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ABSTRACT 

 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease 

characterized by the death of upper and lower motor neurons. Although the aetiology of the 

disease is still unclear, glutamate (Glu)-mediated excitotoxicity is a major cause. Our 

previous studies demonstrated that presynaptic Group-I metabotropic Glu receptors 

(mGluR1 and mGluR5) are over-expressed in spinal cord synaptosomes of 120-day-old 

SOD1G93A mice, that represent the late stage of the disease, and that their activation by the 

selective mGluR1/5 agonist (S)-3,5-Dihydroxyphenylglycine (3,5-DHPG) produced 

abnormal Glu release. The aim of the present study was to investigate whether mGluR1 

and mGluR5 also affect Glu release during the pre- and early-symptomatic time-course of 

the pathlogy (30, 60 and 90 days), in the same animal model.  

Our results showed that the mGluR1/5 agonist 3,5-DHPG evoked the release of glutamate 

in a concentration-dependent way and the effects were almost superimposable between 

30/60-day-old WT and SOD1G93A mice. At variance, 0.3 μM 3,5-DHPG significantly 

increased Glu release (25%, p<0.05) in 90-day-old SOD1G93A mice but not in WT aged 

controls. The involvement of both metabotropic glutamate receptor subtypes was 

demonstrated using mGluR1 and mGluR5 selective antagonists/negative allosteric 

modulators (LY367385, MPEP, respectively). The analysis of the molecular mechanisms 

underlying the 3,5-DHPG-evoked Glu release revealed that it was of vesicular origin and 

induced by Ca2+ released from intra terminal stores. Confocal imaging confirmed that both 

mGluR1 and mGluR5 were co-localized onto glutamatergic nerve terminals and their 

expression was increased in SOD1G93A mice at the onset of the disease.  

We have also set up a method to isolate extracellular vesicles enriched in exosomes to 

investigate whether EVs derived from cultured activated astrocytes, treated with a mGluR5 

antagonist, were able to change the inflammatory pattern of microglia.   
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ABBREVIATION LIST 

 

AD: Alzheimer’s disease 

ADAR2: Adenosine Deaminase Acting on RNA  

ALS: Amyotrophic lateral sclerosis 

Aβ: β-amiloide 

AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

2-APB: 2-aminoethoxydiphenyl borate 

APP: Amyloid Precursor Protein 

Arg1: arginase 1 

ASO: antisense oligonucleotide 

ATD: extracellular amino-terminal domain  

ATP: adenosine triphosphate 

BAPTA-AM: 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl 

ester 

BBB: brain blood barrier 

Bcl-2: B-cell lymphoma 2 

BDNF: brain-derived neurotrophic factor 

BiP: immunoglobulin-binding protein  

BMAA: B-N-methylamino-L-alanine 

B2M: Beta-2-Microglobulin CaMKII: Ca 2+ /calmodulin-dependent protein kinase II 

CD86: cluster of differentiation 86  

CD163: cluster of differentiation 163  

CD206: cluster of differentiation 206  

CHCHD10: coiled-coil-helix-coiled-coil-helix domain-containing protein 10 

CNS: central nervous system 
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COX-2: cyclooxygenase-2 

CTD: intracellular C-teminal domain 

CTEP: 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-

yl)ethynyl)pyridi- ne 

C21orf2: chromosome 21 open reading frame 2 

C9orf72: Chromosome 9 open reading frame 72 

DAG: diacylglycerol 

DMSO: Dimethyl sulfoxide 

EAAC1: Excitatory Amino Acid Carrier 1 

EAAT1-5: Excitatory Amino Acid Transporters 

EAE: Experimental Autoimmune Encephalomyelitis 

EDTA: Ethylenediamine tetraacetic acid  

ERK: extracellular signal-regulated kinase 

EVs: extracellular vesicles 

FALS: familial ALS 

FBS: fetal bovine serum  

FDA: Food and Drug Administration 

Fizz1: the cysteine-rich secreted protein Fizz1 

FUS/TLS: Fused in Sarcoma/Translocated in Liposarcoma 

GABA: aminobutyric acid 

GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

GDNF: glial cell-derived neurotrophic factor 

GFAP: glial fibrillary acidic protein 

GLAST: Glutamate/Aspartate Transporter  

GLT1: Glutamate transporter 1  

Glu: glutamate  
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GPCR: G-protein-coupled receptor 

