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SUMMARY 

Embedded autonomous electronic systems are required in numerous application 

domains such as Internet of Things (IoT), wearable devices, and biomedical systems. 

Embedded electronic systems usually host sensors, and each sensor hosts multiple input 

channels (e.g., tactile, vision), tightly coupled to the electronic computing unit (ECU). The 

ECU extracts information by often employing sophisticated methods, e.g., Machine 

Learning. However, embedding Machine Learning algorithms poses essential challenges 

in terms of hardware resources and energy consumption because of: 1) the high amount of 

data to be processed; 2) computationally demanding methods. Leveraging on the trade-off 

between quality requirements versus computational complexity and time latency could 

reduce the system complexity without affecting the performance. The objectives of the 

thesis are to develop: 1) energy-efficient arithmetic circuits outperforming state of the art 

solutions for embedded machine learning algorithms, 2) an energy-efficient embedded 

electronic system for the “electronic-skin” (e-skin) application. As such, this thesis exploits 

two main approaches: 

Approximate Computing:  In recent years, the approximate computing paradigm became 

a significant major field of research since it is able to enhance the energy efficiency and 

performance of digital systems. “Approximate Computing”(AC) turned out to be a 

practical approach to trade accuracy for better power, latency, and size [1],[2]. AC targets 

error-resilient applications and offers promising benefits by conserving some resources. 

Usually, approximate results are acceptable for many applications, e.g., tactile data 

processing [3], [4] image processing [5], and data mining [6]; thus, it is highly 
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recommended to take advantage of energy reduction with minimal variation in 

performance [7]. In our work, we developed two approximate multipliers: 1) the first one 

is called “META” multiplier and is based on the Error Tolerant Adder (ETA), 2) the second 

one is called “Approximate Baugh-Wooley(BW)” multiplier where the approximations are 

implemented in the generation of the partial products. We showed that the proposed 

approximate arithmetic circuits could achieve a relevant reduction in power consumption 

and time delay around 80.4% and 24%, respectively, with respect to the exact BW 

multiplier.  Next, to prove the feasibility of AC in real world applications, we explored the 

approximate multipliers on a case study as the e-skin application. The e-skin application is 

defined as multiple sensing components, including 1) structural materials, 2) signal 

processing, 3) data acquisition, and 4) data processing. Particularly, processing the 

originated data from the e-skin into low or high-level information is the main problem to 

be addressed by the embedded electronic system. Many studies have shown that Machine 

Learning is a promising approach in processing tactile data when classifying input touch 

modalities. In our work, we proposed a methodology for evaluating the behavior of the 

system when introducing approximate arithmetic circuits in the main stages (i.e., signal 

and data processing stages) of the system. Based on the proposed methodology, we first 

implemented the approximate multipliers on the low-pass Finite Impulse Response (FIR) 

filter in the signal processing stage of the application. We noticed that the FIR filter based 

on (Approx-BW) outperforms state of the art solutions, while respecting the tradeoff 

between accuracy and power consumption, with an SNR degradation of 1.39dB. Second, 

we implemented approximate adders and multipliers respectively into the Coordinate 

Rotational Digital Computer (CORDIC) and the Singular Value Decomposition (SVD) 
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circuits; since CORDIC and SVD take a significant part of the computationally expensive 

Machine Learning algorithms employed in tactile data processing. We showed benefits of 

up to 21% and 19% in power reduction at the cost of less than 5% accuracy loss for 

CORDIC and SVD circuits when scaling the number of approximated bits.     

     2)  Parallel Computing Platforms (PCP): Exploiting parallel architectures for 

near-threshold computing based on multi-core clusters is a promising approach to improve 

the performance of smart sensing systems. In our work, we exploited a novel computing 

platform embedding a Parallel Ultra Low Power processor (PULP), called “Mr. Wolf,” for 

the implementation of Machine Learning (ML) algorithms for touch modalities 

classification. First, we tested the ML algorithms at the software level; for RGB images as 

a case study and tactile dataset, we achieved accuracy respectively equal to 97% and 

83.5%. After validating the effectiveness of the ML algorithm at the software level, we 

performed the on-board classification of two touch modalities, demonstrating the 

promising use of Mr. Wolf for smart sensing systems. Moreover, we proposed a memory 

management strategy for storing the needed amount of trained tensors (i.e., 50 trained 

tensors for each class) in the on-chip memory. We evaluated the execution cycles for Mr. 

Wolf using a single core, 2 cores, and 3 cores, taking advantage of the benefits of the 

parallelization. We presented a comparison with the popular low power ARM Cortex-M4F 

microcontroller employed, usually for battery-operated devices. We showed that the ML 

algorithm on the proposed platform runs 3.7 times faster than ARM Cortex M4F 

(STM32F40), consuming only 28 mW. The proposed platform achieves 15× better energy 

efficiency than the classification done on the STM32F40, consuming 81mJ per 

classification and 150 pJ per operation. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Over the past decade, a new wave of intelligent computing systems driven by machine 

learning algorithms has been deployed in many applications such as the Internet of things 

and security systems. IoT devices ought to effectively decode a large amount of raw data 

coming from miniaturized sensors providing vital information. The extracted information 

is transmitted onto the wireless channel, and it is usually used to close the loop in control 

systems providing real-time response. Besides, the small size form of these embedded 

devices (e.g., wearable sensors) limits the battery size and hence the energy availability. 

Furthermore, intelligent devices could move “closer to the sensor,” thereby eliminating the 

latency of cloud access and reducing limitations in communication bandwidth by 

employing sophisticated methods (e.g., Machine learning). Machine learning is considered 

as dominant paradigms making intelligent tasks and providing information about the 

observed phenomenon. However, deploying Machine Learning algorithms in embedded 

devices poses several challenges in terms of hardware resources and energy consumption 

because of 1) the high amount of data to be processed significantly affecting the real-time 

functionality, and 2) the complex processing tasks involve computationally demanding 

methods imposing an additional burden in terms of power consumption. Therefore, aiming 

to implement powerful machine and deep learning algorithms within a power range of 

microwatt requires an essential improvement in processing energy efficiency. 
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Leveraging on the trade-off between quality versus computational complexity and 

latency would reduce the system complexity (see Fig.1.1) without affecting the system 

functionality. Such an approach can be achieved by several energy-efficient techniques 

(Parallelism and data reuse, Approximate Computing, Network Sparsity) on embedded 

machine learning systems. In this perspective, this chapter aims to present an overview of 

the energy-efficient implementation of machine learning algorithms on hardware platforms 

highlighting the main challenges when embedding such algorithms.  Moreover, it reports 

the techniques that could be applied to improve energy efficiency, such as approximate 

computing, by reviewing the effective methods used to overcome the challenges at the 

circuit, architectural, and algorithmic levels. Further, it describes the main factors to be 

taken into consideration when choosing the appropriate platform. Lastly, this chapter 

 

Fig.1.1.  Procedure for implementing an energy efficient embedded machine learning algorithm 
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describes the context of the work and the mains contributions achieved during the Ph.D. 

The overview work presented in this chapter was published in [129], [131]. 

1.2 Embedded Machine Learning 

Machine learning has emerged in different scientific fields and everyday tasks in today’s 

electronic systems and smartphones. ML paradigms have been effectively used to address 

standard regression and classification problems. Furthermore, deep learning methods 

represent state-of-the-art technology addressing the task of extracting structured 

information from complex domains such as object/face recognition, object tracking, etc. 

However, employing such paradigms for embedded platforms imposes challenges in terms 

of time latency, energy consumption, and storage. 

1.2.1 Power/Energy Consumption 

Energy consumption is the power consumed during the runtime of the algorithm when 

targeting embedded implementations. It is the energy consumed during the execution of 

the algorithm, basically composed of computing energy, IO operations, and necessary 

energy for memory storage. Energy efficiency is considered an essential metric, especially 

when dealing with applications such as portable, medical/biomedical IoT devices. 

Moreover, integrated circuits must embed ML instead of power-hungry FPGA-based 

microprocessors in order to meet the low power budget constraint in wearable or 

implantable devices [8],[9]. To emphasize the critical need of this metric, we take an 

example of the implemented tensorial SVM on the FPGA device for classifying different 

touch modalities, as shown in [10]. The proposed implementation is feasible for real-time 

classification while the amount of power consumed is 1.14 W. Similarly, as shown in 
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[8],[9] ML must be embedded into dedicated platforms in order to reduce the power 

envelope constraint in wearable devices to the range of mW. Therefore, the critical 

challenge is to improve power consumption while preserving the real-time constraints for 

longer battery life. Improving energy efficiency will provide longer battery life, and then 

more extended functionality within the same energy source. 

1.2.2  Latency 

Real-time operation is a principal requirement in many application domains for embedded 

ML[11]. Latency is defined as the time difference between the generated output data and 

the input data provided to the system. The time latency depends on the number of 

operations performed in a unit of time, such as operations per second (OPS) or floating-

point operations per second (FLOPS). In many real-time applications such as deep brain 

stimulation[12]and vital sign monitoring[13], the response time of the machine learning 

algorithm must be adequately fast. Moreover, [14] and [15] ML/DL algorithms take more 

than 1 second to classify different objects. This fact highlights the latency problem faced 

in IoT devices when implementing ML/DL algorithms; since the application must meet 

real-time constraints.  

1.2.3 Memory Storage 

Memory is a big challenge in embedded machine learning and deep neural networks 

today[16],[17]. Memory subsystems expend significant time and energy in computing 

platforms due to the frequent high data transfer between processors and off-chip 

memory[18]. Researchers are combatting with the DRAM devices having limited capacity 

and memory bandwidth. The memory is employed for storing a high amount of training 
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data, and parameters such as weights in DNN and support vectors in SVM. The higher the 

number of training data, the harder the memory challenge. For example, more than 900M 

operations of memory read, and writes are needed in [19]. 

1.2.4 Algorithm Complexity 

Concerning the complexity of the algorithm, it depends on the number of mathematical 

operations and instructions executed by the algorithm in the embedded space. For instance, 

ANN requires energy consumption less than SVM since the ANN model takes five times 

fewer operations than SVM [20]. 

1.3 Machine Learning On Embedded Hardware Platforms 

This section describes the steps to follow when implementing ML on embedded hardware 

platforms [21]. A model with few operations should be selected since some networks, e.g., 

AlexNet and GoogleNet[22], [23], are not designed for the embedded space.   Then, a 

performance study must be applied on the selected ML algorithm, which depends on some 

characteristics such as: 1) the number of layers, 2) fps (frames per second) requirements, 

3) the number of bits used in the algorithm, 4) memory storage and 5) number of operations. 

The final step is to look for processors supporting some significant features (e.g., 

quantization, sparsity, etc.). For example, different software architectures of CNN have 

been designed in[24] in order to find only one suitable architecture having the lowest 

complexity. 

Moreover, the activation of the hidden layers with the parameters of the selected CNN, 

which will be implemented, must be regularly stored and accessed. Then, the low power 
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microcontroller from the MSP430FR series is selected as the target platform. It is 

characterized by a ferromagnetic memory of 256 kB, which reduces power consumption 

by three times and increases the speed up of the data movement by 100x. Similarly, in[25], 

the DNPU processor characterized by a LUT-based multiplier dedicated to quantization is 

considered optimal for the implementation of CNN and RNN. Thus, reducing off-chip 

memory access and improving the energy efficiency consequently by 4.5x with a negligible 

accuracy loss.  Therefore, by following the flow diagram, the selected processor will feed 

the requirements of the selected algorithm, leading to an efficient implementation. 

1.4 Energy-Efficient Techniques For ML/DL Processing 

Table 1.1.: Energy efficient embedded machine/deep learning algorithms on different hardware platforms 

Energy Efficient 

Technique 
Design Approach 

M.L and D.L algorithms Hardware Platforms Performance Application 

Parallelism and data 

reuse 

Intra-layer approach[14]  DCNN Orlando SoC Speed up: 14.21x  

Parallelization on 8 cores[35] 
 PULP-Mr.Wolf Energy: 83.2Uj 

Power: 10.4 mW 

EEG 

Parallelization on 2 cores[36] Tensorial SVM PULP-Mr.Wolf 15× energy savings E-skin 

Row stationary-Exploiting 

local data reuse[26] 

CNN Eyeriss Chip 1.4×-2.5× energy 

savings 

Iot Devices 

Pipeline through HLS 

directives[27][28] 

Linear SVM  

 

FPGA 

 

         

       9.9×-speed up 

Melanoma 

detection 

Decision Tree Character 

recognition 

OpenCL (parallelism)[29] 

 

KNN 

 

DE5 FPGA 

 

3× energy efficiency 

KDD-CUP2004 

Quantum physics 

set 

 

 

 

 

 

 

Approximations 

 

Algorithmic level[25], [43] 

 

CNN and RNN 

 

DNPU 

4.5×-20×energy saving  

ConvNet  100x-energy savings Wearable devices 

 

 

Algorithmic, architecture and 

circuit levels [54] 

 

 

Neural Networks 

 

 

ASIC 

 

 

5% till 87% power 

savings 

 

 

CIFAR as 

benchmark 

 

 

Architecture and circuit levels 

[30],[54] 

Neural Network TSMC 65nm 43.9% till 62.5% energy 

savings 

 

Convolution Network ASIC-28nm silicone 2-9 TerraOps/w/s Real-time 

embedded scene 

labeling 

 

 

Network Sparsity 

Skipping Sparse 

operations[31] 

ConvNet Envision Platform 10 TOPS/W-efficiency Wearable devices 

Energy aware pruning [56] CNN ASIC 70%-power reduction Wearable devices 

and Smartphones 

Width and Resolution 

reduction[32] 

Mobilenets ASIC 88% mult-add reduction 

1% accuracy 

degradation 

Image processing 

 

Removing zero operand 

multiplication [33] 

 

 

DCNN 

 

 

ASIC 

1.24×-1.55× 

performance 

improvement 

 

 

3333333333333333333333 
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Selecting the appropriate hardware platform can be incorporated with other optimization 

techniques that could be applied to embedded Machine learning implementations. 

Table 1.1 reports some of the most significant energy-efficient techniques employed in the 

literature at different levels, for embedded ML/DL algorithms on different hardware 

platforms (FPGA, Parallel platforms, an ASIC). It highlights the use of some relevant 

techniques by presenting the followed design approach. Then an analysis of the impact of 

these techniques on different applications is reported.  These techniques include (1) 

Parallelism and data reuse[26],[27],[28],[29] (2) Approximations[30], and (3) Network 

Sparsity[31],[32],[33] (see fig.1.3). However, the main challenge is to find the optimal way 

of choosing a technique or a combination of multiple techniques that can be implemented 

at different abstraction levels.[27] This can further reduce the power/energy consumption 

while obeying the target application requirements. 

 

Fig.1 Fig.1 Flow diagram of selecting Machine learning algorithms on 

embedded platforms [9] 

 

 

 

Fig. 1.2. An overview of some energy efficient techniques at algorithmic, architecture and circuit level 

for embedded Machine and Deep Learning Algorithms 
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1.4.1 Parallelism and Data Reuse 

Parallelism is one of the most used solutions to simplify this challenge. For instance, many 

computations within the same function of the algorithm can share common resources, as 

shown in [14], [34]and [35]. Authors in [14] took advantage of the multicore architecture 

offered by Orlando SoC to parallelize the convolution operations on tensors, achieving a 

speedup of 14.21x. In [34], [35], the PULP platform, an efficient ultra-low-power 

processor, is used for EMG signal and nano drones, where power consumption and energy 

efficiency have been reduced to below 64 mW by utilizing the available eight cores in [34]. 

Also, in [36], relatively low power consumption less than 28 mW and an energy efficiency 

improvement of 15x have been recorded when parallelizing the tensorial SVM on two cores 

of the PULP platform. 

1.4.2 Approximations 

Due to their inherent error resiliency, machine learning methods may scarify a part of their 

accuracy at the benefit of performance improvement. In this regard, recent researches have 

relied on approximate computing methods to address the embedded implementation of ML 

algorithms. Approximate computing methods have been applied at various levels of the 

system abstraction, i.e. algorithmic, architecture, and circuit levels. Table 1.2 reports some 

relevant works presented in the literature at different levels [37]. It highlights the used 

approximate computing technique and the followed design approach with the analysis of 

the impact of the results on the application. The analysis is basically focused on the gain in 

performance represented by the power and latency savings on the one hand, and by the 

accuracy degradation on the other hand. Approximate Computing (AxC) is the idea of a 
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trade-off between accuracy and efficiency. It allows the system to expose inexactness to 

the application layer of an error-resilient system in return for conserving some resources. 

Therefore, selecting an AxC technique for an embedded machine learning algorithm 

requires careful analysis in order to maintain a low accuracy degradation with a noticeable 

reduction in power consumption.  

1.4.2.1 Algorithmic Level 

At the algorithmic level[38],[39], approximations are applied to the loops and functions 

constituting the program/software which describes the application. These approaches 

enable the approximation by reducing the number of iterations in an iterative algorithm. 

Focusing on the loops, loop perforation[40] trades accuracy for time latency/power 

Table1.2. : Approximate computing methods at different abstraction levels 

Level Technique Design Approach Application Results (Energy Savings/Latency) 
Accuracy 

Degradation 

Algorithmic 

Synaptic Pruning 

and Quantization 

Scale computational precision /apply on 

accelerator circuits [38]   

Convolutional Neural 

Networks 

Energy reduction up to 30× 

 
No loss 

Prune the synaptic weights / reduce the bit 

width of the synapses [54] 
DNN 80% energy saving < 0.2% 

Approximating 

Networks 

Approximate Neural Network by 

approximating neurons [39] 

Neuromorphic 

Systems 
1.14X-1.92X energy savings 

< 0.5% 

 

Reduce the number of hidden layers and the 

number of neurons [54]  
DNN 83.23% energy savings 0.178% 

Approximate 

processing 

Skip reading specific rows in weight matrix 

of several  neurons [6] 
ANN 34.11% ∼ 51.72% energy savings < 5% 

Architecture 

Selective 

Approximation 

QUORA vector processor with approximate 

processing elements [46] 

Programmable 

processors 
1.05X-1.7X energy savings < 0.5% 

Scalable 

Hardware 

Scaling number of bits in data path between 

MAC and FIFOs [47] 
SVM 1.2X-2.2X energy savings no loss 

Data Storage 

Approximation 

Perform approximate storage on the 

unreliable cache sets [48] 
MLC STTRAM 7%-19% energy savings 0.22% to 0.43% 

 

 

 

 

 

 

 

 

 

Circuit 

 

Approximate 

Multipliers 

simplified shift and add operations [ 46] DNN 18% till 27% power savings < 0.4% 

inexact logic minimization approach [15] Neural Network 43.9% till 62.5% energy savings Mean square error 

from 0.14 to 0.2 

 

Approximate 

Adders 

alternate circuits for Full Adder [37] CNN Reduction the area delay product by 

50% for LOA 

13% 

divides the p-bit addition(m+n=p)[55 ] Neural Network 

 

 

 

Approximate 

memory 

-hybrid 8T-6T SRAM cell [54] Deep fully connected 

network 

Reduction of the operating voltage 

from 0.85 V to 0.8V 

< 0.5% 

quality configurable memory array [ 49] [50 

] 

8 machine- learning 

benchmarks 

applications 

19.5% energy savings Accuracy loss than 

0.5% 

approximate memory compression [ 18] 1.28x energy savings 

11.5% reduction in execution time 

1.5% accuracy loss 

 

 

 

Quantization 

substitute the floating point multiplications 

with lookup table search [51] 

Voice recognition 3x energy savings 

2.6x improvement in time delay 

 

0.2% accuracy loss 

Lowering the precision of network weights 

[52] 

Deep convolution 

network 

Reduction of the compute requirement 

by ∼3× 

7% to 23.4% 

Reduced data precision [45] [53] CNN and DNN  1%. 
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consumption by transforming loops to limit the execution of a subset of the iterations. The 

loop perforation is only applied to the tunable loops producing acceptable accuracy. Data 

Format Modification is another AxC technique that is widely used. It includes the transition 

from floating-point to fixed-point representation. For instance, data samples in voice 

applications are represented using 16-bit precision [41], while a 12-bit precision is often 

sufficient for image processing applications [42]. Authors in [43] embedded ConvNet in a 

wearable device while running a benchmark using a 1-9b fixed-point representation. An 

energy efficiency improvement of 100x with an accuracy loss of 1% has been recorded. As 

for fixed-point precision-based neural networks, a quantization methodology presented in 

[44] can be applied to find a suitable representation of each layer of the network [45] in 

order to maintain an acceptable accuracy.   

1.4.2.2 Architecture Level 

The goal of approximation at the architectural level [46],[47], is to use relaxed 

specifications on circuits able to support inexactness during execution and storage. 

Concerning data storage, a writing mechanism has been proposed recently [18], enabling 

the approximate data storage. Authors in [40] proposed a mechanism based on trading off 

accuracy/writing speed in multilevel cell accesses[48]. Approximate storage leverages the 

properties of a wide range of memories, such as spintronic memories [49] or solid-state 

memories. 

1.4.2.3 Circuit Level 

At this level[50],[51],[52],[53],[45] hardware designers focus on designs producing 

approximate results through synthesizing inexact circuits. Such paradigms have been used 
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mainly to design arithmetic circuits [54]. The use of approximate arithmetic module blocks 

has been considered as a relevant solution aiming to develop energy-efficient and high-

performance machine learning algorithms. For computation, multiplication operations are 

central arithmetic units characterized by intricate logic design. Therefore, a number of 

approximate multipliers for machine learning have been proposed in the literature 

[54],[6],[15], and [55]. In[54], the authors evaluated the use of ASM multiplier in a deep 

neural network. The conventional multiplication is substituted by simplified shift and add 

operations. The power consumption has been reduced by 18% to 27% at the cost of 

accuracy loss less than 0.4%; after carrying out the re-training to the network to compensate 

for the loss in accuracy added through the approximations. The approach adopted in[54] 

has been proposed in[15],where the energy efficiency is improved by 43.9% to 62.5% after 

implementing the inexact multiplier using  the inexact logic minimization approach in a 

neural network. But the mean square error reported has been increased from 0.14 to 0.2. 

