCA. While for

the (SVD) singular Value Decomposition, the Approximate BW multiplier has

been implemented in Post rotation and Pre rotation blocks of the SVD after scaling

 15

the approximation in the multiplier by increasing the number of the approximate

bits from (8 to 28). Results show that the power consumption of the SVD is reduced

by 19% with a negligible accuracy loss.

• Implementing an energy-efficient smart system for tactile sensing based on a RISC-

V parallel ultra-low-power platform (PULP). The PULP processor, called Mr.

Wolf[64], performs the on-board classification of different touch modalities. This

demonstrates the promising use of on-board classification for emerging robot and

prosthetic applications. Experimental results demonstrate the effectiveness of the

platform on improving energy efficiency and the accuracy of the classification. A

memory management strategy has been proposed in order to store 50 trained for

each class in L2 memory (512 kB). We evaluated the execution cycles for Mr. Wolf

using a single core, 2 cores, and 3 cores to evaluate the benefits of the

parallelization. The three SVDs blocks have been executed in parallel on three

different cores on the Wolf SoC. A 3.72× speed-up can be achieved after executing

SVD (A) ,SVD (B), and SVD(C) blocks on three different cores in parallel. We

demonstrated that the algorithm on the proposed platform outperforms ARM

Cortex M4F (STM32F40) and by 15 times in terms of energy efficiency, without

exceeding the power envelope of a 28mW.

1.7 Organization of the thesis document

The thesis is organized as follows. Chapter 2 describes the architecture of the exact and

approximate adders and multipliers presented in state of the art. Then, it presents the

architectures of the two new proposed approximate multipliers (META and approximate

Baugh-Wooley multipliers). After, an assessment study of the new approximate multipliers

 16

has been done in terms of performance, accuracy, delay, area, and power consumption with

respect to state of the art.

Chapter 3 assesses the impact of the new approximate multipliers designs as well as some

of the most relevant state of the art approximate multipliers on tactile digital signal

processing. The quality is measured in terms of different metrics, mainly: SNR

degradation, power consumption, and time delay. On the other hand, approximate

computing techniques have been applied on the machine learning algorithm employed for

the tactile data processing; by implementing approximate adders and multipliers into the

Coordinate Rotational Digital Circuits (CORDIC) and the Singular Value Decomposition

(SVD) algorithms which take a significant part of the real-time ML algorithm.

Chapter 4 presents the machine learning algorithms employed for tensorial tactile data

processing. Moreover, it discusses the reasons behind following the mentioned approach.

Then, the SVM based tensor kernel algorithm is implemented in C language in order to

validate the effectiveness of the algorithm when classifying images (as a case study) and

touch modalities.

Chapter 5 describes the hardware implementation of the SVM based tensor kernel approach

on a novel computing platform embedding a Parallel Ultra Low Power processor (PULP),

called “Mr. Wolf” for the aim to reach an embedded low power implementation for

wearable devices. The classification based on Support Vector Machine (SVM) runs

directly on PULP classifying two touch modalities (finger sliding and washer rolling)

outperforming ARM Cortex M4 in terms of power consumption and energy efficiency.

 17

CHAPTER 2. LOW POWER APPROXIMATE

ARITHMETIC CIRCUITS.

2.1 Introduction

 Energy-efficiency has become a paramount concern in designing computing

systems. The ever-increasing demand for higher computing power represents a driving

force toward ultra-low power design strategies. Low power consumption is the most critical

design goal for a wide range of electronic systems, including smart self-powered sensing

systems for such application domains as the Internet of Things (IoT), Wearable Devices

and Robotics. To improve energy efficiency, at different layers of the system stack,

researchers have developed different optimizations methods.

In recent years, several techniques at the circuit and system level have been proposed to

address this issue. One of these techniques is “approximate computing,” which turned out

to be a practical approach providing a tradeoff between accuracy and power saving to

improve performance and energy efficiency [1],[2]. Approximate results are usually

acceptable for many applications requiring tactile data processing [3], [4] image processing

[5], and data mining [6]. Thus, it is highly recommended to take advantage of energy

reduction with minimal variation in performance [7]. Recently, approximations have been

used in computing units of embedded systems, especially graphics processing units (GPUs)

and field-programmable arrays (FPGAs) [65]. Computing units, e.g., embedded digital

signal processing (DSP) systems, are considered critical components of modern electronic

embedded devices [55]. Among arithmetic DSP operations, multiplication is considered as

 18

a complex block consuming a high amount of power with significant time latency when

compared to other operations. Decreasing the complexity of multiplication blocks may

reduce the power consumption of DSP systems. In this perspective, the proposed work

employs approximate computing techniques for the arithmetic units, i.e., adders and

multipliers for energy-efficient data processing units. In this chapter, we present an

overview of entirely precise and approximate adders and multipliers circuits. Then we

describe the architectures of the two new proposed approximate multipliers (META and

approximate Baugh-Wooley multiplier). After, an assessment study of the proposed

approximate multipliers has been done in terms of performance, accuracy, delay, area, and

power consumption with respect to state of the art. Therefore, the main goal is to implement

efficient hardware architectures of approximate multipliers providing low power

consumption. The results presented in this chapter were published in [60],[61],[130].

2.2 Background on Adders and Multipliers

This section presents the architecture of some relevant exact arithmetic circuits in state of

the art.

Fig.2.1. Ripple-carry adder

 19

2.2.1 Representation of signed integers

In this section, we will discuss the representation of signed integers (positive and negative).

Usually, two representations are presented such as: the sign and magnitude representation

and the true-and-complement representation.

2.2.1.1 Sign-and-Magnitude (SM) Representation

In the SM system, the signed integer 𝑥 is represented by a pair of (𝑎1, 𝑎𝑚), where 𝑎1is the

sign and 𝑎𝑚 is the magnitude. The values of two sign (+,−) are usually represented by a

binary variable; where the integer 1 corresponds to – and 0 corresponds to +. When

representing the positive integers, the magnitude could be represented in any system. In

case of conventional radix-r system, the range of signed integers is presented as equation

below:

0 ≤ 𝑎𝑚 ≤ 𝑟𝑛 − 1 (2.1)

2.2.1.2 True-and -Complement (TC) Representation

No separation is applied between the representation of the sign and the magnitude in the

TC system. But in this system, all the signed integer is represented by a positive integer.

Therefore, the signed integer 𝑥 is represented by positive integer called 𝑎𝑅 which is

expressed as below:

𝑎𝑅 = 𝑎 𝑚𝑜𝑑 𝐶 (2.2)

Where the positive integer 𝐶 is called the complementation constant. For max|𝑎| < 𝐶, the

following system could be derived:

 20

𝑎𝑅 = {
 𝑎 if 𝑎 ≥ 0

 𝐶 − |𝑎| = 𝐶 + 𝑎 if 𝑎 ≥ 0
 (2.3)

However, the region for 𝑎 > 0 should not overlap with the region for 𝑎 < 0. This requires

that:

max|𝑎| <
𝐶

2
 (2.4)

In this case, the following system could be derived:

𝑎 = {
𝑎𝑅,,……..,,,,,,,,,,, 𝑎𝑅 < 𝐶/2

𝑎𝑅 − 𝐶 𝑎𝑅 ≥ 0
 (2.5)

When 𝑎𝑅 = 𝐶/2 is representable, it is usually assigned to 𝑎 = −𝐶/2 , making the

representation asymmetrical. So, the true forms indication corresponds to the positive

integer’s representation, while the complement forms correspond to negative integer’s

representation.

2.2.2 Basic Adders

2.2.2.1 Ripple-Carry Adder

Ripple-Carry Adder (RCA) [66] is a well-known circuit used to compute the addition of

two binary numbers in many arithmetic circuits. RCA adds sequentially the bits having the

same significance and the carry-bit from the previous stage using a full adder (FA), then

propagates the carry-bit to the following stage, as shown in Fig. 2.1. This adder could be

employed for adding both unsigned and two’s complement numbers. However, the main

drawback of RCA is that the worse-case delay is intended to be proportional to the word

length. Moreover, since the full adder cells are supposed to wait for the correct carry input,

 21

thus many glitches will be produced from the RCA. Nevertheless, this drawback could be

improved if the delay of the carry bit is smaller than that of the sum bit.

2.2.2.2 Carry-Chain Adder

Fig.2.2. shows the structure of an n-digit adder having a separate carry calculation. The

generate and the propagate functions are calculated through the G-P (generate-propagate)

cell based on the following equations:

𝑔(𝑖) = { 1 if 𝑎(𝑖) + 𝑏(𝑖) > 𝐵 − 1
0 otherwise

 (2.6)

𝑝(𝑖) = { 1 if 𝑎(𝑖) + 𝑏(𝑖) = 𝐵 − 1
0 otherwise

 (2.7)

Where 𝑎(𝑖) and 𝑏(𝑖) are the inputs signals, and 𝐵 represents the Base.

Fig.2.2. Carry-chain adder

 22

The next carry is computed through the C.C. (carry-chain) cell as follow:

𝐶(𝑖 + 1) = {
𝐶(𝑖) if 𝑔(𝑖) = 1

𝑔(𝑖) otherwise
 (2.8)

Then a carry is generated from 𝑔(𝑖) and the carry is propagated from level i-1 by

𝑝(𝑖).Then the sum will be generated through the 𝑚𝑜𝑑 𝐵 sum cell as follow:

𝑆(𝑖) = (𝑎(𝑖) + 𝑏(𝑖) + 𝐶(𝑖))𝑚𝑜𝑑 𝐵 (2.9)

2.2.2.3 Carry-Lookahead Adder (CLA)

The main concept of this adder is to compute simultaneously several carries. In the

extreme, the computation of the carries is done at the same time. Let’s consider that 𝑎(𝑖)and

𝑏(𝑖)the integers represented by the bit-vector from bit 0 to bit 𝑖 as follow:

𝑎(𝑖) = ∑ 𝑎𝑣2
𝑣𝑖

𝑣=0 (2.10)

and similarly, for 𝑏(𝑖), the carry is computed as follow:

𝑐𝑖 = 1 if (𝑎(𝑖−1) + 𝑏(𝑖−1) + 𝑐0 ≥ 2𝑖 (2.11)

Then, a switching function of 2𝑖 + 1 variables will be resulted. This function could be

implemented by a two-level network such as: 𝑁𝐴𝑁𝐷 − 𝑁𝐴𝑁𝐷.In case of large i, this

implementation is complex due to the large number of gates and inputs. Therefore, the

input vector in the CLA is divided into two groups, where the carries are computed

simultaneously.

2.2.3 Multiplication

 23

 Multiplication of two numbers is usually executed by following the two main steps:

a) Generation of partial products where the partial product is the result of

multiplication of the multiplicand with a bit of the multiplier.

b) Partial products accumulation

In this section, we will discuss some techniques to simplify the summation of the partial

product, and we will describe the architecture of some exact multipliers.

2.2.3.1 Partial Product Generation

For unsigned number format, the multiplication is done based on the following equation:

𝑃 = 𝐴𝐵 = ∑ 𝑎𝑖
𝑛
𝑖=1 2−𝑖 ∑ 𝑏𝑗

𝑛
𝑗=1 2−𝑗 (2.12)

A partial product array is generated, as shown in Fig. 2.3., where partial products are

applied through AND gates. In the case of 2’s complement representation as shown in

Fig. 2.3. Partial products for unsigned numbers

 24

Fig.2.4, the equation is similar to (2.10) except that some bits will have a negative weight.

The equation is shown below:

𝑃 = 𝐴𝐵 = 𝑎0𝑏0 − 𝑎0 ∑ 𝑏𝑗
𝑛
𝑗=1 2−𝑗 − 𝑏0 ∑ 𝑎𝑖

𝑛
𝑖=1 2−𝑖 + ∑ ∑ 𝑎𝑖

𝑛
𝑗=1 𝑏𝑗2

−𝑖−𝑗𝑛
𝑖=1 (2.13)

2.2.3.2 DADDA Multipliers

DADDA multipliers [67] are considered as the remake design of the parallel multipliers

presented by Wallace in 1964 [68]. As shown in Fig. 2.5, the multiplier is composed of

three stages, wherein the first stage a partial product by 𝑁2AND gates are executed. In the

second stage, the height of the partial product matrix is reduced to two, which employs

different parallel (𝑚, 𝑛) counters. The parallel counter in DADDA multiplier has m inputs

providing n outputs. During the compression phase, DADDA multiplier employs at least

(3,2) and (2,2) counters at each level, where a (3,2) and (2,2) counters represent

respectively a full adder and a half adder. In Fig.2.5, the outputs of the (3,2) counter are

Fig.2.4 Partial products for two’s complement numbers

 25

represented by a diagonal line joining the two squares, while the crossed diagonal line

joining the other two squares are the outputs of the (2,2) counter. In order to produce a

16-bit product multiplier, different components are required such as: 64 AND gates, 35

(3,2) counters, 7 (2,2) counters and a 14-bit carry propagation adder. During the

compression stage, DADDA multipliers require less counters than Wallace multipliers.

Lastly, the final stage of the multiplier uses a carry propagation adder in order to generate

the final product.

Fig. 2.5. Dot diagram for an 8×8 DADDA multiplier

 26

2.2.3.3 WALLACE Multipliers

Similarly to DADDA multiplier, the partial products in WALLACE [68] multiplier are

produced through 𝑁2 AND gates as shown in Fig.2.6. Then a set of three rows are grouped

together containing N rows of partial products. While each row which is not included in

the set of the three rows is transferred to the next phase without applying any change. Then

(3,2) and (2,2) counters are applied to columns containing three bits and columns

containing two bits, respectively. Nevertheless, each column that contains a single bit will

Fig. 2.6. Dot diagram for an 8×8 WALLACE Multiplier

 27

be transferred to the next level without any modification. In WALLACE multipliers, a

carry propagating adder is employed for the execution of the final addition whose sum is

the product of the final multiplication. During the reduction phase, the WALLACE

multiplier has approximately the same numbers of full adders, similarly to the DADDA

multiplier. Then a shorter final carry propagating adder is generated after adding half

adders to the previous phase. The components required to produce a 16-bit product

DADDA multiplier are as follow: 64 AND gates, 1 OR gate, 38 (3,2) counters, 15 (2,2)

counters, and a 10-bit carry propagating adder.

2.2.3.4 Baugh-Wooley Multiplier

Baugh-Wooley [69] is a well-known algorithm used to compute the multiplication in

many digital signal processing units. It is a signed array multiplier considered in our case

as an exact reference multiplier to be compared with the proposed approximate ones [70],

Fig.2.7. Baugh-Wooley multiplier.

 28

[69]. Baugh-Wooley is designed to compute the multiplication of both signed and unsigned

operands using 2’s complement number system. During direct multiplication of two 2's

complement numbers, the partial products obtained will be signed numbers. Hence sign

extension is needed for these partial products to the final product's width to get the accurate

answer. This multiplier is very easy to implement since it has a regular architecture as

shown in fig.2.7. Moreover, Baugh Wooley multiplication table can be implemented using

different full adders such as: carry save array, ripple carry adder or carry select adder. In

case of 4 × 4 multiplication, 3 rows of adders and a final stage adder are needed for the

computation, where the partial products are obtained using AND and NAND gates.

2.3 Background on approximate adders and multipliers

In this section, some significant approximate arithmetic circuits (adders and multipliers)

are described and presented.

2.3.1 Approximate Adders

In [71], an approximate adder based on the dynamic segmentation with the error

compensation technique (DSEC) is proposed. The n-bit adder is divided into smaller sub-

adders operating in parallel with fixed carry inputs. This technique reduces 30% power

consumption. Authors in [72] described an n-bit Carry Skip Adder (CSA) which is divided

into [n/k] blocks. Each block is made of a sub-carry generator and a sub-adder. The power

consumption is reduced by 43% when compared to exact adders.

In contrast to SCSA, the speculative carry adder (CSPA) presented in [73] is

composed of one sum generator, two internal carry generators, and one carry predictor for

each block. The energy efficiency and time delay are improved respectively by 19.03%

 29

and 26.59% with respect to the existing speculative carry-select adder. In [74], the

Gracefully-Degrading accuracy-configurable adder (GDA) is presented. Through the

control signals, the accuracy of GDA is configured by selecting the approximate of exact

carry-in for each sub-adder through a multiplexer. This advanced design achieves a better

quality when compared to existing techniques. The consistent Carry Approximate Adder

(CCA) based on SCSA, is proposed in [75]: the carry prediction depends on the least

significant bit (LSBs) and the MSBs. The time delay and the area are similar to SCSA.

Authors in [55] proposed the Lower-Part-OR Adder (LOA), which is based on processing

the least significant bits using OR gates. In [76], Approximate Mirror Adders (AMAs) are

proposed. The AMAs are implemented in the LSBs of a multiple-bit adder achieving a

reduction in power consumption by up to 69% when compared to accurate adders. Authors

in [77] proposed three approximate adders (AXAs) based on XOR and XNOR logic gates

consuming less power than the exact XOR/XNOR-based adder.

2.3.2 Approximate Multipliers

Efficient implementations of approximate multipliers based on different approaches

have been recently reported in the literature. Kulkarni et al. [78] proposed an approximate

2×2 multiplier cell, which is employed as a basic block for multiplier architectures having

a larger size. An average of 31.8% improves energy efficiency to 45.4% with respect to

exact multipliers. Authors in [79] have presented an accuracy-configurable multiplier

architecture (ACMA) for error-resilient designs. This architecture is based on a technique

called carry-in prediction, employing an efficient precomputation logic, which reduces the

latency to around 50% when compared to an accurate multiplier. [80] presented an

Approximate Wallace Tree Multiplier (AWTM), which employs a carry-in prediction

 30

reducing the power consumption by 42% with respect to the Wallace tree multiplier

(WTM). The Partial Product Perforation technique (PPP) presented in [81] is based on

neglecting a specific number of partial products, reducing the power consumption and time

delay around 50% and 35%, respectively, when compared to an exact design. [82] proposed

an approximate (4:2) counter for an approximate 4-bit Wallace multiplier. This inexact

multiplier is employed in order to build more massive multipliers having error detection

and correction circuits. The power consumption is reduced by 10.7% when compared to

the Wallace tree multiplier. Two approximate 4:2 compressors have been proposed in [83],

providing efficient reductions in power consumption, hardware resources, and delay with

respect to exact designs. Authors in [84] proposed a static segment multiplier (SSM), which

takes m segment bits from n-bit operand based on leading 1 bit of the operands. Then,

instead of n × n multiplication, the m × m multiplication is executed, where (m<n). It

consumes 58% less energy when compared to a precise multiplier with an average

computational error of around 1%. In [70], a new multiplier is proposed, which connects

the most significant bit (MSB) to the least significant (LSB), generating an error value of

1. Sekanina in [85] provided an open-source library of approximate adders and multipliers

called EvoApprox8b library. Authors in [70] have proposed an efficient multiplier based

on the rounding approach. Speed and power consumption have been reduced after omitting

the computational part of the multiplication.

2.4 Low Power Approximate Adders and Multipliers

In this section, the relevant state of the art approximate arithmetic circuits, i.e.,

approximate adders and multipliers, are reported, and novel approximate circuits are

proposed.

 31

2.4.1 Approximate Adders Circuits

The full adders consume a high amount of power such as the CLA while other are

slow(i.e.: RCA). Thus, approximate adders have been proposed in the literature [77],

[55],[86], trading the accuracy for a reduction in power, time delay, and hardware

resources. Fig.2.8 represents the general circuit architecture for approximate adder circuits.

It divides the addition operation into two blocks: 1) Exact and 2) Approximate. The exact

operation deals with the most significant bits of the addition while the approximate one

oversees the least significant bits. The error is decreased by using a carry-in signal from

approximate to the exact block. The architecture provides the possibility to scale the

number of bits in the exact and inexact parts. Consequently, the effect of varying the

inexactness represented by the scalability of the number of bits with respect to accuracy

could be analyzed. Based on the general architecture, the following subsections introduce

the proposed adder with some relevant circuit from state of the art.

Fig. 2.8. General hardware architecture for approximate adder circuits

 32

2.4.1.1 Approximate XNOR-based Adder (AXA)

 Fig.2.9 (a) shows the functionally equivalent remakes design of the original approximate

XNOR-based Adder (AXA) [77]. The signal is generated after applying an XNOR logic

operation for the two input bits A and B. The sum signal is correct for half of the possible

input combinations, Cout is exact for all the input combinations, and it is generated

according to the following equation:

𝑆 = (𝐴 𝐴𝑁𝐷 𝐵) 𝑂𝑅 (𝐴 𝑋𝑂𝑅 𝐵) 𝐴𝑁𝐷 𝐶𝑖𝑛 (2.14)

(a)

(b)

(c)

(d)

(e)

(f)

Fig.3 Approximate adder circuits

Fig. 2.9. Approximate adder circuits: (a) AXA, (b) Lower-Part-Or-Adder, (c) Approximate NAND-carry out

bit, (d) Approximate AND-carry out bit, (e) Input Pre-Processing, (f) AFA adder

 33

2.4.1.2 Lower-Part-OR-Adder

In the approximate part of the lower part OR adder (LOA) [55] presented by Fig.2.9 (b),

OR gates are applied to the respective A and B input bits. An AND gate is applied to the

most significant bits of both A and B generating the carry out (Cout) signal. In order to

decrease the inaccuracy, Cout is connected to the upper part of the adder (exact operation)

when the most significant bits are equal to one.