HIV: Human immunodeficiency virus 

hNSCs: human neural stem cells  

HSPs: heat shock proteins  

IGF-1: Insulin-like growth factor 1 

IL-1: interleukin-1 

IL-1β: interleukin-1 beta  

IL-6: interleukin-6  

IL-10: interleukin-10  

iNOS: inducible nitric oxide synthase  

iNPCs: induced neural progenitors cells 

iPSCs: induced pluripotent stem cells 

IP3: inositol 3 phosphate 

KARS: alteration of lysyl-tRNA synthetase  

LBD: ligand binding domain 

L-BMAA: amino acid beta-N-methylamino-L-alanine  

LTD: long term depression 

LTP: long term potentiation 

LY367385: (S)-(+)-a-amino-4-carboxy-2-methylbenzeneacetic acid 

MAM: methylazoxymethanol  

MATR3: Matrin-3  

mGluR: metabotropic Glutamate receptors  

mGluR1: metabotropic Glutamate receptors 1   

mGluR5: metabotropic Glutamate receptors 5 

MN: motor neuron 

MPEP: 2-methyl-6-(phenylethynyl)pyridine 



 9 

mPrp: mouse prion protein 

MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

MS: Multiple sclerosis 

MSC: Mesenchymal stem cell  

MVs: microvesicles 

NEK1: NIMA-related kinase 1  

NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells 

NAM: negative allosteric modulator 

NMDA: N-methyl-D-aspartate 

PAM: positive allosteric modulators 

PBS: Phosphate Buffered Saline 

PD: Parkinson’s disease 

PDC: Parkinsonism Dementia Complex 

PKC: protein kinase C 

PLC: phospholipase C 

PPIA: peptidylprolyl isomerase A 

PPMS: primary progressive 

RIPA: radio immunoprecipitation 

ROS: reactive oxygen species 

RPLP0:  Large Ribosomal Protein  

RRMS: relapsing-remitting 

SALS: sporadic ALS 

SEM: standard error of mean 

SOD1(2,3): Cu/Zn superoxide dismutase 1 (2,3) 

SOD1G93A: mutant human SOD1 carrying a glycine substituted to alanine at position 93 

SPMS: secondary progressive 
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SNARE: SNAP REceptor 

TARDBP: TAR DNA binding protein  

TBK1: TANK Binding Kinase 1 

TDP-43: Transactive Response DNA-Binding Protein 43 

TGF-β: transforming growth factor beta  

Thy-1.2: Anti-Mouse CD90.2  

TMD: transmembrane domain 

TNF-α: Tumor necrosis factor-alpha 

TRAP-δ: delta-associated translocation protein  

TUBA4A: Tubulin Alpha 4a 

U73122: 1-[6-[((17)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-

dione  

VGLUT1-3: Vesicular glutamate transporters 1-3 

VEGF: Vascular endothelial growth factor  

WT: wild type 

YM1: the macrophage protein YM1 

2-AG: 2-arachidonoylglycerol  

[3H]D-Asp: [3H]D-Aspartate 

3,5-DHPG: (S)-3,5-Dihydroxyphenylglycine  

6-OHDA: 6-hydroxydopamine 
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1 

INTRODUCTION 

 

1.1 Amyotrophic Lateral Sclerosis: the pathology 

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disorder that leads 

to degeneration of both upper and lower motor neurons (Norris et al., 1993; Rowland & 

Shneider, 2001; Logroscino et al., 2008; Renton et al., 2014). Patients may present motor 

manifestations that usually begins in one region of the body, mainly related to dysfunction 

of upper motor neurons, such as spasticity and weakness, with involvement of the lower 

motor neurons which becomes evident in the advanced stages of the disease (van Den 

Berg-Vos et al., 2003; Ravits et al., 2007; Tartaglia et al., 2007; Al Chalabi et al., 2016). 

Several evidence demonstrated that ALS has a cortical onset that can precede clinical 

symptoms by 3-6 months (Vucic et al., 2008; Bakulin et al., 2016). In contrast, other 

patients may present symptoms related to dysfunction of the lower motor neurons, 

including fasciculations, cramps and muscle atrophy. More than 5% of patients have 

respiratory problems and, in these cases, patients may also present an unjustified weight 

loss, probably linked with an accelerated metabolism (Kiernan et al., 2011). Patients may 

have a pure motor phenotype of ALS and have normal cognition and behavior, but some of 

them present an exclusively cognitive or behavioral phenotype or a mixed phenotype. 

Peak age at onset is in the range 58-63 years and there are several studies showing that 

after 80 years of age the incidence decreases (Cronin et al., 2007). However, when the 

onset occurs in late adolescence or in early years of adulthood, it is usually indicative of 

familial ALS.  

This pathology was described for the first time by the French neurologist Jean-Martin 

Charcot and became sadly known when the pathology affected several famous sportsmen, 
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such as the American baseball player Lou Gehrig.  

 

Jean-Martin Charcot and Lou Gehrig 
Adapted and extracted by Wikipedia http://resource.nlm.nih.gov/101425121; Heritage Auctions. 
 
 

The incidence of ALS in Europe is about 2.16 per 100000 person-years with male more 

affected compared to women (1:350 for men and 1:400 for women; Logroscino et al., 

2010). 

Primary motoneurons project from the cortex to the brainstem and spinal cord, while the 

secondary motor neurons project from the brainstem or spinal cord directly to the skeletal 

muscles. The loss of function of corticospinal motor neurons causes muscle rigidity and 

spasticity, while the loss of function of spinal motor neurons leads to an excessive electric 

dysfunction, causing spasms of involuntary muscles or spontaneous and rapid contractions 

of groups of muscle fibers.  

More specifically, based on the nature of the prodromal symptoms and the location of the 

districts most affected by the pathology, two main forms of ALS can be distinguished: the 

spinal form and the bulbar one.  

The first is manifested by muscle weakness focused on both upper (cervical symptoms) 

and lower limbs (lumbar symptoms), local atrophy of the muscles of the hands, forearms, 

shoulders, legs with a marked reduction in the ability to walk. Furthermore, a 

subpopulation of patients also showed cognitive and sensory dysfunctions (Phukan et al., 

2007; Hammad et al., 2007).  
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On the other hand, the bulbar form is more common in women and can cause both bulbar 

paralysis associated with dysarthria, atrophy of the tongue and dysphagia, and pseudo-

bulbar paralysis characterized by laughter or uncontrollable crying caused by an increased 

sensitivity to emotions (Haverkamp et al., 1995; Louvel et al., 1997; Forbes et al., 2004; 

Beghi et al., 2007). Regardless of the form of ALS, death occurs mainly due to paralysis of 

the respiratory muscles. The neurons that innervate eyes and sphincter muscles are usually 

not affected up to an advanced stage of the pathology.  