However, the degradation in quality shown is higher (5%) after implementing another 

architecture of an approximate multiplier in an artificial neural network. Through 

ApproxANN, the approximation is applied for both computation and memory accesses. 

The proposed multiplier has a tunable output of (n + k) bits, where n represents the bit-

width of input data. The results reported a reduction in terms of power, around 45.9% for 

the MNIST application having an MP24 configuration.  

Besides the multiplication operation, addition block is considered as a fundamental block 

having significant influences over the performances of the system. Therefore, in[37], 

authors have selected five approximate adders configurations from the approximate 

IMPACT adder configurations. After evaluating every adder configuration, the results 
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indicate that the average of the accuracy for all the fives adders configurations in a deep 

CNN architecture based on the LeNet-5 is around 87%. On the other side, the performances 

could be improved, as shown in[55].Authors have proposed the use of Lower-part-OR 

Adder(LOA) and BAM multiplier in a neural network for face recognition applications. 

The architecture Lower-part-OR Adder (LOA) is based on dividing a p-bit addition into 

two m-bit and n-bit smaller parts (m+n=p) . While the structure of the BAM multiplier is 

similar to that of an array multiplier. The area delay product of the model has been 

decreased around 50% after combining the approximate adder and multiplier into the 

model.  

1.4.3 Network Sparsity 

For an embedded deep neural network, there is a probability that some weight values are 

equal to zero.  This presents a large sparsity in the network, thus assisting in improving 

energy efficiency. After skipping the unnecessary sparse operations in [43],[17], the 

ConvNet processor archives an efficiency up to 10 TOPS/W at the same throughput. 

Another promising solution towards efficient neural networks is pruning the layers of a 

CNN with the most power requirements [56]. This method achieved a 70% reduction in 

power consumption, surpassing the previous efforts done in reducing the model size of a 

CNN. 

1.5 Context of the work 

Energy-efficient circuits have become a substantial need for designing embedded 

computing systems for such application domains as the Internet of Things (IoT), Wearable 

Devices, and biomedical applications. In the “Prosthetics” application [57], a dedicated 
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portable electronic system is needed for developing wearable devices. Portable prosthetic 

systems contain autonomous and networked sensors; each sensor hosts multiple input 

tactile sensors tightly coupled to the embedded processing unit and power supply [58]. The 

embedded processing unit locally extracts meaningful information by employing 

sophisticated methods, e.g., Machine Learning [3], which deals with large dimensions of 

datasets. Nevertheless, this imposes challenges on the real-time operation and adds a 

burden regarding power consumption. The demands of the electronic-skin are not satisfied 

since, as shown by [59], the estimated energy/power is not feasible, i.e., 100 pJ/op, time 

latency (i.e., around 7 s) is very high and the computational load is of about 1.2 GOPS. 

Therefore, since the implementation of tactile data decoding algorithms for touch 

modalities classification requires a high amount of power consumption [10],then our 

primary goal in the thesis is to implement energy-efficient techniques for embedded 

machine learning algorithms used for tactile data processing in the e-skin . 

1.6 Thesis contributions 

The contributions in this thesis, are summarized as follow: 

• Two signed approximate multipliers have been designed and implemented. The 

first one is a rounder multiplier called the “META” multiplier [60] and is based on 

the Error Tolerant Adder (ETA), which has been implemented instead of the exact 

adder. While the second one is called “Approximate Baugh-Wooley(BW)” 

multiplier[61] and is based on the architecture of the exact Baugh-Wooley 

multiplier, where the approximation is enabled after introducing the approximate 

adder in the computation of the partial products  . The proposed circuits have been 
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implemented using RTL description in VHDL Hardware Description Language for 

Virtex-7 xc7vx485tffg1157-1 FPGA device. 10000 inputs have been uniformly 

selected and simulated in order to compute the accuracy metrics of the designs. The 

relative error (RE) and the mean relative error (MRE) metrics have been calculated 

to assess the performance of the approximate multipliers. Results show that 

approximate-BW is the most efficient design between the approximate multipliers 

achieving a relevant reduction in power consumption and time delay around 80.4% 

and 24% respectively with respect to the exact BW multiplier and an improvement 

of power consumption reduction by 68.1% with respect to other state of the art 

solutions. 

• Implementing approximate arithmetic circuits into the Coordinate Rotational 

Digital Computer (CORDIC)[62] algorithm and the SVD[63] circuits in order to 

reduce the power consumption of ML algorithms; since CORDIC and SVD circuits 

take part of the real-time ML algorithm for tactile data processing. Approximate 

CORDIC and approximate SVD have been implemented using RTL description in 

VHDL Hardware Description Language for Virtex-7 xc7vx485tffg1157-1 FPGA 

device. ETA and LOA have been implemented instead of the entirely precise adder 

(RCA) into the CORDIC algorithm aiming to study the performance of CORDIC 

in terms of slices, power and time latency after employing approximate circuits. 

ETA and LOA in the CORDIC design allow respectively a dynamic power 

consumption saving up to 13% and 21% with respect to CORDIC-RCA. While for 

the (SVD) singular Value Decomposition, the Approximate BW multiplier has 

been implemented in Post rotation and Pre rotation blocks of the SVD after scaling 
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the approximation in the multiplier by increasing the number of the approximate 

bits from (8 to 28). Results show that the power consumption of the SVD is reduced 

by 19% with a negligible accuracy loss. 

• Implementing an energy-efficient smart system for tactile sensing based on a RISC-

V parallel ultra-low-power platform (PULP). The PULP processor, called Mr. 

Wolf[64], performs the on-board classification of different touch modalities. This 

demonstrates the promising use of on-board classification for emerging robot and 

prosthetic applications. Experimental results demonstrate the effectiveness of the 

platform on improving energy efficiency and the accuracy of the classification. A 

memory management strategy has been proposed in order to store 50 trained for 

each class in L2 memory (512 kB). We evaluated the execution cycles for Mr. Wolf 

using a single core, 2 cores, and 3 cores to evaluate the benefits of the 

parallelization. The three SVDs blocks have been executed in parallel on three 

different cores on the Wolf SoC. A 3.72× speed-up can be achieved after executing 

SVD (A) ,SVD (B), and SVD(C) blocks on three different cores in parallel. We 

demonstrated that the algorithm on the proposed platform outperforms ARM 

Cortex M4F (STM32F40) and by 15 times in terms of energy efficiency, without 

exceeding the power envelope of a 28mW.  

1.7 Organization of the thesis document 

The thesis is organized as follows. Chapter 2 describes the architecture of the exact and 

approximate adders and multipliers presented in state of the art. Then, it presents the 

architectures of the two new proposed approximate multipliers (META and approximate 

Baugh-Wooley multipliers). After, an assessment study of the new approximate multipliers 
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has been done in terms of performance, accuracy, delay, area, and power consumption with 

respect to state of the art. 

Chapter 3 assesses the impact of the new approximate multipliers designs as well as some 

of the most relevant state of the art approximate multipliers on tactile digital signal 

processing. The quality is measured in terms of different metrics, mainly: SNR 

degradation, power consumption, and time delay. On the other hand, approximate 

computing techniques have been applied on the machine learning algorithm employed for 

the tactile data processing; by implementing approximate adders and multipliers into the 

Coordinate Rotational Digital Circuits (CORDIC) and the Singular Value Decomposition 

(SVD) algorithms which take a significant part of the real-time ML algorithm. 

Chapter 4 presents the machine learning algorithms employed for tensorial tactile data 

processing. Moreover, it discusses the reasons behind following the mentioned approach. 

Then, the SVM based tensor kernel algorithm is implemented in C language in order to 

validate the effectiveness of the algorithm when classifying images (as a case study) and 

touch modalities.  

Chapter 5 describes the hardware implementation of the SVM based tensor kernel approach 

on a novel computing platform embedding a Parallel Ultra Low Power processor (PULP), 

called “Mr. Wolf” for the aim to reach an embedded low power implementation for 

wearable devices. The classification based on Support Vector Machine (SVM) runs 

directly on PULP classifying two touch modalities (finger sliding and washer rolling) 

outperforming ARM Cortex M4 in terms of power consumption and energy efficiency. 
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CHAPTER 2. LOW POWER APPROXIMATE 

ARITHMETIC CIRCUITS.  

2.1 Introduction 

  Energy-efficiency has become a paramount concern in designing computing 

systems. The ever-increasing demand for higher computing power represents a driving 

force toward ultra-low power design strategies. Low power consumption is the most critical 

design goal for a wide range of electronic systems, including smart self-powered sensing 

systems for such application domains as the Internet of Things (IoT), Wearable Devices 

and Robotics. To improve energy efficiency, at different layers of the system stack, 

researchers have developed different optimizations methods.   

In recent years, several techniques at the circuit and system level have been proposed to 

address this issue. One of these techniques is “approximate computing,” which turned out 

to be a practical approach providing a tradeoff between accuracy and power saving to 

improve performance and energy efficiency [1],[2]. Approximate results are usually 

acceptable for many applications requiring tactile data processing [3], [4] image processing 

[5], and data mining [6]. Thus, it is highly recommended to take advantage of energy 

reduction with minimal variation in performance [7]. Recently, approximations have been 

used in computing units of embedded systems, especially graphics processing units (GPUs) 

and field-programmable arrays (FPGAs) [65]. Computing units, e.g., embedded digital 

signal processing (DSP) systems, are considered critical components of modern electronic 

embedded devices [55]. Among arithmetic DSP operations, multiplication is considered as 
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a complex block consuming a high amount of power with significant time latency when 

compared to other operations. Decreasing the complexity of multiplication blocks may 

reduce the power consumption of DSP systems. In this perspective, the proposed work 

employs approximate computing techniques for the arithmetic units, i.e., adders and 

multipliers for energy-efficient data processing units. In this chapter, we present an 

overview of entirely precise and approximate adders and multipliers circuits. Then we 

describe the architectures of the two new proposed approximate multipliers (META and 

approximate Baugh-Wooley multiplier). After, an assessment study of the proposed 

approximate multipliers has been done in terms of performance, accuracy, delay, area, and 

power consumption with respect to state of the art. Therefore, the main goal is to implement 

efficient hardware architectures of approximate multipliers providing low power 

consumption. The results presented in this chapter were published in [60],[61],[130]. 

2.2 Background on Adders and Multipliers 

This section presents the architecture of some relevant exact arithmetic circuits in state of 

the art. 

 

Fig.2.1.  Ripple-carry adder 
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2.2.1 Representation of signed integers 

In this section, we will discuss the representation of signed integers (positive and negative). 

Usually, two representations are presented such as: the sign and magnitude representation 

and the true-and-complement representation. 

2.2.1.1 Sign-and-Magnitude (SM) Representation 

In the SM system, the signed integer 𝑥  is represented by a pair of (𝑎1, 𝑎𝑚), where 𝑎1is the 

sign and 𝑎𝑚 is the magnitude. The values of two sign (+,−) are usually represented by a 

binary variable; where the integer 1 corresponds to –  and 0  corresponds to +.  When 

representing the positive integers, the magnitude could be represented in any system. In 

case of conventional radix-r system, the range of signed integers is presented as equation 

below: 

0 ≤ 𝑎𝑚 ≤ 𝑟𝑛 − 1                                                  (2.1) 

2.2.1.2 True-and -Complement (TC) Representation 

No separation is applied between the representation of the sign and the magnitude in the 

TC system. But in this system, all the signed integer is represented by a positive integer. 

Therefore, the signed integer 𝑥  is represented by positive integer called 𝑎𝑅 which is 

expressed as below:  

𝑎𝑅 = 𝑎 𝑚𝑜𝑑 𝐶                                                    (2.2) 

Where the positive integer 𝐶 is called the complementation constant. For max|𝑎| < 𝐶, the 

following system could be derived: 
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𝑎𝑅 = {
  𝑎                if 𝑎 ≥ 0

 𝐶 − |𝑎| = 𝐶 + 𝑎          if 𝑎 ≥ 0                    
                  (2.3) 

However, the region for 𝑎 > 0 should not overlap with the region for 𝑎 < 0. This requires 

that: 

max|𝑎| <
𝐶

2
                                                                     (2.4) 

In this case, the following system could be derived: 

𝑎 = {
𝑎𝑅,,……..,,,,,,,,,,,  𝑎𝑅 < 𝐶/2

𝑎𝑅 − 𝐶        𝑎𝑅 ≥ 0
                                               (2.5) 

When 𝑎𝑅 = 𝐶/2  is representable, it is usually assigned to 𝑎 = −𝐶/2 , making the 

representation asymmetrical. So, the true forms indication corresponds to the positive 

integer’s representation, while the complement forms correspond to negative integer’s 

representation. 

2.2.2 Basic Adders 

2.2.2.1 Ripple-Carry Adder 

Ripple-Carry Adder (RCA) [66] is a well-known circuit used to compute the addition of 

two binary numbers in many arithmetic circuits. RCA adds sequentially the bits having the 

same significance and the carry-bit from the previous stage using a full adder (FA), then 

propagates the carry-bit to the following stage, as shown in Fig. 2.1. This adder could be 

employed for adding both unsigned and two’s complement numbers. However, the main 

drawback of RCA is that the worse-case delay is intended to be proportional to the word 

length. Moreover, since the full adder cells are supposed to wait for the correct carry input, 
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thus many glitches will be produced from the RCA. Nevertheless, this drawback could be 

improved if the delay of the carry bit is smaller than that of the sum bit. 

2.2.2.2 Carry-Chain Adder 

Fig.2.2. shows the structure of an n-digit adder having a separate carry calculation. The 

generate and the propagate functions are calculated through the G-P (generate-propagate) 

cell based on the following equations: 

𝑔(𝑖) = {   1           if 𝑎(𝑖) + 𝑏(𝑖) > 𝐵 − 1
0          otherwise                    

                       (2.6)  

𝑝(𝑖) = {   1           if 𝑎(𝑖) + 𝑏(𝑖) = 𝐵 − 1
0          otherwise                    

                        (2.7) 

Where 𝑎(𝑖) and 𝑏(𝑖) are the inputs signals, and 𝐵 represents the Base. 

 

Fig.2.2.  Carry-chain adder 
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The next carry is computed through the C.C. (carry-chain) cell as follow: 

𝐶(𝑖 + 1) = {  
𝐶(𝑖)            if 𝑔(𝑖) = 1

𝑔(𝑖)             otherwise
                                           (2.8) 

Then a carry is generated from 𝑔(𝑖)  and the carry is propagated from level i-1 by 

𝑝(𝑖).Then the sum will be generated through the 𝑚𝑜𝑑 𝐵  sum cell as follow: 

𝑆(𝑖) = (𝑎(𝑖) + 𝑏(𝑖) + 𝐶(𝑖))𝑚𝑜𝑑 𝐵                                 (2.9) 

2.2.2.3 Carry-Lookahead Adder (CLA) 

The main concept of this adder is to compute simultaneously several carries. In the 

extreme, the computation of the carries is done at the same time. Let’s consider that 𝑎(𝑖)and 

𝑏(𝑖)the integers represented by the bit-vector from bit 0 to bit 𝑖 as follow: 

𝑎(𝑖) = ∑ 𝑎𝑣2
𝑣𝑖

𝑣=0                                              (2.10) 

and similarly, for 𝑏(𝑖), the carry is computed as follow: 

𝑐𝑖 = 1 if (𝑎(𝑖−1) + 𝑏(𝑖−1) + 𝑐0 ≥ 2𝑖                              (2.11)    

Then, a switching function of 2𝑖 + 1 variables will be resulted. This function could be 

implemented by a two-level network such as: 𝑁𝐴𝑁𝐷 − 𝑁𝐴𝑁𝐷.In case of large i, this 

implementation is complex due to the large number of gates and inputs. Therefore, the 

input vector in the CLA is divided into two groups, where the carries are computed 

simultaneously.  

2.2.3 Multiplication 
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 Multiplication of two numbers is usually executed by following the two main steps: 

a) Generation of partial products where the partial product is the result of 

multiplication of the multiplicand with a bit of the multiplier. 

b) Partial products accumulation 

In this section, we will discuss some techniques to simplify the summation of the partial 

product, and we will describe the architecture of some exact multipliers. 

2.2.3.1 Partial Product Generation 

For unsigned number format, the multiplication is done based on the following equation: 

𝑃 = 𝐴𝐵 = ∑ 𝑎𝑖
𝑛
𝑖=1 2−𝑖 ∑ 𝑏𝑗

𝑛
𝑗=1 2−𝑗                                    (2.12) 

A partial product array is generated, as shown in Fig. 2.3., where partial products are 

applied through AND gates. In the case of 2’s complement representation as shown in 

 

Fig. 2.3.  Partial products for unsigned numbers 
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Fig.2.4, the equation is similar to (2.10) except that some bits will have a negative weight. 

The equation is shown below: 

𝑃 = 𝐴𝐵 = 𝑎0𝑏0 − 𝑎0 ∑ 𝑏𝑗
𝑛
𝑗=1 2−𝑗 − 𝑏0 ∑ 𝑎𝑖

𝑛
𝑖=1 2−𝑖 + ∑ ∑ 𝑎𝑖

𝑛
𝑗=1 𝑏𝑗2

−𝑖−𝑗𝑛
𝑖=1    (2.13) 

2.2.3.2 DADDA Multipliers 

DADDA multipliers [67] are considered as the remake design of the parallel multipliers 

presented by Wallace in 1964 [68]. As shown in Fig. 2.5, the multiplier is composed of 

three stages, wherein the first stage a partial product by 𝑁2AND gates are executed. In the 

second stage, the height of the partial product matrix is reduced to two, which employs 

different parallel (𝑚, 𝑛) counters. The parallel counter in DADDA multiplier has m inputs 

providing n outputs. During the compression phase, DADDA multiplier employs at least 

(3,2)   and (2,2)  counters at each level, where a (3,2)  and (2,2)  counters represent 

respectively a full adder and a half adder. In Fig.2.5, the outputs of the (3,2) counter are 

 

Fig.2.4 Partial products for two’s complement numbers 
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represented by a diagonal line joining the two squares, while the crossed diagonal line 

joining the other two squares are the outputs of the (2,2)  counter. In order to produce a 

16-bit product multiplier, different components are required such as: 64 AND gates, 35 

(3,2)   counters, 7 (2,2)   counters and a 14-bit carry propagation adder. During the 

compression stage, DADDA multipliers require less counters than Wallace multipliers. 

Lastly, the final stage of the multiplier uses a carry propagation adder in order to generate 

the final product. 

 

 

Fig. 2.5.  Dot diagram for an 8×8 DADDA multiplier 
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2.2.3.3 WALLACE Multipliers 

Similarly to DADDA multiplier, the partial products in WALLACE [68] multiplier are 

produced through 𝑁2 AND gates as shown in Fig.2.6. Then a set of three rows are grouped 

together containing N rows of partial products. While each row which is not included in 

the set of the three rows is transferred to the next phase without applying any change. Then 

(3,2)  and (2,2)  counters are applied to columns containing three bits and columns 

containing two bits, respectively. Nevertheless, each column that contains a single bit will 

 

Fig. 2.6.  Dot diagram for an 8×8 WALLACE Multiplier 
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be transferred to the next level without any modification. In WALLACE multipliers, a 

carry propagating adder is employed for the execution of the final addition whose sum is 

the product of the final multiplication. During the reduction phase, the WALLACE 

multiplier has approximately the same numbers of full adders, similarly to the DADDA 

multiplier. Then a shorter final carry propagating adder is generated after adding half 

adders to the previous phase. The components required to produce a 16-bit product 

DADDA multiplier are as follow: 64 AND gates, 1 OR gate, 38 (3,2) counters, 15 (2,2)  

counters, and a 10-bit carry propagating adder. 

2.2.3.4 Baugh-Wooley Multiplier 

Baugh-Wooley [69] is a well-known algorithm used to compute the multiplication in 

many digital signal processing units. It is a signed array multiplier considered in our case 

as an exact reference multiplier to be compared with the proposed approximate ones [70], 

 

Fig.2.7. Baugh-Wooley multiplier. 
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[69]. Baugh-Wooley is designed to compute the multiplication of both signed and unsigned 

operands using 2’s complement number system. During direct multiplication of two 2's 

complement numbers, the partial products obtained will be signed numbers. Hence sign 

extension is needed for these partial products to the final product's width to get the accurate 

answer. This multiplier is very easy to implement since it has a regular architecture as 

shown in fig.2.7. Moreover, Baugh Wooley multiplication table can be implemented using 

different full adders such as: carry save array, ripple carry adder or carry select adder. In  

case of  4 × 4 multiplication, 3 rows of adders and a final stage adder are needed for the 

computation, where the partial products are obtained using AND and NAND gates.  

2.3 Background on approximate adders and multipliers 

In this section, some significant approximate arithmetic circuits (adders and multipliers) 

are described and presented. 

2.3.1 Approximate Adders 

In [71], an approximate adder based on the dynamic segmentation with the error 

compensation technique (DSEC) is proposed. The n-bit adder is divided into smaller sub-

adders operating in parallel with fixed carry inputs. This technique reduces 30% power 

consumption.  Authors in [72] described an n-bit Carry Skip Adder (CSA) which is divided 

into [n/k] blocks. Each block is made of a sub-carry generator and a sub-adder. The power 

consumption is reduced by 43% when compared to exact adders. 

In contrast to SCSA, the speculative carry adder (CSPA) presented in [73] is 

composed of one sum generator, two internal carry generators, and one carry predictor for 

each block. The energy efficiency and time delay are improved respectively by 19.03% 
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and 26.59% with respect to the existing speculative carry-select adder. In [74], the 

Gracefully-Degrading accuracy-configurable adder (GDA) is presented. Through the 

control signals, the accuracy of GDA is configured by selecting the approximate of exact 

carry-in for each sub-adder through a multiplexer. This advanced design achieves a better 

quality when compared to existing techniques. The consistent Carry Approximate Adder 

(CCA) based on SCSA, is proposed in [75]: the carry prediction depends on the least 

significant bit (LSBs) and the MSBs. The time delay and the area are similar to SCSA. 