2.4.1.3 Approximate NAND-carry out bit

As shown in Fig.2.9 (c) [86], the approximation is applied to the carry-out signal by

omitting the two min-terns in the regular expression of Cout as given by (2.14). Then the

approximation is expressed by executing a NAND logic operation between A and B. The

sum signal is generated at the end by applying the following operation:

𝑆 = (𝐴 𝑋𝑁𝑂𝑅 𝐵)𝑋𝑂𝑅 𝐶𝑖𝑛 (2.15)

2.4.1.4 Approximate AND-carry out bit

Similar to the approximate NAND-carry out bit [86], this adder adopts an AND gate

operation for both inputs A and B generating the approximate Cout signal, as shown in

Fig.2.9 (d). The signal sum performs the following operation:

𝑆 = (𝐴 𝑋𝑂𝑅 𝐵) 𝑋𝑂𝑅 𝐶𝑖𝑛 (2.16)

2.4.1.5 Input Pre-Processing

The Input Pre-Processing approximate adder is presented in Fig. 2.9 (e). It is based on

interchanging the bits having the same weights in different addends. The original adder has

 34

been proposed in [87]; it generates two signals: sum and error. However, only the sum

signal is taken into consideration here. The sum signal resulted is based on the following

logic operation:

𝑆 = (𝐴𝑖 𝑋𝑂𝑅 𝐵𝑖) 𝑂𝑅 (𝐴𝑖−1 𝐴𝑁𝐷 𝐵𝑖−1) (2.17)

2.4.1.6 New Approximate Adder (AFA)

The truth table of AFA adder is illustrated in Table 2.1. Moreover, the equations of the

approximate carry bit and the approximate sum bit are shown below:

𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 + 𝐴.𝐵 (2.18)

𝑆 = 𝐶𝑜𝑢𝑡 + (𝐴 ⊕ B) (2.19)

Table 2.1. Truth table for AFA Adder

Inputs Exact Outputs Approximate Outputs

A B C Cout S Cout S

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 1 0 1

0 1 1 1 0 1 1

1 0 0 0 1 0 1

1 0 1 1 0 1 1

1 1 0 1 0 1 1

1 1 1 1 1 1 1

 35

The proposed approximate adder, called (AFA) [61], is a promising solution to the problem

mentioned previously. In the proposed adder, only one case from the eight outputs in the

carry bit is erroneous while three errors take place in the sum bit of the adder output. The

carry bit is implemented using only two gates OR, AND instead of three logic gates. The

sum bit is obtained based on Cout through an OR and XOR operations as shown in Fig.2.9

(f). In this adder, we focused on reducing the erogenous to the carry bit, since the carry is

placed in the MSBs. Hence, reducing the inaccuracy of carry bit will decrease the

inaccuracy of the output of the approximate adder. Therefore, maintaining the accuracy to

the carry bit more than the sum bit will be considered as an essential criterion aiming to

assure the best possible performance to the approximate adder .

2.4.2 Approximate Multipliers Architectures

In this section, we present the architecture of our two new approximate multipliers called

Approximate Baugh-Wooley (Approx-BW) and Approximate multiplier based on ETA

adder (META). The main idea of our multipliers stems from the fact that each multiplier

needs an addition operation to perform the multiplication. Thus, the approximation is

achieved by using approximate adders. Furthermore, we have generated three versions of

the Approx-BW multiplier and three other versions of the META multiplier based on

distinct approximate adders. The objective is to select the most effective multiplier in terms

of power, latency, LUT utilization and accuracy for our e-skin application after comparing

the performance of the proposed approximate multipliers with respect to the previous

approximate arithmetic circuits mentioned in state of the art.

 36

2.4.2.1 Approximate META Multiplier

The proposed architecture has been adopted from [70]: it is based on rounding signed and

unsigned numbers in the form of 2n. The main idea is to make use of an approximate adder

in place of the exact one in order to reduce power consumption. Before elaborating in the

operation of the approximate multiplier, we consider that Mr and Nr are the rounded number

of the inputs M and N. The multiplication of the two-input values M and N is written as

follows:

𝑀 × 𝑁 = (𝑀𝑟 − 𝑀) × (𝑁𝑟 − 𝑁) + 𝑀𝑟 × 𝑁 + 𝑁𝑟 × 𝑀 − 𝑀𝑟 × 𝑁𝑟 (2.20)

This equation is simplified by eliminating the first part, i.e. (𝑀𝑟 − 𝑀) × (𝑁𝑟 − 𝑁) , thus

the operation is performed using only add/shift operations. Through this approach, the

nearest values for 𝑀 and 𝑁 are determined in the form of 2𝑛.When the input (M or N) is

Fig.2.10. Block diagram of approximate META multiplier.

 37

equal to 3 × 2𝑖−2 (where I is considered as a positive integer), then the values (M and N)

are equal to the two nearest values (2𝑖and 2𝑖−1) which are based on the 2𝑛 form . Since,

both values delivered the same accuracy for the approximate multiplier (except for 𝑖 = 2);

then selecting the larger nearest value leads to a smaller hardware implementation. The

reason is that the numbers in the form of 3 × 2𝑖−2 are considered as do not care when

rounding up and down. Only for number three, two is the nearest value in the approximate

multiplier in this case.

Moreover, it should be noted that if one of the inputs (i.e.,: M) is smaller than his rounded

value (𝑀𝑟), while the other input (i.e.,: N) is larger than its rounded value (𝑁𝑟); thus

resulting an approximate result larger than the exact result. On the other side, if the both

inputs are larger or smaller than their corresponding rounded values, then the approximate

result will be smaller than the exact result.

The advantage of the proposed multiplier exists only for positive inputs since the rounded

values of negative inputs are not in the form of 2n in the two’s complement representation.

Hence, the absolute value of both input and output should be determined and then the

operation will be performed on unsigned numbers. In the last stage, the proper sign will be

applied to unsigned result. The architecture of the proposed multiplier is presented in Fig.

2.10. The different blocks of the architecture are described as follows:

a) Sign Extractor:

The sign extractor block extracts the sign of the input values and gives as output their

absolute value. It detects the sign bit (most significant bit) of the input represented in two’s

 38

complement format. Then, it reverses the input in case of negative values and keeps it

unchanged for the positive ones, as follow:

If 𝑀[𝑛 − 1] = 1

Then (2.21)

𝑀 = 𝑀̅

b) Round/Shift

This block applies rounding to the absolute values by extracting the nearest value for each

absolute value. Output values are extracted in the form of 2n following the rounding

process. In order to determine the output of each bit of the rounding block, we use the

following equation:

𝑀𝑟[𝑛 − 1] = 𝑀[𝑛 − 1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑀[𝑛 − 2].𝑀[𝑛 − 3] + 𝑀[𝑛 − 1].𝑀[𝑛 − 2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑀𝑟[𝑛 − 2] = (𝑀[𝑛 − 2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑀[𝑛 − 3].𝑀[𝑛 − 4] + 𝑀[𝑛 − 2].𝑀[𝑛 − 3]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅). 𝑀[𝑛 − 1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

.

𝑀𝑟[𝑝] = (𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅.𝑀[𝑝 − 1].𝑀[𝑝 − 2] + 𝑀[𝑝].𝑀[𝑝 − 1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅). ∏ 𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=𝑝+1

.

𝑀𝑟[3] = (𝑀[3]̅̅ ̅̅ ̅̅ ̅.𝑀[2].𝑀[1] + 𝑀[3].𝑀[2]̅̅ ̅̅ ̅̅ ̅).∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=4

𝑀𝑟[2] = 𝑀[2].𝑀[1]̅̅ ̅̅ ̅̅ ̅.∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=3

𝑀𝑟[1] = 𝑀[1].∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=2

𝑀𝑟[0] = 𝑀[0].∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=1

 (2.22)

 39

To summarize, along the process, each rounded bit could be equal to one in the following

cases:

• When the two right-side bits of the input bit M[i] is one, M[i] and all the bits on its

left side are zero.

• When the right-side bit of M[i] and all its left-side bits are zero, while M[i] is one.

Since the rounded values are represented in the form of 2n, the products 𝑀𝑟 × 𝑁𝑟, 𝑀𝑟 ×

𝑁 and 𝑁𝑟 × M are obtained through a shifter. The products of n bit width are shifted based

on 𝐿𝑜𝑔2
𝑀𝑟 or 𝐿𝑜𝑔2

𝑁𝑟depending on the operand M or N, respectively. The output bit widths

generated from the shifter block are 2n

c) ETA Adder

Exploiting inexact adders instead of exact ones in the multiplier block may significantly

reduce the power consumption of the multiplier circuit. In exact adder circuits, the carry

Fig.2.11. Arithmetic addition based on ETA adder

 40

propagation chain along the critical path is the leading cause of the delay affecting time

latency. By avoiding carry propagation, performance, and power consumption of the adder

circuit will be improved at the cost of some accuracy loss. The error-tolerant adder (ETA)

could be considered as a solution to the problem mentioned previously [88]. The arithmetic

addition based on ETA adder can be illustrated in an example in Fig.2.11. Moreover, Fig.

2.11 shows the functional block diagram of the ETA adder, which is divided into two parts:

accurate and inaccurate. The length of each part is specified depending on the requirement

of accuracy and power consumption of each application. In our case, the length is divided

equally for each part, 8 bits for the accurate part (Aj-1…. Ai, Bj-1….Bi), and the other 8 bits

for the inaccurate one (Ai-1…. A0, Bi-1….B0). The ETA provides inaccurate values in the

lower order bits while maintaining the accuracy in the higher-order bits using an exact

addition. Each part of this adder is characterized as follows:

• In the accurate part, a standard addition is computed by using any one of the

available traditional 1-bit full adders (e.g., ripple carry, carry look-ahead adders).

In our ETA, we employed the ripple carry adder.

Fig.2.12. Block diagram of ETA adder

Fig.3. ETA adder block diagram.

 41

• The inaccurate part consists of two blocks: control block and carry free addition

block. The control block is composed respectively of two operand bits A and B,

the control signal from the previous CTRL block, and a CTRL out signal. A and B

are added through an AND logic gate, then an OR operation is applied between the

result and the previous control signal. On the other hand, the carry free addition

consists of an XOR and OR gates and generates a sum bit based on a control signal

obtained from the control block. So, in the inaccurate part, from left to right, the

values of both input bits are checked: if the bits are 0 or different, a standard

addition is computed, whenever the input bits are equal to 1, all the remaining right

side bits are set to 1.

Moreover, the proposed architecture uses an exact subtractor, which generates the

difference between two bits adopting the borrow bit of the lower significant stage.

d) Sign Set

The primary function of the sign set block is to set the sign of the final multiplication

result. It reverses the output of the subtractor when the extracted sign (from sign extractor)

for the two input values is different.

 42

2.4.2.2 Approximate Baugh-Wooley Multiplier

The approximate proposed multiplier is a signed array multiplier implemented for 8×8

multiplication, as shown in Fig.2.13 (b). The proposed multiplier addresses low power

consumption with low accuracy degradation. Through the logic AND gates, the partial

product tree is generated from two 2m bit operands (𝑚 = 3); in our case, the partial product

tree is generated without any approximation. The approximations have been employed in

the accumulation phase of the partial products. The proposed architecture divides the

(a)

(b)

Fig.2.13.(a) General block diagram (b) Architecture of approximate Baugh-Wooley multiplier

 43

operation into two different groups: accurate and approximated. The architecture is based

on Ripple Carry Adder (RCA) in the accurate part and on the proposed adder (AFA) in the

approximate part. The dividing strategy adopted to the architecture of the proposed

multiplier is dependent on the requirements of the application. Moreover, the MSB part

consists of 2𝑛 − 𝑘 bits, while the LSB part is composed of 𝑘 bits. In our case, the input

width of the multiplier is 𝑛 = 8 and the imprecision parameter, which is responsible for

determining the boundaries of the accurate and the inaccurate parts of the multiplier, is 8.

From right to left, an exact addition is computed in the accurate part. Through a half

adder, the partial products are added; the generated carry signal is propagated to the

following partial column in the next column. The partial products in the second column are

computed through an exact adder. While in the approximate part, the addition of the partial

products is done through the proposed approximate adder based on the following

equations:

{

𝑆7(0) = 𝑎7. 𝑏0 ⊕ 𝑎6. 𝑏1 + 𝐶𝑖𝑛

 𝑆7(1) = 𝑎5. 𝑏2 ⊕ 𝑆7(0) + 𝐶𝑜𝑢𝑡7(0)
:

 𝑆7(6) = 𝑎0. 𝑏7 ⊕ 𝑆7(5) + 𝐶𝑜𝑢𝑡7(5)

 (2.23)

Where 𝑆7[0] represents the sum bit of the first two partial products for the 27 bit position.

And

{

𝐶𝑜𝑢𝑡7(0) = (𝑎7. 𝑏0). (𝑎6. 𝑏1) + 𝐶𝑖𝑛

:
 𝐶𝑜𝑢𝑡7(5) = (𝑎1. 𝑏6). 𝑆7(4) + 𝐶𝑜𝑢𝑡7(4)

 𝐶𝑜𝑢𝑡7(6) = (𝑎0. 𝑏7). 𝑆7(5) + 𝐶𝑜𝑢𝑡7(5)

 (2.24)

 44

𝑆𝑛−1 = 𝑆𝑛−1(0) + ∑ 𝑎𝑛−2−𝑖. 𝑏𝑖+1 ⊕

𝑖=𝑛−2

𝑖=1

𝑆𝑛−1(𝑖 − 1)

+ 𝐶𝑜𝑢𝑡(𝑛−1)(𝑖 − 1) (2.25)

Where

𝑪𝒐𝒖𝒕(𝒏−𝟏) = 𝑪𝒐𝒖𝒕(𝒏−𝟏)(𝟎) + ∑ (𝒂𝒏−𝟐−𝒊. 𝒃𝒊+𝟏)

𝒊=𝒏−𝟐

𝒊=𝟏

. 𝑺𝒏−𝟏(𝒊 − 𝟏)

+ 𝑪𝒐𝒖𝒕(𝒏−𝟏)(𝒊 − 𝟐)

𝑆 = ⋃ 𝑆𝑛−1
𝑛=8
𝑛=1 (2.26)

In the approximate part of the proposed multiplier, an input carry signal with a value set

to “𝐶𝑖𝑛 = 0” is added to the first partial product. Then starting from left to right, the process

of the operation to obtain the sum bit of the partial products in each of the selected columns

of the approximate part of the multiplier is done based on (2.23) and (2.24). The general

equation obtained to compute the sum bit of all the partial products for the 2𝑛−1 bit position

(𝑛 = 8) can be concluded, as shown in (2.25). The generated 𝐶𝑜𝑢𝑡(𝑛−1)[𝑖 − 1] will be

added to the partial product (𝑎6. 𝑏0). Then for 𝑛 = 7, the sum and the carry out bits at the

2𝑛−1 bit position are obtained respectively based on (2.25) and (2.26). Then the sum bits

(𝑆𝑛−1, 𝑆𝑛−2, ……… , 𝑆0) are concatenated in the approximate part, as shown in (2.26).

 45

 As shown in Table 2.1, if only one of the values of the partial products is one or if all the

values are equal to zero, then a standard addition is performed. If at least two partial

products or more are equal to one, their sum in the selected column and all the remaining

right columns are set to one.

Then we have designed three versions of META and Approx-BW multipliers based on the

approximate adders presented in section 2.4. The choice was based on (i) the performance

that the selected adders provide and (ii) their flexibility to be used in the proposed

multiplier architecture. The combinations are as follows:

• The proposed multiplier (approximate Baugh-Wooley) which is based on the AFA

adder.

Table 2.1. Output of Sum and Carry bits For Different Cases

 Partial Products Sum bit Carry bit

1st case 𝑎𝑛−1. 𝑏0 |𝑎𝑛−2. 𝑏1 | … | 𝑎0. 𝑏𝑛−1 = 1 𝑆𝑛−1 = 1 𝐶𝑛−1 = 0

2nd case 𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = ⋯ = 𝑎0. 𝑏𝑛−1=0 𝑆𝑛−1 = 0 𝐶𝑛−1 = 0

3rd case

𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = 1 Or

𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = 𝑎𝑛−3. 𝑏2 = 1 Or

:

𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = ⋯ = 𝑎0. 𝑏𝑛−1=1

 𝑆𝑛−1

=

 𝑆𝑛−2 =. . =

𝑆0 =1

𝐶𝑛−1 = 1

 46

• Mul-LOA and Mul-AXA are based on lower-part-OR and XNOR-based adders,

respectively.

• MNAND, MAND, and MIPP multipliers are based respectively on NAND-carry

out bit, AND-carry out bit, and Input pre-processing approximate adders.

2.5 Results

This section presents the hardware implementation results of the two proposed approximate

multipliers (META and approximate BW) in terms of performance, accuracy, and power

consumption.

2.5.1 Hardware Implementation of META Multiplier

In order to evaluate the performance of the META multiplier, four different architectures

have been implemented and compared with the exact Baugh-Wooley multiplier. The first

architecture signed MRCA (S-MRCA) uses the RCA exact adder as an additional unit,

while the second one signed META (S-META) uses an inexact ETA adder as described in

section 2.4. In the case where the inputs are always positive, two architectures called

unsigned MRCA (U-MRCA) and unsigned META (U-META) have been implemented

after removing the sign extractor and sign set blocks from the architecture. The circuits

have been implemented in Vivado Design Suite 2017.1 using VHDL Hardware Description

Language. The designs have been synthesized using the Xilinx Vivado synthesizer, with

Virtex-7 xc7vx485tffg1157-1 as a target device. Based on the implementation results, this

section analyzes the performance parameters of the proposed architectures highlighting the

computation accuracy and power consumption.

 47

2.5.1.1 Accuracy Evaluation

Some tests have been carried out to assess the accuracy of the multipliers. The variation

of the acceptance probability as a function of the minimum acceptable accuracy is analyzed

[89]. The inaccuracy of the approximate multipliers is generated after eliminating the term

(𝑀𝑟– M) × (𝑁𝑟 – 𝑁) from the initial accurate multiplication. Accurate results are obtained

only when 𝑀𝑟 and 𝑁𝑟are respectively equal to 2n and 2m. In this case, both inputs would

be equal to 3 × 2n and 3 × 2m respectively, and the error would be maximum.

Some used terms are explained below:

• Error (E): E = |Re – Ri|, where Re is the exact multiplication result, and Ri is the

inexact result obtained by the approximate multiplier simulation.

• Accuracy (ACC): ACC = (1 – E/Re) × 100. To determine how accurate the output

of the multiplier is with respect to the exact multiplication. Values range between

0% and 100%.

• Minimum Acceptable Accuracy (MAA): it is considered as the threshold value; to

respect the constraints of the system, the obtained accuracy must be higher than this

value.

• Probability of acceptance (PA): it is the probability of values with higher accuracy

than MAA, which is represented as PA = P (ACC > MAA). Its value ranges from

0 to 1.

• MED and MSE represent, respectively, the mean error distance and the mean

square error. The MED is obtained after computing the average error distance (ED),

 48

which is defined as the difference between exact and approximate results. The

accuracy metrics are defined as follow:

𝐸𝐷 = |𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝐸𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡| (2.27)

𝑀𝐸𝐷 =
𝐸𝐷

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
 (2.28)

𝑀𝑆𝐸 =
∑ 𝐸𝐷2𝑛

𝑖=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
 (2.29)

• NMED and MRED represent, respectively, the normalized mean error distance and

the mean relative error distance. MRED is the average of the relative error distance

defined as:

𝑅𝐸𝐷 =
| 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡−𝐸𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡|

𝐸𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡
 (2.30)

𝑀𝑅𝐸𝐷 =
𝑅𝐸𝐷

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
 (2.31)

Moreover, NMED is computed to evaluate the adders of different sizes defined as

follow:

𝑁𝑀𝐸𝐷 =
𝑀𝐸𝐷

𝑀𝑚𝑎𝑥
 (2.32)

 Where 𝑀𝑚𝑎𝑥 is the maximum magnitude of the output of an accurate adder, which is 2n

in the case of an n × n adder.