In order to improve the quality of life of patients there are several health support 

interventions, including artificial ventilation, motor and respiratory rehabilitation, the 

maintenance of swallowing and speaking (Chiò & Calvo, 2011; Ash et al., 2013; Da Costa 

Franceschini & Mourao, 2015; Valadi, 2015; Macpherson & Bassile, 2016; Tabor et al., 

2016).  

Neurodegeneration characterizes ALS progression and it has been shown that it can spread 

from the original sites to adjacent regions of the CNS by cell-to-cell transmission of 

pathological aggregates of SOD1, TDP-43 and C9orf72, but only the first two are 

transmissible also in vivo (Grad et al., 2011, 2014; Nonaka et al., 2013; Ayers et al., 2014, 

2016; Feiler et al., 2015; Porta et al., 2018). Although ALS can spread between 

synaptically connected motor neurons, this does not seem to be the case in all patients, 

suggesting the existence of different mechanisms (Ding et al., 2015; Westergard et al., 

2016). In addition, it has been reported that larger motor neurons are more vulnerable to 

neurodegeneration in SOD1G93A mice, the most used murine model of the human 

pathology, and that their size increases during disease progression (Le Masson et al., 2014; 

Dukkipati et al., 2018).  

However, ALS is not only a motor neurons disease and there are evidences about the role 

of other cell types, such as astrocytes and microglia (Al Chalabi & Hardiman, 2013; Poppe 

et al., 2014). As a matter of fact, both microglia and astrocytes are involved in disease 
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progression, while oligodendrocytes seem to drive disease initiation (Ragagnin et al., 

2019).  

 

Proposed pathomechanisms of ALS 
Taken by Wikipedia. Commons extracted by http://dmm.biologists.org/content/10/5/537. 
 

In SOD1G93A mice, microglial cells increase during disease progression and their activation 

is characterized by the switch from the neuroprotective M2 phenotype to the inflammatory 

M1 phenotye (Chiu et al., 2013; Geloso et al., 2017). As recently reported, microglia 

ablation in mice did not affect the onset of the pathology, but delayed its progression 

(Boillée et al., 2006b).  

As for astrocytes, in physiological conditions they provide neurotrophic factors for motor 

neurons, but in ALS they become vulnerable and release toxic factors causing cellular 

death. In fact, it has been found that astrocytes expressing mutant SOD release soluble 

neurotoxic factors that kill motor neurons (Nagai et al., 2007). In addition, 

neuroinflammatory microglia can induce A1 reactive astrocytes capable of causing 

neuronal death and that have been found abundant in post mortem tissues from patients 



 15 

with different neurodegenerative diseases, including ALS (Liddelow et al., 2017).  

Also oligodendrocytes seem involved in ALS pathogenic mechanism and TDP-43 and FUS 

aggregates have been detected in this cell population in patients (Arai et al., 2006; 

Mackenzie et al., 2007, 2011; Tan et al., 2007; Philips et al., 2013). Interestingly, 

oligodendrocytes derived from induced pluripotent stem cells (iPSCs) or from induced 

neural progenitors cells (iNPCs) of ALS patients (both sporadic and familial cases)  have 

been shown to induce motor neuron death via both soluble factors and cell-to-cell contact, 

but with different mechanisms (Ferraiuolo et al., 2016) Regarding Schawnn cells, after the 

observation that myelin is altered in peripheral nerve in ALS patients, there are conflicting 

studies reporting their implication in the pathology (Perrie et al., 1993). 

In addition, there are studies reporting the immunologic hypothesis as one of the causes of 

ALS. In particular, typical hallmarks of autoimmunity are present during ALS, such as the 

presence of circulating immune complexes, higher frequency of specific histocompatibility 

types, the degree of T-lymphocitic infiltration in the anterior horn of the spinal cord and 

aberrant macrophage activity (Oldstone et al., 1976; Graves et al., 2004). Moreover, there 

are evidences about the ability of immunoglobulins from ALS patients to cause apoptosis 

of motor neurons in primary spinal cord cultures (Demestre et al., 2005; Ralli et al., 2019). 

Regarding the diagnosis, unfortunately there are no tests to identify the pathology with 

certainty, due to the heterogeneity of both the symptomatic manifestations and the variable 

rate of progression. The diagnosis is based on clinical examinations associated with 

electromyography, to confirm the extent of degeneration, and simultaneously with 

laboratory tests to exclude other disorders that might resemble the course of ALS 

(Rowland & Shneider, 2001; Al-Chalabi et al., 2016). One of the main problems is that 8-

15 months are required to have a definitive diagnosis of ALS (Paganoni et al., 2014). A key 

clinical symptom of ALS is the presence of fasciculations, result of aberrant and 

spontaneous discharges of the inferior motor neurons on the muscle fibers (Eisen, 2009). 
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Motor symptoms are the first signs of ALS, but more than 50% of patients develop 

cognitive and behavioral alterations similar to frontotemporal dementia and 13% of 

patients have concomitant frontotemporal dementia (Elamin et al., 2013; Turner et al., 

2013; Swinnen & Robberecht, 2014). 