Authors in [55] proposed the Lower-Part-OR Adder (LOA), which is based on processing 

the least significant bits using OR gates. In [76], Approximate Mirror Adders (AMAs) are 

proposed. The AMAs are implemented in the LSBs of a multiple-bit adder achieving a 

reduction in power consumption by up to 69% when compared to accurate adders. Authors 

in [77] proposed three approximate adders (AXAs) based on XOR and XNOR logic gates 

consuming less power than the exact XOR/XNOR-based adder. 

2.3.2 Approximate Multipliers 

Efficient implementations of approximate multipliers based on different approaches 

have been recently reported in the literature. Kulkarni et al. [78] proposed an approximate 

2×2 multiplier cell, which is employed as a basic block for multiplier architectures having 

a larger size. An average of 31.8% improves energy efficiency to 45.4% with respect to 

exact multipliers. Authors in [79] have presented an accuracy-configurable multiplier 

architecture (ACMA) for error-resilient designs. This architecture is based on a technique 

called carry-in prediction, employing an efficient precomputation logic, which reduces the 

latency to around 50% when compared to an accurate multiplier. [80] presented an 

Approximate Wallace Tree Multiplier (AWTM), which employs a carry-in prediction 
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reducing the power consumption by 42% with respect to the Wallace tree multiplier 

(WTM). The Partial Product Perforation technique (PPP) presented in [81] is based on 

neglecting a specific number of partial products, reducing the power consumption and time 

delay around 50% and 35%, respectively, when compared to an exact design. [82] proposed 

an approximate (4:2) counter for an approximate 4-bit Wallace multiplier. This inexact 

multiplier is employed in order to build more massive multipliers having error detection 

and correction circuits. The power consumption is reduced by 10.7% when compared to 

the Wallace tree multiplier. Two approximate 4:2 compressors have been proposed in [83], 

providing efficient reductions in power consumption, hardware resources, and delay with 

respect to exact designs. Authors in [84] proposed a static segment multiplier (SSM), which 

takes m segment bits from n-bit operand based on leading 1 bit of the operands. Then, 

instead of n × n multiplication, the m × m multiplication is executed, where (m<n). It 

consumes 58% less energy when compared to a precise multiplier with an average 

computational error of around 1%.  In [70], a new multiplier is proposed, which connects 

the most significant bit (MSB) to the least significant (LSB), generating an error value of 

1. Sekanina in [85] provided an open-source library of approximate adders and multipliers 

called EvoApprox8b library. Authors in [70] have proposed an efficient multiplier based 

on the rounding approach. Speed and power consumption have been reduced after omitting 

the computational part of the multiplication. 

2.4  Low Power Approximate Adders and Multipliers 

In this section, the relevant state of the art approximate arithmetic circuits, i.e., 

approximate adders and multipliers, are reported, and novel approximate circuits are 

proposed.  
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2.4.1 Approximate Adders Circuits 

The full adders consume a high amount of power such as the CLA while other are 

slow(i.e.: RCA). Thus, approximate adders have been proposed in the literature [77], 

[55],[86], trading the accuracy for a reduction in power, time delay, and hardware 

resources. Fig.2.8 represents the general circuit architecture for approximate adder circuits. 

It divides the addition operation into two blocks: 1) Exact and 2) Approximate. The exact 

operation deals with the most significant bits of the addition while the approximate one 

oversees the least significant bits. The error is decreased by using a carry-in signal from 

approximate to the exact block. The architecture provides the possibility to scale the 

number of bits in the exact and inexact parts. Consequently, the effect of varying the 

inexactness represented by the scalability of the number of bits with respect to accuracy 

could be analyzed. Based on the general architecture, the following subsections introduce 

the proposed adder with some relevant circuit from state of the art. 

 

 

Fig. 2.8. General hardware architecture for approximate adder circuits 
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2.4.1.1   Approximate XNOR-based Adder (AXA) 

 Fig.2.9 (a) shows the functionally equivalent remakes design of the original approximate 

XNOR-based Adder (AXA) [77]. The signal is generated after applying an XNOR logic 

operation for the two input bits A and B. The sum signal is correct for half of the possible 

input combinations, Cout is exact for all the input combinations, and it is generated 

according to the following equation: 

𝑆 = (𝐴 𝐴𝑁𝐷 𝐵) 𝑂𝑅 (𝐴 𝑋𝑂𝑅 𝐵) 𝐴𝑁𝐷 𝐶𝑖𝑛                                (2.14) 

 

 

 

(a) 

 

 

(b)  
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(d)                                         
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Fig.3 Approximate adder circuits 

 

 

Fig. 2.9. Approximate adder circuits: (a) AXA, (b) Lower-Part-Or-Adder, (c) Approximate NAND-carry out 

bit, (d) Approximate AND-carry out bit, (e) Input Pre-Processing, (f) AFA adder                                             
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2.4.1.2 Lower-Part-OR-Adder 

In the approximate part of the lower part OR adder (LOA) [55] presented by Fig.2.9 (b), 

OR gates are applied to the respective A and B input bits. An AND gate is applied to the 

most significant bits of both A and B generating the carry out (Cout) signal. In order to 

decrease the inaccuracy, Cout is connected to the upper part of the adder (exact operation) 

when the most significant bits are equal to one. 

2.4.1.3 Approximate NAND-carry out bit 

As shown in Fig.2.9 (c) [86], the approximation is applied to the carry-out signal by 

omitting the two min-terns in the regular expression of Cout as given by (2.14). Then the 

approximation is expressed by executing a NAND logic operation between A and B. The 

sum signal is generated at the end by applying the following operation: 

𝑆 = (𝐴 𝑋𝑁𝑂𝑅 𝐵)𝑋𝑂𝑅 𝐶𝑖𝑛                                          (2.15) 

2.4.1.4 Approximate AND-carry out bit 

Similar to the approximate NAND-carry out bit [86], this adder adopts an AND gate 

operation for both inputs A and B generating the approximate Cout signal, as shown in 

Fig.2.9 (d). The signal sum performs the following operation: 

𝑆 = (𝐴 𝑋𝑂𝑅 𝐵) 𝑋𝑂𝑅 𝐶𝑖𝑛                                    (2.16) 

2.4.1.5 Input Pre-Processing 

The Input Pre-Processing approximate adder is presented in Fig. 2.9 (e). It is based on 

interchanging the bits having the same weights in different addends. The original adder has 
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been proposed in [87]; it generates two signals: sum and error. However, only the sum 

signal is taken into consideration here. The sum signal resulted is based on the following 

logic operation: 

𝑆 = (𝐴𝑖 𝑋𝑂𝑅 𝐵𝑖) 𝑂𝑅 (𝐴𝑖−1 𝐴𝑁𝐷 𝐵𝑖−1)                       (2.17) 

2.4.1.6 New Approximate Adder (AFA) 

The truth table of AFA adder is illustrated in Table 2.1. Moreover, the equations of the 

approximate carry bit and the approximate sum bit are shown below: 

𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 + 𝐴.𝐵                                              (2.18) 

 

𝑆 = 𝐶𝑜𝑢𝑡 + (𝐴 ⊕ B)                                            (2.19) 

Table 2.1. Truth table for AFA Adder 

Inputs Exact Outputs Approximate Outputs 

A B C Cout S Cout S 

0 0 0 0 0 0 0 

0 0 1 0 1 1 1 

0 1 0 0 1 0 1 

0 1 1 1 0 1 1 

1 0 0 0 1 0 1 

1 0 1 1 0 1 1 

1 1 0 1 0 1 1 

1 1 1 1 1 1 1 
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The proposed approximate adder, called (AFA) [61], is a promising solution to the problem 

mentioned previously. In the proposed adder, only one case from the eight outputs in the 

carry bit is erroneous while three errors take place in the sum bit of the adder output. The 

carry bit is implemented using only two gates OR, AND instead of three logic gates. The 

sum bit is obtained based on Cout through an OR and XOR operations as shown in Fig.2.9 

(f). In this adder, we focused on reducing the erogenous to the carry bit, since the carry is 

placed in the MSBs. Hence, reducing the inaccuracy of carry bit will decrease the 

inaccuracy of the output of the approximate adder. Therefore, maintaining the accuracy to 

the carry bit more than the sum bit will be considered as an essential criterion aiming to 

assure the best possible performance to the approximate adder . 

2.4.2 Approximate Multipliers Architectures 

In this section, we present the architecture of our two new approximate multipliers called 

Approximate Baugh-Wooley (Approx-BW) and Approximate multiplier based on ETA 

adder (META). The main idea of our multipliers stems from the fact that each multiplier 

needs an addition operation to perform the multiplication. Thus, the approximation is 

achieved by using approximate adders. Furthermore, we have generated three versions of 

the Approx-BW multiplier and three other versions of the META multiplier based on 

distinct approximate adders. The objective is to select the most effective multiplier in terms 

of power, latency, LUT utilization and accuracy for our e-skin application after comparing 

the performance of the proposed approximate multipliers with respect to the previous 

approximate arithmetic circuits mentioned in state of the art. 
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2.4.2.1 Approximate META Multiplier 

The proposed architecture has been adopted from [70]: it is based on rounding signed and 

unsigned numbers in the form of 2n. The main idea is to make use of an approximate adder 

in place of the exact one in order to reduce power consumption. Before elaborating in the 

operation of the approximate multiplier, we consider that Mr and Nr are the rounded number 

of the inputs M and N. The multiplication of the two-input values M and N is written as 

follows: 

𝑀 × 𝑁 = (𝑀𝑟 − 𝑀) × (𝑁𝑟 − 𝑁) + 𝑀𝑟 × 𝑁 + 𝑁𝑟 × 𝑀 − 𝑀𝑟 × 𝑁𝑟       (2.20) 

This equation is simplified by eliminating the first part, i.e. (𝑀𝑟 − 𝑀) × (𝑁𝑟 − 𝑁) , thus 

the operation is performed using only add/shift operations. Through this approach, the 

nearest values for 𝑀 and 𝑁 are determined in the form of 2𝑛.When the input (M or N) is 

 

Fig.2.10.  Block diagram of approximate META multiplier. 
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equal to 3 × 2𝑖−2 (where I is considered as a positive integer), then the values (M and N) 

are equal to the two nearest values ( 2𝑖and 2𝑖−1) which are based on the 2𝑛 form . Since, 

both values delivered the same accuracy for the approximate multiplier (except for 𝑖 = 2); 

then selecting the larger nearest value leads to a smaller hardware implementation. The 

reason is that the numbers in the form of 3 × 2𝑖−2 are considered as do not care when 

rounding up and down. Only for number three, two is the nearest value in the approximate 

multiplier in this case. 

Moreover, it should be noted that if one of the inputs (i.e.,: M) is smaller than his rounded 

value (𝑀𝑟 ), while the other input (i.e.,: N) is larger than its rounded value (𝑁𝑟 ); thus 

resulting an approximate result larger than the exact result. On the other side, if the both 

inputs are larger or smaller than their corresponding rounded values, then the approximate 

result will be smaller than the exact result. 

The advantage of the proposed multiplier exists only for positive inputs since the rounded 

values of negative inputs are not in the form of 2n in the two’s complement representation. 

Hence, the absolute value of both input and output should be determined and then the 

operation will be performed on unsigned numbers. In the last stage, the proper sign will be 

applied to unsigned result.  The architecture of the proposed multiplier is presented in Fig. 

2.10. The different blocks of the architecture are described as follows: 

a) Sign Extractor: 

The sign extractor block extracts the sign of the input values and gives as output their 

absolute value. It detects the sign bit (most significant bit) of the input represented in two’s 



 

 38 

complement format. Then, it reverses the input in case of negative values and keeps it 

unchanged for the positive ones, as follow:  

If 𝑀[𝑛 − 1] = 1 

Then                                                                                                                            (2.21) 

𝑀 = 𝑀̅ 

b) Round/Shift 

This block applies rounding to the absolute values by extracting the nearest value for each 

absolute value. Output values are extracted in the form of 2n following the rounding 

process. In order to determine the output of each bit of the rounding block, we use the 

following equation: 

𝑀𝑟[𝑛 − 1] = 𝑀[𝑛 − 1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑀[𝑛 − 2].𝑀[𝑛 − 3] + 𝑀[𝑛 − 1].𝑀[𝑛 − 2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑀𝑟[𝑛 − 2] = (𝑀[𝑛 − 2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑀[𝑛 − 3].𝑀[𝑛 − 4] + 𝑀[𝑛 − 2].𝑀[𝑛 − 3]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). 𝑀[𝑛 − 1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

. 

𝑀𝑟[𝑝] = (𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅.𝑀[𝑝 − 1].𝑀[𝑝 − 2] + 𝑀[𝑝].𝑀[𝑝 − 1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). ∏ 𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=𝑝+1

 

. 

𝑀𝑟[3] = (𝑀[3]̅̅ ̅̅ ̅̅ ̅.𝑀[2].𝑀[1] + 𝑀[3].𝑀[2]̅̅ ̅̅ ̅̅ ̅).∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=4

 

𝑀𝑟[2] = 𝑀[2].𝑀[1]̅̅ ̅̅ ̅̅ ̅.∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=3

  

𝑀𝑟[1] = 𝑀[1].∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=2

  

𝑀𝑟[0] = 𝑀[0].∏𝑀[𝑝]̅̅ ̅̅ ̅̅ ̅

𝑛−1

𝑝=1

                                                                                                        (2.22) 
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To summarize, along the process, each rounded bit could be equal to one in the following 

cases: 

• When the two right-side bits of the input bit M[i] is one, M[i] and all the bits on its 

left side are zero. 

• When the right-side bit of M[i] and all its left-side bits are zero, while M[i] is one. 

Since the rounded values are represented in the form of 2n, the products 𝑀𝑟 × 𝑁𝑟, 𝑀𝑟 ×

𝑁  and  𝑁𝑟 × M are obtained through a shifter. The products of n bit width are shifted based 

on 𝐿𝑜𝑔2
𝑀𝑟  or 𝐿𝑜𝑔2

𝑁𝑟depending on the operand M or N, respectively. The output bit widths 

generated from the shifter block are 2n 

c) ETA Adder 

Exploiting inexact adders instead of exact ones in the multiplier block may significantly 

reduce the power consumption of the multiplier circuit. In exact adder circuits, the carry 

 

Fig.2.11. Arithmetic addition based on ETA adder 
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propagation chain along the critical path is the leading cause of the delay affecting time 

latency. By avoiding carry propagation, performance, and power consumption of the adder 

circuit will be improved at the cost of some accuracy loss. The error-tolerant adder (ETA) 

could be considered as a solution to the problem mentioned previously [88]. The arithmetic 

addition based on ETA adder can be illustrated in an example in Fig.2.11. Moreover, Fig. 

2.11 shows the functional block diagram of the ETA adder, which is divided into two parts: 

accurate and inaccurate. The length of each part is specified depending on the requirement 

of accuracy and power consumption of each application. In our case, the length is divided 

equally for each part, 8 bits for the accurate part (Aj-1…. Ai, Bj-1….Bi), and the other 8 bits 

for the inaccurate one (Ai-1…. A0, Bi-1….B0). The ETA provides inaccurate values in the 

lower order bits while maintaining the accuracy in the higher-order bits using an exact 

addition.  Each part of this adder is characterized as follows: 

• In the accurate part, a standard addition is computed by using any one of the 

available traditional 1-bit full adders (e.g., ripple carry, carry look-ahead adders). 

In our ETA, we employed the ripple carry adder. 

 

Fig.2.12. Block diagram of ETA adder 

 

Fig.3. ETA adder block diagram. 
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• The inaccurate part consists of two blocks: control block and carry free addition 

block.  The control block is composed respectively of two operand bits A and B, 

the control signal from the previous CTRL block, and a CTRL out signal. A and B 

are added through an AND logic gate, then an OR operation is applied between the 

result and the previous control signal. On the other hand, the carry free addition 

consists of an XOR and OR gates and generates a sum bit based on a control signal 

obtained from the control block. So, in the inaccurate part, from left to right, the 

values of both input bits are checked: if the bits are 0 or different, a standard 

addition is computed, whenever the input bits are equal to 1, all the remaining right 

side bits are set to 1. 

Moreover, the proposed architecture uses an exact subtractor, which generates the 

difference between two bits adopting the borrow bit of the lower significant stage. 

d) Sign Set 

The primary function of the sign set block is to set the sign of the final multiplication 

result. It reverses the output of the subtractor when the extracted sign (from sign extractor) 

for the two input values is different. 

 

 

 

 



 

 42 

2.4.2.2 Approximate Baugh-Wooley Multiplier 

The approximate proposed multiplier is a signed array multiplier implemented for 8×8 

multiplication, as shown in Fig.2.13 (b). The proposed multiplier addresses low power 

consumption with low accuracy degradation. Through the logic AND gates, the partial 

product tree is generated from two 2m bit operands (𝑚 = 3); in our case, the partial product 

tree is generated without any approximation. The approximations have been employed in 

the accumulation phase of the partial products. The proposed architecture divides the 

 

 

(a) 

 

(b) 

Fig.2.13.(a) General block diagram (b) Architecture of approximate Baugh-Wooley multiplier 

 

 



 

 43 

operation into two different groups: accurate and approximated. The architecture is based 

on Ripple Carry Adder (RCA) in the accurate part and on the proposed adder (AFA) in the 

approximate part.  The dividing strategy adopted to the architecture of the proposed 

multiplier is dependent on the requirements of the application. Moreover, the MSB part 

consists of 2𝑛 − 𝑘 bits, while the LSB part is composed of 𝑘 bits. In our case, the input 

width of the multiplier is 𝑛 = 8 and the imprecision parameter, which is responsible for 

determining the boundaries of the accurate and the inaccurate parts of the multiplier, is 8. 

From right to left, an exact addition is computed in the accurate part. Through a half 

adder, the partial products are added; the generated carry signal is propagated to the 

following partial column in the next column. The partial products in the second column are 

computed through an exact adder. While in the approximate part, the addition of the partial 

products is done through the proposed approximate adder based on the following 

equations: 

{

𝑆7(0) = 𝑎7. 𝑏0 ⊕ 𝑎6. 𝑏1 + 𝐶𝑖𝑛

          𝑆7(1) = 𝑎5. 𝑏2  ⊕ 𝑆7(0)  + 𝐶𝑜𝑢𝑡7(0)
:

          𝑆7(6) = 𝑎0. 𝑏7  ⊕ 𝑆7(5)  + 𝐶𝑜𝑢𝑡7(5)

                          (2.23) 

Where 𝑆7[0] represents the sum bit of the first two partial products for the 27 bit position. 

And 

{  

𝐶𝑜𝑢𝑡7(0) = (𝑎7. 𝑏0). (𝑎6. 𝑏1) + 𝐶𝑖𝑛

:
             𝐶𝑜𝑢𝑡7(5) = (𝑎1. 𝑏6). 𝑆7(4) + 𝐶𝑜𝑢𝑡7(4)       

     𝐶𝑜𝑢𝑡7(6) = (𝑎0. 𝑏7). 𝑆7(5) + 𝐶𝑜𝑢𝑡7(5)

                            (2.24) 
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𝑆𝑛−1 = 𝑆𝑛−1(0) + ∑ 𝑎𝑛−2−𝑖. 𝑏𝑖+1 ⊕

𝑖=𝑛−2

𝑖=1

𝑆𝑛−1(𝑖 − 1)   

+  𝐶𝑜𝑢𝑡(𝑛−1)(𝑖 − 1)                                                                                 (2.25) 

Where 

𝑪𝒐𝒖𝒕(𝒏−𝟏) = 𝑪𝒐𝒖𝒕(𝒏−𝟏)(𝟎) + ∑ (𝒂𝒏−𝟐−𝒊. 𝒃𝒊+𝟏)

𝒊=𝒏−𝟐

𝒊=𝟏

.  𝑺𝒏−𝟏(𝒊 − 𝟏)           

+ 𝑪𝒐𝒖𝒕(𝒏−𝟏)(𝒊 − 𝟐)      

𝑆 = ⋃ 𝑆𝑛−1                                                  
𝑛=8
𝑛=1               (2.26) 

In the approximate part of the proposed multiplier, an input carry signal with a value set 

to “𝐶𝑖𝑛 = 0” is added to the first partial product. Then starting from left to right, the process 

of the operation to obtain the sum bit of the partial products in each of the selected columns 

of the approximate part of the multiplier is done based on (2.23) and (2.24). The general 

equation obtained to compute the sum bit of all the partial products for the 2𝑛−1 bit position 

(𝑛 = 8) can be concluded, as shown in (2.25). The generated 𝐶𝑜𝑢𝑡(𝑛−1)[𝑖 − 1] will be 

added to the partial product (𝑎6. 𝑏0). Then for 𝑛 = 7, the sum and the carry out bits at the  

2𝑛−1 bit position are obtained respectively based on (2.25) and (2.26). Then the sum bits 

(𝑆𝑛−1, 𝑆𝑛−2, ……… , 𝑆0) are concatenated in the approximate part, as shown in (2.26). 
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  As shown in Table 2.1, if only one of the values of the partial products is one or if all the 

values are equal to zero, then a standard addition is performed. If at least two partial 

products or more are equal to one, their sum in the selected column and all the remaining 

right columns are set to one.  

Then we have designed three versions of META and Approx-BW multipliers based on the 

approximate adders presented in section 2.4. The choice was based on (i) the performance 

that the selected adders provide and (ii) their flexibility to be used in the proposed 

multiplier architecture. The combinations are as follows: 

• The proposed multiplier (approximate Baugh-Wooley) which is based on the AFA 

adder.  