• The passing rate metric is the ratio of exact results over the total number of outputs.

Therefore, the variation of PA with respect to MAA has been analyzed: Fig. 2.14 and

Fig.2.15 illustrate a comparison for 8-bit multipliers among U-META, U-MRCA, and Baugh

Wooley from one side, respectively, and S-META, S-MRCA and Baugh Wooley from the

other side. We randomly selected 105 signed inputs for the signed multipliers and

 49

 105 unsigned inputs for the unsigned ones. Upon simulation, we observe that 89% of the

Fig.2.14. Probability of acceptance versus minimum acceptable accuracy for S-META and S-MRCA.

Fig.4 Probability of acceptance versus minimum acceptable accuracy for S-

META and S-MRCA.

Fig.2.15. Probability of acceptance versus minimum acceptable accuracy for U-META and U-MRCA.

 50

results have higher accuracy than 90% for the S-META multiplier while achieving an

accuracy of 94.5% for the S-MRCA multiplier[90]. For the unsigned multipliers, the

minimum acceptable accuracy for 88% of the results varies between 90.5% for the U-MRCA

and 90% for U-META. We can deduce that the ETA adder affects the accuracy of the

approximate multipliers slightly and especially for the unsigned multipliers where the

variation is considered negligible. Hence, despite the small accuracy loss (i.e., 4.5% in the

worst case) in the proposed architecture, the approximate multipliers still have a reasonable

accuracy which could be acceptable for a variety of applications in digital signal processing.

Fig. 2.16 represents the error percentage distribution for S-META and S-MRCA. It is pointed

out that 43% of the results show an error of less than 2%, and about 31% of the results present

an error between 2% and 5%. Hence, less than 14% of the results are characterized by an

error of more than 8%, which proves the correctness of the proposed architecture.

Fig. 2.16. Error percentage distribution for the two approximate multipliers

 51

On the other hand, the effect of increasing the number of bits on the accuracy of

computation of the proposed multipliers has been analyzed. Fig. 2.17, and Fig. 2.18 present

respectively four S-META and U-META multipliers with 8-, 16-, 24-and 32-bit

input bit width. The results show that the accuracy and the probability of acceptances

increase as the bit length increases.

2.5.1.2 Performance Evaluation

 Table 2.2 reports the power consumption obtained by the simulation of the

implemented designs. Using the Vivado tool simulation, a test has been run for 3µs to

determine the average dynamic power and the time delay. Results show a sound reduction

in power consumption: for the proposed 8-bit approximate multipliers, the power is

Fig. 2.17. Probability of acceptance of S-META for different bit sizes.

 52

reduced by 56.3% (in the case of U-META) when compared to the exact Baugh-Wooley

Fig. 2.18. Probability of acceptance of U-META for different bit sizes.

Table 2.2. Simulation results of 8-bit multipliers

Multipliers

Parameters

Power(mW) Delay(nS) Utilized LUTs(%)

Baugh-

Wooley

112

6.98

0.03

S-MRCA 69 9.71 0.04

S-META

57

8.4

0.05

U-MRCA

58

7.47

0.05

U-META

49

6.91

0.04

 53

multiplier. Moreover, after omitting the negation sign, the results indicate that the power

consumption (delay) for the unsigned approximate multipliers is reduced, respectively,

around 15.9%, (23.1%), 14.1%, (17.7%) with respect to the design parameters of the signed

approximate multipliers.

On the other hand, the results reveal that by employing an inexact ETA adder, the power

consumption and time delay for S-META are reduced respectively of 17.4% and 13.5%

when compared to S-MRCA. On the other side, the power and delay of U-META decreased

by 15.5% and 7.5%, respectively, with respect to the design parameters of U-MRCA. In

contrast, the delay and LUT of the exact multiplier Baugh-Wooley are better than those of

the approximate multipliers except for the U-META delay parameter. We conclude that,

among the four implemented approximate multipliers, U-META provides the best

performance in terms of time delay and power consumption. In order to analyze the

Fig. 2.19. Average power consumption and delay of META multipliers.

 54

performance of both S-META and U-META in terms of power consumption and time delay

when increasing the multiplier size, another test has been carried out over 1ms. Fig. 2.19

shows power consumption variation and time delay as a function of multipliers size for S-

META and U-META. Power consumption and time delay increase when the size of the

signed and unsigned META becomes larger. On the other hand, since power consumption

standard deviation is high for a wide range of inputs, we randomly selected five inputs as

an example to assess the dynamic power consumption for 8-bit META and MRCA

multipliers. Each input has been simulated for a period of 20 ns. The comparison of the

obtained results presented in Fig. 2.19 indicates an impressive saving in dynamic power

from 9.2% up to 50%. For instance, for the product 1F×7c, the power drops from 82mW to

41mW, while the accuracy of the results remains approximately unchanged.

2.5.2 Hardware Implementation of Approximate Baugh-Wooley Multiplier

In this section, we evaluate the performance of the proposed approximate BW multiplier

in terms of accuracy, power consumption, and delay. Moreover, we compare the

performance of the Approx-BW with respect to well-known open-source approximate

multipliers presented in state of the art.

2.5.2.1 Accuracy Evaluation

MED, MSE, NMED, MRED, and Pass rates results are reported in Table 2.3. Results show

that the new Approx-BW multiplier outperforms state of the art multipliers (Shaf[91]and

 55

Evo25[85]) in terms of MRED and NMED. Approximate-BW is more accurate than the

other generated multipliers, which are based on distinct adders such as (Mul-LOA, Mul-

AXA, MAND, MNAND, and MIPP); this could be affected by the fact that the MRED of

AFA is the lowest between the approximate adders. In Figure 2.21, we studied the

percentage of the outputs as a function of the relative percentage error. It is shown that the

accuracy of Approx-BW is within an acceptable range, since more than 70% of its outputs

have a REDs smaller than 10%. Approx-BW provides a better performance in terms of

accuracy, with respect to the two approximate multipliers proposed in [78] and [85]. [78]

and [85] show the lowest accuracy having respectively 42% and 23% of their outputs

smaller than 10%. Moreover, the impact of varying the imprecision parameter k (2,4,8 and

16) on the accuracy of the multipliers is evaluated. Fig.2.22 (a), (b), and (c) shows

respectively NMED, MRED, pass rates versus the variation of the number of the

approximated bits in the approximate multipliers. The results show that the error increases

as a function of n. It is shown that Approx-BW has the lowest NMED (0.09%) and MRED

(4.9%) when n is equal to 2. While MAND, META, MIPP have the same NMED (0.21%).

Fig. 2.20. Instantaneous power consumption and delay of META multiplier.

 56

When increasing n to 16, Mul-AXA shows the highest NMED (4%) and MRED (45%).

However, MIPP and Mul-LOA have the best accuracy in terms of NMED (1.09%, 1.29%)

and MRED (19.4%, 19.67%) when all the bits of the multipliers are inexact. Fig.22 (c)

Fig. 2.21. Percentages of outputs versus relative error distance for different inexact multiplier circuits

Table 2.3. Accuracy metrics for different approximate multipliers designs

Approximate

Multipliers

MED

MSE

NMED

MRED

PASS

RATES

APPROX-BW 232.33 9.8E+04 0.35 0.101 5.81%

MUL-LOA 239.4 1.1E+05 0.37 0.109 5.65%

MUL-AXA 168.17 4.6E+04 0.25 0.155 0.17%

MAND 156.15 7.7E+04 0.24 0.102 2.87%

MIPP 200.69 9.9E+04 0.31 0.132 2.68%

ROBA [70] 139.5 7.0E+04 0.21 0.091 2.86%

META [60] 154.15 7.4E+04 0.23 0.09 2.53%

EVO0[85] 109.56 2.3E+04 0.16 0.079 4.13%

EVO [85] 461.17 5.7E+05 0.71 0.22 0.27%

KULKARNI[78] 116.58 4.05E+04 0.18 0.076 16.3%

SHAFIQUE [91] 512.11 8.8E+05 0.51 0.23 3.2%

 57

shows that Approx-BW and Mul-LOA have the best passing rates respectively 19.81%,

16.18% when n is 2. While, MAND, META, MIPP and MNAND have the lowest passing

rates equal to 2.8% when n is 2. When n increases to 16, the passing rates of Mul-AXA

decreases rapidly reaching the lowest value nearly equal to zero. To summarize, among all

approximate multipliers, Approx-BW shows the best performance in terms of accuracy

when decreasing the number of bits in the approximate part.

2.5.2.2 Performance Evaluation

The power consumption and time delay of the implemented multipliers have been

determined after running a test for 3 us. Fig.2.23 reports a comprehensive comparison

between exact and approximate multipliers by considering the MRE, power consumption,

and time delay. Table 2.4 shows the circuit synthesis results for LUT utilization, power-

delay product (PDP), and PDP-MRED products. The results show that Approx-BW and

Mul-LOA are the most efficient with an MRED around 0.1. The power consumption of

Table 2.4. Area, PDP and PDP-MRED of multipliers designs

Approximate

Multipliers

LUT(%)

PDP(nJ)

PDP-

MRED
APPROX-BW 0.03 0.13 1.29

MUL-LOA 0.03 0.13 1.38

MUL-AXA 0.03 0.57 8.85

MAND 0.04 0.5 4.53

MIPP 0.04 0.43 5.67

ROBA[70] 0.05 0.67 6.09

META[60] 0.05 0.48 4.31

EVO0[85] 0.03 0.37 2.96

EVO[85] 0.01 0.08 1.72

KULKARNI[78] 0.03 0.41 3.13

SHAFIQUE[91] 0.02 0.32 5.12

 58

Approx-BW and Mul-LOA is reduced by 80.4% when compared to the exact BW

(a)

(b)

Fig.2.22 Variation of NMED(a), MRED(b) with respect to the number of bits approximate bits.

 59

Moreover, Approx-BW is 10% more accurate than Mul-LOA, thus outperforming Mul-

LOA in terms of accuracy. While META[60] and ROBA [70] show better MRED around

1% but higher power and time delay with respect to Approx-BW. The power consumption

of Approx-BW is reduced by more than 68% with respect to META and MRCA. On the

other side, MAND and MNAND show the same power, while MRED of MNAND is

higher. Mul-AXA shows the highest NMED and power consumption. Among state-of-the-

art multipliers, the only circuit that consumes energy

(c)

Fig.2.22 Variation of PASS RATES(c) with respect to the number of approximate bits

 60

 less than Approx-BW is Evo25. However, Evo25 is around 50% less accurate than

Approx-BW. Then our design is considered among the most power- and energy-efficient

designs with approximately small PDP value. Moreover, we took into consideration the

two parameters PDP and MRED to evaluate all the circuits as shown in Table 2.4. Our

design shows the lowest PDP-MRED product (1.29). As a conclusion, the proposed

multiplier (Approx-BW) achieves the best results in terms of PDP-MRED with a small

PDP.

Fig. 2.23. Power consumption, delay and MRE of exact and approximate multiplier designs.

 61

2.6 Conclusion

In this chapter, an FPGA implementation of two new architectures of approximate

multipliers called META and Approximate Baugh-Wooley multiplier have been proposed.

META multiplier has provided a noticeable improvement in latency and power

consumption at the price of a small error (around 5%). Four hardware implementations of

the approximate multiplier were compared in terms of power consumption and time delay

with respect to the exact Baugh-Wooley: results report up to 56% power saving. On the

other hand, META was compared to MRCA. Results revealed that the accuracy of the

META multiplier slightly decreased (around 5%), while the power consumption and the

delay have been reduced respectively by 17.4% and 13.5% when compared to MRCA. By

omitting the negation sign from the signed approximate multiplier, results show that power

consumptions of U-META and U-MRCA are less than 17.7% and 15.9%, respectively, in

comparison to S-META and S-MRCA.

On the other hand, several state-of-the-art adders have been adapted and implemented;

and results showing a comparison between different circuits in terms of accuracy and

power consumption. Moreover, various inexact multiplier circuits have been implemented

based on different inexact adder designs. The main idea was to involve the implemented

inexact adders at the place of the exact ones needed to perform the multiplication. However,

results showed that the second proposed architecture “Approximate BW” is the most

efficient design between the approximate multipliers achieving a relevant reduction in

power consumption and time delay around 80.4% and 24% respectively with respect to the

exact BW multiplier. While the power consumption of Approximate-BW is reduced by

68.1% with respect to other states of the art solutions

 62

Therefore, the proposed architectures provide a possible tradeoff between accuracy and

power saving for improving performance and energy efficiency. In a conclusion,

implementation results proved that the achieved power consumption/accuracy tradeoff is

satisfactory. In the next chapter, we will study the impact of the proposed approximate

multipliers on tactile signal processing in the FIR filter for e-skin application. Then, we

will study the use of the proposed approximate arithmetic circuits in the circuits blocks

employed in machine learning algorithms for input touch modalities classification.

 63

CHAPTER 3. APPROXIMATE COMPUTING CIRCUITS

FOR TACTILE DATA PROCESSING

3.1 Introduction

Restoring the sense of touch to the prosthesis user is a challenging goal emphasized by

many research in upper limb prosthetics. To accomplish this, prosthetic devices should

incorporate electronic skin (e-skin) and a distributed simulation system [92]. Such a system

will have the ability to acquire sensors data, preprocess the signals, and transmit

information to the stimulator; consequently, the decoded data is communicated to the

prosthetic user through electro-tactile stimulation [57].

The e-skin system should hold autonomous and numerous networked sensors [93];

every sensor hosts multiple input tactile sensors nearly coupled to an embedded electronic

system and power supply [59]. Furthermore, the e-skin system is expected to have a long-

lifetime while processing tactile data in real-time. Therefore, achieving low energy

efficiency is considered as a favorable objective for IoT edge devices.

Approximate computing [94], [95], is considered as a relevant approach providing a

tradeoff between accuracy and power savings. Approximate computing has succeeded in

improving the energy efficiency for many applications [96],[97],[98]. These applications

are inherent resilient since users could not perceive the small errors in the output. In this

perspective, the work in this chapter focuses on adopting AC techniques at circuit level for

simple tasks (FIR filter) and for complex tasks (CORDIC and SVD) in order to reduce the

power consumption of real-time tactile data processing in the e-skin application.

 64

In these perspectives, this chapter aims to investigate the following main points:

1) Could an approximate computing approach be applied to improve the energy

efficiency in IoT edge devices for the tactile sensing system in healthcare applications?

2) What is the impact of employing approximate computing techniques on the signals

outputs generated from the e-skin application?

In this chapter, we employ the proposed approximate arithmetic circuits presented in

Chapter 2 for the tactile sensing system. The objective is to assess the impact of proposed

circuits as well as relevant state of the art approximate multipliers on the tactile sensing

system. The quality is measured in terms of different metrics, mainly: SNR degradation,

MRED, NMED, power consumption, PDP, and time delay. The results presented in this

chapter are not all published yet; only some part of the results was published in [61],[62].

3.2 E-skin system

In this section, we will describe the tactile sensing system. The block diagram of the e-skin

system is shown in Fig.1, it is mainly composed of four different blocks: 1) A piezoelectric

tactile sensor array that receives input stimuli, 2) An electronic interface system in charge

of signal conditioning and data acquisition, 3) an embedded electronic system for digital

Fig.3.1 Functional diagram of electronic-skin system

 65

signal processing (DSP) to preprocess the tactile signals and 4) data processing block which

is responsible in processing the signals generated from the digital signal processing block.

3.2.1 Sensors array

The sensors employed in the system are composed of an array of 4×4 tactile sensors based

on PVDF (Polyvinylidene Fluoride) that generate a charge as a response to mechanical

stimuli. The main characteristics of the PVDF are i) high sensitivity, ii) wide response

range, and ii) sizeable electromechanical transduction bandwidth, i.e.1 Hz up to 1 kHz in

tactile application [92]. Figure 3.2 shows the structure of the tactile sensor array, which is

composed of three layers: 1) the PDMS protective top layer, 2) the PCB bottom rigid

substrate, and 3) a thick PVDF film layer positioned between the two other layers. The

PVDF film is provided by 16 square taxels printed by an ad-hoc ink-jet. After contact on

the surface of the sensor, stress measured by the PVDF taxels will process sensor data and

make decisions [35] autonomously through the PDMS layer.

Fig.3.2. Sensor array

 66

3.2.2 Interface electronics

As a purely passive device, the sensor needs active interface electronics to amplify and

digitize the signals from its various channels. Charge separation in the piezoelectric

material of the sensor due to the applied pressure is in the order of 0.1pC to several hundred

pC, and hence it requires a low-noise interface with a reasonably high dynamic range. A

commercial multichannel current integrator integrated circuit (IC), from Texas Instruments

(TI) designed for computed tomography scanners, is suitable to interface PVDF sensors

[99]. Key characteristics of this solution for e-skin applications are a high dynamic range,

high sampling rate and the availability of large amounts of channels in an integrated form

factor. More precisely, we used the TI DDC264 IC with a 64-channel variant and samples

rate up to 3.1 kSPS per channel with 20 bits resolution for a full-scale range of 150pC. The

IC has a standard SPI interface to provide access to the digital samples, and connection

with the processing unit.

3.2.3 Signal and data processing

In the third block of the e-skin system, a low-pass Finite Impulse Response filter (FIR)

aims to Filter the tactile signals as described in [6]. Then in the fourth block of the system,

Machine Learning algorithms are employed for processing tactile data when classifying

touch modalities. Different DSP units such as: Singular Value Decomposition (SVD),

Coordinate Rotational Digital Computer Circuits (CORDIC) take a significant part of the

embedded ML algorithms. However, the DSP blocks are implemented by using

multiplication and addition operations, posing significant challenges on power

consumption and time latency since the number of operations to be performed high.

 67

Nevertheless, approximations could be enabled for applications requiring signal and data

processing. Therefore, any improvement in the performance of the adders and multipliers

will significantly affect the performance of the overall tactile sensing system. In order to

understand the behavior of the tactile sensing system and the potential of approximations

techniques, we first implement different approximate multipliers on low-pass Finite

Impulse Response (FIR) filter in the signal processing stage. Second, we implement

approximate adders and multipliers respectively in the CORDIC and SVD blocks in the

data processing stage.

3.3 Methodology for approximating the tactile sensing system

Fig.3.3 presents an overview of the adopted methodology for approximating circuits blocks

in the e-skin application. The methodology is composed of the main four blocks:

 In the first phase, the approximate adders have been implemented and simulated in Vivado

Design Suite 2017.1 using VHDL Hardware Description Language. The power

consumption and time delay have been reported after synthesizing the designs by using

Xilinx Vivado synthesizer, with Virtex-7 xc7vx485tffg1157-1 device after extracting the

node activity and exporting it to the form of a SAIF (Switching Activity Interchange

Format) files. In order to extract accuracy metrics,105 input has been randomly selected

based on uniform distribution. In the second phase, the approximate adders have been

implemented in the approximate multipliers. The evaluation of the approximate multipliers

has been done following the same procedure proposed in the first phase. In order to have a

fair comparison with similar state of the art solutions, open-source approximate arithmetic

circuits based on relevant previous works[60],[78],[91],[85],[70],have also been

implemented and simulated. The performance of the different multipliers is compared,

 68

taking as a reference the exact Baugh-Wooley [35] multiplier. Then, we evaluate the

resilience to the error of the approximate blocks by scaling the number of approximated

LSBs in order to find the trade-off power-quality. In the third phase, we have implemented

the approximate multipliers and adders respectively in the two stages of the tactile sensing

system. The quality of the tactile output data is evaluated based on the Signal Noise to

Ratio metric (SNR), while the quality of the approximate data processing block is evaluated

based on the MRED of the generated data. Finally, the multiplier and the adder having

respectively the highest SNR and lowest MRED with a low PDP will be selected for the e-

skin application. The first and second phases of the methodology have been already

assessed in the second chapter. While in this chapter, we deal with the third and fourth

Fig.3.3 Proposed methodology for selecting the efficient multiplier for tactile sensing system

 Fig. 8. Power consumption, delay and MRE of exact and approximate multiplier designs.

 69

phases highlighting the experimental setup carried out to assess the approximate circuits in

the target application.

3.4 Approximations in digital signal processing

3.4.1 Experimental setup description

In this part, we will describe the experimental setup needed to extract the tactile sensing

signals. The tactile signals have been obtained from the experimental setup presented in

[93]. Fig.3.4 shows the different instruments used in this setup. A frequency of 100 Hz is

applied to the shaker through the function generator. The force sensor reads the values of

the force applied to the tactile sensor via the LabVIEW tool. On the other hand, an electrical

signal is generated when the shaker applies a mechanical stimulus on the surface of the

tactile sensor. Then, through the A/D converter, the converted electrical signal is connected

to the FPGA, which is responsible for sending the converted data to the MATLAB® tool

using a UART to USB interface. Collected data has been normalized in MATLAB® after

being extracted for a duration of 5s.