1.2 The pathology variants  

ALS presents a complex and still poorly understood etiology, where genetic and 

environmental factors are interconnected in generating a wide spectrum of clinical variants 

and phenotypes (Al Chalabi & Hardiman, 2013; Swinnen & Robberecht, 2014; Van 

Rheenen et al. , 2016; Al Chalabi et al., 2017). ALS can occur in a sporadic form, which 

affects 90-95% of cases, and in a familial form, which affects 5-10% of patients and can 

occur in an autosomal dominant or recessive form (Horton et al., 1976).  

  
1.2.1 Sporadic ALS  

Sporadic ALS has an unknown etiology, but as in other sporadic forms of 

neurodegenerative pathologies, it seems to be due to the interaction between genetic and 

environmental factors (neurotoxins, heavy metals, foods, electromagnetic fields, traumas, 

etc). Studies on populations of Western Pacific islands, where there was a high incidence 

of ALS/PDC (Parkinsonism Dementia Complex), have provided important information on 

possible environmental factors involved in the pathophysiology of ALS (Spencer, 2019). 

One possible factor, common to the different populations of this geographic area, is the 

exposure to the neurotoxic seeds of cycad plants (e.g. Cycas Circinalis) containing cycasin 

as major neurotoxic chemical and the amino acid beta-N-methylamino-L-alanine (L-

BMAA) in lower concentrations (Spencer et al., 2016). Cycasin is the glycone of 

methylazoxymethanol (MAM), a molecule able to induce DNA damage and to cause 

neurotoxic effects, whereas L-BMAA has been shown to stimulate NMDA, AMPA and 

mGlu5 glutamatergic receptors, and to induce a motor-system disorder in adult primates 
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(Spencer et al., 2015). Other compounds that have been involved in the development of 

ALS as environmental factors are nitrosamines and hydrazines, used as herbicides and 

pesticides, that have genotoxic and neurotoxic effects similar to MAM.  

1.2.2 Familial ALS 

Regarding familial ALS, two different types of familial ALS have been identified: the 

autosomic dominant form and a rare recessive pathology. The autosomic dominant form 

manifests in adulthood and is symptomatologically and pathologically indistinguishable 

from the sporadic form, suggesting that they share common mechanisms of degeneration 

(Mulder et al., 1986). The recessive ALS, on the contrary, shows symptoms in early 

adulthood, but it is characterized by a longer survival (Ben Hamida et al., 1990). The 

genetic component responsible for the familial form of the pathology is identified within 

more than 30 genes (Renton et al., 2014; Cirulli et al., 2015), but about 70% of all familial 

cases are due to mutations affecting four main genes coding respectively for SOD1 

(Copper-zinc dependent superoxide-dismutase type 1; Rosen et al., 1993), C9orf72 

(Chromosome 9 open reading frame 72; DeJesus-Hernandez et al., 2011; O'Rourke et al., 

2015), TDP-43 (Transactive Response DNA-Binding Protein 43; Arai et al., 2006; 

Mackenzie et al., 2007) and FUS/TLS (Fused in Sarcoma/Translocated in Liposarcoma; 

Vance et al., 2009).  

Following the identification of the mutated genes responsible for the familial forms, it was 

possible to develop transgenic mouse models for the study of the pathogenetic 

mechanisms. However, all these animal models have limitations since no one completely 

reflects all the features of the human disease.  

1.3 ALS therapies 

As introduced in the previous chapters, ALS is a fatal, multi-subtype syndrome, rather than 

a single disease, that occurs in adulthood and cause a fatal paralysis within 3-5 years after 
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onset; only 4% of patients survives 10 years or more (Turner et al., 2003; Testa et al., 2004; 

Kumar et al., 2016). The rapid disease process is also due to the lack of a therapy able to 

stop the progressive neurodegeneration. 

1.3.1 Riluzole, edaravone and other drugs 

Until now, FDA has approved only two molecules for the treatment of ALS, riluzole and 

edaravone. Unfortunately, there is no effective cure for the disease, nor even a way to stop 

its progression and the therapeutic approaches used until now are only symptomatic and 

physical.  

Riluzole has a modest efficacy on disease symptoms and prolongs survival probability by 

only 3-6 months without changing the course of the pathology;  even if its mechanism of 

action has not yet been fully clarified, several studies indicate that it is able to inhibit 

voltage-dependent Na+ channels, to reduce the release of glutamate from presynaptic 

terminals, to increase its re-uptake and to antagonize NMDA glutamatergic ionotropic 

receptors (Distad et al., 2008). Different riluzole prodrugs have been proposed which are 

metabolically inert, possess a high stability and allow steady riluzole plasma levels 

(McDonnel et al., 2012; Pelletier et al., 2018). 

Edaravone, a small antioxidant molecule that has been used for many years to treat stroke, 

was shown to slightly slow the progression of ALS only when the pathology is at an early 

stage. The delay between symptoms onset and the diagnosis becomes problematic if the 

success of the therapy requires an early intervention, like for edaravone (Scott, 2017).  

Today, the medical support given to patients is based above all on a series of interventions 

aimed at counteracting the disabilities occurring during the course of the disease in order to 

improve their quality of life. A common practice is artificial ventilation, but those who are 

kept alive by such ventilation reach a state in which they show problems also with the 

movement of the eyes (Hayashi & Kato, 1989; Sasaki et al., 1992). Other important 

aspects are represented by motor and respiratory re-education (Valadi, 2015; Macpherson 
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& Bassile, 2016), the maintenance of swallowing (Chiò & Calvo 2011; Tabor et al., 2016) 

and speaking (Ash et al., 2013; Da Costa Franceschini & Muorao, 2015). The development 

of new neuroprotective therapies is made difficult by the lack of knowledge about the 

causes of neuronal death in ALS and the mechanisms by which ALS develops. 