 

Table 2.1. Output of Sum and Carry bits For Different Cases 

 Partial Products Sum bit Carry bit 

1st case 𝑎𝑛−1. 𝑏0 |𝑎𝑛−2. 𝑏1 | … | 𝑎0. 𝑏𝑛−1 = 1 𝑆𝑛−1 = 1 𝐶𝑛−1 = 0 

2nd case 𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = ⋯ = 𝑎0. 𝑏𝑛−1=0 𝑆𝑛−1 = 0 𝐶𝑛−1 = 0 

 

3rd   case 

𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = 1 Or 

𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = 𝑎𝑛−3. 𝑏2 = 1 Or 

: 

𝑎𝑛−1. 𝑏0 = 𝑎𝑛−2. 𝑏1 = ⋯ = 𝑎0. 𝑏𝑛−1=1 

 
 𝑆𝑛−1

=

 𝑆𝑛−2  =. . =

𝑆0 =1 

 

𝐶𝑛−1 = 1 
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• Mul-LOA and Mul-AXA are based on lower-part-OR and XNOR-based adders, 

respectively. 

• MNAND, MAND, and MIPP multipliers are based respectively on NAND-carry 

out bit, AND-carry out bit, and Input pre-processing approximate adders.  

2.5 Results 

This section presents the hardware implementation results of the two proposed approximate 

multipliers (META and approximate BW) in terms of performance, accuracy, and power 

consumption. 

2.5.1 Hardware Implementation of META Multiplier 

In order to evaluate the performance of the META multiplier, four different architectures 

have been implemented and compared with the exact Baugh-Wooley multiplier. The first 

architecture signed MRCA (S-MRCA) uses the RCA exact adder as an additional unit, 

while the second one signed META (S-META) uses an inexact ETA adder as described in 

section 2.4. In the case where the inputs are always positive, two architectures called 

unsigned MRCA (U-MRCA) and unsigned META (U-META) have been implemented 

after removing the sign extractor and sign set blocks from the architecture. The circuits 

have been implemented in Vivado Design Suite 2017.1 using VHDL Hardware Description 

Language. The designs have been synthesized using the Xilinx Vivado synthesizer, with 

Virtex-7 xc7vx485tffg1157-1 as a target device. Based on the implementation results, this 

section analyzes the performance parameters of the proposed architectures highlighting the 

computation accuracy and power consumption. 
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2.5.1.1 Accuracy Evaluation 

Some tests have been carried out to assess the accuracy of the multipliers. The variation 

of the acceptance probability as a function of the minimum acceptable accuracy is analyzed 

[89]. The inaccuracy of the approximate multipliers is generated after eliminating the term 

(𝑀𝑟– M) × (𝑁𝑟 – 𝑁) from the initial accurate multiplication. Accurate results are obtained 

only when 𝑀𝑟 and 𝑁𝑟are respectively equal to 2n and 2m. In this case, both inputs would 

be equal to 3 × 2n and 3 × 2m respectively, and the error would be maximum.  

Some used terms are explained below: 

• Error (E): E = |Re – Ri|, where Re is the exact multiplication result, and Ri is the 

inexact result obtained by the approximate multiplier simulation. 

• Accuracy (ACC): ACC = (1 – E/Re) × 100. To determine how accurate the output 

of the multiplier is with respect to the exact multiplication. Values range between 

0% and 100%. 

• Minimum Acceptable Accuracy (MAA): it is considered as the threshold value; to 

respect the constraints of the system, the obtained accuracy must be higher than this 

value.  

• Probability of acceptance (PA): it is the probability of values with higher accuracy 

than MAA, which is represented as PA = P (ACC > MAA). Its value ranges from 

0 to 1. 

• MED and MSE represent, respectively, the mean error distance and the mean 

square error. The MED is obtained after computing the average error distance (ED), 
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which is defined as the difference between exact and approximate results. The 

accuracy metrics are defined as follow: 

𝐸𝐷 = |𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝐸𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡|                     (2.27) 

𝑀𝐸𝐷 =
𝐸𝐷

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
                                   (2.28) 

𝑀𝑆𝐸 =  
∑ 𝐸𝐷2𝑛

𝑖=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
                                   (2.29) 

• NMED and MRED represent, respectively, the normalized mean error distance and 

the mean relative error distance. MRED is the average of the relative error distance 

defined as: 

𝑅𝐸𝐷 =
| 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡−𝐸𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡|

𝐸𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡
                        (2.30) 

𝑀𝑅𝐸𝐷 =  
𝑅𝐸𝐷

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
                                   (2.31) 

Moreover, NMED is computed to evaluate the adders of different sizes defined as 

follow: 

𝑁𝑀𝐸𝐷 =
𝑀𝐸𝐷

𝑀𝑚𝑎𝑥
                                                     (2.32) 

 Where 𝑀𝑚𝑎𝑥 is the maximum magnitude of the output of an accurate adder, which is 2n 

in the case of an n × n adder. 

• The passing rate metric is the ratio of exact results over the total number of outputs.  

Therefore, the variation of PA with respect to MAA has been analyzed: Fig. 2.14 and 

Fig.2.15 illustrate a comparison for 8-bit multipliers among U-META, U-MRCA, and Baugh 

Wooley from one side, respectively, and S-META, S-MRCA and Baugh Wooley from the 

other side. We randomly selected 105 signed inputs for the signed multipliers and  
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 105 unsigned inputs for the unsigned ones. Upon simulation, we observe that 89% of the 

 

Fig.2.14. Probability of acceptance versus minimum acceptable accuracy for S-META and S-MRCA. 

 

 

Fig.4 Probability of acceptance versus minimum acceptable accuracy for S-

META and S-MRCA. 

 

Fig.2.15. Probability of acceptance versus minimum acceptable accuracy for U-META and U-MRCA. 
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results have higher accuracy than 90% for the S-META multiplier while achieving an 

accuracy of 94.5% for the S-MRCA multiplier[90]. For the unsigned multipliers, the 

minimum acceptable accuracy for 88% of the results varies between 90.5% for the U-MRCA 

and 90% for U-META. We can deduce that the ETA adder affects the accuracy of the 

approximate multipliers slightly and especially for the unsigned multipliers where the 

variation is considered negligible. Hence, despite the small accuracy loss (i.e., 4.5% in the 

worst case) in the proposed architecture, the approximate multipliers still have a reasonable 

accuracy which could be acceptable for a variety of applications in digital signal processing. 

Fig. 2.16 represents the error percentage distribution for S-META and S-MRCA. It is pointed 

out that 43% of the results show an error of less than 2%, and about 31% of the results present 

an error between 2% and 5%. Hence, less than 14% of the results are characterized by an 

error of more than 8%, which proves the correctness of the proposed architecture.    

 

 

Fig. 2.16.  Error percentage distribution for the two approximate multipliers 
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On the other hand, the effect of increasing the number of bits on the accuracy of 

computation of the proposed multipliers has been analyzed. Fig. 2.17, and Fig. 2.18 present 

respectively four S-META and U-META multipliers with 8-, 16-, 24-and 32-bit  

input bit width. The results show that the accuracy and the probability of acceptances 

increase as the bit length increases. 

2.5.1.2 Performance Evaluation 

 Table 2.2 reports the power consumption obtained by the simulation of the 

implemented designs. Using the Vivado tool simulation, a test has been run for 3µs to 

determine the average dynamic power and the time delay. Results show a sound reduction 

in power consumption: for the proposed 8-bit approximate multipliers, the power is 

 

Fig. 2.17. Probability of acceptance of S-META for different bit sizes. 
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reduced by 56.3% (in the case of U-META) when compared to the exact Baugh-Wooley 

 

Fig. 2.18. Probability of acceptance of U-META for different bit sizes. 

 

 

Table 2.2. Simulation results of 8-bit multipliers 

 

Multipliers 

Parameters 

Power(mW) Delay(nS) Utilized LUTs(%) 

Baugh-

Wooley 

 

112 

 

6.98 

 

0.03 

S-MRCA 69 9.71 0.04 

 

S-META 

 

57 

 

8.4 

 

0.05 

 

 

U-MRCA 

 

58 

 

7.47 

 

0.05 

 

U-META 

 

49 

 

6.91 

 

0.04 

 

 

 



 

 53 

multiplier. Moreover, after omitting the negation sign, the results indicate that the power 

consumption (delay) for the unsigned approximate multipliers is reduced, respectively, 

around 15.9%, (23.1%), 14.1%, (17.7%) with respect to the design parameters of the signed 

approximate multipliers. 

On the other hand, the results reveal that by employing an inexact ETA adder, the power 

consumption and time delay for S-META are reduced respectively of 17.4% and 13.5% 

when compared to S-MRCA. On the other side, the power and delay of U-META decreased 

by 15.5% and 7.5%, respectively, with respect to the design parameters of U-MRCA. In 

contrast, the delay and LUT of the exact multiplier Baugh-Wooley are better than those of 

the approximate multipliers except for the U-META delay parameter. We conclude that, 

among the four implemented approximate multipliers, U-META provides the best 

performance in terms of time delay and power consumption. In order to analyze the 

 

Fig. 2.19.  Average power consumption and delay of META multipliers. 
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performance of both S-META and U-META in terms of power consumption and time delay 

when increasing the multiplier size, another test has been carried out over 1ms. Fig. 2.19 

shows power consumption variation and time delay as a function of multipliers size for S-

META and U-META. Power consumption and time delay increase when the size of the 

signed and unsigned META becomes larger. On the other hand, since power consumption 

standard deviation is high for a wide range of inputs, we randomly selected five inputs as 

an example to assess the dynamic power consumption for 8-bit META and MRCA 

multipliers. Each input has been simulated for a period of 20 ns. The comparison of the 

obtained results presented in Fig. 2.19 indicates an impressive saving in dynamic power 

from 9.2% up to 50%. For instance, for the product 1F×7c, the power drops from 82mW to 

41mW, while the accuracy of the results remains approximately unchanged. 

2.5.2 Hardware Implementation of Approximate Baugh-Wooley Multiplier 

In this section, we evaluate the performance of the proposed approximate BW multiplier 

in terms of accuracy, power consumption, and delay. Moreover, we compare the 

performance of the Approx-BW with respect to well-known open-source approximate 

multipliers presented in state of the art. 

2.5.2.1 Accuracy Evaluation 

MED, MSE, NMED, MRED, and Pass rates results are reported in Table 2.3. Results show 

that the new Approx-BW multiplier outperforms state of the art multipliers (Shaf[91]and 
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Evo25[85]) in terms of MRED and NMED. Approximate-BW is more accurate than the 

other generated multipliers, which are based on distinct adders such as (Mul-LOA, Mul-

AXA, MAND, MNAND, and MIPP); this could be affected by the fact that the MRED of 

AFA is the lowest between the approximate adders.  In Figure 2.21, we studied the 

percentage of the outputs as a function of the relative percentage error. It is shown that the 

accuracy of Approx-BW is within an acceptable range, since more than 70% of its outputs 

have a REDs smaller than 10%. Approx-BW provides a better performance in terms of 

accuracy, with respect to the two approximate multipliers proposed in [78] and [85]. [78] 

and [85] show the lowest accuracy having respectively 42% and 23% of their outputs 

smaller than 10%. Moreover, the impact of varying the imprecision parameter k (2,4,8 and 

16) on the accuracy of the multipliers is evaluated. Fig.2.22 (a), (b), and (c) shows 

respectively NMED, MRED, pass rates versus the variation of the number of the 

approximated bits in the approximate multipliers. The results show that the error increases 

as a function of n. It is shown that Approx-BW has the lowest NMED (0.09%) and MRED 

(4.9%) when n is equal to 2. While MAND, META, MIPP have the same NMED (0.21%). 

 

Fig. 2.20.  Instantaneous power consumption and delay of META multiplier.  
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When increasing n to 16, Mul-AXA shows the highest NMED (4%) and MRED (45%). 

However, MIPP and Mul-LOA have the best accuracy in terms of NMED (1.09%, 1.29%) 

and MRED (19.4%, 19.67%) when all the bits of the multipliers are inexact. Fig.22 (c) 

 

Fig. 2.21.  Percentages of outputs versus relative error distance for different inexact multiplier circuits 

 

Table 2.3. Accuracy metrics for different approximate multipliers designs 

 

Approximate 

Multipliers 

 

MED 

 

MSE 

 

NMED 

 

MRED 

PASS 

RATES 

APPROX-BW 232.33 9.8E+04 0.35 0.101 5.81% 

MUL-LOA 239.4 1.1E+05 0.37 0.109 5.65% 

MUL-AXA 168.17 4.6E+04 0.25 0.155 0.17% 

MAND 156.15 7.7E+04 0.24 0.102 2.87% 

MIPP 200.69 9.9E+04 0.31 0.132 2.68% 

ROBA [70] 139.5 7.0E+04 0.21 0.091 2.86% 

META [60] 154.15 7.4E+04 0.23 0.09 2.53% 

EVO0[85] 109.56 2.3E+04 0.16 0.079 4.13% 

EVO [85] 461.17 5.7E+05 0.71 0.22 0.27% 

KULKARNI[78] 116.58 4.05E+04 0.18 0.076 16.3% 

SHAFIQUE [91] 512.11 8.8E+05 0.51 0.23 3.2% 
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shows that Approx-BW and Mul-LOA have the best passing rates respectively 19.81%, 

16.18% when n is 2. While, MAND, META, MIPP and MNAND have the lowest passing 

rates equal to 2.8% when n is 2. When n increases to 16, the passing rates of Mul-AXA 

decreases rapidly reaching the lowest value nearly equal to zero. To summarize, among all 

approximate multipliers, Approx-BW shows the best performance in terms of accuracy 

when decreasing the number of bits in the approximate part. 

2.5.2.2 Performance Evaluation 

The power consumption and time delay of the implemented multipliers have been 

determined after running a test for 3 us. Fig.2.23 reports a comprehensive comparison 

between exact and approximate multipliers by considering the MRE, power consumption, 

and time delay. Table 2.4 shows the circuit synthesis results for LUT utilization, power-

delay product (PDP), and PDP-MRED products. The results show that Approx-BW and 

Mul-LOA are the most efficient with an MRED around 0.1. The power consumption of 

 

Table 2.4. Area, PDP and PDP-MRED of multipliers designs 

 

Approximate 

Multipliers 

 

LUT(%) 

 

PDP(nJ) 

 

PDP-

MRED 
APPROX-BW 0.03 0.13 1.29 

MUL-LOA 0.03 0.13 1.38 

MUL-AXA 0.03 0.57 8.85 

MAND 0.04 0.5 4.53 

MIPP 0.04 0.43 5.67 

ROBA[70] 0.05 0.67 6.09 

META[60] 0.05 0.48 4.31 

EVO0[85] 0.03 0.37 2.96 

EVO[85] 0.01 0.08 1.72 

KULKARNI[78] 0.03 0.41 3.13 

SHAFIQUE[91] 0.02 0.32 5.12 
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Approx-BW and Mul-LOA is reduced by 80.4% when compared to the exact BW  

 

 

(a) 

 

(b) 

 

Fig.2.22 Variation of NMED(a), MRED(b) with respect to the number of bits approximate bits. 
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Moreover, Approx-BW is 10% more accurate than Mul-LOA, thus outperforming Mul-

LOA in terms of accuracy. While META[60] and ROBA [70] show better MRED around 

1% but higher power and time delay with respect to Approx-BW. The power consumption 

of Approx-BW is reduced by more than 68% with respect to META and MRCA. On the 

other side, MAND and MNAND show the same power, while MRED of MNAND is 

higher. Mul-AXA shows the highest NMED and power consumption. Among state-of-the-

art multipliers, the only circuit that consumes energy  

 

 

(c) 

Fig.2.22 Variation of PASS RATES(c) with respect to the number of approximate bits 
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 less than Approx-BW is Evo25. However, Evo25 is around 50% less accurate than 

Approx-BW. Then our design is considered among the most power- and energy-efficient 

designs with approximately small PDP value. Moreover, we took into consideration the 

two parameters PDP and MRED to evaluate all the circuits as shown in Table 2.4. Our 

design shows the lowest PDP-MRED product (1.29). As a conclusion, the proposed 

multiplier (Approx-BW) achieves the best results in terms of PDP-MRED with a small 

PDP. 

 

Fig. 2.23. Power consumption, delay and MRE of exact and approximate multiplier designs. 
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2.6 Conclusion 

In this chapter, an FPGA implementation of two new architectures of approximate 

multipliers called META and Approximate Baugh-Wooley multiplier have been proposed. 

META multiplier has provided a noticeable improvement in latency and power 

consumption at the price of a small error (around 5%). Four hardware implementations of 

the approximate multiplier were compared in terms of power consumption and time delay 

with respect to the exact Baugh-Wooley: results report up to 56% power saving. On the 

other hand, META was compared to MRCA. Results revealed that the accuracy of the 

META multiplier slightly decreased (around 5%), while the power consumption and the 

delay have been reduced respectively by 17.4% and 13.5% when compared to MRCA.  By 

omitting the negation sign from the signed approximate multiplier, results show that power 

consumptions of U-META and U-MRCA are less than 17.7% and 15.9%, respectively, in 

comparison to S-META and S-MRCA. 

On the other hand, several state-of-the-art adders have been adapted and implemented; 

and results showing a comparison between different circuits in terms of accuracy and 

power consumption. Moreover, various inexact multiplier circuits have been implemented 

based on different inexact adder designs. The main idea was to involve the implemented 

inexact adders at the place of the exact ones needed to perform the multiplication. However, 

results showed that the second proposed architecture “Approximate BW” is the most 

efficient design between the approximate multipliers achieving a relevant reduction in 

power consumption and time delay around 80.4% and 24% respectively with respect to the 

exact BW multiplier. While the power consumption of Approximate-BW is reduced by 

68.1% with respect to other states of the art solutions 
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Therefore, the proposed architectures provide a possible tradeoff between accuracy and 

power saving for improving performance and energy efficiency. In a conclusion, 

implementation results proved that the achieved power consumption/accuracy tradeoff is 

satisfactory. In the next chapter, we will study the impact of the proposed approximate 

multipliers on tactile signal processing in the FIR filter for e-skin application. Then, we 

will study the use of the proposed approximate arithmetic circuits in the circuits blocks 

employed in machine learning algorithms for input touch modalities classification. 
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CHAPTER 3. APPROXIMATE COMPUTING CIRCUITS   

FOR TACTILE DATA PROCESSING  

3.1 Introduction 

Restoring the sense of touch to the prosthesis user is a challenging goal emphasized by 

many research in upper limb prosthetics. To accomplish this, prosthetic devices should 

incorporate electronic skin (e-skin) and a distributed simulation system [92]. Such a system 

will have the ability to acquire sensors data, preprocess the signals, and transmit 

information to the stimulator; consequently, the decoded data is communicated to the 

prosthetic user through electro-tactile stimulation [57].  

The e-skin system should hold autonomous and numerous networked sensors [93]; 

every sensor hosts multiple input tactile sensors nearly coupled to an embedded electronic 

system and power supply [59]. Furthermore, the e-skin system is expected to have a long-

lifetime while processing tactile data in real-time. Therefore, achieving low energy 

efficiency is considered as a favorable objective for IoT edge devices. 

Approximate computing [94], [95], is considered as a relevant approach providing a 

tradeoff between accuracy and power savings. Approximate computing has succeeded in 

improving the energy efficiency for many applications [96],[97],[98]. These applications 

are inherent resilient since users could not perceive the small errors in the output. In this 

perspective, the work in this chapter focuses on adopting AC techniques at circuit level for 

simple tasks (FIR filter) and for complex tasks (CORDIC and SVD) in order to reduce the 

power consumption of real-time tactile data processing in the e-skin application.  
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In these perspectives, this chapter aims to investigate the following main points: 

1) Could an approximate computing approach be applied to improve the energy 

efficiency in IoT edge devices for the tactile sensing system in healthcare applications? 

2) What is the impact of employing approximate computing techniques on the signals 

outputs generated from the e-skin application? 

In this chapter, we employ the proposed approximate arithmetic circuits presented in 

Chapter 2 for the tactile sensing system. The objective is to assess the impact of proposed 

circuits as well as relevant state of the art approximate multipliers on the tactile sensing 

system. The quality is measured in terms of different metrics, mainly: SNR degradation, 

MRED, NMED, power consumption, PDP, and time delay. The results presented in this 

chapter are not all published yet; only some part of the results was published in [61],[62]. 

3.2 E-skin system 

In this section, we will describe the tactile sensing system. The block diagram of the e-skin 

system is shown in Fig.1, it is mainly composed of four different blocks: 1) A piezoelectric 

tactile sensor array that receives input stimuli, 2) An electronic interface system in charge 

of signal conditioning and data acquisition, 3) an embedded electronic system for digital 

 

Fig.3.1 Functional diagram of electronic-skin system 



 

 65 

signal processing (DSP) to preprocess the tactile signals and 4) data processing block which 

is responsible in processing the signals generated from the digital signal processing block.   

3.2.1 Sensors array  

The sensors employed in the system are composed of an array of 4×4 tactile sensors based 

on PVDF (Polyvinylidene Fluoride) that generate a charge as a response to mechanical 

stimuli. The main characteristics of the PVDF are i) high sensitivity, ii) wide response 

range, and ii) sizeable electromechanical transduction bandwidth, i.e.1 Hz up to 1 kHz in 

tactile application [92]. Figure 3.2 shows the structure of the tactile sensor array, which is 

composed of three layers: 1) the PDMS protective top layer, 2) the PCB bottom rigid 

substrate, and 3) a thick PVDF film layer positioned between the two other layers. The 

PVDF film is provided by 16 square taxels printed by an ad-hoc ink-jet. After contact on 

the surface of the sensor, stress measured by the PVDF taxels will process sensor data and 

make decisions [35] autonomously through the PDMS layer.  