 The retrieved tactile signals have been recorded to a text file and have been passed into

the FIR filter using the Xilinx Vivado simulator. Then, the output filtered signals have been

recorded. Another MATLAB® script has been used for analyzing the filtered signals. The

MATLAB® script first computes the Fast Fourier transform (FFT) of the signals then

calculates the Signal to Noise ratio (SNR) for the filter, as shown in Fig.3.4 a). The same

 70

procedure has been repeated for eleven different FIR filters based on exact and approximate

multipliers presented in[60],[61],[78],[91],[85].

3.4.2 Finite Impulse Response filter structure

A fully-parallel 16- tap low-pass Finite Impulse Response (FIR) filter based on transposed

form architecture, as shown in Fig.3.5 b) [100], has been implemented for the tactile signal

processing in VHDL language for the Virtex-7 xc7vx485tffg1157-1 FPGA device. The

equation of the studied FIR filter is presented as follow:

𝑦(𝑛) = ∑ 𝐻(𝑚) × 𝑥(𝑛 − 𝑚)𝑁−1
𝑚=0 (3.1)

where 𝐻(𝑚) are the filter coefficients, 𝑥(𝑛 − 𝑚) is the noisy discrete signal sequence,

𝑦(𝑛) is the output filtered signal, and (𝑁 − 𝑚) is the order of the filter. The coefficients of

Fig. 3.4. Experimental Setup

 71

the filter have been extracted using MATLAB® through the Discrete Fourier Transform

(DFT) with a pass-band and stop-band frequencies respectively equal to 775 Hz and 990

Hz (according to the input signals).

 Input data has 8 bits 2’s complement representation. The registers are put between the

adders to increase the throughput of the circuit. The mentioned FIR filter has been selected

for the application, since usually dedicated high speed parallel FIR filter with fixed

coefficient meet the constraints of the application(real time performance and low power

consumption). However, multiplications increase the complexity of the FIR filter, therefore

approximate multipliers are adopted in the FIR filter in order to reduce the complexity of

the system.

(a)

 (b)

Fig. 3.5. a) . Functional block diagram for quality evaluation of FIR filter based approximate multiplier

b) Design of 16-tap low pass finite impulse response filter using approximate multipliers.

 72

3.4.3 Filtered output tactile data

The signal to noise ratio metric (SNR) has been employed in order to measure the quality

of the filtered tactile signals. SNR of approximate filters has been computed, taking as a

reference the exact filter (i.e., based on exact Baugh-Wooley multiplier) to assess the

impact of the approximate multiplier. Fig.3.6 presents a bar plot showing the SNR for the

eleven filters. The SNR value in the best case is 23.39 dB.

Kulkarni [78] and ROBA [70] achieve the highest SNR; however, Approx-BW

outperforms Kulkarni and ROBA respectively by a factor of 3× and 5× in terms of PDP

(power delay product) (see in chapter 2) at the cost of less than 1.39 dB degradation in

SNR with respect to the exact multiplier. The degradation is minimal considering the

achieved reduction in power and time latency. Fig 3.6 shows that the SNR of the FIR filter

based on Approx-BW is better than that of META[60], Shaf [91], and Evo0[85]. Approx-

BW competes META[60], Evo0[85], and Shaf [91]by 3.69×, 2.84× and 2.46× in terms of

Fig. 3.6. Sorted signal-to-noise ratio for the exact and approximate multipliers.

 73

PDP, respectively, as shown in chapter 2. On the other hand, Mul-AXA (3.06dB) and

MAND (3.9dB) reached values far from being accepted for the target application. Such

low SNR values indicate the distortion of the tactile signals. We conclude that not all

approximate multipliers could be employed in the tactile sensing system.

Moreover, the filtered tactile signals through FIR filters based approximate multipliers

are shown in Fig.3.7. It is shown in some cases the signal is wholly degraded, i.e. for

MAND, MNAND, Mul-AXA, MIPP. For others, e.g., Shaf [91]and Evo0[85], the tactile

signal generated reveals a distortion with respect to the signal generated from the FIR filter

based on the exact multiplier. While with Approx-BW, the signal behavior is pretty similar

to those generated with Kul [78]and exact BW [69].

To summarize, the FIR filter based on Approx-BW shows the best performance among

the other approximate filters, respecting the tradeoff between accuracy and power

consumption. Concerning the power consumption, Approx-BW achieves around 80% of

power reduction at the cost of only 1.39 dB degradation in SNR with respect to the BW-

exact multiplier when applied to FIR filters. Thus, we conclude that approximate

computing techniques lead to several advantages when used in the signal processing stage

of the tactile sensing system, i.e. reducing the power consumption, time delay, and area

with minimal loss in quality.

3.5 Approximations in data processing

In the e-skin application, Machine learning plays an influential role in extracting

meaningful information out of the proper amount of sensor data generated. Regrettably, a

large number of operations such as multiplications are mainly executed in ML algorithms,

 74

which are the most power demanding arithmetic operations. Therefore, implementing

approximate computing techniques for the CORDIC and SVD blocks will improve the

energy efficiency of embedded ML algorithms adopted for e-skin; since CORDIC and

SVD algorithms take a significant part in the real-time ML algorithm for tactile data

processing. In this section, we will describe the architecture of the approximate CORDIC

and SVD, discussing the improvements obtained in terms of power, latency, and

performance after adopting approximate techniques for e-skin.

3.5.1 CORDIC Algorithm

In this section, we provide the circuit architectures and method of implementation of

CORDIC for rotation mode[101].

CORDIC is an iterative algorithm which involves a series of shift-add operations for

computing a very rich set of functions from the basic set of equations. CORDIC can be

either operated in vectoring mode or in rotation mode. In vectoring mode, CORDIC rotates

the input vector through whatever angle is necessary to align the resultant vector with the

horizontal axis: the result of the vectoring mode operation is the rotation angle and the

scaled magnitude of the original vector. In rotation mode, the angle accumulator is

initialized with the desired rotation angle (Z). The rotation decision criteria (𝑑𝑖) at each

iteration diminishes the magnitude of the residual angle in the angle accumulator. The

decision at each iteration is based on the sign of the residual angle after each step. The

iteration equations are given by:

𝑋𝑖+1 = 𝑋𝑖 − 𝑌𝑖 × 𝑑𝑖 × 2−𝑖

𝑌𝑖+1 = 𝑌𝑖 − 𝑋𝑖 × 𝑑𝑖 × 2−𝑖 (3.2)

 75

𝑍𝑖+1 = 𝑍𝑖 − 𝑑𝑖 × 𝑡𝑎𝑛−1(2−𝑖)

Where:

{
𝑑𝑖 = +1 if 𝑌𝑖 < 0,−1 otherwise for vectoring mode

and
𝑑𝑖 = −1 𝑖𝑓 𝑍𝑖 < 0,+1 otherwise for rotation mode

 (3.3)

Which provides the following result:

• Rotation mode:

𝑋𝑛 = 𝐴𝑛[𝑋0𝑐𝑜𝑠𝑍0 − 𝑌0𝑠𝑖𝑛𝑍0]

𝑌𝑛 = 𝐴𝑛[𝑌0𝑐𝑜𝑠𝑍0 − 𝑋0𝑠𝑖𝑛𝑍0] (3.4)

𝑍𝑛 = 0

• Vectoring mode

𝑋𝑛 = 𝐴𝑛√𝑋0
2 + 𝑌0

2

𝑌𝑛 = 0 (3.5)

𝑍𝑛 = 𝑍0 + 𝑡𝑎𝑛−1(
𝑌0

𝑋0
)

3.5.2 CORDIC Circuits

CORDIC design uses a single Shift-Add operation for each component: x, y, and z, as

shown in fig.3.7. A MUX (2:1 multiplexer), a shift register, and an adder/subtractor are

 76

 required for each unit into CORDIC architecture. Before the beginning of CORDIC

computation, three inputs X_in, Y_in, and Z_in are provided to the MUX. Then the

computation will proceed by using the values stored in X_reg, Y_reg, Z_reg respectively.

The micro-rotation angles arctan (2^(-i)) are stored into the ROM, where i is the input of

the ROM and varies from 0 to 29 in this case. The FSM is responsible for tracking the

shifting distance and enabling the multiplexer signals in order to control the ROM

addresses. The FSM has three states (𝑠0, 𝑠1 𝑎𝑛𝑑 𝑠2) which depends on three signals as

follow: “reset”, “start”, and “count”. Then, three outputs will be controlled such as: “init”,

“load” and “done” ,indicating the progress of the system during the runtime. If “reset” is

set to 1, the FSM is at state s0 and the output “init” is set to 1. At this point, the registers

X, Y and Z take their initialization value. For a rotation computation mode, the values are

Fig.3.7 Architecture of the CORDIC in rotation mode

 77

as follow: “X =0.6072,” “Y =0,” and “Z=angle” which is the desired angle of rotation. If

“reset”and “start”are respectively equal to 0 and 1 , then FSM proceeds to the state 𝑠1, so

“load” will be set to 1 at the output. This step indicates that the system calculates the cosine

and the sine of the input angle. The state remains at 𝑠1 if the “count” signal stays different

then the number of iterations. When “count” reaches the number of iterations, the FSM

changes state and switches to 𝑠2 where “done” is assigned to 1 indicating the end of the

calculations. Therefore, the system will return to the initial state 𝑠0 waiting for another

computation when start will be set to 1 again.

3.5.2.1 Rotation mode

The accumulator angle is initialized to 𝑍0 which is considered as the desired angle of

rotation. Based on (3.2) , the resulted operation is a vector (𝑥′, 𝑦′) rotation of (𝑥, 𝑦) by the

angle of rotation 𝑍0. The rotation at each iteration diminishes the magnitude of the residual

angle of Z. The sign of 𝑍𝑟𝑒𝑔 determines the direction of rotations; if 𝑍𝑟𝑒𝑔>0 then the two

adders components corresponding for X and Y will make an addition while the adder

component related to Y operated as subtractor. Otherwise, all the operations will be

inverted. Therefore, the direction of rotations is determined by the sign of the Zreg: if it is

positive then the two “ADDER” for X and Z components operate as adders, while the one

for Y operates as subtractor.

 CORDIC in rotation mode could compute simultaneously the sine and cosine

functions of the input angle. The derived equations after setting Y component to zero are

as follow:

𝑋𝑛 = 𝐴𝑛. 𝑋0𝑐𝑜𝑠𝑍0 (3.6)

 78

𝑌𝑛 = 𝐴𝑛. 𝑋0𝑠𝑖𝑛 𝑍0

 The rotation produces the unscaled cosine and sine of 𝑍0 after setting 𝑦0 =0 and

𝑥0=1/𝐴𝑛 where 𝐴𝑛= 0.6073. By adopting this method, the hardware complexity of the

circuit is reduced by minimizing the number of required multiplications through the scaling

factor 1/𝐴𝑛.

3.5.3 Approximate CORDIC

As shown in Fig.3.7, CORDIC architecture relies on different adders; the objective is to

reduce the power consumption of the CORDIC algorithm by substituting the adders by

approximate ones. In this work, we aim to:

1) Select some of the most significant approximate adders presented in the state of the art

such as: Approximate XNOR-based Adder (AXA)[77], Approximate NAND-carry out

bit[86], Approximate AND-carry out bit[86], Input Pre-Processing[87] ,(LOA)[55] and

Error Tolerant Adder (ETA)[61].

2) Evaluate the performance of the approximate adders by studying the accuracy, power

consumption, time delay in order to select the optimal adder architecture to be implemented

in the CORDIC algorithm.

3) Implement the approximate adders into the CORDIC circuit.

3.5.3.1 Hardware implementation results

 The approximate adders have been implemented and simulated in Vivado Design Suite

2017.1 using VHDL Hardware Description Language. The power consumption and time

 79

delay have been reported after synthesizing the designs by using the Xilinx Vivado

synthesizer, with a Virtex-7 xc7vx485tffg1157-1 device. In order to extract accuracy

metrics, 105 input has been randomly selected based on uniform distribution. Moreover,

the average dynamic power and the time delay have been determined for each adder

implementation with a testbench of 3µs.

Among the architectures of different approximate adders described in chapter 2, the LOA

and the ETA outperform the other adders having the lowest MED (45.61, 51.99) and

NMED (0.07%, 0.08%) respectively. The maximum passing rates (31.18%) belong to the

AND-carry out bit adder, as shown in Table 3.1.

Fig.3.8 represents the percentage of the outputs as a function of the relative percentage

error distance. Upon simulation results, we observed that from 80.13% (approximate

Fig. 3.8. Percentages of outputs versus relative error distance for different inexact adder circuits

 80

NAND-carry out bit) to 92.47% (ETA) of the outputs show a relative error distance of less

than 2%. Hence, less than 7% (i.e., Approximate NAND in the worst case) of the outputs

are characterized by a relative error distance of more than 6%.

Moreover, the power consumption and time delay of the approximate adders with respect

to MRED have been evaluated, as shown in figure 3.10. We notice that ETA and LOA

adders (which have the lowest MRED of 1.52%) have also the lowest power consumption

(24 mW, 21 mW) since carry propagation has been omitted. While AXA has the worst

MRED (4.95%) with higher power consumption (34 mW). We conclude that LOA and

ETA are considered as the most optimal approximate adders to be implemented into

CORDIC. Therefore, we have implemented ETA and LOA instead of the entirely precise

adder (RCA) into the CORDIC algorithm aiming to study the performance of CORDIC in

terms of slices, power, and time latency after employing approximate circuits. ETA and

LOA in the CORDIC design allow respectively a dynamic power consumption saving up

to 13% and 21% with respect to CORDIC-RCA, as shown in Table 3.2. Moreover, we

Table 3.1. Accuracy Metrics For Different Approximate Adders Designs

Approximate

Adders

MED MSE NMED MRED Pass

Rates

ETA 51.99 7.8E+04 0.08 0.015 8.07%

LOA 45.61 4.6E+04 0.07 0.015 8.07%

AXA 75.46 1.1E+04 0.11 0.05 0.01%

NAND-C 75.6 6.6E+04 0.12 0.044 0.02%

AND-C 60.67 3.7E+04 0.09 0.028 31.18%

IPP 89.7 6.8E+04 0.13 0.031 21.77%

 81

notice that the power consumption of CORDIC-LOA will be reduced by up to 11% with

respect to CORDIC-ETA, after selecting LOA instead of ETA. We conclude that ETA will

decrease the power by 13%, but in the case of selecting LOA, the power will be decreased

by up to 21%with respect to[98] and [102].

Fig.3.9 Power consumption, delay and MRE of exact and approximate adder designs

Table 3.2. Full adder versus approximate adders based CORDIC circuits

Word

length

32 bits

CORDIC-

RCA

Reference[101] CORDIC-

ETA[98]

CORDIC-

LOA

Registers 135 135 134 130

Power

(mW)

92 85 80 72

latency

(ns)

153 110 130 127

 82

3.5.4 Singular Value Decomposition Algorithm

In algebra, the Singular Value Decomposition (SVD) is considered as a matrix factorization

method employed to analyse the structure and properties of a particular matrix. Moreover,

the SVD generates the least square solution computation of a system since the SVD could

produce a complete orthogonal decomposition. The definition of the SVD is explained in

details below:

A real matrix A of size m×n could be represented as a product of three matrices as below:

A = USVT (3.7)

Where the matrices are defined as follow:

• Orthogonal matrix U(m×m): U−1 = UT . The generated vectors (u1, u2, … . , um)

from the U columns are considered as an orthonormal base for Rmspace and u

vectors are called “left singular vectors.”

• Orthogonal matrix V(n×n): V−1 = VT. The generated vectors (v1, v2, … . , vm) from

the V columns are considered as an orthonormal base for Rmspace and v vectors

are called “right singular vectors.”

• Matrix S(m×n). The main diagonal contains the singular values such as:

σ1 ≥ σ2 ≥ ⋯ ≥ σmin (m,n) ≥ 0 (3.8)

These obtained values are expressed in decreasing order while the other values are

set to zeros. Therefore, if p=rank(A), then p≤min(m,n) and the singular values

 83

greater than zero are as follow: σ1, … . , σn. Then, the following equation is

generated:

S=

[

σ1 0 ⋯
0 σ2 ⋯
⋮ ⋮ ⋱

0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋮

0 0 ⋯
⋮ ⋮ ⋮
0 0 ⋯

σn 0 ⋮
⋮ ⋱ ⋮
⋯ ⋯ 0]

=[
Sn 0
0 0

] (3.9)

Where

Sn = [

σ1 0
0 σ2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ σp

] (3.10)

Based on (4.17), the SVD product could be expressed as follow:

A = [u1 u2 … um] [
Sn 0
0 0

] [v1 v2 … vm]T = [Un|U0] [
Sn 0
0 0

] [Vn|V0]
T = UnSnVn

T

Where U0 and V0 are considered as the left and right eigenvalues, respectively, with respect

to the null eigenvalues. However, if n is considered as the matrix rank then the first p

singular values will be different from zero. In this case, the first n U and V column vectors

which are considered as the submatrices (Un , Vn), will have a role in the matrix

decomposition as shown below:

U = [u1 u2 … un| un+1 un+2 … um]; (3.11)

V = [v1 v2 … vn| vn+1 vn+2 … vp]; (3.12)

In case Un and Vn are written as their respective column vectors, then the SVD product will

be written as below:

 84

A= UnSnVn
T = ∑ Unuivi

Tn
i=1 = ∑ σiEi

n
i=1 (3.13)

Where each eigenvalue is multiplied by the matrix Ei = uivi
T , having a size of (m×n).

Different procedures exist for determining the SVD of a given matrix A. One of them which

is referred to the matrix ATA is presented below:

• The first n vectors vi are expressed as the ATA eigenvectors for the corresponding

σi
2 ≠ 0 eigenvalues. While the remaining vn+1 vn+2 … vm vectors are computed

through the orthogonalization process.

• The first n vectors uiare generated based on the following property:

Avi = USVTvi = USei = Uσiei = σiui (3.14)

Where ei = [0…010…0]Tand one is positioned at the ith row. Also, the remaining (m-p)

vectors will be computed through the orthogonalization process.

On the other hand, another method could be employed to compute the SVD, called “dual

one.” It is responsible for building the ui vectors starting from ATA and vi.

To summarize, these methods described previously could be applied only for matrices

having a small size and for a small condition number. However, the accuracy loss will be

significant after increasing the size of the matrix. Therefore, a more interesting algorithm

proposed by Carl Gustav Jacob in 1846 will solve this issue mentioned previously. This

algorithm is called the “ Jacobi algorithm.”

3.5.4.1 One-Sided Jacobi Algorithm

 85

One-sided Jacobi is an algorithm that consists of applying a sequence of rotations to an

initial matrix (i.e., matrix A). Then the diagonal matrix S could be reached. Eventually,

Jacobi generates a sequence as follow (A1 , A2, … . An), which usually converge to a

diagonal matrix, having the eigenvalues on the diagonal. The transformation is applied to

matrix A through the following formula:

Am+1 = 𝐽(m, n, α)TAm𝐽(m, n, α)T (3.15)

Where 𝐽(m, n, α) is called a Jacobi rotation, which is equal to the identity matrix I with

four additional elements on the intersection of rows m and columns n. Then, the Jacobi is

computed for each 2×2 sub-matrix in order to annihilate the off-diagonal elements of the

matrix A. The rotation matrix J will be constructed such that the w elements will be

annihilated, by following the equation below:

[
𝑥̂ 0
0 𝑦̂

] = [
cos α −sinα
sinα cos α

]
𝑇

[
x w
w y] [

cos α −sinα
sinα cos α

] (3.16)

Where 𝑥 ̂and 𝑦̂ are the diagonal elements of the 2×2 matrix related respectively to the

following two elements x and y after applying the rotation to the corresponding angle.

Indeed, through the one-sided Jacobi algorithm, high accuracy is achieved, followed by a

fast convergence. In fact, five to ten iteration is required by the algorithm in order to

achieve the convergence; thus, the time and the number of resources to be employed will

be reduced in this case.

 86

3.5.5 SVD Circuits

In the following section, we will describe the hardware implementation of the main blocks

of the SVD: matrix symmetrization, phase solve and Pre-, Post-rotations.

The matrix input of the SVD must be symmetrized through the matrix symmetrization

function in order to obtain a square matrix. It consists of multiplying the input matrix by

its transpose as follow:

Un = 𝐴𝑇𝐴 (3.17)

Then, the resulted symmetric matrix will be stored in the memory, as shown in fig.3.11.