In the last decades, there have been many drugs trialed in the clinical phase, but no one 

demonstrated a significant therapeutic efficacy to be approved by FDA. Several clinical 

trials with minocycline (Leigh et al., 2008; Gordon et al., 2007), lithium carbonate (Chiò et 

al., 2010; Morrison et al., 2013) or pioglitazone (Dupuis et al., 2012) have failed efficacy 

tests and it has been hypothesized that the neuroprotective effect of these molecules could 

be even antagonized by the action of riluzole (Yañez et al., 2014).  

On the basis of their protective action on MNs, other drugs, such as despramipexole and 

rasagiline,  have been proposed to reduce oxidative stress in ALS. Preclinical studies 

showed a reduction in neuronal death after administration of despramipexole and it was 

observed its ability in maintaining or increasing ATP synthesis, decreasing oxygen 

consumption and stabilizing the cellular metabolism profile. In addition, it has been 

observed that despramipexole has a protective effect also against proteasome inhibition 

(Alavian et al., 2012). In clinical trials on ALS patients, despramipexole turned out as a 

well tolerated drug in phase II studies, but the efficacy end point was not reached in phase 

III trials (Cudkowicz et al., 2013). Rasagiline is an irreversible inhibitor of monoamine 

oxidase B that has shown anti-apoptotic effects and the ability to slow down neuronal loss 

by regulating the transition of mitochondrial permeability and increasing mitochondrial 

survival (Weinreb et al., 2010). Following promising results obtained in animal models 

(Waibel et al., 2004), the association of rasagiline toghether with riluzole was studied in a 

phase II clinical trial (Ludolph et al., 2018). The treatment was safe and well tolerated in 

ALS patients but there was no difference with the placebo group in terms of survival; 

however, a post-hoc analysis revealed that rasagiline could be able to slow down the 
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disease progression in a subset of patients with normal to fast progression. Mitochondrial 

coenzime Q10 was also tested for its antioxidant properties and showed prolonged survival 

in SOD1G93A transgenic mice, but it did not produce any significant effect in clinical trials 

on ALS patients (Kaufmann et al., 2009; Miquel et al., 2014).  

Olesoxime, a drug with cholesterol-like structure, showed neuroprotective effects in ALS 

models, probably with actions at the level of mitochondria and microtubules, causing a 

delay in the onset of motor dysfunction and weight loss, and prolonging survival 

probability in SOD1G93A mice (Bordet et al., 2007; Martin, 2010; Rovini et al., 2010). 

However, a phase II-III clinical trial in ALS patients on riluzole treatment did not show any 

significant beneficial effect (Lenglet et al., 2014). 

Starting from the evidence that the inflammatory processes amplify neurodegenerative 

mechanisms, involving microglia and immune cells, many compounds acting on these cell 

populations have been tested with the aim of reducing neuroinflammation in ALS patients 

(Evans et al., 2013; Philips & Rothstein, 2014; Rizzo et al., 2014). 

Fingolimod, a drug approved for multiple sclerosis, is a sphingosine-1-phosphate receptor 

agonist that is able to block T lymphocytes within the lymph nodes, thus preventing their 

access to the CNS (Chun et al., 2011). A first phase II trial has shown that this drug is well 

tolerated, has a favorable safety profile and reduces circulating lymphocytes in ALS 

patients (Berry et al., 2017). However, studies of its efficacy in this disease have not 

carried out yet.   

Regarding macrophages activation, two different substances have been proposed to reduce 

it: NP001 and tocilizumab. The first is a novel immune regulator of inflammatory 

monocytes/macrophages that has been shown to regulate macrophage functions by down-

regulating inflammatory pathways activated by NF-kB. In a phase I study, NP001 was 

shown to be generally safe and well tolerated and able to reduce some markers of 

inflammation (Miller et al., 2014). Regretfully, a phase II trial showed that NP001 did not 



 21 

overall slow disease progression, although a beneficial effect was observed at a high dose 

in the group of ALS patients with greater inflammation at baseline (Miller et al., 2015). 

Tocilizumab is a humanized monoclonal antibody against the IL-6 receptor, which is able 

to reduce the production of pro-inflammatory cytokines (Mizwicki et al., 2012). A phase II 

trial to assess tocilizumab safety and tolerability has been completed (NCT02469896) but 

data are not yet available. However, a preliminary study on 10 patients with sporadic ALS 

has shown that the effects of tocilizumab could be dependent on the individual level of 

inflammation; in fact, in a group of patients with a strong inflammatory state, the drug 

down-regulated the markers of inflammation, whereas in patients with weak inflammation 

an up-regulation was observed (Fiala et al., 2013).  

Celecoxib, an inflammatory agent that inhibits COX-2 reduced astrogliosis and 

microgliosis, thus positively affecting weight loss in ALS animal models, but it showed no 

efficay in ALS patients as demonstrated in a clinical trial (Drachman et al., 2002; 

Cudkowicz et al., 2006). 