 

 

Fig.3.2.  Sensor array 
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3.2.2 Interface electronics 

As a purely passive device, the sensor needs active interface electronics to amplify and 

digitize the signals from its various channels. Charge separation in the piezoelectric 

material of the sensor due to the applied pressure is in the order of 0.1pC to several hundred 

pC, and hence it requires a low-noise interface with a reasonably high dynamic range. A 

commercial multichannel current integrator integrated circuit (IC), from Texas Instruments 

(TI) designed for computed tomography scanners, is suitable to interface PVDF sensors 

[99]. Key characteristics of this solution for e-skin applications are a high dynamic range, 

high sampling rate and the availability of large amounts of channels in an integrated form 

factor. More precisely, we used the TI DDC264 IC with a 64-channel variant and samples 

rate up to 3.1 kSPS per channel with 20 bits resolution for a full-scale range of 150pC. The 

IC has a standard SPI interface to provide access to the digital samples, and connection 

with the processing unit. 

3.2.3 Signal and data processing 

In the third block of the e-skin system, a low-pass Finite Impulse Response filter (FIR) 

aims to Filter the tactile signals as described in [6]. Then in the fourth block of the system, 

Machine Learning algorithms are employed for processing tactile data when classifying 

touch modalities. Different DSP units such as: Singular Value Decomposition (SVD), 

Coordinate Rotational Digital Computer Circuits (CORDIC) take a significant part of the 

embedded ML algorithms. However, the DSP blocks are implemented by using 

multiplication and addition operations, posing significant challenges on power 

consumption and time latency since the number of operations to be performed high.  
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Nevertheless, approximations could be enabled for applications requiring signal and data 

processing. Therefore, any improvement in the performance of the adders and multipliers 

will significantly affect the performance of the overall tactile sensing system. In order to 

understand the behavior of the tactile sensing system and the potential of approximations 

techniques, we first implement different approximate multipliers on low-pass Finite 

Impulse Response (FIR) filter in the signal processing stage. Second, we implement 

approximate adders and multipliers respectively in the CORDIC and SVD blocks in the 

data processing stage. 

3.3 Methodology for approximating the tactile sensing system 

Fig.3.3 presents an overview of the adopted methodology for approximating circuits blocks 

in the e-skin application. The methodology is composed of the main four blocks: 

 In the first phase, the approximate adders have been implemented and simulated in Vivado 

Design Suite 2017.1 using VHDL Hardware Description Language. The power 

consumption and time delay have been reported after synthesizing the designs by using 

Xilinx Vivado synthesizer, with Virtex-7 xc7vx485tffg1157-1 device after extracting the 

node activity and exporting it to the form of a SAIF (Switching Activity Interchange 

Format) files. In order to extract accuracy metrics,105 input has been randomly selected 

based on uniform distribution. In the second phase, the approximate adders have been 

implemented in the approximate multipliers. The evaluation of the approximate multipliers 

has been done following the same procedure proposed in the first phase. In order to have a 

fair comparison with similar state of the art solutions, open-source approximate arithmetic 

circuits based on relevant previous works[60],[78],[91],[85],[70],have also been 

implemented and simulated. The performance of the different multipliers is compared, 
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taking as a reference the exact Baugh-Wooley [35] multiplier. Then, we evaluate the 

resilience to the error of the approximate blocks by scaling the number of approximated 

LSBs in order to find the trade-off power-quality. In the third phase, we have implemented 

the approximate multipliers and adders respectively in the two stages of the tactile sensing 

system. The quality of the tactile output data is evaluated based on the Signal Noise to 

Ratio metric (SNR), while the quality of the approximate data processing block is evaluated 

based on the MRED of the generated data. Finally, the multiplier and the adder having 

respectively the highest SNR and lowest MRED with a low PDP will be selected for the e-

skin application. The first and second phases of the methodology have been already 

assessed in the second chapter. While in this chapter, we deal with the third and fourth 

 

Fig.3.3 Proposed methodology for selecting the efficient multiplier for tactile sensing system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 8. Power consumption, delay and MRE of exact and approximate multiplier designs. 
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phases highlighting the experimental setup carried out to assess the approximate circuits in 

the target application. 

3.4 Approximations in digital signal processing 

3.4.1 Experimental setup description 

In this part, we will describe the experimental setup needed to extract the tactile sensing 

signals. The tactile signals have been obtained from the experimental setup presented in 

[93]. Fig.3.4 shows the different instruments used in this setup. A frequency of 100 Hz is 

applied to the shaker through the function generator. The force sensor reads the values of 

the force applied to the tactile sensor via the LabVIEW tool. On the other hand, an electrical 

signal is generated when the shaker applies a mechanical stimulus on the surface of the 

tactile sensor. Then, through the A/D converter, the converted electrical signal is connected 

to the FPGA, which is responsible for sending the converted data to the MATLAB® tool 

using a UART to USB interface. Collected data has been normalized in MATLAB® after 

being extracted for a duration of 5s. 

 The retrieved tactile signals have been recorded to a text file and have been passed into 

the FIR filter using the Xilinx Vivado simulator. Then, the output filtered signals have been 

recorded. Another MATLAB® script has been used for analyzing the filtered signals. The 

MATLAB® script first computes the Fast Fourier transform (FFT) of the signals then 

calculates the Signal to Noise ratio (SNR) for the filter, as shown in Fig.3.4 a). The same 
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procedure has been repeated for eleven different FIR filters based on exact and approximate 

multipliers presented in[60],[61],[78],[91],[85]. 

3.4.2 Finite Impulse Response filter structure 

A fully-parallel 16- tap low-pass Finite Impulse Response (FIR) filter based on transposed 

form architecture, as shown in Fig.3.5 b) [100], has been implemented for the tactile signal 

processing in VHDL language for the Virtex-7 xc7vx485tffg1157-1 FPGA device. The 

equation of the studied FIR filter is presented as follow: 

𝑦(𝑛) =  ∑ 𝐻(𝑚) × 𝑥(𝑛 − 𝑚)𝑁−1
𝑚=0                                     (3.1) 

where 𝐻(𝑚) are the filter coefficients, 𝑥(𝑛 − 𝑚) is the noisy discrete signal sequence, 

𝑦(𝑛) is the output filtered signal, and (𝑁 − 𝑚) is the order of the filter. The coefficients of 

 

Fig. 3.4. Experimental Setup 
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the filter have been extracted using MATLAB® through the Discrete Fourier Transform 

(DFT) with a pass-band and stop-band frequencies respectively equal to 775 Hz and 990 

Hz (according to the input signals).  

 Input data has 8 bits 2’s complement representation. The registers are put between the 

adders to increase the throughput of the circuit. The mentioned FIR filter has been selected 

for the application, since usually dedicated high speed parallel FIR filter with fixed 

coefficient meet the constraints of the application(real time performance and low power 

consumption). However, multiplications increase the complexity of the FIR filter, therefore 

approximate multipliers are adopted in the FIR filter in order to reduce the complexity of 

the system.  

     

(a) 

 

                                                                     (b) 

Fig. 3.5. a) . Functional block diagram for quality evaluation of FIR filter based approximate multiplier 

b) Design of 16-tap low pass finite impulse response filter using approximate multipliers. 



 

 72 

3.4.3 Filtered output tactile data 

The signal to noise ratio metric (SNR) has been employed in order to measure the quality 

of the filtered tactile signals. SNR of approximate filters has been computed, taking as a 

reference the exact filter (i.e., based on exact Baugh-Wooley multiplier) to assess the 

impact of the approximate multiplier. Fig.3.6 presents a bar plot showing the SNR for the 

eleven filters. The SNR value in the best case is 23.39 dB. 

Kulkarni [78] and ROBA [70] achieve the highest SNR; however, Approx-BW 

outperforms Kulkarni and ROBA respectively by a factor of 3× and 5× in terms of PDP 

(power delay product) (see in chapter 2) at the cost of less than 1.39 dB degradation in 

SNR with respect to the exact multiplier. The degradation is minimal considering the 

achieved reduction in power and time latency. Fig 3.6 shows that the SNR of the FIR filter 

based on Approx-BW is better than that of   META[60], Shaf [91], and Evo0[85]. Approx-

BW competes META[60], Evo0[85], and Shaf [91]by 3.69×, 2.84× and 2.46× in terms of 

 

Fig. 3.6. Sorted signal-to-noise ratio for the exact and approximate multipliers. 
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PDP, respectively, as shown in chapter 2. On the other hand, Mul-AXA (3.06dB) and 

MAND (3.9dB) reached values far from being accepted for the target application. Such 

low SNR values indicate the distortion of the tactile signals. We conclude that not all 

approximate multipliers could be employed in the tactile sensing system. 

Moreover, the filtered tactile signals through FIR filters based approximate multipliers 

are shown in Fig.3.7. It is shown in some cases the signal is wholly degraded, i.e. for 

MAND, MNAND, Mul-AXA, MIPP. For others, e.g., Shaf [91]and Evo0[85], the tactile 

signal generated reveals a  distortion with respect to the signal generated from the FIR filter 

based on the exact multiplier. While with Approx-BW, the signal behavior is pretty similar 

to those generated with Kul [78]and exact BW [69].  

To summarize, the FIR filter based on Approx-BW shows the best performance among 

the other approximate filters, respecting the tradeoff between accuracy and power 

consumption. Concerning the power consumption, Approx-BW achieves around 80% of 

power reduction at the cost of only 1.39 dB degradation in SNR with respect to the BW-

exact multiplier when applied to FIR filters. Thus, we conclude that approximate 

computing techniques lead to several advantages when used in the signal processing stage 

of the tactile sensing system, i.e. reducing the power consumption, time delay, and area 

with minimal loss in quality.  

3.5 Approximations in data processing 

In the e-skin application, Machine learning plays an influential role in extracting 

meaningful information out of the proper amount of sensor data generated. Regrettably, a 

large number of operations such as multiplications are mainly executed in ML algorithms, 
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which are the most power demanding arithmetic operations. Therefore, implementing 

approximate computing techniques for the CORDIC and SVD blocks will improve the 

energy efficiency of embedded ML algorithms adopted for e-skin; since CORDIC and 

SVD algorithms take a significant part in the real-time ML algorithm for tactile data 

processing. In this section, we will describe the architecture of the approximate CORDIC 

and SVD, discussing the improvements obtained in terms of power, latency, and 

performance after adopting approximate techniques for e-skin. 

3.5.1 CORDIC Algorithm 

In this section, we provide the circuit architectures and method of implementation of 

CORDIC for rotation mode[101]. 

CORDIC is an iterative algorithm which involves a series of shift-add operations for 

computing a very rich set of functions from the basic set of equations. CORDIC can be 

either operated in vectoring mode or in rotation mode. In vectoring mode, CORDIC rotates 

the input vector through whatever angle is necessary to align the resultant vector with the 

horizontal axis: the result of the vectoring mode operation is the rotation angle and the 

scaled magnitude of the original vector. In rotation mode, the angle accumulator is 

initialized with the desired rotation angle (Z). The rotation decision criteria (𝑑𝑖) at each 

iteration diminishes the magnitude of the residual angle in the angle accumulator. The 

decision at each iteration is based on the sign of the residual angle after each step. The 

iteration equations are given by: 

𝑋𝑖+1 = 𝑋𝑖 − 𝑌𝑖 × 𝑑𝑖 × 2−𝑖 

𝑌𝑖+1 = 𝑌𝑖 − 𝑋𝑖 × 𝑑𝑖 × 2−𝑖                                             (3.2) 
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𝑍𝑖+1 = 𝑍𝑖 − 𝑑𝑖 × 𝑡𝑎𝑛−1(2−𝑖) 

Where: 

{
𝑑𝑖 = +1  if 𝑌𝑖 < 0,−1 otherwise for vectoring mode

and 
𝑑𝑖 = −1 𝑖𝑓 𝑍𝑖 < 0,+1 otherwise for rotation mode

                (3.3) 

Which provides the following result: 

• Rotation mode: 

𝑋𝑛 = 𝐴𝑛[𝑋0𝑐𝑜𝑠𝑍0 − 𝑌0𝑠𝑖𝑛𝑍0] 

𝑌𝑛 = 𝐴𝑛[𝑌0𝑐𝑜𝑠𝑍0 − 𝑋0𝑠𝑖𝑛𝑍0]                                 (3.4) 

𝑍𝑛 = 0 

• Vectoring mode 

𝑋𝑛 = 𝐴𝑛√𝑋0
2 + 𝑌0

2 

𝑌𝑛 = 0                                                      (3.5) 

𝑍𝑛 = 𝑍0 + 𝑡𝑎𝑛−1(
𝑌0

𝑋0
) 

3.5.2 CORDIC Circuits 

CORDIC design uses a single Shift-Add operation for each component: x, y, and z, as 

shown in fig.3.7. A MUX (2:1 multiplexer), a shift register, and an adder/subtractor are 
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 required for each unit into CORDIC architecture. Before the beginning of CORDIC 

computation, three inputs X_in, Y_in, and Z_in are provided to the MUX. Then the 

computation will proceed by using the values stored in X_reg, Y_reg, Z_reg respectively. 

The micro-rotation angles arctan (2^(-i)) are stored into the ROM, where i is the input of 

the ROM and varies from 0 to 29 in this case. The FSM is responsible for tracking the 

shifting distance and enabling the multiplexer signals in order to control the ROM 

addresses. The FSM has three states (𝑠0, 𝑠1 𝑎𝑛𝑑 𝑠2) which depends on three signals as 

follow: “reset”, “start”, and “count”. Then, three outputs will be controlled such as: “init”, 

“load” and “done” ,indicating the progress of the system during the runtime. If “reset” is 

set to 1, the FSM is at state s0 and the output “init” is set to 1. At this point, the registers 

X, Y and Z take their initialization value. For a rotation computation mode, the values are 

 

Fig.3.7 Architecture of the CORDIC in rotation mode 
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as follow: “X =0.6072,” “Y =0,” and “Z=angle” which is the desired angle of rotation. If 

“reset”and “start”are respectively equal to 0 and 1 , then FSM proceeds to the state 𝑠1, so 

“load” will be set to 1 at the output. This step indicates that the system calculates the cosine 

and the sine of the input angle. The state remains at 𝑠1 if the “count” signal stays different 

then the number of iterations. When “count” reaches the number of iterations, the FSM 

changes state and switches to 𝑠2 where “done” is assigned to 1 indicating the end of the 

calculations. Therefore, the system will return to the initial state 𝑠0 waiting for another 

computation when start will be set to 1 again. 

3.5.2.1 Rotation mode 

The accumulator angle is initialized to 𝑍0  which is considered as the desired angle of 

rotation. Based on (3.2) , the resulted operation is a vector ( 𝑥′, 𝑦′) rotation of (𝑥, 𝑦) by the 

angle of rotation 𝑍0. The rotation at each iteration diminishes the magnitude of the residual 

angle of Z. The sign of 𝑍𝑟𝑒𝑔 determines the direction of rotations; if 𝑍𝑟𝑒𝑔>0 then the two 

adders components corresponding for X and Y will make an addition while the adder 

component related to Y operated as subtractor. Otherwise, all the operations will be 

inverted.  Therefore, the direction of rotations is determined by the sign of the Zreg: if it is 

positive then the two “ADDER” for X and Z components operate as adders, while the one 

for Y operates as subtractor.  

 CORDIC in rotation mode could compute simultaneously the sine and cosine 

functions of the input angle. The derived equations after setting Y component to zero are 

as follow: 

𝑋𝑛 = 𝐴𝑛. 𝑋0𝑐𝑜𝑠𝑍0                                          (3.6) 
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𝑌𝑛 = 𝐴𝑛. 𝑋0𝑠𝑖𝑛 𝑍0 

 The rotation produces the unscaled cosine and sine of 𝑍0 after setting 𝑦0 =0 and 

𝑥0=1/𝐴𝑛  where 𝐴𝑛= 0.6073. By adopting this method, the hardware complexity of the 

circuit is reduced by minimizing the number of required multiplications through the scaling 

factor 1/𝐴𝑛. 

3.5.3 Approximate CORDIC 

As shown in Fig.3.7, CORDIC architecture relies on different adders; the objective is to 

reduce the power consumption of the CORDIC algorithm by substituting the adders by 

approximate ones. In this work, we aim to: 

1) Select some of the most significant approximate adders presented in the state of the art 

such as: Approximate XNOR-based Adder (AXA)[77], Approximate NAND-carry out 

bit[86], Approximate AND-carry out bit[86], Input Pre-Processing[87] ,(LOA)[55] and 

Error Tolerant Adder (ETA)[61]. 

2) Evaluate the performance of the approximate adders by studying the accuracy, power 

consumption, time delay in order to select the optimal adder architecture to be implemented 

in the CORDIC algorithm. 

3) Implement the approximate adders into the CORDIC circuit. 

3.5.3.1 Hardware implementation results 

 The approximate adders have been implemented and simulated in Vivado Design Suite 

2017.1 using VHDL Hardware Description Language. The power consumption and time 
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delay have been reported after synthesizing the designs by using the Xilinx Vivado 

synthesizer, with a Virtex-7 xc7vx485tffg1157-1 device. In order to extract accuracy 

metrics, 105 input has been randomly selected based on uniform distribution. Moreover, 

the average dynamic power and the time delay have been determined for each adder 

implementation with a testbench of 3µs. 

Among the architectures of different approximate adders described in chapter 2, the LOA 

and the ETA outperform the other adders having the lowest MED (45.61, 51.99) and 

NMED (0.07%, 0.08%) respectively. The maximum passing rates (31.18%) belong to the 

AND-carry out bit adder, as shown in Table 3.1. 

Fig.3.8 represents the percentage of the outputs as a function of the relative percentage 

error distance. Upon simulation results, we observed that from 80.13% (approximate 

 

Fig. 3.8. Percentages of outputs versus relative error distance for different inexact adder circuits 
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NAND-carry out bit) to 92.47% (ETA) of the outputs show a relative error distance of less 

than 2%. Hence, less than 7% (i.e., Approximate NAND in the worst case) of the outputs 

are characterized by a relative error distance of more than 6%.  

Moreover, the power consumption and time delay of the approximate adders with respect 

to MRED have been evaluated, as shown in figure 3.10. We notice that ETA and LOA 

adders (which have the lowest MRED of 1.52%) have also the lowest power consumption 

(24 mW, 21 mW) since carry propagation has been omitted. While AXA has the worst 

MRED (4.95%) with higher power consumption (34 mW). We conclude that LOA and 

ETA are considered as the most optimal approximate adders to be implemented into 

CORDIC. Therefore, we have implemented ETA and LOA instead of the entirely precise 

adder (RCA) into the CORDIC algorithm aiming to study the performance of CORDIC in 

terms of slices, power, and time latency after employing approximate circuits. ETA and 

LOA in the CORDIC design allow respectively a dynamic power consumption saving up 

to 13% and 21% with respect to CORDIC-RCA, as shown in Table 3.2. Moreover, we 

Table 3.1. Accuracy Metrics For Different Approximate Adders Designs 

Approximate 

Adders 

MED MSE NMED MRED Pass 

Rates 

ETA 51.99 7.8E+04 0.08 0.015 8.07% 

LOA 45.61 4.6E+04 0.07 0.015 8.07% 

AXA 75.46 1.1E+04 0.11 0.05 0.01% 

NAND-C 75.6 6.6E+04 0.12 0.044 0.02% 

AND-C 60.67 3.7E+04 0.09 0.028 31.18% 

IPP 89.7 6.8E+04 0.13 0.031 21.77% 
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notice that the power consumption of CORDIC-LOA will be reduced by up to 11% with 

respect to CORDIC-ETA, after selecting LOA instead of ETA. We conclude that ETA will 

decrease the power by 13%, but in the case of selecting LOA, the power will be decreased 

by up to 21%with respect to[98] and [102]. 

 

Fig.3.9 Power consumption, delay and MRE of exact and approximate adder designs 

 

 

Table 3.2. Full adder versus approximate adders based CORDIC circuits 

Word 

length 

32 bits 

CORDIC-

RCA 

Reference[101] CORDIC-

ETA[98] 

CORDIC-

LOA 

Registers 135 135 134 130 

Power 

(mW) 

92 85 80 72 

latency 

(ns) 

153 110 130 127 
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3.5.4 Singular Value Decomposition Algorithm 

In algebra, the Singular Value Decomposition (SVD) is considered as a matrix factorization 

method employed to analyse the structure and properties of a particular matrix. Moreover, 

the SVD generates the least square solution computation of a system since the SVD could 

produce a complete orthogonal decomposition. The definition of the SVD is explained in 

details below: 

A real matrix A of size m×n could be represented as a product of three matrices as below: 

A = USVT                                                 (3.7) 

Where the matrices are defined as follow: 

• Orthogonal matrix U(m×m): U−1 = UT . The generated vectors (u1, u2, … . , um) 

from the U columns are considered as an orthonormal base for Rmspace and u 

vectors are called “left singular vectors.” 

• Orthogonal matrix V(n×n): V−1 = VT. The generated vectors (v1, v2, … . , vm) from 

the V columns are considered as an orthonormal base for Rmspace and v vectors 

are called “right singular vectors.” 

• Matrix S(m×n). The main diagonal contains the singular values such as: 

σ1 ≥ σ2 ≥ ⋯ ≥ σmin (m,n) ≥ 0                                 (3.8) 

These obtained values are expressed in decreasing order while the other values are 

set to zeros. Therefore, if p=rank(A), then p≤min(m,n) and the singular values 
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greater than zero are as follow: σ1, … . , σn.  Then, the following equation is 

generated: 

S=

[
 
 
 
 
 
σ1 0 ⋯
0 σ2 ⋯
⋮ ⋮ ⋱

   
0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋮

0 0 ⋯
⋮ ⋮ ⋮
0 0 ⋯

   
σn 0 ⋮
⋮ ⋱ ⋮
⋯ ⋯ 0 ]

 
 
 
 
 

=[
Sn 0
0 0

]                      (3.9) 

Where 

Sn = [

σ1 0
0 σ2

  
⋯ 0
⋯ 0

 

⋮ ⋮
0 0

  
⋱ ⋮
⋯ σp

 
]                                        (3.10) 

Based on (4.17), the SVD product could be expressed as follow: 

A = [ u1 u2 … um] [
Sn 0
0 0

] [ v1 v2  … vm]T = [ Un|U0] [
Sn 0
0 0

] [ Vn|V0]
T = UnSnVn

T  

Where U0 and V0 are considered as the left and right eigenvalues, respectively, with respect 

to the null eigenvalues. However, if n is considered as the matrix rank then the first p 

singular values will be different from zero. In this case, the first n U and V column vectors 

which are considered as the submatrices ( Un ,  Vn),  will have a role in the matrix 

decomposition as shown below: 

U = [ u1 u2 … un| un+1 un+2 … um ];                               (3.11) 

V = [ v1 v2 … vn| vn+1 vn+2 … vp ];                               (3.12) 

In case Un and Vn are written as their respective column vectors, then the SVD product will 

be written as below: 
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A= UnSnVn
T = ∑ Unuivi

Tn
i=1 = ∑ σiEi

n
i=1                           (3.13) 

Where each eigenvalue is multiplied by the matrix  Ei = uivi
T  , having a size of (m×n). 