After the symmetrization phase, the computation will start with the four elements of the

pair (a, b), which have been stored in the memory. Then, the CORDIC IP from Vivado

Fig.3.10 Approximate SVD block diagram

 87

2017.1 1 is employed in order to compute the angle of rotation in vectoring mode, while

the Sine and Cosine are computed in the rotational mode. Then, the pre and post-rotations

blocks are responsible for rotating the rows of U and the columns of U and V, respectively,

using the one-sided Jacobi block. These rotations are based on the sine and the cosine

functions, which have been calculated by the previous phase solver block. However, a

reliable stopping criterion must be defined in order to ensure that the algorithm will arrive

at the convergence while reducing time and power operations.

3.5.6 Approximate SVD

3.5.6.1 Accuracy Analysis

As shown in Fig.3.10, four multipliers are needed for the pre-rotation and post-rotation

blocks, respectively. The number of operations generated from the multiplication takes a

high amount of power. Therefore, the focus in our work is reducing the power consumption

of the SVD by implementing approximate multipliers instead of the exact multiplier. As

shown in fig.3.11, the approximate Baugh-Wooley multiplier is implemented in the

architecture of the SVD. Only adders and subtractors are kept correct. The scalability of

the approximate multiplier has been assessed into the SVD by approximating eight from

Table 3.3 Percentage relative error of Approximate SVD

Eigen-

values

SVD-

approx8

SVD-

approx12

SVD-

approx16

SVD-

approx20

SVD-

approx24

SVD-

approx28

S1 0 0 0.018 0.45 4.89 26.24

S2 0 0 0.097 3.33 36.57 93.77

S3 0 0.054 0.27 8.27 72.32 99.89

S4 0 0.31 0.62 10.14 73.79 99.68

S5 0 0 100 0 100 0

Relative Error (%)

 88

the Least Significant bits (LSB), then increasing the number of approximated bits reaching

20 approximated LSB’s. Experiments have shown that for an input matrix of size 5×5, the

accuracy of the eigenvalues of the SVD (S1, S2, S3, and S4) remain higher than 99% after

approximating 16 LSB’s as shown in Fig. 3.11. While the accuracy of the eigenvalues

decreases from 99% to 90% after approximating 20 LSB’s (which is still considered

acceptable for our application). Moreover, the relative error has been evaluated for all the

eigenvalues for different configurations of approximated LSB’s as shown in Table3.3. The

eigenvalues of the SVD-approx24 and SVD-approx28 reach a relative error of around 36%

to 99%, thus concluding that the number of approximated LSB’s in approximate BW

should not exceed 20 bits. Moreover, the performance of the approximate SVD has been

studied for an input matrix of size 8×8, resulting in eight eigenvalues from the SVD.

Fig.3.11. Accuracy of the eigenvalues of the approximate SVD for an input matrix of size (5×5).

Relative Error (%)

 89

Fig.3.12 and Table 3.4 represent, respectively, the accuracy and the relative error of the

eigenvalues generated from the SVD. As shown in Table 3.4, when increasing the number

of approximated LSBs till 20, the relative error of the eigenvalues (S1, S2, S3, S4, S5, S6,

and S7) will not exceed 27% just for two eigenvalues (i.e., S6 and S7); while most of the

Table 3.4: Relative error of the eigenvalues resulted from the approximate SVD for an input matrix of

size (8 ×8).

Eigen-

values

 SVD-approx8 SVD-approx12 SVD-approx16 SVD-approx20 SVD-approx28

S1 0 0 0.01 0.28 4.3

S2 0 0.10 0.21 4.58 33.37

S3 0 0 0.49 5.93 55.98

S4 0 0.13 9.27 7.82 83.58

S5 0 3.41 0.35 16.12 98.08

S6 0 3.36 7.22 27.1 98.41

S7 0 1.68 27.71 18.79 49.87

Fig.3.12. Accuracy of the eigenvalues of the approximate SVD for an input matrix of size (8×8).

Relative Error (%)

 90

eigenvalues have a relative error less than 10%. However, when approximating 24 LSB’s

of the approximate BW multiplier, the relative error of the eigenvalues will remain high,

exceeding 50%.

3.5.6.2 Power/Energy Consumption, LUT, Latency Analysis

In this subsection, we analyse in detail the percentage of reduction of the power/energy

consumption, latency, and LUT utilization of the approximate SVD. Fig. 3.13 illustrates,

respectively the results of the experiment for two input matrices of size respectively equal

to (5×5) and (8×8). The x-axis represents the numbers of output LSBs approximated in the

SVD. While, y-axis represents the percentage of reduction of power/Energy consumption,

LUT, and Latency with respect to the accurate SVD based on Exact-BW. Moreover, the y-

axis denotes the probability of acceptance and the MRED of the resulted eigenvalues;

indicating the range of acceptable accuracy. Based on these experiments, we notice that:

• The Power/energy consumption, LUT utilization, latency will be reduced when

increasing the number of approximated LSBs. For example, the power and the

energy consumption have been reduced respectively by up to 14% and 16%, as

shown in Fig.3.13, after approximating 20 LSBs.

• The MRED of the resulted eigenvalues dramatically decreases after approximating

more than 20 LSBs of the SVD, as illustrated in Fig. 3.13. For example, the MRED

in Fig 3.14 has been increased drastically to 80% after approximating 28 LSBs,

which is considered out of the range of accuracy acceptance.

Therefore, we conclude that it is possible to approximate up to 20LSBs of the SVD,

achieving an energy reduction of 16%.

 91

 We conclude that approximate computing techniques are considered as a promising

(a)

(b)

Fig. 3.13. Performance and Error resilience analysis of the Singular Value Decomposition for an input

matrix of size (5×5) (a) and (8×8) (b)

 92

approach to be employed for the data processing stage of the tactile sensing system, aiming

to improve the energy efficiency of the overall e-skin application.

3.6 Conclusion

This chapter assesses the impact of approximate computing techniques on the tactile

sensing system, which is composed of two main blocks (signal and data processing blocks).

Therefore, we implement the proposed approximate arithmetic circuits and some relevant

state of the art approximate circuits in the tactile sensing system: aiming to understand the

behavior of the target application when enabling approximations techniques. The quality

is measured in terms of different metrics, mainly: SNR degradation, MRED, NMED,

power consumption, PDP, and time delay. Thus, based on the methodology employed for

the approximate tactile sensing system, we implemented different approximate multipliers

on low-pass Finite Impulse Response (FIR) filter in the first stage from one side and

approximate adders and approximate multipliers respectively in the CORDIC and SVD

blocks in the second stage from another side. Results prove that the FIR filter based on the

proposed Approx-BW outperforms state of the art solutions, respecting the tradeoff

between accuracy and power consumption. Concerning the power consumption, Approx-

BW achieves around 80% of power reduction at the cost of only 1.39 dB degradation in

SNR with respect to exact and another relevant state of the art multipliers when applied to

FIR filters. Moreover, we improve the power consumption of embedded machine learning

after implementing approximate arithmetic circuits into the Coordinate Rotational Digital

Computer (CORDIC) and the Singular Value Decomposition (SVD) circuits, which take a

significant part of the real-time ML algorithm for tactile data processing. The power

consumption of CORDIC and SVD has been reduced respectively by 21% and19% at the

 93

cost of less than 5% accuracy loss after scaling the number of the approximate bits.

This study demonstrates the feasibility of the proposed approach based on applying

approximate circuits in the signal and data processing blocks of the e-skin system. Thus,

we conclude that approximate computing techniques lead to several advantages when used

for a tactile sensing system, i.e. reducing the power consumption, time delay, and area with

minimal loss in quality.

 94

CHAPTER 4. MACHINE LEARNING ALGORITHMS FOR

TENSORIAL TACTILE DATA PROCESSING

4.1 Introduction

For the aim, to improve the interaction between humans and robots, different technologies

have been developed for tactile systems. Therefore, several processing methods have been

suggested in order to extract meaningful information from sensor data generated from a

sensitive skin[103],[99]. Interpreting sensor data has been proved through different pattern

recognition methods, which is considered as a challenging task in e-skin applications (e.g.,

classification of shapes and patterns [104],[105]). Hence, Machine Learning (ML) provides

an efficient solution for tactile sensing systems. In[106], the authors employed the k-

nearest neighbor (K-NN) for the haptic interface, where five touch modalities are

recognized. In [107], eight different touch modalities are recognized through a “

LogicBoost” implementation. Then, authors in [108] have suggested a neural network’s

model called “ modified counter propagation,” which is designed for discriminating

between ten touch modalities when recognizing tactile data. Flag in [109] has recognized

three gestures after employing a fur supported by a touch sensor. Authors in [110] exploited

the Support Vector Machines (SVM) to recognized affectionate behaviors. In[111], a K-

NN is implemented for the biometric system.

In this work, two main aspects are addressed to interpret tactile data through ML

algorithms, as described in [4]. The first aspect is dedicated to mapping the variation of

stimuli time extracted from a two-dimensional sensor array. Therefore, a tensor-based on

 95

tactile signals morphology is suggested. Then, feature extraction is needed to map the

signal in the form of tensors into multi-dimensional vectors, while the second aspect deals

in recognizing the specifications of the tactile sensing system.

Moreover, implementing supervised learning tools will be considered as a challenging task

to be employed for the tactile sensing system. The critical step is to attain a reliable

generalization, which predicts the data excluded from the training set correctly. Therefore,

the ML framework designed for the e-skin application can handle the problem of learning

under noisy signals.

In this chapter, we will describe the framework of ML algorithms employed for the tactile

sensing system, applying the classification for images as a case study and on touch

modalities for e-skin application. The aim of this chapter is to validate the effectiveness of

the SVM based tensor kernel algorithm for touch modalities classification before exploiting

the embedded implementation of the ML on the low power platform, as it will be described

in chapter 5.

4.2 Tactile data based on the tensorial approach

The electronic skin, which has a dimension of 2D, is considered as the main component of

the tactile sensing system. Usually, the sensors in the tactile systems lie into typical grids

at specific positions forming a network into the skin based on piezoelectric or capacitive

transducers. Each cell in the skin area is composed of several sensor cells responsible for

processing the data generated from the multiple sensors. Moreover, another existing

technique which is called “imaging technique” can process the generated information after

 96

performing some measurements on the electrodes located at the edge of the conductance

sheet.

Hence, the collected sensors data could be organized into the form of tensor, where the

tactile images represented in the form of 2D are structured in the time domain, as shown in

Fig. 4.1. Thus, it is estimated that the described framework based on pattern recognition

will handle the challenging task by exploiting the tensorial structure in our application.

4.3 ML approaches for touch recognition

The two main reasons for choosing the ML approach are as follows. Firstly, ML techniques

can predict and make decisions on unknown input samples. When dealing with sensor data,

attaining an input-output relationship is considered severe. Then, the input-output function

Fig.4.1. Schematic of tactile acquisition system

 97

will be modelled by ML through the “learning from examples” approach. Secondly,

through the presented framework in[112], the learning machine will be extended from the

kernel method to the tensor-learning model.

4.3.1 Pattern recognition based on kernel methods

Generally, the decision function could be identified through classification methods after

minimizing the error of the classification accuracy in the problem domain. For this aim, an

optimization supporting the trade-off between the regularized term and the empirical risk

is required for the training methods. The decision function f resides to the reproducing

Kernel Hilbert Space (RHKS), which takes advantage of the “Kernel Trick.” The

computation takes place based on the following kernel function 𝐾(𝑥𝑖, 𝑥𝑗) which includes

the product of 𝑥𝑖 and 𝑥𝑗 Patterns. Then, the decision-making flow will be mapped into

another space where linearity could be applied.

In this subsection, we will describe the well-known learning paradigms, which are: Support

vector machines (SVMs) and Kernel-based Extreme Learning Machines (K-ELM).

4.3.1.1 Support Vector Machines

The Support Vector Machine (SVM) is a supervised learning model, designed and

proposed in 1995[113]for classification and regression purposes. SVM aims to classify

each dataset in different categories through a model built from a set of training examples.

Usually, the classification is executed after finding the best separation hyperplane, which

divides the two specific classes with a maximum gap, as shown in Fig. 4.2.

 98

The classification consists of determining a function that is defined as a plane П in the

linear case, where C1 and C2 are divided into the data space [114]. Two different labels

are marked to the two classes as follows: 𝑦 = +1 for C1 and 𝑦 = −1 for C2.

The separation area between the C1 and C2 points is characterized after defining 𝜋𝑎 and

𝜋𝑏 as two hyperplanes having the same normal 𝑤 . Then, the hyperplane separation

𝜋 (w, b) is considered as the halfway separation from the two support hyperplanes.

Therefore, the two following inequalities could be written below:

{
 𝑤𝑇𝑥𝑖 + 𝑏 ≥ +1 𝑥𝑖 𝜖 𝐶1(𝑦𝑖 = +1)

𝑤𝑇𝑥𝑖 + 𝑏 ≤ −1 𝑥𝑖 𝜖 𝐶2(𝑦𝑖 = −1)
 (4.1)

Based on (4.1), the following property could be derived:

Fig.4.2. SVM linear case

 99

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 ∀𝑥𝑖 𝜖 𝐶1 𝑈𝐶2 (4.2)

When targeting the linear case, the separator should have the following characteristics:

• Maximizing the distance (𝑑 = 2/‖𝑤‖) between the two hyperplanes 𝜋𝑎 and𝜋𝑏, or

minimizing‖𝑤‖.

• The two hyperplanes should be able to surpass through 𝑥𝑎 𝜖𝐶1 and 𝑥𝑏 𝜖𝐶2,

respectively.

Then, the parameter b could be determined as follow:

{
𝑤𝑇𝑥𝑎 + 𝑏 = +1

𝑤𝑇𝑥𝑏 + 𝑏 = −1
 𝑤𝑇(𝑥𝑎+𝑥𝑏) + 2𝑏 = 0 𝑏 = −1/2𝑤𝑇(𝑥𝑎+𝑥𝑏)

Thus, the primal problem could be presented based on the following equation:

𝑚𝑖𝑛𝑤,𝑏(
1

2
‖𝑤‖2) (4.3)

With

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 ∀𝑥𝑖 𝜖𝐶1𝑈𝐶2(i=1,….,m) (4.4)

Then, the following equation could be written as below:

𝑚𝑎𝑥𝛼 [𝛤𝐷(𝛼) = −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗 + ∑ 𝛼𝑖
𝑚
𝑖=1

𝑚
𝑗=1

𝑚
𝑖=1] (4.5)

{
∑ 𝛼𝑖𝑦𝑖 = 0𝑚

𝑖=1
𝛼𝑖

≥ 0
 (4.6)

 100

After obtaining the 𝛼 vector, the separator could be obtained as follow:

Since 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑚
𝑖=1 then

𝑤𝑇𝑥 = ∑ 𝛼𝑖𝑦𝑖(𝑥𝑖, 𝑥)𝑚
𝑖=1 (4.7)

(4.7) is considered as the product between the current input with the known data (m). Then,

the term b could be generated as follow:

𝑏 + 𝑤𝑇𝑥𝑖 − 𝑦𝑖 = 0 (4.8)

𝑏 = 𝑦𝑖 − 𝑤𝑇𝑥𝑖 (4.9)

Therefore, the classification function will be generated as below:

𝐶𝑙𝑎𝑠𝑠 = 𝑠𝑖𝑔𝑛(𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏) (4.10)

However, (4.10) is issued based on the assumption that the classes are classified linearly.

While this assumption could not be accurate, then the two classes C1 and C2 could not be

able to be separated linearly, which means that the hyperplane could not be employed to

separate the two classes.

Therefore, Vapnik, Boser, and Guyon have proposed an algorithm to solve this problem

mentioned previously by creating a nonlinear classifier using the kernel trick, which will

be presented in section 4.3.2.

4.3.1.2 Kernel-based Extreme Learning Machines

The ELM model is employed for feedforward neural networks and kernel-based methods.

In the training phase, the K-ELM[115] is based on the following equation:

 101

(𝐾 + µ𝐼)𝛽 = 𝑦 (4.11)

Where µ is the parameter for regularization and K is the kernel matrix, including the

following elements which are defined below:

𝐾(𝑎𝑖, 𝑎𝑗) = ℎ(𝑎𝑖). ℎ(𝑎𝑗) (4.12)

Where ℎ1(𝑎) = 𝐺(𝑏𝑙, 𝑐𝑙, 𝑎). In this equation, the two parameters 𝑏𝑙 and 𝑐𝑙 are randomly

extracted through a probabilistic continuous distribution.

4.3.2 Exploiting kernel functions for tensorial approach

When dealing with ML for a tactile sensing system, a feature extraction step is required for

converting the signals generated in the tensorial form to multidimensional vectors. This

fact could lead to some information loss in the structure of the signal generated initially.

Moreover, authors in[112],[116]have demonstrated that signals could be characterized

adequately when dealing with a tensorial form. Also, several benefits have resulted when

using learning methods that assess the information embedded in the tensorial form.

Therefore, the two kernel methods presented in the previous section could be protracted to

the tensor-learning approach. In the following subsections, we will describe the required

steps to get a general kernel entry 𝐾(𝑖, 𝑗) based on the introduced framework in[4].

4.3.2.1 Tensor Unfolding:

The system requires an input of three-dimensional tensors, where the first two dimensions

are the data received from the sensor array, and the third dimension is considered as the

time sample. During the data processing phase, the main goal is to rearrange the received

 102

data in two-dimensional matrices without losing any information. This process is called

“tensor unfolding,” where the results are represented in the form of matrix representation

unfolded into three matrices. The first matrix contains the column information, i.e., all the

column vectors are stacked one after the other, while the second matrix contains the rows

information (i.e., all rows are stacked one after the other) and the final matrix represents

the information brought along the third tensor dimension. The definition of tensor

unfolding is explained as follow:

• For an Nth Order tensor Tϵ CA1×A2×……An , the unfolded matrix T(n) ϵ

C(An×A(n+1)×……A(n−1)) contains the element ta1a2….aN at the row position number

anand for a column number equal to:(an+1 − 1)an+2an+3 … . ana1a2 … . an−1 + (an+2 −

1)an+3an+4 …ana1a2 … an−1 + ⋯ an−1

Fig.4.3. Tensor unfolding

 103

Thus three unfolded matrices result from the third-order tensor are as follow: T(1)ϵ

𝐶𝐴1×(𝐴2𝐴3), T(2)ϵ 𝐶𝐴2×(𝐴1𝐴3), and T(3)ϵ 𝐶𝐴3×(𝐴1𝐴2). An example of an unfolded tensor is

shown in Fig. 4.4.

4.3.2.2 Symmetrization

After obtaining the unfolded matrices, the symmetrization phase aims to symmetrize the

matrices by performing a matrix multiplication as follow:

𝑇𝑠𝑦𝑚 = 𝑇𝑇𝑟𝑎𝑛𝑠𝑇 (4.13)

Where T is the unfolded matrix. In other terms, the symmetric matrix is equal to the

transpose of the square matrix.

4.3.2.3 Kernel Trick

The main difference when employing the kernel trick is the replacement of each dot product

in the SVM algorithm by a non-linear kernel function, as shown in Fig. 4.4. By applying

this trick, the problem will be mapped in a transformed feature space. In this way, the

problem will remain linear again, and then the regular linear classifier could be employed,

as described in the previous section. In the state of the art, different possible kernels have

been presented, but in our work, the suggested trick in [4] will be employed, which is a

Gaussian kernel function designed for tensor-based models. The two tensors (𝑇𝑖, 𝑇𝑗) are

processed through the following kernel equation:

 104

𝐾(𝑇𝑖, 𝑇𝑗) = ∏ 𝐾𝑛(𝑇𝑖, 𝑇𝑗)
𝑁
𝑛=1 (4.24)

Where 𝐾𝑛is the computed kernel factor for the requested tensor. Generally, the kernel

factor is presented below:

𝐾𝑛(𝑇𝑖 , 𝑇𝑗) = exp (
−1

2𝜎2 ||𝑉𝑇𝑖(𝑛)𝑉𝑇𝑖(𝑛)
𝑇 -𝑉𝑇𝑗(𝑛)𝑉𝑇𝑗(𝑛)

𝑇 ||𝐹
2) (4.25)

Where ||𝐹
2 is the Frobenius norm, 𝜎 is the Gaussian kernel width, 𝑉𝑇(𝑛) is the SVD’s matrix

eigenvectors. The previous equations could be rewritten as follow:

𝐾𝑛(𝑇𝑖 , 𝑇𝑗) = exp (
−1

2𝜎2 (𝐼𝑚 − 𝑡𝑟𝑎𝑐𝑒(𝑍𝑇𝑍))) (4.26)

Where 𝑍 = 𝑉𝑇𝑖(𝑛)
𝑇 𝑉𝑇𝑗(𝑛) and 𝐼𝑚 contains the columns of 𝑉𝑇(𝑛).