It is well known that the endocannabinoid system plays an important role in the 

modulation of various biological processes and that there are many evidences supporting 

its antioxidant, anti-inflammatory and neuroprotective activity. Therefore, it has been 

hypothesized that the use of compounds acting on the cannabinoid system can improve 

ALS symptoms. The first study was performed by administering marijuana to ALS 

bedridden patients and it was observed a moderate improvement in appetite and reduction 

of spasticity, depression, pain and excessive salivation; nevertheless, it was ineffective on 

difficulties with speech and swallowing (Amtmann et al., 2004). Recently a combination of 

phytocannabinoids (ê9-tetrahydrocannabinol- and cannabidiol-enriched extracts) have 

been studied in SOD1G93A mice with encouraging results (Moreno-Martet et al., 2014). 

Another therapeutic strategy tested in ALS was to stimulate the degradation of protein 

aggregates, which characterize this pathology, by activating the proteasome system and the 
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autophagic pathway. In this view, arimoclomol is a drug that induces the expression of heat 

shock proteins (HSPs) under conditions of cell stress and that has shown neuroprotective 

effects in experimental models of ALS (Kieran et al., 2004; Kalmar et al., 2008; Phukan, 

2010). Two clinical trials have shown that arimoclomol is safe and well-tolerated in ALS 

patients and could have beneficial effects, although these studies were not powered to 

assess therapeutic efficacy (Cudkowicz et al., 2008; Benatar et al., 2018). In this scenario, 

also lithium carbonate has been shown to reduce SOD1 aggregates in MNs, to delay 

disease onset and to increase survival of SOD1G93A mice (Fornai et al., 2008a). In a first 

clinical trial on patients with sporadic ALS, lithium in association with riluzole was able to 

slow down the disease progression in comparison with patients treated with riluzole alone 

(Fornai et al., 2008b). Unfortunately, a successive randomised, double-blind, placebo-

controlled trial on 84 ALS patients did not confirm the beneficial effects of the combined 

therapy with lithium and riluzole (Aggarwal et al., 2010). 

Off label use of some drugs has shown positive effects: the treatment with 

dextromethorphan/quinidine showed an improvement in emotional sensitivity (Brooks et 

al., 2004), treatment with modafinil led to improvements of insomnia and fatigue (Rabkin 

et al., 2009) and the administration of botulinum toxin led to an improvement in patients’ 

sialorrhoea without particular adverse effects (Gilio et al., 2010).  

1.3.2 Gene therapy 

As a promising therapeutic approach, gene therapy was also tested with the aim of 

enhancing the expression of neurotrophic factors (e.g. IGF-1, VEGF and GDNF) or anti-

apoptotic proteins (e.g. Bcl-2), or of blocking the expression of proteins involved in 

neurotoxic effects, such as mutated SOD1. Indeed, this therapeutic strategy lead to very 

encouraging results in ALS preclinical models (Kaspar et al., 2003; Azzouz et al., 2000, 

2004; Kumar et al., 2016).  

Following the positive results obtained in preclinical studies, an antisense oligonucleotide 
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(ASO) against SOD1 was trialed in ALS patients with the familial form of the disease and 

was found to be well-tolerated and safe following intrathecal infusion (Miller et al., 2013) 

 

1.3.3 Cell therapy 

In this regard, recent pre-clinical and clinical studies have focused on the transplantation of 

different cell types, such as neural stem cells, mesenchymal stem cells or glial progenitors. 

In ALS animal models, the transplantation of different stem cells has been shown to induce 

neuroprotective effects through different mechanisms, including the secretion of 

neurotrophic factors, the dampening of glutamate excitotoxicity and the modulation of 

neuroinflammation (Teng et al., 2012). However, since cell transplantation can involve a 

great number of biological factors, it is very difficult to identify which is/are the key 

mechanisms that can confer neuroprotection.  

The complex scenario of the different cell therapies that can be adopted include neural, 

mesenchymal or induced pluripotent stem cells transplantation. 

 
- Neural stem cells. A large number of preclinical studies have been carried out with 

transplantation of human neural stem cells (hNSCs) that were grafted in the spinal 

cord of SOD1G93A rats and mice. These hNSCs extensively differentiated into 

neurons that were able to synaptically contact host neurons and to integrate in the 

motor circuits of the spinal cord segment; moreover, the grafts also secreted GDNF 

and BDNF (Xu et al., 2006, 2009, 2011; Yan et al., 2006; Hefferan et al., 2012; Teng 

et al., 2012; Zalfa et al., 2019). This procedure resulted in the delayed onset and 

progression of the pathology together with a prolonged survival. Although the 

transplantation of such cells did not replace degenerated motor neurons, the positive 

effects of this therapeutic approach suggested that neurotrophic factors, produced by 

transplanted cells, could protect motor neurons from death and mediate the observed 

improvements.  
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Phase I clinical studies on hNSCs transplantation in ALS patients have been carried 

out so far, demonstrating that this approach is safe and well tolerated for up to 60 

months after surgery, and may have positive effects on disease progression (Glass et 

al., 2012; Riley et al., 2012; Feldman et al., 2014; Mazzini et al., 2015, 2019).  

In other studies, neuronal stem cells have been engineered to produce growth factors, 

such as GDNF, BDNF VEGF and IGF-1, that can help neuron survival (Klein et al., 

2005; Hwang et al., 2009; Park et al., 2009). 