Different procedures exist for determining the SVD of a given matrix A. One of them which 

is referred to the matrix ATA is presented below: 

• The first n vectors vi are expressed as the ATA eigenvectors for the corresponding 

σi
2 ≠ 0 eigenvalues. While the remaining vn+1 vn+2 … vm vectors are computed 

through the orthogonalization process. 

• The first n vectors uiare generated based on the following property: 

Avi = USVTvi = USei = Uσiei = σiui                     (3.14) 

Where ei = [0…010…0]Tand one is positioned at the ith row. Also, the remaining (m-p) 

vectors will be computed through the orthogonalization process. 

On the other hand, another method could be employed to compute the SVD, called “dual 

one.” It is responsible for building the ui vectors starting from ATA and vi. 

To summarize, these methods described previously could be applied only for matrices 

having a small size and for a small condition number. However, the accuracy loss will be 

significant after increasing the size of the matrix. Therefore, a more interesting algorithm 

proposed by Carl Gustav Jacob in 1846 will solve this issue mentioned previously. This 

algorithm is called the “ Jacobi algorithm.” 

3.5.4.1 One-Sided Jacobi Algorithm 
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One-sided Jacobi is an algorithm that consists of applying a sequence of rotations to an 

initial matrix (i.e., matrix A). Then the diagonal matrix S could be reached. Eventually, 

Jacobi generates a sequence as follow (A1 , A2, … . An),  which usually converge to a 

diagonal matrix, having the eigenvalues on the diagonal. The transformation is applied to 

matrix A through the following formula: 

Am+1 = 𝐽(m, n, α)TAm𝐽(m, n, α)T                               (3.15) 

Where 𝐽(m, n, α) is called a Jacobi rotation, which is equal to the identity matrix I with 

four additional elements on the intersection of rows m and columns n. Then, the Jacobi is 

computed for each 2×2 sub-matrix in order to annihilate the off-diagonal elements of the 

matrix A. The rotation matrix J will be constructed such that the w elements will be 

annihilated, by following the equation below: 

[
𝑥̂ 0
0 𝑦̂

] = [
cos α −sinα
sinα cos α

]
𝑇

[
x w
w y] [

cos α −sinα
sinα cos α

]              (3.16) 

Where 𝑥 ̂and 𝑦̂ are the diagonal elements of the 2×2 matrix related respectively to the 

following two elements x and y after applying the rotation to the corresponding angle. 

Indeed, through the one-sided Jacobi algorithm, high accuracy is achieved, followed by a 

fast convergence. In fact, five to ten iteration is required by the algorithm in order to 

achieve the convergence; thus, the time and the number of resources to be employed will 

be reduced in this case.  
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3.5.5 SVD Circuits 

In the following section, we will describe the hardware implementation of the main blocks 

of the SVD: matrix symmetrization, phase solve and Pre-, Post-rotations. 

The matrix input of the SVD must be symmetrized through the matrix symmetrization 

function in order to obtain a square matrix. It consists of multiplying the input matrix by 

its transpose as follow: 

Un = 𝐴𝑇𝐴                                                        (3.17) 

Then, the resulted symmetric matrix will be stored in the memory, as shown in fig.3.11. 

After the symmetrization phase, the computation will start with the four elements of the 

pair (a, b), which have been stored in the memory. Then, the CORDIC IP from Vivado 

 

Fig.3.10 Approximate SVD block diagram 
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2017.1 1 is employed in order to compute the angle of rotation in vectoring mode, while 

the Sine and Cosine are computed in the rotational mode. Then, the pre and post-rotations 

blocks are responsible for rotating the rows of U and the columns of U and V, respectively, 

using the one-sided Jacobi block. These rotations are based on the sine and the cosine 

functions, which have been calculated by the previous phase solver block. However, a 

reliable stopping criterion must be defined in order to ensure that the algorithm will arrive 

at the convergence while reducing time and power operations. 

3.5.6 Approximate SVD 

3.5.6.1 Accuracy Analysis 

As shown in Fig.3.10, four multipliers are needed for the pre-rotation and post-rotation 

blocks, respectively. The number of operations generated from the multiplication takes a 

high amount of power. Therefore, the focus in our work is reducing the power consumption 

of the SVD by implementing approximate multipliers instead of the exact multiplier. As 

shown in fig.3.11, the approximate Baugh-Wooley multiplier is implemented in the 

architecture of the SVD. Only adders and subtractors are kept correct. The scalability of 

the approximate multiplier has been assessed into the SVD by approximating eight from 

Table 3.3 Percentage relative error of Approximate SVD 

Eigen- 

values  

 
SVD-

approx8 

SVD-

approx12 

SVD-

approx16 

SVD-

approx20 

SVD-

approx24 

SVD-

approx28 

S1 0 0 0.018 0.45 4.89 26.24 

S2 0 0 0.097 3.33 36.57 93.77 

S3 0 0.054 0.27 8.27 72.32 99.89 

S4 0 0.31 0.62 10.14 73.79 99.68 

S5 0 0 100 0 100 0 

 

Relative Error (%) 
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the Least Significant bits (LSB), then increasing the number of approximated bits reaching 

20 approximated LSB’s. Experiments have shown that for an input matrix of size 5×5, the 

accuracy of the eigenvalues of the SVD (S1, S2, S3, and S4) remain higher than 99% after 

approximating 16 LSB’s as shown in Fig. 3.11. While the accuracy of the eigenvalues 

decreases from 99% to 90% after approximating 20 LSB’s (which is still considered 

acceptable for our application). Moreover, the relative error has been evaluated for all the 

eigenvalues for different configurations of approximated LSB’s as shown in Table3.3. The 

eigenvalues of the SVD-approx24 and SVD-approx28 reach a relative error of around 36% 

to 99%, thus concluding that the number of approximated LSB’s in approximate BW 

should not exceed 20 bits. Moreover, the performance of the approximate SVD has been 

studied for an input matrix of size 8×8, resulting in eight eigenvalues from the SVD. 

 

Fig.3.11. Accuracy of the eigenvalues of the approximate SVD for an input matrix of size (5×5). 

 

Relative Error (%) 
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Fig.3.12 and Table 3.4 represent, respectively, the accuracy and the relative error of the 

eigenvalues generated from the SVD. As shown in Table 3.4, when increasing the number 

of approximated LSBs till 20, the relative error of the eigenvalues (S1, S2, S3, S4, S5, S6, 

and S7)  will not exceed 27% just for two eigenvalues (i.e., S6 and S7); while most of the 

Table 3.4: Relative error of the eigenvalues resulted from the approximate SVD for an input matrix of 

size (8 ×8). 

Eigen- 

values  

 SVD-approx8 SVD-approx12 SVD-approx16 SVD-approx20 SVD-approx28 

S1 0 0 0.01 0.28 4.3 

S2 0 0.10 0.21 4.58 33.37 

S3 0 0 0.49 5.93 55.98 

S4 0 0.13 9.27 7.82 83.58 

S5 0 3.41 0.35 16.12 98.08 

S6 0 3.36 7.22 27.1 98.41 

S7 0 1.68 27.71 18.79 49.87 

 

 

Fig.3.12. Accuracy of the eigenvalues of the approximate SVD for an input matrix of size (8×8). 

 

Relative Error (%) 
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eigenvalues have a relative error less than 10%. However, when approximating 24 LSB’s 

of the approximate BW multiplier, the relative error of the eigenvalues will remain high, 

exceeding 50%.  

3.5.6.2 Power/Energy Consumption, LUT, Latency Analysis 

In this subsection, we analyse in detail the percentage of reduction of the power/energy 

consumption, latency, and LUT utilization of the approximate SVD. Fig. 3.13 illustrates, 

respectively the results of the experiment for two input matrices of size respectively equal 

to (5×5) and (8×8). The x-axis represents the numbers of output LSBs approximated in the 

SVD. While, y-axis represents the percentage of reduction of power/Energy consumption, 

LUT, and Latency with respect to the accurate SVD based on Exact-BW. Moreover, the y-

axis denotes the probability of acceptance and the MRED of the resulted eigenvalues; 

indicating the range of acceptable accuracy. Based on these experiments, we notice that: 

• The Power/energy consumption, LUT utilization, latency will be reduced when 

increasing the number of approximated LSBs. For example, the power and the 

energy consumption have been reduced respectively by up to 14% and 16%, as 

shown in Fig.3.13, after approximating 20 LSBs. 

• The MRED of the resulted eigenvalues dramatically decreases after approximating 

more than 20 LSBs of the SVD, as illustrated in Fig. 3.13. For example, the MRED 

in Fig 3.14 has been increased drastically to 80% after approximating 28 LSBs, 

which is considered out of the range of accuracy acceptance. 

Therefore, we conclude that it is possible to approximate up to 20LSBs of the SVD, 

achieving an energy reduction of 16%. 
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 We conclude that approximate computing techniques are considered as a promising 

 

(a) 

 

(b) 

Fig. 3.13. Performance and Error resilience analysis of the Singular Value Decomposition for an input 

matrix of size (5×5) (a) and (8×8) (b) 
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approach to be employed for the data processing stage of the tactile sensing system, aiming 

to improve the energy efficiency of the overall e-skin application. 

3.6 Conclusion 

This chapter assesses the impact of approximate computing techniques on the tactile 

sensing system, which is composed of two main blocks (signal and data processing blocks). 

Therefore, we implement the proposed approximate arithmetic circuits and some relevant 

state of the art approximate circuits in the tactile sensing system: aiming to understand the 

behavior of the target application when enabling approximations techniques. The quality 

is measured in terms of different metrics, mainly: SNR degradation, MRED, NMED, 

power consumption, PDP, and time delay. Thus, based on the methodology employed for 

the approximate tactile sensing system, we implemented different approximate multipliers 

on low-pass Finite Impulse Response (FIR) filter in the first stage from one side and 

approximate adders and approximate multipliers respectively in the CORDIC and SVD 

blocks in the second stage from another side. Results prove that the FIR filter based on the 

proposed Approx-BW outperforms state of the art solutions, respecting the tradeoff 

between accuracy and power consumption. Concerning the power consumption, Approx-

BW achieves around 80% of power reduction at the cost of only 1.39 dB degradation in 

SNR with respect to exact and another relevant state of the art multipliers when applied to 

FIR filters. Moreover, we improve the power consumption of embedded machine learning 

after implementing approximate arithmetic circuits into the Coordinate Rotational Digital 

Computer (CORDIC) and the Singular Value Decomposition (SVD) circuits, which take a 

significant part of the real-time ML algorithm for tactile data processing. The power 

consumption of CORDIC and SVD has been reduced respectively by 21% and19% at the 
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cost of less than 5% accuracy loss after scaling the number of the approximate bits. 

This study demonstrates the feasibility of the proposed approach based on applying 

approximate circuits in the signal and data processing blocks of the e-skin system. Thus, 

we conclude that approximate computing techniques lead to several advantages when used 

for a tactile sensing system, i.e. reducing the power consumption, time delay, and area with 

minimal loss in quality. 
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CHAPTER 4. MACHINE LEARNING ALGORITHMS FOR 

TENSORIAL TACTILE DATA PROCESSING 

4.1 Introduction 

For the aim, to improve the interaction between humans and robots, different technologies 

have been developed for tactile systems. Therefore, several processing methods have been 

suggested in order to extract meaningful information from sensor data generated from a 

sensitive skin[103],[99]. Interpreting sensor data has been proved through different pattern 

recognition methods, which is considered as a challenging task in e-skin applications (e.g., 

classification of shapes and patterns [104],[105]). Hence, Machine Learning (ML) provides 

an efficient solution for tactile sensing systems. In[106], the authors employed the k-

nearest neighbor (K-NN) for the haptic interface, where five touch modalities are 

recognized. In [107], eight different touch modalities are recognized through a “ 

LogicBoost” implementation. Then, authors in [108] have suggested a neural network’s 

model called “ modified counter propagation,” which is designed for discriminating 

between ten touch modalities when recognizing tactile data. Flag in [109] has recognized 

three gestures after employing a fur supported by a touch sensor. Authors in [110] exploited 

the Support Vector Machines (SVM) to recognized affectionate behaviors. In[111], a K-

NN is implemented for the biometric system.  

In this work, two main aspects are addressed to interpret tactile data through ML 

algorithms, as described in [4]. The first aspect is dedicated to mapping the variation of 

stimuli time extracted from a two-dimensional sensor array. Therefore, a tensor-based on 
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tactile signals morphology is suggested. Then, feature extraction is needed to map the 

signal in the form of tensors into multi-dimensional vectors, while the second aspect deals 

in recognizing the specifications of the tactile sensing system.  

Moreover, implementing supervised learning tools will be considered as a challenging task 

to be employed for the tactile sensing system. The critical step is to attain a reliable 

generalization, which predicts the data excluded from the training set correctly. Therefore, 

the ML framework designed for the e-skin application can handle the problem of learning 

under noisy signals. 

In this chapter, we will describe the framework of ML algorithms employed for the tactile 

sensing system, applying the classification for images as a case study and on touch 

modalities for e-skin application. The aim of this chapter is to validate the effectiveness of 

the SVM based tensor kernel algorithm for touch modalities classification before exploiting 

the embedded implementation of the ML on the low power platform, as it will be described 

in chapter 5. 

4.2 Tactile data based on the tensorial approach 

The electronic skin, which has a dimension of 2D, is considered as the main component of 

the tactile sensing system. Usually, the sensors in the tactile systems lie into typical grids 

at specific positions forming a network into the skin based on piezoelectric or capacitive 

transducers. Each cell in the skin area is composed of several sensor cells responsible for 

processing the data generated from the multiple sensors. Moreover, another existing 

technique which is called “imaging technique” can process the generated information after 
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performing some measurements on the electrodes located at the edge of the conductance 

sheet. 

Hence, the collected sensors data could be organized into the form of tensor, where the 

tactile images represented in the form of 2D are structured in the time domain, as shown in 

Fig. 4.1. Thus, it is estimated that the described framework based on pattern recognition 

will handle the challenging task by exploiting the tensorial structure in our application. 

4.3 ML approaches for touch recognition 

The two main reasons for choosing the ML approach are as follows. Firstly, ML techniques 

can predict and make decisions on unknown input samples. When dealing with sensor data, 

attaining an input-output relationship is considered severe. Then, the input-output function 

 

Fig.4.1.  Schematic of tactile acquisition system 
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will be modelled by ML through the “learning from examples” approach. Secondly, 

through the presented framework in[112],  the learning machine will be extended from the 

kernel method to the tensor-learning model. 

4.3.1 Pattern recognition based on kernel methods 

Generally, the decision function could be identified through classification methods after 

minimizing the error of the classification accuracy in the problem domain. For this aim, an 

optimization supporting the trade-off between the regularized term and the empirical risk 

is required for the training methods. The decision function f resides to the reproducing 

Kernel Hilbert Space (RHKS), which takes advantage of the “Kernel Trick.” The 

computation takes place based on the following kernel function 𝐾(𝑥𝑖, 𝑥𝑗) which includes 

the product of  𝑥𝑖 and 𝑥𝑗 Patterns. Then, the decision-making flow will be mapped into 

another space where linearity could be applied.  

In this subsection, we will describe the well-known learning paradigms, which are: Support 

vector machines (SVMs) and Kernel-based Extreme Learning Machines (K-ELM).    

4.3.1.1 Support Vector Machines 

The Support Vector Machine (SVM) is a supervised learning model, designed and 

proposed in 1995[113]for classification and regression purposes. SVM aims to classify 

each dataset in different categories through a model built from a set of training examples. 

Usually, the classification is executed after finding the best separation hyperplane, which 

divides the two specific classes with a maximum gap, as shown in Fig. 4.2.  
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The classification consists of determining a function that is defined as a plane П in the 

linear case, where C1 and C2 are divided into the data space [114]. Two different labels 

are marked to the two classes as follows: 𝑦 = +1 for C1 and 𝑦 = −1 for C2. 

The separation area between the C1 and C2 points is characterized after defining 𝜋𝑎 and 

𝜋𝑏  as two hyperplanes having the same normal 𝑤 . Then, the hyperplane separation 

𝜋 (w, b)  is considered as the halfway separation from the two support hyperplanes. 

Therefore, the two following inequalities could be written below:  

{
 𝑤𝑇𝑥𝑖 + 𝑏 ≥ +1  𝑥𝑖  𝜖 𝐶1(𝑦𝑖 = +1) 

𝑤𝑇𝑥𝑖 + 𝑏 ≤ −1 𝑥𝑖  𝜖 𝐶2(𝑦𝑖 = −1)
                                     (4.1) 

Based on (4.1), the following property could be derived: 

 

Fig.4.2.  SVM linear case 
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𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1  ∀𝑥𝑖 𝜖 𝐶1 𝑈𝐶2                                            (4.2) 

When targeting the linear case, the separator should have the following characteristics: 

• Maximizing the distance (𝑑 = 2/‖𝑤‖) between the two hyperplanes 𝜋𝑎 and𝜋𝑏, or 

minimizing‖𝑤‖. 

• The two hyperplanes should be able to surpass through 𝑥𝑎 𝜖𝐶1 and 𝑥𝑏 𝜖𝐶2, 

respectively.    

Then, the parameter b could be determined as follow: 

{
𝑤𝑇𝑥𝑎 + 𝑏 = +1    

𝑤𝑇𝑥𝑏 + 𝑏 = −1 
        𝑤𝑇(𝑥𝑎+𝑥𝑏) + 2𝑏 = 0           𝑏 = −1/2𝑤𝑇(𝑥𝑎+𝑥𝑏) 

Thus, the primal problem could be presented based on the following equation: 

𝑚𝑖𝑛𝑤,𝑏(
1

2
‖𝑤‖2)                                                   (4.3) 

With 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1  ∀𝑥𝑖 𝜖𝐶1𝑈𝐶2(i=1,….,m)                            (4.4) 

Then, the following equation could be written as below: 

𝑚𝑎𝑥𝛼 [𝛤𝐷(𝛼) = −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗 + ∑ 𝛼𝑖
𝑚
𝑖=1

𝑚
𝑗=1

𝑚
𝑖=1 ]                    (4.5) 

{
∑ 𝛼𝑖𝑦𝑖 = 0𝑚

𝑖=1 
𝛼𝑖

≥ 0
                                                 (4.6) 
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After obtaining the 𝛼 vector, the separator could be obtained as follow: 

Since 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑚
𝑖=1  then 

𝑤𝑇𝑥 = ∑ 𝛼𝑖𝑦𝑖(𝑥𝑖, 𝑥)𝑚
𝑖=1                                       (4.7) 

(4.7) is considered as the product between the current input with the known data (m). Then, 

the term b could be generated as follow: 

𝑏 + 𝑤𝑇𝑥𝑖 − 𝑦𝑖 = 0                                               (4.8) 

𝑏 = 𝑦𝑖 − 𝑤𝑇𝑥𝑖                                                         (4.9) 

Therefore, the classification function will be generated as below: 

𝐶𝑙𝑎𝑠𝑠 = 𝑠𝑖𝑔𝑛(𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏)                             (4.10) 

However, (4.10) is issued based on the assumption that the classes are classified linearly. 

While this assumption could not be accurate, then the two classes C1 and C2 could not be 

able to be separated linearly, which means that the hyperplane could not be employed to 

separate the two classes. 

Therefore, Vapnik, Boser, and Guyon have proposed an algorithm to solve this problem 

mentioned previously by creating a nonlinear classifier using the kernel trick, which will 

be presented in section 4.3.2. 

4.3.1.2 Kernel-based Extreme Learning Machines 

The ELM model is employed for feedforward neural networks and kernel-based methods. 

In the training phase, the K-ELM[115] is based on the following equation: 
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(𝐾 + µ𝐼)𝛽 = 𝑦                                                  (4.11) 

Where µ is the parameter for regularization and K is the kernel matrix, including the 

following elements which are defined below: 

𝐾(𝑎𝑖, 𝑎𝑗) = ℎ(𝑎𝑖). ℎ(𝑎𝑗)                                          (4.12) 

Where ℎ1(𝑎) = 𝐺(𝑏𝑙, 𝑐𝑙, 𝑎). In this equation, the two parameters 𝑏𝑙 and 𝑐𝑙 are randomly 

extracted through a probabilistic continuous distribution. 

4.3.2 Exploiting kernel functions for tensorial approach 

When dealing with ML for a tactile sensing system, a feature extraction step is required for 

converting the signals generated in the tensorial form to multidimensional vectors. This 

fact could lead to some information loss in the structure of the signal generated initially. 

Moreover, authors in[112],[116]have demonstrated that signals could be characterized 

adequately when dealing with a tensorial form. Also, several benefits have resulted when 

using learning methods that assess the information embedded in the tensorial form. 

Therefore, the two kernel methods presented in the previous section could be protracted to 

the tensor-learning approach. In the following subsections, we will describe the required 

steps to get a general kernel entry 𝐾(𝑖, 𝑗) based on the introduced framework in[4].  