Fig.4.4. Non linear SVM

 105

4.4 Experimental setup

4.4.1 The model choice for touch recognition

Interpreting the touch modality problem is divided into two tasks:

1) Defining an optimal description for the input signal generated from the sensor lies

in feature space as follow:

𝛽(𝑆) → 𝛾 (4.27)

Where S is the 3rd order tensor characterizing the sensor outputs.

2) Involving practical learning for the decision function, responsible for mapping the

tensor space into a set containing several categories of tactile stimuli:

§: 𝛾 → Ƒ (4.28)

Where Ƒ contains a finite number of stimuli, and § entails a task of multi-class

classification.

Indeed, a pre-processing phase is required to characterize the tactile data as proposed in

[4]. Thus, 𝛽 should delights ℝl(1) × ℝl(2) ℝl(3) , where l(1), l(2) ,and l(3) are the pattern

quantities. The function § is modeled through a dataset X which includes 𝑁𝑝 patterns,

where the data tensor 𝛾 is included in each pattern with a category label y ϵ (-1,1).

However, the results in[117] show that the performances achieved by the SVM based

tensor are persistent when classifying a problem of three classes. The experimental results

prove that the tensorial kernel function is beneficial when targeting a classification problem

that concedes a multidimensional representation. Therefore, a general training framework

 106

is afforded after choosing the model since it analyses the capability of the trained ML after

evaluating the ability of system generalization, achieving highly accurate results when

classifying patterns out of the training set.

Moreover, estimating the error is a difficult task due to the noisy signals and the limited

training set. Since the training data is dependent on the nature of the interpreted touch

modality, for example, the applied touch modality could generate different stimuli with

variable pressure amounts. Therefore, by adopting the Maximal Discrepancy framework

(MD)[118], the difficulty of the learning machine could be evaluated by letting the machine

learn noise.

In our work, the SVM model is adopted from the LIBSVM tool, which is known as open-

source software for the support vector machine. LIBSVM library contains the following

packages: the leading directory for implementing training and testing algorithms, a tool to

Fig.4.5. Sample images

 107

check the data type, a sub-directory including binary files and interface with software such

as (Windows and Matlab).

4.4.2 Dataset

In our work, the SVM based tensor kernel algorithm is written in C language, built, and

run under Ubuntu 16.04. Then, the tensorial algorithm has been tested on images as a case

study, before applying it to tactile data.

4.4.2.1 RGB image

The objective is to classify tensorial data extracted from the sensor array. Nevertheless,

before applying the classification for touch modality recognition, a test for the algorithm

implementation has been done by classifying two uniform color images, as shown in

Fig.4.5. The two images selected below have, respectively two predominant color spectrum

(green and blue). An image is characterized by three color channels (red, green, and blue),

Fig. 4.6. Touch modalities. (a) Finger sliding; (b) washer rolling.

 108

where a matrix of values (1 to 255) is included in each from the three channels. Then the

image could be represented into the form of a tensor with a dimension of 𝑛 × 𝑚 × 3.

4.4.2.2 Tactile data

As described in [4], the data collection process has been done after asking 70 participants

to touch the tactile sensor array using two predetermined possible stimuli: sliding the finger

and rolling a washer, as shown in Fig. 4.6. Every participant was asked to complete one

action on the tactile sensor array by moving horizontally over a random line. Moreover,

the participants were supposed to complete every single touch within a time window of 10

seconds. Overall, the total number of resulted patterns is equal to 140 patterns (70

participants, two gestures, one pattern for each gesture).

4.4.3 Data pre-processing

In every single experiment, the collected patterns were expressed by a 3-dimensional

tensor (4 × 4 sensor array and time acquisition). The third component of the tensor was

determined by a time window of 10 seconds at the sample rate of (3k samples per second).

In our case, the original size of the input tensor is T (4×4×30000).

 Therefore, as mentioned in [4], a pre-processing scheme is suggested which aims to

remapping the original tensor by reducing the dimensionality of the third component T.

The time window is defined after evaluating the amount of energy provided from the

sensors as proposed in[4]. This procedure will not affect the accuracy of the algorithm, as

only a limited portion of the 30000 elements carries meaningful information about the

tactile stimulus, where the signal of interest lies within a limited time window of 2 s. Then

 109

by applying the pre-processing method [4] , the high amount of data contained in the

original tensor T (4 ×4×30000) will be reduced to a tensor t (4 ×4×20).

4.4.4 Validating SVM algorithm

Before the prediction phase, the algorithm needs to be tested through LIBSVM in

Windows. Therefore, the following procedures are required:

1) Reading the kernel training matrix through the “SVM-train –t 4” command. Then,

a .model file, including the model’s information, is generated. For the prediction

phase, the following command “svm-predict[test][model][output]” is required.

2) After reading the data, the model will be tested through the following command “

model=svmtrain(label, training,[-t4])”

Therefore, we validate our SVM algorithm for image classification as a case study and

touch modalities recognition for the e-skin application.

Table 4.1. Results of model selection and accuracy obtained for image classification

 Truncation Sigma Accuracy (%)

𝛼𝑥 𝛼𝑦 𝛼𝑧 (𝜎) Blue image Green image

Run 1 15 15 10 1 75 77.5

Run 2 12 12 4 1 80 85

Run 3 10 10 3 2 85 82.5

Run 4 12 12 4 2 78 80

Run 5 8 8 5 1 78.5 85

Run 6 10 10 3 1 98 97

 110

4.4.4.1 Image classification

The data set is built after cropping several images from the initial one, and then the

dataset has been split into a test set (30%) and training set (70%). Then, two different

classes (+1 and -1) are generated, since the classification problem is a bi-class

classification. In our case, the size of the tensor extracted from each sample image is

15×15×3. As a training set, four hundred samples are cropped, two hundred for each

class. While 85 samples have been chosen for the test set, satisfying the 70%-30%

training testing ratio. Different parameters have been chosen for the SVM classifier as

shown in Table 4.1, in order to select the best parameters that achieve the optimal

performance in terms of accuracy when classifying the images. 𝛼𝑥 , 𝛼𝑦 and 𝛼𝑧

represent the number of truncated columns that have been kept, while 𝜎 is the width of

the Gaussian kernel. We conclude that by setting σ=1 and (𝛼𝑥 = 𝛼𝑦 = 10, 𝛼𝑧 = 3),

the average accuracy achieved is 97.5%.

Table 4.2. Results of model selection and accuracy obtained for touch modalities classification

 Truncation Sigma Accuracy (%)

𝛼𝑥 𝛼𝑦 𝛼𝑧 (𝜎) Sliding Rolling

Run 1 5 5 2 4 75 70

Run 2 5 5 2 1 80 70

Run 3 10 10 3 1 75 72.5

Run 4 4 4 16 1 70 75

Run 5 4 4 5 1 67.5 75

Run 6 4 4 2 1 87.5 80

 111

4.4.4.2 Touch modalities classification

To evaluate the generalization performance of ML algorithms, the dataset obtained in

section 4.4.2.2 has been split into training and test sets, with respectively 100 and 40

patterns (i.e., approximately 71% and 29% of the dataset). Moreover, it is noticeable that

the generalization ability of the ML algorithm could be estimated with respect to unseen

inputs; since no typical participant exists between the training set and the test set. In our

case, after selecting different parameters for truncation and sigma as shown in Table 4.2,

we conclude that with the following setting σ=1 and (𝛼𝑥 = 𝛼𝑦 = 4, 𝛼𝑧 = 2), we obtain

the highest accuracy having an average of 83.75%.

4.4.5 Prediction phase

After validating the program, the prediction program achieved is presented in Fig.4.7 as

follow:

1) Reading the inputs (tensor and parameters)

• The dimension of the tensor

• Total number of tensors to be classified

• The parameter sigma () for kernel computation.

2) Reading the memory (Matrices of eigenvectors and SVM model)

• The truncated columns of the eigenvectors matrices employed to generate

the SVM model.

• The SVM model file that contains all the necessary information.

3) Executing the algorithm:

 112

• Unfolding the tensor

• Symmetrizing the unfolded matrices

• Decomposing the symmetrized matrices through SVD.

• Building the kernel matrix

• Classifying the tensor

4.5 Conclusion

In this chapter, we described the framework of ML-based pattern recognition for sensing

systems dealing with multidimensional tensor. The main two reasons behind using this

approach are the following: 1) the tactile data generated from the sensor could be

characterized only though the tensorial approach, and 2) learning algorithms are considered

an effective method to deal with sophisticated mechanisms. Then, the steps required to

build the kernel entry 𝐾(𝑖, 𝑗) based on the SVM classification are described in detail.

Fig.4.7. Schematic of the algorithm box

 113

Moreover, the tensor-based classification algorithm is written in C language, where it has

been tested on images as a case study, before applying it to tactile data. After adjusting the

parameters of the model, an accuracy of 97% and 83.5% has been achieved respectively

for images and touch modalities classification. Therefore, after validating the effectiveness

of the tensorial SVM algorithm at the software level, in the next chapter, we will describe

and present the hardware implementation of the SVM based tensor kernel approach on an

Ultra-Low-Power Platform for the aim to reach an embedded low power implementation

for wearable devices.

 114

CHAPTER 5. ENERGY EFFICIENT SYSTEM FOR

TOUCH MODALITIES CLASSIFICATION

5.1 Introduction

As described in chapter 4, smart e-skin is expected to process close to the sensor, raw data

to extract specific, and structured information. To be effective, such smart systems should

be able to process sensor data and make decisions [35] autonomously. Such a goal poses

numerous challenges, as the amount of data generated by e-skin to be processed is relevant,

and pattern recognition involves computationally demanding methods. Machine Learning

(ML) paradigms provide a powerful tool to solve the classification problems in complex

application domains, where no explicit mathematical model is available, and only raw data

provide information about the observed phenomenon [117]. However, the computational

complexity of embedding machine learning algorithms for e-skin is a severe obstacle

toward their implementation of resource-constrained low-power embedded systems [10].

Recently, many implementations of embedded ML algorithms have been proposed in the

literature using hardware [119],[120], and software implementation [121]. For e-skin

applications, Field Programmable Gate Arrays (FPGAs) have been adopted[122] , [123] to

achieve real-time functionality of machine learning[10]. Regrettably, affording machine

intelligence with typical machine learning algorithms is still a challenge in battery-powered

wearable devices due to algorithms complexity and large datasets[124]. For example,

microcontrollers, such as the ARM-Cortex-M Family, suitable for battery-operated

devices, are offering a low-power solution in the range of mW, but they are limited in

 115

computational power that is typically in the range of hundreds of MOPS, not enough for e-

skin ML [10].

To improve energy efficiency and increase the overall computational availability of low

power processing, many efforts have been made to design new processors matching the

required hardware size with low power consumption. Among others, two different

approaches have been adopted recently to improve the performance of ultra-low-power

processor [125]: 1) exploiting parallel architectures for near-threshold operation based on

multi-core clusters [99], and 2) exploiting low power hardware accelerators coupled with

programmable parallel processors [99]. Near-threshold computing is a novel approach used

to reduce power consumption and improve energy efficiency. Examples of near-threshold

ultra-low-power microcontrollers have been shown in[93], [4]. To further improve energy

efficiency, some microcontrollers have been proposed embedding custom hardware

accelerators [88]. However, the flexibility of such approaches is limited, affecting the cost

and scale economy.

 In this chapter, we exploit a state-of-the-art multi-core platform to improve the energy

efficiency for embedded machine learning systems for touch modalities classification. The

main focus in this chapter is the implementation of tactile data decoding on a parallel ultra-

low-power platform (PULP) embedding a high-efficient processor called Mr. Wolf. The

low-power touch modality classification is designed for battery-powered applications such

as wearable electronics and to interface with tactile sensors. The classification based on

 116

Support Vector Machine (SVM), which is considered as an effective method for the e-skin

application [57], runs directly on PULP classifying two touch modalities (finger sliding

and washer rolling) as shown in Fig. 5.1. Experimental results show that the target

application runs 3.7 times faster than an ARM Cortex M4 by consuming less than 28 mW

on Mr. Wolf, outperforming ARM Cortex M4 by 15 times in terms of energy efficiency.

The results in this chapter were published in [36].

5.2 PULP processing unit

Mr. Wolf is a state-of-the-art microprocessor[64], featuring an energy-efficient I/O

subsystem , an area optimized CPU for control purposes, an energy-efficient parallel ultra-

low power cluster build upon 8 RISC-V cores, composed of SoC and cluster domains as

shown in Fig. 5.2. The main characteristics of Mr. Wolf are summarized in Table 5.1.

5.2.1 SoC Domain

Number of cores 8 cores

Chip area 10 mm2

Technology node CMOS 40nm LP

L2 memory 512 kB

L1 memory 64 kB

Core voltage 0.8V-1.1V

Frequency range 32kHz-450MHz

Power range 72µW-153mW

Table 5.1. Characteristics of Mr. Wolf

Fig.5.1. Block Diagram including the tactile sensor array, the sensor’s interface and the processing

platform.

.

 117

The SoC domain, as shown in Fig. 5.3 is based on the MCU controller, having two power-

efficient pipeline stages of the RISC-V processor. A full set of peripherals is contained in

the SoC, such as I2C, I2S and Quad SPI, GPIOs, four channels for the PWM interface, and

a JTAG interface. The multi-channel I/O DMA are responsible for transferring the data

from/to the peripherals. The µDMA of Mr. Wolf is connected to all the IP peripherals,

while two specified 32-bit ports are connected to the L2 memory, satisfying the needs of

the parallelization consuming power of 2mW with a frequency of 57 MHz. Therefore, the

transfer efficiency will be maximized, where the need for large buffers to be connected to

the peripherals will not be significant. Cores in the computing cluster have been enhanced

with dedicated Digital Signal Processing (DSP) extensions to tackle DSP intensive

operations typical of IoT applications.

Fig.5.2. High Level Mr. Wolf architecture

 118

The size of the L2 memory on the SoC is 512 kB, containing a ROM which stores the

primary boot-code. The L2 memory is composed as follows: four 112 Kbytes, which allow

reducing the conflicts when parallelizing, two banks of 32 Kbytes used by the Fabric

Controller (FC) without getting any banking conflicts. The organization of the memory

increases the bandwidth of the system memory by 4×, in a way that satisfies the needs of

the master resources. Data is moved to/from the main system memory (L2) via a dedicated

DMA engine capable of handling complex traffic patterns (ex. 2D transfers) with a very

low programming overhead. The main memory has been organized in multiple banks and

shared through a logarithmic interconnect among all the resources to allow

concurrent operation by control CPU, I/O subsystem, and processing cluster. Moreover,

the hierarchy of Mr. Wolf’s memory is characterized by a single namespace where every

single core could access all the memory locations.

Fig.5.3. Mr. Wolf SoC block diagram

 119

5.2.2 Cluster Domain

For the cluster domain, a specific frequency and voltage values are adjusted when running

the applications on the FC, as shown in fig. 5.4. The 8 RISC-V cores on the cluster are

supported by the RVC32IM instruction set, including other specific instructions for energy-

efficient digital signal processing applications.

The cores share L1 memory through a low latency logarithmic interconnect with as low as

one cycle access under no contention. The cluster has two shared floating-point units

(FPUs) with add/sub support and one shared div/SQRT FPU allowing efficient floating-

point operation at the low area and power cost. The shared FPU reduces the area by 4×

while decreasing the performance by 10%. Then, a multi-banked L1 memory is connected

Fig.5.4. Mr. Wolf cluster block diagram

 120

to the cluster, which targets parallel programming models (i.e., OpenMP). With single

access, the L1 memory can maintain the request of all the memory in parallel. The

parallelism is enabled through the dedicated hardware block (HW Sync), resulting in an

energy-efficient parallel workload. In the cluster, the HW sync is responsible for

controlling the clock gating of each core.

5.3 SVM based tensor kernel algorithm on the PULP Architecture

5.3.1 Inference Implementation

In this section, we present the online implementation of the SVM based tensor kernel

approach on Mr. Wolf, as shown in fig. 5.6.

5.3.1.1 Tensor unfolding

Fig. 5.6. Online computation of the SVM based tensor kernel algorithm

 121

The first step for the online classification is unfolding the input tensor t (4×4×20) into three

different matrices by rearranging all the rows and columns one after the other. Thus, three

unfolded matrices A (4×80), B (4×80), and C (20×16) have resulted.

5.3.1.2 Symmetrization

The obtained matrices are symmetrized through a simple matrix multiplication, as shown

below:

 Asym = ATA (5.1)

Where the unfolded matrix A is multiplied by its transpose AT. Hence, three square

matrices (A (80×80), B (80×80), and C (16×16)) are obtained.

5.3.1.3 Singular Value Decomposition

The SVD blocks compute the singular value decomposition of the three symmetrized

matrices based on the one-sided Jacobi algorithm. Thus, the symmetrized matrices are

transformed into the product of three matrices.

Where the orthogonal matrices U and VT contain respectively the eigenvectors of AAT and

ATA. While the singular values of A arranged in descending order (σ0,………,σn-1) are

stored into the diagonal matrix S.

5.3.1.4 Kernel Computation

The kernel factor adopted in computing the distances between the data from the input touch

modality and the memorized data obtained from the training phase as referred to in [15] is

defined as follow:

 122

𝑘𝑛(𝑥, 𝑦) = exp (−
1

2𝜎2 (𝐼𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝑍𝑇𝑍))) (5.2)

𝑍 = 𝑉𝑥
𝑇𝑉𝑦 (5.3)

Where 𝐼𝑛 is the identity matrix, 𝑉𝑥 contains the singular vectors of the symmetric matrix

while 𝑉𝑦is composed of the singular vectors resulted from the tensor in the training phase.

While the kernel function is the product of the three kernel factors as shown in the equation

below:

𝐾(𝑥, 𝑦) = ∏ 𝑘𝑛(𝑥, 𝑦)𝑛
1 (5.4)

5.3.1.5 Classification

The equation of the SVM classification is represented by:

 𝑦̂ = 𝑓𝑆𝑉𝑀(𝑥𝑗) = ∑ 𝛽𝑖 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏
𝑁𝑝

𝑖=1
 (5.5)

Where 𝑥𝑗 , 𝑦̂ 𝑎𝑛𝑑 𝛽𝑖 represent respectively, the input, the predicted category and the

weights obtained during the training phase.

The SVM model has been built using the LIBSVM tool, which is a library for Support

Vector Machine that has been widely used in many areas. A. model file containing all the

information will be generated after applying the training. Nevertheless, on PULP, the SVM

algorithm from LIBSVM could not be implemented as it is since Mr. Wolf is not able to

open and read files. Thus, some modifications must be implemented to the SVM c code,

which is summarized as follow:

 123

a) Studying the SVM c code implementation and removing the unused functions such

as:

- Saving the model (svm_save_model)

- Reading the model (read_model_header)

- Loading the model (svm_load_model)

- Freeing the model (svm_free_model)

b) Adding all the parameters generated from the model directly into the algorithm,

such as:

- The number of support vectors

- The coefficients of the support vectors

- The parameter rho

- The two labels (1 and -1).

c) Doing some other modifications to the code in order to be compatible with the

recent changes such as:

- Allocating a memory space for the coefficients of the support vectors.

- Allocating a memory space for the kernel value.

5.3.2 Fixed-Point Implementation

Usually, a double or single-precision floating-point representation is employed in CPU’s

or when using Matlab, in order to reach a high level of accuracy when executing the SVM

based tensor kernel algorithm. However, it is well known that floating-point data needs a

significant amount of computational efforts when embedding an ML algorithm on the

processor; since the two main factors (power consumption and energy efficiency) must be

taken into consideration when designing the application. Eventually, floating-point

 124

operations could be computed through specific hardware, where the representation in most

of the floating-point processors follow the IEEE 754 data type[126]. For example, the

numbers in a 32-bit word are represented as follows: one bit for the sign, eight bits for the

exponent while the mantissa is represented by 23 bits. Therefore, the numbers could be

represented in a fixed-point format. The Qm.n format is commonly used in most of the

representation types, where m and n represent respectively the integer and the fractional

word length part of the desired number, such as −32768 ≤ 𝑄16.16 ≤ 32768, weight of

LSB 2-16.

In our algorithm, the SVD is considered as the most critical part during the fixed-point

implementation; since the dynamic range of the algorithm is high when moving data from

small range to high range. Unfortunately, a numeric overflow could result when using

fixed-point representation. For this algorithm, the lib fix math library has been used.

Libfixmath is considered as a common fixed-point maths library platform[127]. All the

math.h functions are implemented in the fixed-point format in this library. However, the

Q16.16 format has been chosen after analyzing the dynamics of the variables when

executing the algorithm. The precision resulted when implementing a Q16.16 format is

reported in the table below. Thus, all the math.h functions in the code have been replaced

with the libfixmath library.