 
- Mesenchymal stem cells. Mesenchymal stem cells (MSCs) represent a heterogeneous 

cellular population capable of repairing damaged tissues due to their ability to 

differentiate into other cell lines and that have been experimented in a large number 

of preclinical and clinical studies for ALS (Gugliandolo et al., 2019). The systemic or 

central administration of MSCs is now known to prevent astrocyte and microglia 

activation with reduction of neuroinflammation, to normalize the abnormal glutamate 

release, thus possibly reducing excitotoxicity, to diminish oxidative stress, all effects 

that lead to the delay of motoneurons death, disease onset and progression, and to the 

improvement of motor skills and increased survival of SOD1G93A rodents, also when 

administered after the onset of clinical symptoms (Zhao et al., 2007; Vercelli et al, 

2008; Boucherie et al., 2009; Kim et al., 2010; Uccelli et al., 2012; Boido et al., 

2014). However, MSCs seem not to transdifferentiate into neurons and replace lost 

MNs and it has been shown that only a small number of these cells migrate into the 

spinal cord, thus suggesting that the beneficial effects observed could be due to their 

bystander role with the secretion of a variety factors (the secretome) that ultimately 

lead to protection of neurons from death. 

MSCs have been also administered to ALS patients in a large number of phase 1/2 

clinical trials, but results are available only for some of them. Overall, these clinical 
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studies have demonstrated that intravenous, intrathecal or intraspinal administration 

of MSCs of different origin is safe and well-tolerated with no serious adverse events; 

in same cases, also beneficial effects on disease progression have been reported. 

 

- Induced pluripotent stem cells. Induced pluripotent stem cells (iPSCs) are produced 

by converting adult fibroblasts in pluripotent stem cells, using retroviral transduction 

of specific genes. These cells can be then differentiated in many cell types, including 

neurons and glial cells. Since both the donor and the transplanted is the same person, 

ethical concern and problems of graft-versus-host disease should be overcome. Many 

studies have shown the feasibility of producing MNs from human fibroblast-derived 

iPSCs using different protocols (Trawczynski et al., 2019). So far, a few preclinical 

studies have investigated the effects of grafts with iPSCs-derived neural stem cells or 

neural progenitors in ALS models. In a first study, neural progenitor cells, derived 

from human iPSCs, were transplanted in the spinal cord of SOD1G93A rats (Popescu et 

al., 2013). These cells survived in large number and showed efficient differentiation 

into cells with a neuronal phenotype and motor neuron-like morphology. Nizzardo 

and co-workers carried out two studies using intrathecal or intravenous 

administration of a specific sub-population of neural stem cells, obtained from human 

iPSCs, to ALS mice (Nizzardo et al., 2014, 2016). These cells engrafted well into 

cervical and lumbar spinal cord regions and differentiated into neuronal and glial 

cells, although a significant part maintained an undifferentiated phenotype. More 

importantly, this transplantation resulted in a significant reduction of motor neuron 

loss, increase of muscle strength, improvement of motor activity and increase of 

survival. However, this kind of approach with autologous transplantation needs to be 

extensively studied before starting its use in clinical trials as the iPSCs obtained from 

ALS patients may present alterations (e.g. mutations at the level of the SOD1 gene or 



 26 

other genes) that can lead to cell malfunctioning, thus reducing the beneficial effect 

of the therapy itself. 

 

1.3.4 Immunotherapy and vaccine approaches 

The knowledge that gene mutations are responsible for the production of aberrant proteins 

involved in the neurodegenerative processes, especially in the familial forms of ALS, has 

led to experiment whether immunotherapies and vaccines against those proteins could 

exert beneficial effects.  

Gros-Louis and collaborators have reported that the intracerebroventricular administration 

of D3H5, a monoclonal antibody against the misfolded form of the mutated SOD1, was 

able to delay mortality in a murine model of ALS (Gros-Louis et al., 2010).   

Some vaccines against SOD1, such as WT-Apo, tgG-DES2lim or tgG-DSE5b, were tested 

in ALS animal model and significantly postponed disease onset and increased lifespan 

(Takeuchi et al., 2010; Zhao et al., 2019). It has been reported that Amorfix in collaboration 

with Biogen Idec. is developing a vaccine against specific epitopes to eliminate the 

misfolded and aggregated forms of mutant SOD1 (Kumar et al., 2016).  
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2 

FAMILIAL AMYOTROPHIC LATERAL SCLEROSIS (FALS) 

 

As introduced above, although the familial forms of ALS account for only 10% of all cases 

of this pathology, their discovery has permitted to develop different rodent models that 

have undoubtedly contributed to a better understanding of the pathophysiology of this 

neurodegenerative disease. 

 

2.1 SOD1 mutations 

Among the most common genetic modifications, the alterations in SOD1 protein were the 

first identified in the study of ALS and, in fact, transgenic mice bearing mutations in the 

SOD1 gene are the most used animal models in research (Rosen et al., 1993). SOD1 is a 

metal-enzyme of 153 amino acids, which is expressed in the mithocondria of all eukaryotic 

cells and it belongs to the SOD family, which also includes SOD2, mitochondrial 

superoxide dismutase manganese dependent, and the SOD3, extracellular superoxide 

dismutase copper-zinc dependent. SOD1 is encoded by five exons and forms a globular 

protein (Levanon et al., 1985). In each monomer, there is the active site containing a 

copper ion, the catalyst, and a zinc ion, which is necessary for the stability of the protein 

(Kunst, 2004). Its main function is the detoxication of the free-radical superoxide anion by 

dismutation into oxygen and hydrogen peroxide (2O2�- + 2H+ → H2O2 + O2). Hydrogen 

peroxide is then detoxified to form water through the action of glutathione peroxidase or 

catalase enzymes.  