4.3.2.1 Tensor Unfolding: 

The system requires an input of three-dimensional tensors, where the first two dimensions 

are the data received from the sensor array, and the third dimension is considered as the 

time sample. During the data processing phase, the main goal is to rearrange the received 
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data in two-dimensional matrices without losing any information. This process is called 

“tensor unfolding,” where the results are represented in the form of matrix representation 

unfolded into three matrices. The first matrix contains the column information, i.e., all the 

column vectors are stacked one after the other, while the second matrix contains the rows 

information (i.e., all rows are stacked one after the other) and the final matrix represents 

the information brought along the third tensor dimension. The definition of tensor 

unfolding is explained as follow: 

• For an Nth Order tensor Tϵ CA1×A2×……An , the unfolded matrix T(n) ϵ 

C(An×A(n+1)×……A(n−1)) contains the element ta1a2….aN at the row position number 

anand for a column number equal to:(an+1 − 1)an+2an+3 … . ana1a2 … . an−1 + (an+2 −

1)an+3an+4 …ana1a2 … an−1 + ⋯ an−1 

 

Fig.4.3.  Tensor unfolding 
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Thus three unfolded matrices result from the third-order tensor are as follow: T(1)ϵ 

𝐶𝐴1×(𝐴2𝐴3),  T(2)ϵ 𝐶𝐴2×(𝐴1𝐴3), and T(3)ϵ 𝐶𝐴3×(𝐴1𝐴2).  An example of an unfolded tensor is 

shown in Fig. 4.4. 

4.3.2.2 Symmetrization 

After obtaining the unfolded matrices, the symmetrization phase aims to symmetrize the 

matrices by performing a matrix multiplication as follow: 

𝑇𝑠𝑦𝑚 = 𝑇𝑇𝑟𝑎𝑛𝑠𝑇                                                   (4.13) 

Where T is the unfolded matrix. In other terms, the symmetric matrix is equal to the 

transpose of the square matrix. 

 

4.3.2.3 Kernel Trick 

The main difference when employing the kernel trick is the replacement of each dot product 

in the SVM algorithm by a non-linear kernel function, as shown in Fig. 4.4. By applying 

this trick, the problem will be mapped in a transformed feature space. In this way, the 

problem will remain linear again, and then the regular linear classifier could be employed, 

as described in the previous section. In the state of the art, different possible kernels have 

been presented, but in our work, the suggested trick in [4] will be employed, which is a 

Gaussian kernel function designed for tensor-based models. The two tensors (𝑇𝑖, 𝑇𝑗) are 

processed through the following kernel equation: 
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𝐾(𝑇𝑖, 𝑇𝑗) = ∏ 𝐾𝑛(𝑇𝑖, 𝑇𝑗)
𝑁
𝑛=1                                      (4.24) 

Where 𝐾𝑛is the computed kernel factor for the requested tensor. Generally, the kernel 

factor is presented below: 

𝐾𝑛(𝑇𝑖 , 𝑇𝑗) = exp (
−1

2𝜎2 ||𝑉𝑇𝑖(𝑛)𝑉𝑇𝑖(𝑛)
𝑇 -𝑉𝑇𝑗(𝑛)𝑉𝑇𝑗(𝑛)

𝑇 ||𝐹
2)             (4.25) 

Where ||𝐹
2  is the Frobenius norm, 𝜎 is the Gaussian kernel width, 𝑉𝑇(𝑛) is the SVD’s matrix 

eigenvectors. The previous equations could be rewritten as follow: 

𝐾𝑛(𝑇𝑖 , 𝑇𝑗) = exp (
−1

2𝜎2 (𝐼𝑚 − 𝑡𝑟𝑎𝑐𝑒(𝑍𝑇𝑍)))                  (4.26) 

Where 𝑍 = 𝑉𝑇𝑖(𝑛)
𝑇 𝑉𝑇𝑗(𝑛) and 𝐼𝑚 contains the columns of 𝑉𝑇(𝑛). 

 

Fig.4.4.  Non linear SVM 
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4.4 Experimental setup 

4.4.1 The model choice for touch recognition 

Interpreting the touch modality problem is divided into two tasks: 

1) Defining an optimal description for the input signal generated from the sensor lies 

in feature space as follow: 

𝛽(𝑆) → 𝛾                                           (4.27) 

Where S is the 3rd order tensor characterizing the sensor outputs. 

2) Involving practical learning for the decision function, responsible for mapping the 

tensor space into a set containing several categories of tactile stimuli: 

§: 𝛾 → Ƒ                                                      (4.28) 

Where Ƒ  contains a finite number of stimuli, and §  entails a task of multi-class 

classification. 

Indeed, a pre-processing phase is required to characterize the tactile data as proposed in 

[4]. Thus,  𝛽 should delights   ℝl(1) × ℝl(2) ℝl(3) , where l(1), l(2) ,and l(3) are the pattern 

quantities. The function § is modeled through a dataset X which includes 𝑁𝑝  patterns, 

where the data tensor 𝛾  is included in each pattern with a category label y ϵ (-1,1). 

However, the results in[117] show that the performances achieved by the SVM based 

tensor are persistent when classifying a problem of three classes. The experimental results 

prove that the tensorial kernel function is beneficial when targeting a classification problem 

that concedes a multidimensional representation. Therefore, a general training framework 
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is afforded after choosing the model since it analyses the capability of the trained ML after 

evaluating the ability of system generalization, achieving highly accurate results when 

classifying patterns out of the training set. 

Moreover, estimating the error is a difficult task due to the noisy signals and the limited 

training set. Since the training data is dependent on the nature of the interpreted touch 

modality, for example, the applied touch modality could generate different stimuli with 

variable pressure amounts. Therefore, by adopting the Maximal Discrepancy framework 

(MD)[118], the difficulty of the learning machine could be evaluated by letting the machine 

learn noise.  

In our work, the SVM model is adopted from the LIBSVM tool, which is known as open-

source software for the support vector machine. LIBSVM library contains the following 

packages: the leading directory for implementing training and testing algorithms, a tool to 

           

Fig.4.5.  Sample images 
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check the data type, a sub-directory including binary files and interface with software such 

as (Windows and Matlab).  

4.4.2 Dataset 

In our work, the SVM based tensor kernel algorithm is written in C language, built, and 

run under Ubuntu 16.04. Then, the tensorial algorithm has been tested on images as a case 

study, before applying it to tactile data.  

 

4.4.2.1 RGB image 

The objective is to classify tensorial data extracted from the sensor array. Nevertheless, 

before applying the classification for touch modality recognition, a test for the algorithm 

implementation has been done by classifying two uniform color images, as shown in 

Fig.4.5. The two images selected below have, respectively two predominant color spectrum 

(green and blue). An image is characterized by three color channels (red, green, and blue), 

 

Fig. 4.6.  Touch modalities. (a) Finger sliding; (b) washer rolling. 
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where a matrix of values (1 to 255) is included in each from the three channels. Then the 

image could be represented into the form of a tensor with a dimension of 𝑛 × 𝑚 × 3.  

4.4.2.2 Tactile data 

As described in [4], the data collection process has been done after asking 70 participants 

to touch the tactile sensor array using two predetermined possible stimuli: sliding the finger 

and rolling a washer, as shown in Fig. 4.6. Every participant was asked to complete one 

action on the tactile sensor array by moving horizontally over a random line. Moreover, 

the participants were supposed to complete every single touch within a time window of 10 

seconds. Overall, the total number of resulted patterns is equal to 140 patterns (70 

participants, two gestures, one pattern for each gesture).  

4.4.3 Data pre-processing 

In every single experiment, the collected patterns were expressed by a 3-dimensional 

tensor (4 × 4 sensor array and time acquisition). The third component of the tensor was 

determined by a time window of 10 seconds at the sample rate of (3k samples per second). 

In our case, the original size of the input tensor is T (4×4×30000).  

 Therefore, as mentioned in [4], a pre-processing scheme is suggested which aims to 

remapping the original tensor by reducing the dimensionality of the third component T. 

The time window is defined after evaluating the amount of energy provided from the 

sensors as proposed in[4]. This procedure will  not affect the accuracy of the algorithm, as 

only a limited portion of the 30000 elements carries meaningful information about the 

tactile stimulus, where the signal of interest lies within a limited time window of 2 s. Then 
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by applying the pre-processing method [4] , the high amount of data contained in the 

original tensor T (4 ×4×30000) will be reduced to a tensor t (4 ×4×20). 

4.4.4 Validating SVM algorithm 

Before the prediction phase, the algorithm needs to be tested through LIBSVM in 

Windows. Therefore, the following procedures are required: 

1) Reading the kernel training matrix through the “SVM-train –t 4” command. Then, 

a .model file, including the model’s information, is generated. For the prediction 

phase, the following command “svm-predict[test][model][output]” is required.  

2) After reading the data, the model will be tested through the following command “ 

model=svmtrain(label, training,[-t4])”  

Therefore, we validate our SVM algorithm for image classification as a case study and 

touch modalities recognition for the e-skin application. 

 

Table 4.1. Results of model selection and accuracy obtained for image classification 

 Truncation Sigma Accuracy (%) 

𝛼𝑥 𝛼𝑦 𝛼𝑧 (𝜎) Blue image Green image 

Run 1 15 15 10 1 75 77.5 

Run 2 12 12 4 1 80 85 

Run 3 10 10 3 2 85 82.5 

Run 4 12 12 4 2 78 80 

Run 5 8 8 5 1 78.5 85 

Run 6 10 10 3 1 98 97 
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4.4.4.1 Image classification 

The data set is built after cropping several images from the initial one, and then the 

dataset has been split into a test set (30%) and training set (70%). Then, two different 

classes (+1 and -1) are generated, since the classification problem is a bi-class 

classification. In our case, the size of the tensor extracted from each sample image is 

15×15×3. As a training set, four hundred samples are cropped, two hundred for each 

class. While 85 samples have been chosen for the test set, satisfying the 70%-30% 

training testing ratio. Different parameters have been chosen for the SVM classifier as 

shown in Table 4.1, in order to select the best parameters that achieve the optimal 

performance in terms of accuracy when classifying the images. 𝛼𝑥 ,  𝛼𝑦  and 𝛼𝑧 

represent the number of truncated columns that have been kept, while 𝜎 is the width of 

the Gaussian kernel. We conclude that by setting σ=1 and (𝛼𝑥 = 𝛼𝑦 = 10, 𝛼𝑧 = 3), 

the average accuracy achieved is 97.5%.  

Table 4.2. Results of model selection and accuracy obtained for touch modalities classification 

 Truncation Sigma Accuracy (%) 

𝛼𝑥 𝛼𝑦 𝛼𝑧 (𝜎) Sliding Rolling 

Run 1 5 5 2 4 75 70 

Run 2 5 5 2 1 80 70 

Run 3 10 10 3 1 75 72.5 

Run 4 4 4 16 1 70 75 

Run 5 4 4 5 1 67.5 75 

Run 6 4 4 2 1 87.5 80 
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4.4.4.2 Touch modalities classification 

To evaluate the generalization performance of ML algorithms, the dataset obtained in 

section 4.4.2.2 has been split into training and test sets, with respectively 100 and 40 

patterns (i.e., approximately 71% and 29% of the dataset). Moreover, it is noticeable that 

the generalization ability of the ML algorithm could be estimated with respect to unseen 

inputs; since no typical participant exists between the training set and the test set. In our 

case, after selecting different parameters for truncation and sigma as shown in Table 4.2, 

we conclude that with the following setting σ=1 and (𝛼𝑥 = 𝛼𝑦 = 4, 𝛼𝑧 = 2), we obtain 

the highest accuracy having an average of 83.75%. 

4.4.5 Prediction phase 

After validating the program, the prediction program achieved is presented in Fig.4.7 as 

follow: 

1) Reading the inputs (tensor and parameters) 

• The dimension of the tensor 

• Total number of tensors to be classified 

• The parameter sigma () for kernel computation. 

2) Reading the memory (Matrices of eigenvectors and SVM model) 

• The truncated columns of the eigenvectors matrices employed to generate 

the SVM model. 

• The SVM model file that contains all the necessary information. 

3) Executing the algorithm: 
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• Unfolding the tensor 

• Symmetrizing the unfolded matrices 

• Decomposing the symmetrized matrices through SVD. 

• Building the kernel matrix 

• Classifying the tensor 

4.5 Conclusion 

In this chapter, we described the framework of ML-based pattern recognition for sensing 

systems dealing with multidimensional tensor. The main two reasons behind using this 

approach are the following: 1) the tactile data generated from the sensor could be 

characterized only though the tensorial approach, and 2) learning algorithms are considered 

an effective method to deal with sophisticated mechanisms. Then, the steps required to 

build the kernel entry 𝐾(𝑖, 𝑗)  based on the SVM classification are described in detail. 

 

Fig.4.7.  Schematic of the algorithm box 
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Moreover, the tensor-based classification algorithm is written in C language, where it has 

been tested on images as a case study, before applying it to tactile data. After adjusting the 

parameters of the model, an accuracy of 97% and 83.5% has been achieved respectively 

for images and touch modalities classification. Therefore, after validating the effectiveness 

of the tensorial SVM algorithm at the software level, in the next chapter, we will describe 

and present the hardware implementation of the SVM based tensor kernel approach on an 

Ultra-Low-Power Platform for the aim to reach an embedded low power implementation 

for wearable devices.    
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CHAPTER 5. ENERGY EFFICIENT SYSTEM FOR 

TOUCH MODALITIES CLASSIFICATION  

5.1 Introduction 

As described in chapter 4, smart e-skin is expected to process close to the sensor, raw data 

to extract specific, and structured information. To be effective, such smart systems should 

be able to process sensor data and make decisions [35] autonomously. Such a goal poses 

numerous challenges, as the amount of data generated by e-skin to be processed is relevant, 

and pattern recognition involves computationally demanding methods. Machine Learning 

(ML) paradigms provide a powerful tool to solve the classification problems in complex 

application domains, where no explicit mathematical model is available, and only raw data 

provide information about the observed phenomenon [117]. However, the computational 

complexity of embedding machine learning algorithms for e-skin is a severe obstacle 

toward their implementation of resource-constrained low-power embedded systems [10].  

Recently, many implementations of embedded ML algorithms have been proposed in the 

literature using hardware [119],[120], and software implementation [121]. For e-skin 

applications, Field Programmable Gate Arrays (FPGAs) have been adopted[122] , [123] to 

achieve real-time functionality of machine learning[10]. Regrettably, affording machine 

intelligence with typical machine learning algorithms is still a challenge in battery-powered 

wearable devices due to algorithms complexity and large datasets[124].  For example, 

microcontrollers, such as the ARM-Cortex-M Family, suitable for battery-operated 

devices, are offering a low-power solution in the range of mW, but they are limited in 
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computational power that is typically in the range of hundreds of MOPS, not enough for e-

skin ML [10].  

To improve energy efficiency and increase the overall computational availability of low 

power processing, many efforts have been made to design new processors matching the 

required hardware size with low power consumption. Among others, two different 

approaches have been adopted recently to improve the performance of ultra-low-power 

processor [125]: 1) exploiting parallel architectures for near-threshold operation based on 

multi-core clusters [99], and 2) exploiting low power hardware accelerators coupled with 

programmable parallel processors [99]. Near-threshold computing is a novel approach used 

to reduce power consumption and improve energy efficiency. Examples of near-threshold 

ultra-low-power microcontrollers have been shown in[93], [4]. To further improve energy 

efficiency, some microcontrollers have been proposed embedding custom hardware 

accelerators [88]. However, the flexibility of such approaches is limited, affecting the cost 

and scale economy.  

 In this chapter, we exploit a state-of-the-art multi-core platform to improve the energy 

efficiency for embedded machine learning systems for touch modalities classification. The 

main focus in this chapter is the implementation of tactile data decoding on a parallel ultra-

low-power platform (PULP) embedding a high-efficient processor called Mr. Wolf. The 

low-power touch modality classification is designed for battery-powered applications such 

as wearable electronics and to interface with tactile sensors. The classification based on 
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Support Vector Machine (SVM), which is considered as an effective method for the e-skin 

application [57], runs directly on PULP classifying two touch modalities (finger sliding 

and washer rolling) as shown in Fig. 5.1. Experimental results show that the target 

application runs 3.7 times faster than an ARM Cortex M4 by consuming less than 28 mW 

on Mr. Wolf, outperforming ARM Cortex M4 by 15 times in terms of energy efficiency. 

The results in this chapter were published in [36].   

5.2 PULP processing unit 

Mr. Wolf is a state-of-the-art microprocessor[64], featuring an energy-efficient I/O 

subsystem , an area optimized CPU for control purposes, an energy-efficient parallel ultra-

low power cluster build upon 8 RISC-V cores, composed of SoC and cluster domains as 

shown in Fig. 5.2. The main characteristics of Mr. Wolf are summarized in Table 5.1. 

5.2.1 SoC Domain 

Number of cores 8 cores 

Chip area 10 mm2 

Technology node CMOS 40nm LP 

L2 memory 512 kB 

L1 memory 64 kB 

Core voltage 0.8V-1.1V 

Frequency range 32kHz-450MHz 

Power range 72µW-153mW 

Table 5.1. Characteristics of Mr. Wolf 

 

Fig.5.1.  Block Diagram including the tactile sensor array, the sensor’s interface and the processing 

platform. 

.  
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The SoC domain, as shown in Fig. 5.3 is based on the MCU controller, having two power-

efficient pipeline stages of the RISC-V processor. A full set of peripherals is contained in 

the SoC, such as I2C, I2S and Quad SPI, GPIOs, four channels for the PWM interface, and 

a JTAG interface. The multi-channel I/O DMA are responsible for transferring the data 

from/to the peripherals. The µDMA of Mr. Wolf is connected to all the IP peripherals, 

while two specified 32-bit ports are connected to the L2 memory, satisfying the needs of 

the parallelization consuming power of 2mW with a frequency of 57 MHz. Therefore, the 

transfer efficiency will be maximized, where the need for large buffers to be connected to 

the peripherals will not be significant. Cores in the computing cluster have been enhanced 

with dedicated Digital Signal Processing (DSP) extensions to tackle DSP intensive 

operations typical of IoT applications.  

 

Fig.5.2.  High Level Mr. Wolf architecture 
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The size of the L2 memory on the SoC is 512 kB, containing a ROM which stores the 

primary boot-code. The L2 memory is composed as follows: four 112 Kbytes, which allow 

reducing the conflicts when parallelizing, two banks of 32 Kbytes used by the Fabric 

Controller (FC) without getting any banking conflicts. The organization of the memory 

increases the bandwidth of the system memory by 4×, in a way that satisfies the needs of 

the master resources. Data is moved to/from the main system memory (L2) via a dedicated 

DMA engine capable of handling complex traffic patterns (ex. 2D transfers) with a very 

low programming overhead. The main memory has been organized in multiple banks and 

shared through a logarithmic interconnect among all the resources to allow 

concurrent operation by control CPU, I/O subsystem, and processing cluster. Moreover, 

the hierarchy of Mr. Wolf’s memory is characterized by a single namespace where every 

single core could access all the memory locations. 

 

Fig.5.3.  Mr. Wolf SoC block diagram 
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5.2.2 Cluster Domain 

For the cluster domain, a specific frequency and voltage values are adjusted when running 

the applications on the FC, as shown in fig. 5.4. The 8 RISC-V cores on the cluster are 

supported by the RVC32IM instruction set, including other specific instructions for energy-

efficient digital signal processing applications. 

The cores share L1 memory through a low latency logarithmic interconnect with as low as 

one cycle access under no contention. The cluster has two shared floating-point units 

(FPUs) with add/sub support and one shared div/SQRT FPU allowing efficient floating-

point operation at the low area and power cost. The shared FPU reduces the area by 4× 

while decreasing the performance by 10%. Then, a multi-banked L1 memory is connected 

 

Fig.5.4.  Mr. Wolf cluster block diagram 
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to the cluster, which targets parallel programming models (i.e., OpenMP). With single 

access, the L1 memory can maintain the request of all the memory in parallel. The 

parallelism is enabled through the dedicated hardware block (HW Sync), resulting in an 

energy-efficient parallel workload. In the cluster, the HW sync is responsible for 

controlling the clock gating of each core. 

5.3 SVM based tensor kernel algorithm on the PULP Architecture 

5.3.1 Inference Implementation 

In this section, we present the online implementation of the SVM based tensor kernel 

approach on Mr. Wolf, as shown in fig. 5.6. 

5.3.1.1 Tensor unfolding 

 

 

Fig. 5.6. Online computation of the SVM based tensor kernel algorithm 
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The first step for the online classification is unfolding the input tensor t (4×4×20) into three 

different matrices by rearranging all the rows and columns one after the other. Thus, three 

unfolded matrices A (4×80), B (4×80), and C (20×16) have resulted. 

5.3.1.2 Symmetrization 

The obtained matrices are symmetrized through a simple matrix multiplication, as shown 

below: 

                                     Asym = ATA                                                           (5.1) 

Where the unfolded matrix A is multiplied by its transpose AT. Hence, three square 

matrices (A (80×80), B (80×80), and C (16×16)) are obtained. 

5.3.1.3 Singular Value Decomposition 

The SVD blocks compute the singular value decomposition of the three symmetrized 

matrices based on the one-sided Jacobi algorithm. Thus, the symmetrized matrices are 

transformed into the product of three matrices. 

Where the orthogonal matrices U and VT contain respectively the eigenvectors of AAT and 

ATA. While the singular values of A arranged in descending order (σ0,………,σn-1) are 

stored into the diagonal matrix S. 

5.3.1.4 Kernel Computation 

The kernel factor adopted in computing the distances between the data from the input touch 

modality and the memorized data obtained from the training phase as referred to in [15] is 

defined as follow: 
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𝑘𝑛(𝑥, 𝑦) = exp (−
1

2𝜎2 (𝐼𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝑍𝑇𝑍)))                         (5.2) 

𝑍 = 𝑉𝑥
𝑇𝑉𝑦                                                      (5.3) 

Where 𝐼𝑛 is the identity matrix, 𝑉𝑥 contains the singular vectors of the symmetric matrix 

while 𝑉𝑦is composed of the singular vectors resulted from the tensor in the training phase.  