5.3.3 Parallelization and Memory Management Strategy

This section describes the parallelization and the proposed memory management strategy

adopted for the algorithm on PULP. Implementing a memory management strategy is

considered as a significant task to be applied in Ultra-Low Power embedded SoC’s having

 125

no caches. Thus, in our work, we have proposed a memory management strategy since 50

trained tensors are required for each class in the SVM model. Table 5.3 reports the memory

needed for the algorithm in order to store 50 trained tensors for each class. Thus, a memory

management strategy is required in L2 memory preventing fragmentation problems. The

allocation memory sequence is reported in Fig.5.7 (from left to right) for the entire

algorithm execution. At first, before the actual computation loop starts, all the trained

tensors computed in the offline phase are stored in the L2 memory. Then, the input tensor

is unfolded into three different matrices and stored in L2. After that, memory space for S1

is allocated in the symmetrization and de-allocate U1 after symmetrizing the unfolded

Fig. 5.7. L2 memory allocation sequence.

Data

Number of

Elements

Size [Kbits]

Input tensor 4×4×20 1.28

Training Data SVD(A) 80×4×100 128

Training Data SVD(B) 80×4×100 128

Training Data SVD(C) 16×2×100 12.8

Table 5.2. Algorithm memory

 126

matrix. Sequentially, the same process is adopted for S2 and S3. Then, three SVD blocks

that take the highest amount of operations are required, as shown in Table 5.4. Therefore,

each SVD block is executed in parallel on each core for reducing time latency. The three

SVS’s blocks are parallelized on the three cores of Mr. Wolf. Then, each matrix is

decomposed through the SVD by adopting the same allocate/de-allocate process mentioned

previously. The resulted eigenvectors V1t, V2t, V3t, are stored in L2 and then passed to

the SVM Kernel phase. Due to the size of the trained tensors which cannot be stored

entirely in L1, as shown in Table 5.3; then each block from the trained tensors stored in L2

needs to be moved to the kernel function phase in order to compute the kernel product with

respect to the resulted eigenvectors. The data is transferred from L2 to L1 memory through

 T (m,n,t) T(4,4,16) T(4,4,20) T(4,4,40) T(4,8,20) T(4,8,40) T(8,8,20)

Functions Size

(Kbits)

Size

(Kbits)
Size

(Kbits)
Size

(Kbits)
Size

(Kbits)
Size

(Kbits)
Size

(Kbits)
Input Tensor 4×m×n×t 1.024 1.28 2.56 2.56 5.12 5.12

Symmetrization 4×m×n×t2 16.3 25.6 102.4 51.2 204.8 102.4

Training Data

SVD(A)
16×m×t×x 1.024x 1.28x 2.56x 1.28x 2.56x 2.56x

Training Data

SVD (B)
16×n×t×x 1.024x 1.28x 2.56x 2.56x 5.12x 2.56x

Training Data

SVD (C)
8×m×n×x 0.128x 0.128x 0.128x 0.256x 0.256x 0.512x

Truncated

Eigenvectors

SVD (A)

16×m×t 1.024x 1.28 2.56 1.28 2.56 2.56

Truncated

Eigenvectors

SVD (B)

16×n×t 1.024x 1.28 2.56 2.56 5.12 2.56

Truncated

Eigenvectors

SVD (C)

8×m×n 0.128x 0.128 0.128 0.256 0.256 0.512

Library fixed

point 16.16
32.7 32.7 32.7 32.7 32.7 32.7 32.7

Number of

trained tensors

for each class

(𝑥1, 𝑥2)

 99 80 49 55 39 45

Table 5.3. Algorithm memory for different size of tensors

 127

the double buffering policy using the DMA. Finally, all the kernel products obtained will

be classified through the SVM.

On the other hand, a study has been done on the memory level in order to find the maximum

possible number of trained tensors which could be stored in L2 on-chip memory when

varying the size of the input tensor from T (4,4,16) till T (8,8,20) as reported in Table 5.4.

Moreover, a generalized equation is generated which computes the maximum number of

trained tensors able to be stored for any size of tensor for different configurations of (m,n,t),

represented as follow:

𝑥 =
415.3×103−4(𝑚𝑛𝑡−𝑚𝑛𝑡2−4𝑚𝑡−4𝑛𝑡−2𝑚𝑛)

8(2𝑚𝑡+2𝑛𝑡+𝑚𝑛)
 (5.6)

Where

 𝑥1 = 𝑥2 =
𝑥

2
 (5.7)

Therefore, the maximum number of trained tensors which could be stored is not more than

45 tensors for each class, when increasing the size of the input tensor to T (8,8,20).

5.4 Experimental Results and Performance Assessment

This section presents the experimental evaluation of the proposed platform considering two

primary metrics: i) the execution time of the algorithm and ii) the capability in performing

the required computations within a low power envelope. Moreover, we present a

comparison with an ARM Cortex-M4F microcontroller.

5.4.1 Performance

 128

The execution cycles of each block of the entire algorithm are presented in Table 5.5. We

evaluate the execution cycles for Mr. Wolf using a single core, 2 cores, and 3 cores, to

evaluate the benefits of the parallelization. To take advantage of the 3-cores cluster, two

parallelization schemes have been adopted in this paper, i) executing the two SVDs block

in parallel on two different cores on the Wolf SoC and ii) parallelizing the three SVDs on

3 cores. The two parallelization schemes have been implemented on Mr. Wolf. In addition,

in the column (Sp (×)), the table reports the speedup compared to STM32F40, Arm Cortex

M4F microcontroller, running the classification in around 12s at 168 MHz.

Results show that a 2.26 × speed-up is achieved by migrating from Arm Cortex M4F to the

Wolf SoC using 1 Core. Moreover, Table 5.4 highlights that the SVD blocks require a

higher number of operations in the algorithm. Thus, our algorithm benefits from the parallel

cores available on Mr. Wolf to reduce the execution time. Table 5.4 shows that a 3.62×

speed-up can be achieved after executing SVD (A) and SVD (B) blocks on two different

cores in parallel. However, in the case of implementing the three SVD on the 3-cores

cluster, the implementation will gain a speed-up of 3.73× with respect to STM32F40.

Functions

Wolf 1 core Wolf 2 cores Wolf 3 cores Number of

Operations [OPS]

Cyc(M) Sp(×) Cyc(M) Sp(×) Cyc(M) Sp(×)

Sym+Kernel+Class 89.8 2.25 89.8 2.25 89.8 2.25 1.26×107

SVDs 1522 2.26 923 3.59 276 3.7 5.3×108

Total 1616 2.26 1020 3.62 366.69 3.73x 5.45×108

Table 5.4. Performance of the tensorial kernel online computation on Wolf platform. Cyc, T ,Sp stand for cycles,Time and

speed-up

 129

5.4.2 Power Consumption

Fig.5.8 shows the power consumption and the energy efficiency of the tensorial SVM

algorithm implementation on the Wolf platform compared to the Arm Cortex M4F and

Fulmine platform[36]. In our experiment, the PULP platform runs at 300 MHz. The single-

core Wolf platform shows a 5.6× power reduction with respect to the Arm Cortex M4F.

The power consumption is reduced due to the technology gap between the two platforms

(i.e., 90 nm vs. 40 nm) and also due to the optimized implementation strategy adopted to

the cluster’s architecture for energy-efficient operation[36].

Moreover, the energy efficiency of Wolf (1core) has been improved respectively by 12.5×

and 5.5× when compared to Arm Cortex M4F and a previous version of PULP, called

Fulmine [59] using a single core. On the other hand, as shown in Fig. 5.7 that a significant

 Fig. 5.8. Power consumption and energy efficiency comparison of the online computation

algorithm on the ARM Cortex M4 and Wolf .

 130

energy boost can be achieved after using the 2 cores of the cluster, leading to 1.4× energy

efficiency reduction with respect to the single-core Wolf. It should be noted that after

parallelizing the algorithm on 2 cores only, the energy efficiency has been reduced by 15×

when compared to STM32F40.

Moreover, in Fig. 5.9, we measure the power of the execution of each function of the

online computation of tensorial SVM on Mr. Wolf. The power consumption is measured

by powering Mr. Wolf SoC at the core voltage of 1V with an operating frequency of 300

MHz. As shown in Fig. 5.9, the two SVDs (A&B) have the peak power consumption of

21 mW with an energy efficiency of 113 pJ/op.

Fig. 5.9. Power consumption and energy efficiency of each function of the online computation

algorithm on Mr. Wolf

 131

5.5 Conclusion

In this chapter, we presented the implementation of tactile data sensing on a novel low

power parallel platform embedding a high-efficient processor called Mr. Wolf. We

demonstrated that the algorithm on the proposed platform outperforms ARM Cortex M4F

(STM32F40) and by 15 times in terms of energy efficiency, without exceeding the power

envelope of a 28mW. Future work will consist of using approximate computing techniques

at the algorithmic level [128] to improve energy efficiency [61], [60].

 132

CHAPTER 6. CONCLUSION AND FUTURE EXTENSIONS

6.1 Conclusion

This thesis focused on the implementation of energy-efficient techniques for

embedded machine learning algorithms in smart sensing systems.

Apart from a few examples in the state of the art [97], still not significant results have been

achieved concerning the improvement of power consumption in embedded ML algorithms

employed for sensing systems [57]. The embedded computing unit in sensing systems is

responsible of extracting meaningful information, usually through ML algorithms

methods. However, deploying ML in embedded devices poses several challenges in terms

of hardware resources and energy consumption. In particular, the energy-efficient

techniques proposed in this work are applied to a case study such as the “electronic-skin”

(e-skin) application. The e-skin system includes 1) structural materials, 2) signal

processing, 3) data acquisition and 4) data processing. An essential task of the e-skin

system is to process the signal and the tactile data aiming to mimic human skin. More

precisely, ML algorithms based on the tensor kernel approach are applied to classify

different touch modalities. Nevertheless, the exploited ML algorithms for the system are

complex and need too many resources. As shown by [10], the demands of the embedded

ML algorithms in the e-skin are not satisfied since the estimated energy/power required for

the application is not feasible(i.e., 100 pJ/op), time latency (i.e., around 7 s) and the

computational load is of about 1.2 GOPS.

 133

Attempting to improve the energy efficiency of the embedded ML algorithms, two mains

approaches are discussed and investigated ,i.e., Approximate Computing and Parallel

Computing Platforms.

The energy-efficiency of computing systems can be improved through approximation

computing techniques at circuit and algorithmic levels. These techniques will lead to an

interesting reduction in power consumption. This thesis focused on the design and

implementation of two approximate multipliers in ML algorithms for tactile data

processing. The first multiplier is based on the rounding approach called the “META”

multiplier [60], while the second one is called the “Approximate Baugh-Wooley(BW)”

multiplier[61].Furthermore, we designed three versions of the Approx-BW multiplier and

three versions of the META multiplier based on approximate adders. We showed that the

proposed approximate arithmetic circuits could achieve a relevant reduction in power

consumption and time delay around 80.4% and 24%, respectively, with respect to the exact

BW multiplier.

We evaluated the behavior of the e-skin application when implementing the proposed

approximate arithmetic circuits in the system. In this regard, we implemented the

approximate multipliers on the low-pass Finite Impulse Response (FIR) filter in the signal

processing block of the system. The FIR filter, based on (Approx-BW), outperforms state

of the art solutions while respecting the tradeoff between accuracy and power consumption,

with an SNR degradation of 1.39dB. Then, ACTs are applied to the data processing block

to improve the performance of the Coordinate Rotational Digital Computer (CORDIC) and

 134

the Singular Value Decomposition (SVD) circuits used for embedded ML algorithms in

the sensing system. We showed benefits of up to 21% and 19% in power reduction at the

cost of less than 5% accuracy loss for CORDIC and SVD circuits when scaling the number

of approximated bits.

On the other hand, we explored another approach (i.e., Parallel computing platforms),

aiming to improve the energy efficiency of the system. We implemented the ML algorithm

based tensor kernel approach on a RISC-V parallel ultra-low-power platform (PULP) after

validating the effectiveness of the ML algorithm at software level. We performed the on-

board classification of different touch modalities on a PULP processor called Mr. Wolf”

demonstrating the promising use of on-board classification for smart sensing systems. We

presented a comparison with the popular low power ARM Cortex-M4F microcontroller

employed, usually for battery-operated devices. We proved that the algorithm on the

proposed platform runs 3.7 times faster than ARM Cortex M4F (STM32F40), consuming

28 mW. The platform has allowed to improve the energy efficiency by 15× than the

classification done on the STM32F40, consuming 81mJ per classification and 150pJ per

operation.

6.2 Potential research extensions

The ideas put forward in this thesis could be extended as follow.

The implementations of the approximate arithmetic circuits into the Coordinate Rotation

Digital Computer and the Singular Value Decomposition algorithms represented a

successful investigation for embedded machine learning algorithms employed for tactile

data processing. However, one less explored idea is the implementation of the approximate

 135

techniques into the overall embedded machine learning algorithm for classifying different

touch modalities, aiming to reduce the complexity of the algorithm. Moreover, including

new approximate arithmetic circuits in the computation of the SVD and CORDIC, such as

approximate dividers and square root, could also be considered as a potential addition to

this work.

On the other hand, since the first implementation of the embedded machine learning

algorithms for touch modalities classification on an ultra low power platform has received

a significant improvement in terms of energy efficiency. Therefore, these results motivate

the parallel implementation of the algorithm on eight cores of Wolf platform, boosting

more the overall energy efficiency to achieve a real-time low power implementation.

Alternatively, approximate computing techniques at the algorithmic level could also be

applied to the embedded machine learning algorithm on the PULP platform. Finally, if

these methods succeed in achieving better results, the possible future work could be

designing an integrated circuit specific for smart sensing systems.

 136

APPENDIX

PULP Set Up

In order to set up the PULP software development kit for Mr. Wolf, board, as shown in

Fig. 5.5, the installation of a Linux Operative System is mandatory since the SDK is

designed to work in a Linux environment. Two OS such as Ubuntu and CentOS are

possible, but for this work, Ubuntu16.04 has been selected. The chosen OS is directly

installed on a virtual machine created with VirtualBox. Then it is possible to start by

downloading all the procedures aiming to set up the PULP SDK for Mr. Wolf after creating

the new Linux machine, as mentioned previously.

At first, ETH permission is required in order to use the PULP SDK for Mr. Wolf. An SSH

key must be created and uploaded to the Github account on the ETH server in order to

download and update all the development material. Then, the SSH key is loaded into the

ssh-agent as follow:

6.2.1 SDK Installation

Before starting using the board, Python and Python3 must be installed with all the

necessary packages related to Python as follow:

ssh-add ~/.ssh/<your key>

sudo apt-get install python python3

sudo apt install git python3-pip gawk texinfo libgmp-dev \

 libmpfr-dev libmpc-dev swig3.0 libjpeg-dev \

 lsb-core doxygen python-sphinx sox \

 137

Then the git repository from the Github account, containing all the files for the SDK version

must be cloned :

After, we have to source the config files for the desired pulp chip (Wolfe.sh) and platform

(platform-board.sh) in order to use the development board :

6.2.2 Dependencies

The password for the artifactory server must be configured by following the guide on

https://iis-git.ee.ethz.ch/pulp-sw/pulp-sdk-internal. This page is only accessible with a

valid Gitlab account for the IIS Gitlab server and if the account was added to the PULP

group.

The system dependencies should be configured, so the dependencies for the SDK will be

downloaded from the artifactory server by running the following command.

sudo pip3 install artifactory twisted prettytable \

 sqlalchemy pyelftools openpyxl xlsxwriter

git clone https://github.com/pulp-platform/pulp-sdk.git -b <sdk branch or tag>

source configs/<the desired chip>.sh

source configs/<the desired platform>.sh

make deps

 138

If this command fails in running, then it means that there were no precompiled binaries

found for the Linux distribution installed. So the binaries must be used for a different

distribution. The Ubuntu_16 binaries were verified to be working with Ubuntu 17.10. The

following command should be run to force the distribution:

6.2.3 Compilation

Making sure that GCC version 5.4.1 has been using by running :

Then installing GCC 5.4.1, if another version is running by applying the following

command:

Then the default GCC version is changed by executing:

Finally, the SDK will be compiled by running:

plpbuild --p sdk deps --stdout --distrib=Ubuntu_16

gcc -v

sudo apt-get install gcc-5 g++-5

sudo update-alternatives --config gcc

sudo update-alternatives --config g++

make all

 139

Then the source.sh environment settings file should be created. This file needs to be

sourced whenever a development is done for PULP in a new shell-session. Otherwise,

building running will not work as intended using make.

6.2.4 Setup of JTAG-USB- programmer for the board

In the next steps, the environment that should be able to use the development board via the

ARM-USB-Tiny-H cable from Olimex must be set up as follow:

Then, searching for an entry like:

Then a new udev rule should be created to set up the USB programmer by creating the file

(/etc/udev/rules.d/10-ftdi.rules), by running the following command:

The file must be opened with sudo rights, so it could be possible to write to it:

Then the following line must be added, where the placeholders should be replaced by

(002a) and the username by the username of Linux’s user.

After that, the udev rules must be reloaded:

make env

make env

Bus 002 Device 003: ID 15ba:002a Olimex Ltd. ARM-USB-TINY-H JTAG interface

sudo touch /etc/udev/rules.d/10-ftdi.rules

sudo nano /etc/udev/rules.d/10-ftdi.rules

ATTR{idVendor}=="15ba", ATTR{idProduct}=="<4 chars>", MODE="0666", GROUP="<\ username>"

sudo udevadm control --reload-rules && udevadm trigger

 140

Then, the sourceme.sh file should be opened in the installation directory with the editor,

and the following line will be added to the beginning of the file:

To the end, the output should be like this:

export OLIMEX_PID=0x<4 chars>

export PULP_CURRENT_CONFIG=honey@user_config_file=...

export PULP_CURRENT_CONFIG_ARGS=platform=board

export OLIMEX_PID=0x002a

 141

BIBLIOGRAPHY

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing

Surveys. 2016.

[2] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” in Proceedings - 2013 18th IEEE European Test

Symposium, ETS 2013, 2013.

[3] A. Ibrahim, P. Gastaldo, H. Chible, and M. Valle, “Real-time digital signal

processing based on FPGAs for electronic skin implementation,” Sensors

(Switzerland), 2017.

[4] P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “A tensor-based

approach to touch modality classification by using machine learning,” Rob. Auton.

Syst., 2015.

[5] R. Seva, P. Metku, K. K. Kim, Y. Bin Kim, and M. Choi, “Approximate stochastic

computing (ASC) for image processing applications,” in ISOCC 2016 -

International SoC Design Conference: Smart SoC for Intelligent Things, 2016.

[6] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “ApproxANN: An approximate

computing framework for artificial neural network,” in Proceedings -Design,

Automation and Test in Europe, DATE, 2015.

[7] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven computation: A

voltage-scalable, variation-aware, quality-tuning motion estimator,” in Proceedings

of the International Symposium on Low Power Electronics and Design, 2009.

[8] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang, “Mixed-signal

circuits for embedded machine-learning applications,” in Conference Record -

Asilomar Conference on Signals, Systems and Computers, 2016.

[9] V. Sze, “Designing Hardware for Machine Learning: The Important Role Played by

Circuit Designers,” IEEE Solid-State Circuits Mag., 2017.

[10] A. Ibrahim and M. Valle, “Real-Time embedded machine learning for tensorial

tactile data processing,” IEEE Trans. Circuits Syst. I Regul. Pap., 2018.

[11] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two

decades of progress,” Neurocomputing, 2010.

[12] M. L. Kringelbach, N. Jenkinson, S. L. F. Owen, and T. Z. Aziz, “Translational

 142

principles of deep brain stimulation,” Nature Reviews Neuroscience. 2007.

[13] L. Clifton, D. A. Clifton, M. A. F. Pimentel, P. J. Watkinson, and L. Tarassenko,

“Gaussian process regression in vital-sign early warning systems,” in Proceedings

of the Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, EMBS, 2012.

[14] L. Cunial et al., “Parallelized Convolutions for Embedded Ultra Low Power Deep

Learning SoC,” in IEEE 4th International Forum on Research and Technologies for

Society and Industry, RTSI 2018 - Proceedings, 2018.

[15] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C. Wu, “Leveraging

the Error Resilience of Neural Networks for Designing Highly Energy Efficient

Accelerators,” IEEE Trans. Comput. Des. Integr. Circuits Syst., 2015.

[16] O. Krestinskaya, T. Ibrayev, and A. P. James, “Hierarchical Temporal Memory

Features with Memristor Logic Circuits for Pattern Recognition,” IEEE Trans.