While the kernel function is the product of the three kernel factors as shown in the equation 

below: 

𝐾(𝑥, 𝑦) = ∏ 𝑘𝑛(𝑥, 𝑦)𝑛
1                                                    (5.4) 

5.3.1.5 Classification 

The equation of the SVM classification is represented by:  

                          𝑦̂ = 𝑓𝑆𝑉𝑀(𝑥𝑗) = ∑ 𝛽𝑖 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏
𝑁𝑝

𝑖=1
                             (5.5) 

Where 𝑥𝑗 , 𝑦̂ 𝑎𝑛𝑑 𝛽𝑖  represent respectively, the input, the predicted category and the 

weights obtained during the training phase.  

The SVM model has been built using the LIBSVM tool, which is a library for Support 

Vector Machine that has been widely used in many areas. A. model file containing all the 

information will be generated after applying the training. Nevertheless, on PULP, the SVM 

algorithm from LIBSVM could not be implemented as it is since Mr. Wolf is not able to 

open and read files. Thus, some modifications must be implemented to the SVM c code, 

which is summarized as follow: 
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a) Studying the SVM c code implementation and removing the unused functions such 

as: 

- Saving the model (svm_save_model) 

- Reading the model (read_model_header) 

- Loading the model ( svm_load_model) 

- Freeing the model (svm_free_model) 

b) Adding all the parameters generated from the model directly into the algorithm, 

such as: 

- The number of support vectors 

- The coefficients of the support vectors 

- The parameter rho 

- The two labels (1 and -1). 

c) Doing some other modifications to the code in order to be compatible with the 

recent changes such as: 

- Allocating a memory space for the coefficients of the support vectors. 

- Allocating a memory space for the kernel value. 

5.3.2 Fixed-Point Implementation 

Usually, a double or single-precision floating-point representation is employed in CPU’s 

or when using Matlab, in order to reach a high level of accuracy when executing the SVM 

based tensor kernel algorithm. However, it is well known that floating-point data needs a 

significant amount of computational efforts when embedding an ML algorithm on the 

processor; since the two main factors (power consumption and energy efficiency) must be 

taken into consideration when designing the application. Eventually, floating-point 
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operations could be computed through specific hardware, where the representation in most 

of the floating-point processors follow the IEEE 754 data type[126]. For example, the 

numbers in a 32-bit word are represented as follows: one bit for the sign, eight bits for the 

exponent while the mantissa is represented by 23 bits. Therefore, the numbers could be 

represented in a fixed-point format. The Qm.n format is commonly used in most of the 

representation types, where m and n represent respectively the integer and the fractional 

word length part of the desired number, such as −32768 ≤ 𝑄16.16 ≤ 32768, weight of 

LSB 2-16.  

In our algorithm, the SVD is considered as the most critical part during the fixed-point 

implementation; since the dynamic range of the algorithm is high when moving data from 

small range to high range. Unfortunately, a numeric overflow could result when using 

fixed-point representation. For this algorithm, the lib fix math library has been used. 

Libfixmath is considered as a common fixed-point maths library platform[127]. All the 

math.h functions are implemented in the fixed-point format in this library. However, the 

Q16.16 format has been chosen after analyzing the dynamics of the variables when 

executing the algorithm. The precision resulted when implementing a Q16.16 format is 

reported in the table below. Thus, all the math.h functions in the code have been replaced 

with the libfixmath library. 

5.3.3 Parallelization and Memory Management Strategy 

This section describes the parallelization and the proposed memory management strategy 

adopted for the algorithm on PULP. Implementing a memory management strategy is 

considered as a significant task to be applied in Ultra-Low Power embedded SoC’s having 
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no caches. Thus, in our work, we have proposed a memory management strategy since 50 

trained tensors are required for each class in the SVM model.  Table 5.3 reports the memory 

needed for the algorithm in order to store 50 trained tensors for each class.  Thus, a memory 

management strategy is required in L2 memory preventing fragmentation problems.   The 

allocation memory sequence is reported in Fig.5.7 (from left to right) for the entire 

algorithm execution. At first, before the actual computation loop starts, all the trained 

tensors computed in the offline phase are stored in the L2 memory. Then, the input tensor 

is unfolded into three different matrices and stored in L2. After that, memory space for S1 

is allocated in the symmetrization and de-allocate U1 after symmetrizing the unfolded 

 

Fig. 5.7.  L2 memory allocation sequence. 

 

 

 

 

 

 

Data 

Number of 

Elements 

 

Size [Kbits] 

Input tensor 4×4×20 1.28 

Training Data SVD(A) 80×4×100 128 

Training Data SVD(B) 80×4×100 128 

Training Data SVD(C) 16×2×100 12.8 

Table 5.2. Algorithm memory 
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matrix. Sequentially, the same process is adopted for S2 and S3. Then, three SVD blocks 

that take the highest amount of operations are required, as shown in Table 5.4. Therefore, 

each SVD block is executed in parallel on each core for reducing time latency. The three 

SVS’s blocks are parallelized on the three cores of Mr. Wolf. Then, each matrix is 

decomposed through the SVD by adopting the same allocate/de-allocate process mentioned 

previously. The resulted eigenvectors V1t, V2t, V3t, are stored in L2 and then passed to 

the SVM Kernel phase. Due to the size of the trained tensors which cannot be stored 

entirely in L1, as shown in Table 5.3; then each block from the trained tensors stored in L2 

needs to be moved to the kernel function phase in order to compute the kernel product with 

respect to the resulted eigenvectors. The data is transferred from L2 to L1 memory through 

 T (m,n,t) T(4,4,16) T(4,4,20) T(4,4,40) T(4,8,20) T(4,8,40) T(8,8,20) 

Functions Size 

(Kbits) 

Size 

(Kbits) 
Size 

(Kbits) 
Size 

(Kbits) 
Size 

(Kbits) 
Size 

(Kbits) 
Size 

(Kbits) 
Input Tensor 4×m×n×t 1.024 1.28 2.56 2.56 5.12 5.12 

Symmetrization 4×m×n×t2 16.3 25.6 102.4 51.2 204.8 102.4 

Training Data 

SVD(A) 
16×m×t×x 1.024x 1.28x 2.56x 1.28x 2.56x 2.56x 

Training Data 

SVD (B) 
16×n×t×x 1.024x 1.28x 2.56x 2.56x 5.12x 2.56x 

Training Data 

SVD ( C ) 
8×m×n×x 0.128x 0.128x 0.128x 0.256x 0.256x 0.512x 

Truncated 

Eigenvectors 

SVD (A)  

16×m×t 1.024x 1.28 2.56 1.28 2.56 2.56 

Truncated 

Eigenvectors 

SVD (B) 

16×n×t 1.024x 1.28 2.56 2.56 5.12 2.56 

Truncated 

Eigenvectors 

SVD (C) 

8×m×n 0.128x 0.128 0.128 0.256 0.256 0.512 

Library fixed 

point 16.16 
32.7 32.7 32.7 32.7 32.7 32.7 32.7 

Number of 

trained tensors 

for each class 

(𝑥1, 𝑥2) 

 99 80 49 55 39 45 

Table 5.3. Algorithm memory for different size of tensors 
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the double buffering policy using the DMA. Finally, all the kernel products obtained will 

be classified through the SVM. 

On the other hand, a study has been done on the memory level in order to find the maximum 

possible number of trained tensors which could be stored in L2 on-chip memory when 

varying the size of the input tensor from T (4,4,16) till T (8,8,20) as reported in Table 5.4.  

Moreover, a generalized equation is generated which computes the maximum number of 

trained tensors able to be stored for any size of tensor for different configurations of (m,n,t), 

represented as follow: 

𝑥 =
415.3×103−4(𝑚𝑛𝑡−𝑚𝑛𝑡2−4𝑚𝑡−4𝑛𝑡−2𝑚𝑛)

8(2𝑚𝑡+2𝑛𝑡+𝑚𝑛)
                             (5.6) 

Where 

                                                                  𝑥1 = 𝑥2 =
𝑥

2
                                                          (5.7) 

Therefore, the maximum number of trained tensors which could be stored is not more than 

45 tensors for each class, when increasing the size of the input tensor to T (8,8,20). 

5.4 Experimental Results and Performance Assessment 

This section presents the experimental evaluation of the proposed platform considering two 

primary metrics: i) the execution time of the algorithm and ii) the capability in performing 

the required computations within a low power envelope. Moreover, we present a 

comparison with an ARM Cortex-M4F microcontroller. 

5.4.1 Performance 
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The execution cycles of each block of the entire algorithm are presented in Table 5.5. We 

evaluate the execution cycles for Mr. Wolf using a single core, 2 cores, and 3 cores, to 

evaluate the benefits of the parallelization. To take advantage of the 3-cores cluster, two 

parallelization schemes have been adopted in this paper, i) executing the two SVDs block 

in parallel on two different cores on the Wolf SoC and ii) parallelizing the three SVDs on 

3 cores. The two parallelization schemes have been implemented on Mr. Wolf. In addition, 

in the column (Sp (×)), the table reports the speedup compared to STM32F40, Arm Cortex 

M4F microcontroller, running the classification in around 12s at 168 MHz. 

Results show that a 2.26 × speed-up is achieved by migrating from Arm Cortex M4F to the 

Wolf SoC using 1 Core. Moreover, Table 5.4 highlights that the SVD blocks require a 

higher number of operations in the algorithm. Thus, our algorithm benefits from the parallel 

cores available on Mr. Wolf to reduce the execution time. Table 5.4 shows that a 3.62× 

speed-up can be achieved after executing SVD (A) and SVD (B) blocks on two different 

cores in parallel. However, in the case of implementing the three SVD on the 3-cores 

cluster, the implementation will gain a speed-up of 3.73× with respect to STM32F40.  

 

 

 

Functions 

Wolf 1 core Wolf 2 cores Wolf 3 cores Number of 

Operations [OPS] 

Cyc(M) Sp(×) Cyc(M) Sp(×) Cyc(M) Sp(×)  

Sym+Kernel+Class 89.8 2.25 89.8 2.25 89.8 2.25 1.26×107 

SVDs  1522 2.26 923 3.59 276 3.7 5.3×108 

Total 1616 2.26 1020 3.62 366.69 3.73x 5.45×108 

Table 5.4. Performance of the tensorial kernel online computation on Wolf platform. Cyc, T ,Sp stand for cycles,Time  and 

speed-up 
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5.4.2 Power Consumption 

Fig.5.8 shows the power consumption and the energy efficiency of the tensorial SVM 

algorithm implementation on the Wolf platform compared to the Arm Cortex M4F and 

Fulmine platform[36]. In our experiment, the PULP platform runs at 300 MHz. The single-

core Wolf platform shows a 5.6× power reduction with respect to the Arm Cortex M4F. 

The power consumption is reduced due to the technology gap between the two platforms 

(i.e., 90 nm vs. 40 nm) and also due to the optimized implementation strategy adopted to 

the cluster’s architecture for energy-efficient operation[36]. 

Moreover, the energy efficiency of Wolf (1core) has been improved respectively by 12.5× 

and 5.5× when compared to Arm Cortex M4F and a previous version of PULP, called 

Fulmine [59] using a single core. On the other hand, as shown in Fig. 5.7 that a significant 

 

        Fig. 5.8. Power consumption and energy efficiency comparison of the online computation 

algorithm on the ARM Cortex M4 and Wolf  . 
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energy boost can be achieved after using the 2 cores of the cluster, leading to 1.4× energy 

efficiency reduction with respect to the single-core Wolf. It should be noted that after 

parallelizing the algorithm on 2 cores only, the energy efficiency has been reduced by 15× 

when compared to STM32F40.  

Moreover, in Fig. 5.9, we measure the power of the execution of each function of the 

online computation of tensorial SVM on Mr. Wolf. The power consumption is measured 

by powering Mr. Wolf SoC at the core voltage of 1V with an operating frequency of 300 

MHz. As shown in Fig. 5.9, the two SVDs (A&B) have the peak power consumption of 

21 mW with an energy efficiency of 113 pJ/op. 

 

 

Fig. 5.9. Power consumption and energy efficiency of each function of the online computation 

algorithm on Mr. Wolf 
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5.5 Conclusion 

In this chapter, we presented the implementation of tactile data sensing on a novel low 

power parallel platform embedding a high-efficient processor called Mr. Wolf. We 

demonstrated that the algorithm on the proposed platform outperforms ARM Cortex M4F 

(STM32F40) and by 15 times in terms of energy efficiency, without exceeding the power 

envelope of a 28mW. Future work will consist of using approximate computing techniques 

at the algorithmic level [128] to improve energy efficiency [61], [60]. 
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CHAPTER 6. CONCLUSION AND FUTURE EXTENSIONS  

6.1 Conclusion 

This thesis focused on the implementation of energy-efficient techniques for 

embedded machine learning algorithms in smart sensing systems.  

Apart from a few examples in the state of the art [97], still not significant results have been 

achieved concerning the improvement of power consumption in embedded ML algorithms 

employed for sensing systems [57]. The embedded computing unit in sensing systems is 

responsible of extracting meaningful information, usually through ML algorithms 

methods. However, deploying ML in embedded devices poses several challenges in terms 

of hardware resources and energy consumption. In particular, the energy-efficient 

techniques proposed in this work are applied to a case study such as the “electronic-skin” 

(e-skin) application. The e-skin system includes 1) structural materials, 2) signal 

processing, 3) data acquisition and 4) data processing. An essential task of the e-skin 

system is to process the signal and the tactile data aiming to mimic human skin. More 

precisely, ML algorithms based on the tensor kernel approach are applied to classify 

different touch modalities. Nevertheless, the exploited ML algorithms for the system are 

complex and need too many resources.  As shown by [10],  the demands of the embedded 

ML algorithms in the e-skin are not satisfied since the estimated energy/power required for 

the application is not feasible( i.e., 100 pJ/op), time latency (i.e., around 7 s)  and the 

computational load is of about 1.2 GOPS.  
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Attempting to improve the energy efficiency of the embedded ML algorithms, two mains 

approaches are discussed and investigated ,i.e., Approximate Computing and Parallel 

Computing Platforms.  

The energy-efficiency of computing systems can be improved through approximation 

computing techniques at circuit and algorithmic levels. These techniques will lead to an 

interesting reduction in power consumption. This thesis focused on the design and 

implementation of two approximate multipliers in ML algorithms for tactile data 

processing. The first multiplier is based on the rounding approach called the “META” 

multiplier [60], while the second one is called the “Approximate Baugh-Wooley(BW)” 

multiplier[61].Furthermore, we designed three versions of the Approx-BW multiplier and 

three versions of the META multiplier based on approximate adders. We showed that the 

proposed approximate arithmetic circuits could achieve a relevant reduction in power 

consumption and time delay around 80.4% and 24%, respectively, with respect to the exact 

BW multiplier.  

We evaluated the behavior of the e-skin application when implementing the proposed 

approximate arithmetic circuits in the system. In this regard, we implemented the 

approximate multipliers on the low-pass Finite Impulse Response (FIR) filter in the signal 

processing block of the system. The FIR filter, based on (Approx-BW), outperforms state 

of the art solutions while respecting the tradeoff between accuracy and power consumption, 

with an SNR degradation of 1.39dB. Then, ACTs are applied to the data processing block 

to improve the performance of the Coordinate Rotational Digital Computer (CORDIC) and 
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the Singular Value Decomposition (SVD) circuits used for embedded ML algorithms in 

the sensing system. We showed benefits of up to 21% and 19% in power reduction at the 

cost of less than 5% accuracy loss for CORDIC and SVD circuits when scaling the number 

of approximated bits.  

On the other hand, we explored another approach (i.e., Parallel computing platforms), 

aiming to improve the energy efficiency of the system. We implemented the ML algorithm 

based tensor kernel approach on a RISC-V parallel ultra-low-power platform (PULP) after 

validating the effectiveness of the ML algorithm at software level. We performed the on-

board classification of different touch modalities on a PULP processor called Mr. Wolf” 

demonstrating the promising use of on-board classification for smart sensing systems. We 

presented a comparison with the popular low power ARM Cortex-M4F microcontroller 

employed, usually for battery-operated devices. We proved that the algorithm on the 

proposed platform runs 3.7 times faster than ARM Cortex M4F (STM32F40), consuming 

28 mW. The platform has allowed to improve the energy efficiency by 15× than the 

classification done on the STM32F40, consuming 81mJ per classification and 150pJ per 

operation. 

6.2 Potential research extensions 

The ideas put forward in this thesis could be extended as follow. 

The implementations of the approximate arithmetic circuits into the Coordinate Rotation 

Digital Computer and the Singular Value Decomposition algorithms represented a 

successful investigation for embedded machine learning algorithms employed for tactile 

data processing. However, one less explored idea is the implementation of the approximate 
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techniques into the overall embedded machine learning algorithm for classifying different 

touch modalities, aiming to reduce the complexity of the algorithm. Moreover, including 

new approximate arithmetic circuits in the computation of the SVD and CORDIC, such as 

approximate dividers and square root, could also be considered as a potential addition to 

this work. 

On the other hand, since the first implementation of the embedded machine learning 

algorithms for touch modalities classification on an ultra low power platform has received 

a significant improvement in terms of energy efficiency. Therefore, these results motivate 

the parallel implementation of the algorithm on eight cores of Wolf platform, boosting 

more the overall energy efficiency to achieve a real-time low power implementation. 

Alternatively, approximate computing techniques at the algorithmic level could also be 

applied to the embedded machine learning algorithm on the PULP platform. Finally, if 

these methods succeed in achieving better results, the possible future work could be 

designing an integrated circuit specific for smart sensing systems. 
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APPENDIX 

PULP Set Up 

In order to set up the PULP software development kit for Mr. Wolf, board, as shown in 

Fig. 5.5, the installation of a Linux Operative System is mandatory since the SDK is 

designed to work in a Linux environment. Two OS such as Ubuntu and CentOS are 

possible, but for this work, Ubuntu16.04 has been selected. The chosen OS is directly 

installed on a virtual machine created with VirtualBox. Then it is possible to start by 

downloading all the procedures aiming to set up the PULP SDK for Mr. Wolf after creating 

the new Linux machine, as mentioned previously. 

At first, ETH permission is required in order to use the PULP SDK for Mr. Wolf. An SSH 

key must be created and uploaded to the Github account on the ETH server in order to 

download and update all the development material. Then, the SSH key is loaded into the 

ssh-agent as follow: 

6.2.1 SDK Installation 

Before starting using the board, Python and Python3 must be installed with all the 

necessary packages related to Python as follow: 

 

ssh-add ~/.ssh/<your key> 

sudo apt-get install python python3 

sudo apt install git python3-pip gawk texinfo libgmp-dev \ 

 libmpfr-dev libmpc-dev swig3.0 libjpeg-dev \ 

 lsb-core doxygen python-sphinx sox \ 
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Then the git repository from the Github account, containing all the files for the SDK version 

must be cloned : 

 

After, we have to source the config files for the desired pulp chip (Wolfe.sh) and platform 

(platform-board.sh ) in order to use the development board : 

 

6.2.2 Dependencies 

The password for the artifactory server must be configured by following the guide on 

https://iis-git.ee.ethz.ch/pulp-sw/pulp-sdk-internal. This page is only accessible with a 

valid Gitlab account for the IIS Gitlab server and if the account was added to the PULP 

group. 

The system dependencies should be configured, so the dependencies for the SDK will be 

downloaded from the artifactory server by running the following command.  

 

sudo pip3 install artifactory twisted prettytable \ 

 sqlalchemy pyelftools openpyxl xlsxwriter 

git clone https://github.com/pulp-platform/pulp-sdk.git -b <sdk branch or tag> 

source configs/<the desired chip>.sh 

source configs/<the desired platform>.sh 

make deps 
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If this command fails in running, then it means that there were no precompiled binaries 

found for the Linux distribution installed. So the binaries must be used for a different 

distribution. The Ubuntu_16 binaries were verified to be working with Ubuntu 17.10. The 

following command should be run to force the distribution: 

 

 

6.2.3 Compilation 

Making sure that GCC version 5.4.1 has been using by running :  

 

Then installing GCC 5.4.1, if another version is running by applying the following 

command: 

 

Then the default GCC version is changed by executing: 

 

 

Finally, the SDK will be compiled by running: 

 

plpbuild --p sdk deps --stdout --distrib=Ubuntu_16 

gcc -v 

sudo apt-get install gcc-5 g++-5 

sudo update-alternatives --config gcc 

sudo update-alternatives --config g++ 

make all 
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Then the source.sh environment settings file should be created. This file needs to be 

sourced whenever a development is done for PULP in a new shell-session. Otherwise, 

building running will not work as intended using make. 

 

 

6.2.4 Setup of JTAG-USB- programmer for the board 

In the next steps, the environment that should be able to use the development board via the 

ARM-USB-Tiny-H cable from Olimex must be set up as follow: 

 

Then, searching for an entry like: 

 

Then a new udev rule should be created to set up the USB programmer by creating the file 

(/etc/udev/rules.d/10-ftdi.rules), by running the following command: 

 

 

The file must be opened with sudo rights, so it could be possible to write to it: 

Then the following line must be added, where the placeholders should be replaced by 

(002a) and the username by the username of Linux’s user.  

 

After that, the udev rules must be reloaded: 

make env 

make env 

Bus 002 Device 003: ID 15ba:002a Olimex Ltd. ARM-USB-TINY-H JTAG interface 

sudo touch /etc/udev/rules.d/10-ftdi.rules 

sudo nano /etc/udev/rules.d/10-ftdi.rules 

ATTR{idVendor}=="15ba", ATTR{idProduct}=="<4 chars>", MODE="0666", GROUP="<\ username>" 

sudo udevadm control --reload-rules && udevadm trigger 
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Then, the sourceme.sh file should be opened in the installation directory with the editor, 

and the following line will be added to the beginning of the file: 

 

To the end, the output should be like this: 

 

 

 

 

 

 

 

 

 

 

 

 

export OLIMEX_PID=0x<4 chars> 

export PULP_CURRENT_CONFIG=honey@user_config_file=... 

export PULP_CURRENT_CONFIG_ARGS=platform=board 

export OLIMEX_PID=0x002a 
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