Comput. Des. Integr. Circuits Syst., 2018.

[17] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks,” IEEE J.

Solid-State Circuits, 2017.

[18] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Approximate memory

compression for energy-efficiency,” in Proceedings of the International Symposium

on Low Power Electronics and Design, 2017.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems, 2012.

[20] M. Ring, U. Jensen, P. Kugler, and B. Eskofier, “Software-based performance and

complexity analysis for the design of embedded classification systems,” in

Proceedings - International Conference on Pattern Recognition, 2012.

[21] M. Nadeski, “Mark Nadeski Embedded Processing Texas Instruments Bringing

machine learning to embedded systems.”

[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB

model size,” pp. 1–13, 2016.

[23] P. Tang, H. Wang, and S. Kwong, “G-MS2F: GoogLeNet based multi-stage feature

fusion of deep CNN for scene recognition,” Neurocomputing, 2017.

[24] S. Heller et al., “Hardware Implementation of a Performance and Energy-optimized

Convolutional Neural Network for Seizure Detection,” Proc. Annu. Int. Conf. IEEE

Eng. Med. Biol. Soc. EMBS, vol. 2018-July, pp. 2268–2271, 2018.

 143

[25] D. Shin, J. Lee, J. Lee, J. Lee, and H. J. Yoo, “An energy-efficient deep learning

processor with heterogeneous multi-core architecture for convolutional neural

networks and recurrent neural networks,” in Proceedings for 2017 IEEE Symposium

on Low-Power and High-Speed Chips, COOL Chips 2017, 2017.

[26] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-

Efficient Dataflow for Convolutional Neural Networks,” in Proceedings - 2016 43rd

International Symposium on Computer Architecture, ISCA 2016, 2016.

[27] R. Kułaga and M. Gorgoń, “FPGA Implementation of Decision Trees and Tree

Ensembles for Character Recognition in Vivado Hls,” Image Process. Commun.,

2015.

[28] S. Afifi, H. GholamHosseini, and R. Sinha, “A low-cost FPGA-based SVM

classifier for melanoma detection,” in IECBES 2016 - IEEE-EMBS Conference on

Biomedical Engineering and Sciences, 2016.

[29] Y. Pu, J. Peng, L. Huang, and J. Chen, “An efficient KNN algorithm implemented

on FPGA based heterogeneous computing system using OpenCL,” in Proceedings

- 2015 IEEE 23rd Annual International Symposium on Field-Programmable

Custom Computing Machines, FCCM 2015, 2015.

[30] L. Cavigelli and L. Benini, “Origami: A 803-GOp/s/W Convolutional Network

Accelerator,” IEEE Trans. Circuits Syst. Video Technol., 2017.

[31] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision: A 0.26-to-

10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable

Convolutional Neural Network processor in 28nm FDSOI,” Dig. Tech. Pap. - IEEE

Int. Solid-State Circuits Conf., vol. 60, pp. 246–247, 2017.

[32] H. A. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, “MobileNets: Efficient Convolutional

Neural Networks for Mobile Vision Applications,” Reports Pract. Oncol.

Radiother., 2009.

[33] D. Kim, J. Ahn, and S. Yoo, “A novel zero weight/activation-aware hardware

architecture of convolutional neural network,” Proc. 2017 Des. Autom. Test Eur.

DATE 2017, pp. 1462–1467, 2017.

[34] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and L. Benini, “A

64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones,”

IEEE Internet Things J., 2019.

[35] S. Benatti, F. Montagna, V. Kartsch, A. Rahimi, D. Rossi, and L. Benini, “Online

Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power

Platform Using Hyperdimensional Computing,” IEEE Trans. Biomed. Circuits

Syst., 2019.

 144

[36] M. Osta et al., “An energy efficient system for touch modality classification in

electronic skin applications,” in Proceedings - IEEE International Symposium on

Circuits and Systems, 2019, vol. 2019-May.

[37] M. Shafique et al., “Adaptive and Energy-Efficient Architectures for Machine

Learning: Challenges, Opportunities, and Research Roadmap,” in Proceedings of

IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2017.

[38] J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digital feedforward neural

network platform with backpropagation driven approximate synapses,” in

Proceedings of the International Symposium on Low Power Electronics and Design,

2015.

[39] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN: Energy-

efficient neuromorphic systems using approximate computing,” in Proceedings of

the International Symposium on Low Power Electronics and Design, 2015.

[40] C. Y. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkataramani,

“Exploiting approximate computing for deep learning acceleration,” in Proceedings

of the 2018 Design, Automation and Test in Europe Conference and Exhibition,

DATE 2018, 2018.

[41] S. Nakagawa, H. Osawa, K. Asakura, N. Obara, Y. Tsuchiya, and M. Narita, “Web

application technologies for integration of remote operation, camera image and

voice communication into a cloud-based robotics platform,” in 10th France-Japan

Congress, 8th Europe-Asia Congress on Mecatronics, MECATRONICS 2014, 2014.

[42] M. Dridi, M. A. Hajjaji, B. Bouallegue, and A. Mtibaa, “Cryptography of medical

images based on a combination between chaotic and neural network,” IET Image

Process., 2016.

[43] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-efficient

ConvNets through approximate computing,” in 2016 IEEE Winter Conference on

Applications of Computer Vision, WACV 2016, 2016.

[44] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization of deep

convolutional networks,” in 33rd International Conference on Machine Learning,

ICML 2016, 2016.

[45] P. Judd et al., “Reduced-Precision Strategies for Bounded Memory in Deep Neural

Nets,” pp. 1–12, 2015.

[46] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Quality programmable vector processors for approximate computing,” in MICRO

2013 - Proceedings of the 46th Annual IEEE/ACM International Symposium on

Microarchitecture, 2013.

[47] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar,

 145

“Scalable effort hardware design: Exploiting algorithmic resilience for energy

efficiency,” in Proceedings - Design Automation Conference, 2010.

[48] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, “Approximation-aware

Multi-Level Cells STT-RAM cache architecture,” in 2015 International Conference

on Compilers, Architecture and Synthesis for Embedded Systems, CASES 2015,

2015.

[49] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan, “Approximate

storage for energy efficient spintronic memories,” in Proceedings - Design

Automation Conference, 2015.

[50] J. He and J. Callenes-Sloan, “Poster: A software-defned hybrid cache with reduced

energy,” in Middleware 2017 - Proceedings of the 2017 Middleware Posters and

Demos 2017: Proceedings of the Posters and Demos Session of the 18th

International Middleware Conference, 2017.

[51] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “LookNN: Neural network

with no multiplication,” Proc. 2017 Des. Autom. Test Eur. DATE 2017, pp. 1775–

1780, 2017.

[52] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating Deep Convolutional

Networks using low-precision and sparsity,” in ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, 2017.

[53] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with

limited numerical precision,” in 32nd International Conference on Machine

Learning, ICML 2015, 2015.

[54] S. S. Sarwar et al., “Energy efficient neural computing: A study of cross-layer

approximations,” IEEE J. Emerg. Sel. Top. Circuits Syst., 2018.

[55] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired imprecise

computational blocks for efficient VLSI implementation of soft-computing

applications,” IEEE Trans. Circuits Syst. I Regul. Pap., 2010.

[56] T. J. Yang, Y. H. Chen, and V. Sze, “Designing energy-efficient convolutional

neural networks using energy-aware pruning,” in Proceedings - 30th IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017.

[57] H. Fares et al., “Distributed sensing and stimulation systems for sense of touch

restoration in prosthetics,” in Proceedings - 2017 1st New Generation of CAS,

NGCAS 2017, 2017.

[58] M. Magno, A. Ibrahim, A. Pullini, M. Valle, and L. Benini, “Energy efficient system

for tactile data decoding using an ultra-low power parallel platform,” in Proceedings

- 2017 1st New Generation of CAS, NGCAS 2017, 2017.

 146

[59] M. Magno, A. Ibrahim, A. Pullini, M. Valle, and L. Benini, “An energy efficient E-

skin embedded system for real-time tactile data decoding,” J. Low Power Electron.,

2018.

[60] M. Osta, A. Ibrahim, L. Seminara, H. Chible, and M. Valle, “Low power

approximate multipliers for energy efficient data processing,” J. Low Power

Electron., vol. 14, no. 1, 2018.

[61] M. Osta, A. Ibrahim, H. Chible, and M. Valle, “Inexact Arithmetic Circuits for

Energy Efficient IoT Sensors Data Processing,” in Proceedings - IEEE International

Symposium on Circuits and Systems, 2018, vol. 2018-May.

[62] M. Osta, A. Ibrahim, and M. Valle, “FPGA Implementation of Approximate

CORDIC Circuits for Energy Efficient Applications,” pp. 1–2.

[63] A. Ibrahim, M. Valle, L. Noli, and H. Chible, “FPGA implementation of fixed point

CORDIC-SVD for E-skin systems,” in 2015 11th Conference on Ph.D. Research in

Microelectronics and Electronics, PRIME 2015, 2015.

[64] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.Wolf: An Energy-

Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing,” IEEE

J. Solid-State Circuits, 2019.

[65] J. Han, “Introduction to approximate computing,” in Proceedings of the IEEE VLSI

Test Symposium, 2016.

[66] Uma, R., et al. "Area, delay and power comparison of adder

topologies." International Journal of VLSI Design & Communication Systems 3.1

(2012): 153.

[67] Srinivas, N., and Y. Rajasree Rao. "DESIGN AND ANALYSIS OF ENHANCED

DADDA MULTIPLIER USING 5: 2 COMPRESSORS." International Journal of

Pure and Applied Mathematics 118.19 (2018): 3021-3033.

[68] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Electron. Comput.,

1964.

[69] V. S. Muley, A. Tom, and T. Vigneswaran, “Design of Baugh Wooley and Wallace

tree multiplier using two phase clocked adibatic static CMOS logic,” in 2015

International Conference on Industrial Instrumentation and Control, ICIC 2015,

2015.

[70] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram, “RoBA

Multiplier: A Rounding-Based Approximate Multiplier for High-Speed yet Energy-

Efficient Digital Signal Processing,” IEEE Trans. Very Large Scale Integr. Syst.,

2017.

[71] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-

 147

scalable meta-functions for approximate computing,” in Proceedings -Design,

Automation and Test in Europe, DATE, 2011.

[72] Y. Kim, Y. Zhang, and P. Li, “Energy Efficient Approximate Arithmetic for Error

Resilient Neuromorphic Computing,” IEEE Trans. Very Large Scale Integr. Syst.,

2015.

[73] I. C. Lin, Y. M. Yang, and C. C. Lin, “High-Performance Low-Power Carry

Speculative Addition with Variable Latency,” IEEE Trans. Very Large Scale Integr.

Syst., 2015.

[74] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented

approximate adder design and its application,” in IEEE/ACM International

Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, 2013.

[75] L. Li and H. Zhou, “On error modeling and analysis of approximate adders,” in

IEEE/ACM International Conference on Computer-Aided Design, Digest of

Technical Papers, ICCAD, 2015.

[76] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal

processing using approximate adders,” IEEE Trans. Comput. Des. Integr. Circuits

Syst., 2013.

[77] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate XOR/XNOR-

based adders for inexact computing,” Proc. IEEE Conf. Nanotechnol., pp. 690–693,

2013.

[78] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power in a

multiplier architecture,” in Journal of Low Power Electronics, 2011.

[79] K. Bhardwaj and P. S. Mane, “ACMA: Accuracy-configurable multiplier

architecture for error-resilient System-on-Chip,” in 2013 8th International

Workshop on Reconfigurable and Communication-Centric Systems-on-Chip,

ReCoSoC 2013, 2013.

[80] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-efficient approximate

Wallace tree multiplier for error-resilient systems,” in Proceedings - International

Symposium on Quality Electronic Design, ISQED, 2014.

[81] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi, “Design-

Efficient Approximate Multiplication Circuits Through Partial Product Perforation,”

IEEE Trans. Very Large Scale Integr. Syst., 2016.

[82] C. H. Lin and I. C. Lin, “High accuracy approximate multiplier with error

correction,” in 2013 IEEE 31st International Conference on Computer Design,

ICCD 2013, 2013.

[83] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis of

 148

approximate compressors for multiplication,” IEEE Trans. Comput., 2015.

[84] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim, “Energy-

efficient approximate multiplication for digital signal processing and classification

applications,” IEEE Trans. Very Large Scale Integr. Syst., 2015.

[85] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApproxSb: Library of

approximate adders and multipliers for circuit design and benchmarking of

approximation methods,” in Proceedings of the 2017 Design, Automation and Test

in Europe, DATE 2017, 2017.

[86] C. I. Allen, D. Langley, and J. C. Lyke, “Inexact computing with approximate adder

application,” in National Aerospace and Electronics Conference, Proceedings of the

IEEE, 2015.

[87] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate

multiplier with configurable partial error recovery,” in Proceedings -Design,

Automation and Test in Europe, DATE, 2014.

[88] A. Ibrahim, M. Valle, L. Noli, and H. Chible, “Singular value decomposition FPGA

implementation for tactile data processing,” in Conference Proceedings - 13th IEEE

International NEW Circuits and Systems Conference, NEWCAS 2015, 2015.

[89] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of low-power

high-speed truncation-error-tolerant adder and its application in digital signal

processing,” IEEE Trans. Very Large Scale Integr. Syst., 2010.

[90] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed multiplier for error-

tolerant application,” in 2010 IEEE International Conference of Electron Devices

and Solid-State Circuits, EDSSC 2010, 2010.

[91] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel, “Invited: Cross-

layer approximate computing: From logic to architectures,” in Proceedings - Design

Automation Conference, 2016.

[92] M. Franceschi, L. Seminara, S. Dosen, M. Strbac, M. Valle, and D. Farina, “A

System for Electrotactile Feedback Using Electronic Skin and Flexible Matrix

Electrodes: Experimental Evaluation,” IEEE Trans. Haptics, 2017.

[93] L. Pinna, A. Ibrahim, and M. Valle, “Interface Electronics for Tactile Sensors Based

on Piezoelectric Polymers,” IEEE Sens. J., 2017.

[94] B. Shao and P. Li, “Array-Based Approximate Arithmetic Computing: A General

Model and Applications to Multiplier and Squarer Design,” IEEE Trans. Circuits

Syst. I Regul. Pap., 2015.

[95] Y. Zhou, Z. Chen, J. Lin, and Z. Wang, “A High-Speed Successive-Cancellation

Decoder for Polar Codes Using Approximate Computing,” IEEE Trans. Circuits

 149

Syst. II Express Briefs, 2019.

[96] A. Ibrahim and M. Valle, “Approximate computing techniques for low power

implementation of reconfigurable coordinate rotation digital computer circuits,” J.

Low Power Electron., 2017.

[97] H. Sun, Z. Cheng, A. M. Gharehbaghi, S. Kimura, and M. Fujita, “Approximate

DCT Design for Video Encoding Based on Novel Truncation Scheme,” IEEE Trans.

Circuits Syst. I Regul. Pap., 2019.

[98] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi, “Design, evaluation and

application of approximate high-radix dividers,” IEEE Trans. Multi-Scale Comput.

Syst., 2018.

[99] L. Seminara et al., “Piezoelectric polymer transducer arrays for flexible tactile

sensors,” IEEE Sens. J., 2013.

[100] V. S. Rosa, F. F. Daitx, E. Costa, and S. Bampi, “Design flow for the generation of

optimized FIR filters,” in 2009 16th IEEE International Conference on Electronics,

Circuits and Systems, ICECS 2009, 2009.

[101] M. D. Ercegovac and T. Lang, “CORDIC Algorithm and Implementations,” in

Digital Arithmetic, 2004.

[102] B. Khurshid and R. N. Mir, “Power efficient implementation of bit-parallel unrolled

CORDIC structures for FPGA platforms,” in 2015 International Conference on

VLSI Systems, Architecture, Technology and Applications, VLSI-SATA 2015, 2015.

[103] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing-from humans to

humanoids,” IEEE Trans. Robot., 2010.

[104] S. Decherchi, P. Gastaldo, R. S. Dahiya, M. Valle, and R. Zunino, “Tactile-data

classification of contact materials using computational intelligence,” IEEE Trans.

Robot., 2011.

[105] N. Jamali and C. Sammut, “Majority voting: Material classification by tactile

sensing using surface texture,” IEEE Trans. Robot., 2011.

[106] F. Naya, J. Yamato, and K. Shinozawa, “Recognizing human touching behaviors

using a haptic interface for a pet-robot,” in Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics, 1999.

[107] D. Silvera-Tawil, D. Rye, and M. Velonaki, “Interpretation of Social Touch on an

Artificial Arm Covered with an EIT-based Sensitive Skin,” Int. J. Soc. Robot., 2014.

[108] H. Iwata and S. Sugano, “Human-robot-contact-state identification based on tactile

recognition,” IEEE Trans. Ind. Electron., 2005.

 150

[109] A. Flagg, D. Tam, K. MacLean, and R. Flagg, “Conductive fur sensing for a gesture-

aware furry robot,” in Haptics Symposium 2012, HAPTICS 2012 - Proceedings,

2012.

[110] M. D. Cooney, S. Nishio, and H. Ishiguro, “Recognizing affection for a touch-based

interaction with a humanoid robot,” in IEEE International Conference on Intelligent

Robots and Systems, 2012.

[111] N. Sae-Bae, N. Memon, and K. Isbister, “Investigating multi-touch gestures as a

novel biometric modality,” in 2012 IEEE 5th International Conference on

Biometrics: Theory, Applications and Systems, BTAS 2012, 2012.

[112] M. Signoretto, L. De Lathauwer, and J. A. K. Suykens, “A kernel-based framework

to tensorial data analysis,” Neural Networks, 2011.

[113] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., 1995.

[114] V. Vapnik, Statistical learning theory. 1998. 1998.

[115] G. Bin Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for

regression and multiclass classification,” IEEE Trans. Syst. Man, Cybern. Part B

Cybern., 2012.

[116] Q. Zhao, G. Zhou, T. Adali, L. Zhang, and A. Cichocki, “Kernelization of tensor-

based models for multiway data analysis: Processing of multidimensional structured

data,” IEEE Signal Process. Mag., 2013.

[117] P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “A tensor-based

pattern-recognition framework for the interpretation of touch modality in artificial

skin systems,” IEEE Sens. J., 2014.

[118] S. Decherchi, P. Gastaldo, J. Redi, and R. Zunino, “Maximal-Discrepancy bounds

for Regularized Classifiers,” in Proceedings of the International Joint Conference

on Neural Networks, 2009.

[119] E. Ragusa, C. Gianoglio, P. Gastaldo, and R. Zunino, “A digital implementation of

extreme learning machines for resource-constrained devices,” IEEE Trans. Circuits

Syst. II Express Briefs, 2018.

[120] A. Rubaai and P. Young, “Hardware/software implementation of fuzzy-neural-

network self-learning control methods for brushless DC motor drives,” IEEE Trans.

Ind. Appl., vol. 52, no. 1, pp. 414–424, 2016.

[121] D. Tong, Y. R. Qu, and V. K. Prasanna, “Accelerating Decision Tree Based Traffic

Classification on FPGA and Multicore Platforms,” IEEE Trans. Parallel Distrib.

Syst., 2017.

[122] M. Magno, M. Pritz, P. Mayer, and L. Benini, “DeepEmote: Towards multi-layer

 151

neural networks in a low power wearable multi-sensors bracelet,” in Proceedings -

2017 7th International Workshop on Advances in Sensors and Interfaces, IWASI

2017, 2017.

[123] Z. Wang, Y. Liu, Y. Sun, Y. Li, D. Zhang, and H. Yang, “An energy-efficient

heterogeneous dual-core processor for Internet of Things,” in Proceedings - IEEE

International Symposium on Circuits and Systems, 2015.

[124] F. Conti, D. Palossi, R. Andri, M. Magno, and L. Benini, “Accelerated Visual

Context Classification on a Low-Power Smartwatch,” IEEE Trans. Human-Machine

Syst., 2017.

[125] A. Pullini, D. Rossi, I. Loi, A. Di Mauro, and L. Benini, “Mr. Wolf: A 1 GFLOP/s

Energy-Proportional Parallel Ultra Low Power SoC for IOT Edge Processing,” in

ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference, 2018.

[126] IEEE, (754) IEEE Standard for Floating-Point Arithmetic. 2008.

[127] GNU, “Gnu MPFR,” Library (Lond)., 2010.

[128] A. Ibrahim, M. Osta, M. Alameh, M. Saleh, H. Chible, and M. Valle, “Approximate

Computing Methods for Embedded Machine Learning,” in 2018 25th IEEE

International Conference on Electronics Circuits and Systems, ICECS 2018, 2019.