The animal models with SOD1 mutations are characterized by a rapid and aggressive 

course of the disease, and mimics the clinical and anatomo-pathological characteristics of 

ALS in human patients. Among the SOD1 transgenic models, one of the most used in ALS 

research is the SOD1G93A that is characterized by the over-expression of a mutated form of 



 28 

human SOD1 bearing the replacement of alanine with glycine in position 93 (Gurney et al., 

1994).  

The mutation in the SOD1 gene is responsible for ALS in about 20% of familial cases and 

in 3% of total cases. To date, more than 180 mutations related to the SOD1 gene have been 

identified in ALS (Andersen et al., 2011; Felbecker et al., 2010). Most of these mutations 

(such as glycine-93-alanine, glycine-37-arginine, glycine-85-arginine substitutions) are 

dominant, except for the D90A mutation (replacement of an alanine for aspartate in 

position 90), which is the most common in the world and is inherited both in a dominant 

and recessive manner (Andersen, 2006; Robberecht et al., 1996). 

The cause of familial ALS was initially attributed to the loss of function of SOD1, but it 

was soon clear that this was not the case. In fact, many SOD1 mutations, identified in 

human ALS, do not alter the activity of the enzyme and only some of them compromise the 

antioxidant functions of the protein, causing an accumulation of oxidized species (Bowling 

et al., 1993; Rosen et al., 1993; Robberecht, 2000). Furthermore, it was observed that the 

total elimination of this enzyme in SOD1 knock-out mice does not lead to the development 

of neurodegenerative phenomena (Reaume et al., 1996). These evidences lead to the 

hypothesis that the pathology could derive from a gain of some cytotoxic functions of the 

enzyme. Indeed, several studies reported that SOD1 mutations lead to an increased 

nitration capacity of tyrosine residues through the formation of peroxynitrite (ONOO-), 

increased peroxidation reactions with production of reactive oxygen species (ROS) and 

alteration of lysyl-tRNA synthetase (KARS) and delta-associated translocation protein 

(TRAP-δ; Kunst et al., 1997; Shibata et al., 2000). However, new functions of SOD1 are 

emerging such as interaction with the endoplasmic reticulum and the Golgi complex, roles 

as a transcription factor and RNA binding protein that, altered by mutations, could cause 

neurodegeneration of motor neurons (Bunton-Stasyshyn et al., 2015).  

Since protein aggregates are frequently associated with neurodegenerative diseases, several 
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studies focused on this observation also in ALS pathology and proposed possible 

mechanisms through which SOD1 aggregates. An acquisition of function could lead the 

protein to lose its structural complexity, forming aggregates of mutated protein, as it 

happens in age-related neurodegenerative disorders (Durham et al., 1997; Cleveland & 

Liu, 2000). Furthermore, copper ions, when not complexed with proteins, are cytotoxic, 

thus a possible mechanism of neurotoxicity in ALS could be a reduced ability of the 

mutated SOD1 to bind the ion, causing the increase of its free intracellular concentration 

with the binding of the ion by sites that normally do not bind it. Starting from this 

observation, it has been reported that the administration of copper chelators in presence of 

mutated SOD1 was demonstrated to increase the survival of spinal motor neurons in 

SOD1G93A mice almost 200% (Azzouz et al., 2000).  As a matter of fact, several lines of 

evidence have suggested that copper dyshomeostasis could be one relevant mechanism of 

neurotoxicity by mutant SOD1 in ALS (Gil-Bea et al., 2017).   

In addition, the mutated SOD1 protein is known to induce stress of the endoplasmic 

reticulum through different pathways. In fact, mutant SOD1 has been shown to accumulate 

in fractions enriched in endoplasmic reticulum membranes in affected tissues, a 

phenomenon that intensifies as the disease progresses; at this level, mutant SOD1 forms 

high molecular weight species and bind to the immunoglobulin-binding protein (BiP) 

present in the lumen (Kikuchi et al., 2006). On the other hand, it has been recently reported 

that endoplasmic reticulum stress favors the aggregation of SOD1, thus possibly 

representing a risk factor to develop ALS (Medinas et al., 2018).  

Other studies showed that mutated SOD1 aggregates inhibit the proteosomal system, 

therefore reducing its capability in removing abnormally formed proteins from the 

cytoplasm, as  demonstrated in the lumbar part of the spinal cord of mutated SOD1 mice 

(Hoffman et al., 1996; Kabashi et al., 2004; Cheroni et al., 2009). 
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2.2 C9orf72 mutation 

The C9orf72 gene, whose function is still unknown, is located on chromosome 9 and 

recently, C9orf72 animal models have been developed to study ALS (Liu et al., 2016). This 

protein is located in different areas of the CNS where it can be found especially in neuron 

citoplasm and in nerve terminals. The prevalence of the mutation is variable in various 

countries; 40% of familial ALS and 7-11% of sporadic ALS are ascribed to this mutation 

(Renton et al., 2011; Dejesus-Hernandez et al., 2011; Gijselinck et al., 2015). 

The expansion of the hexanucleotide GGGGCC sequence from hundreds to thousands of 

repeats in the C9orf72 gene is considered one of the most important genetic causes both in 

ALS and in frontotemporal dementia, considering that the majority of healthy individuals 

have less than 11 repeats. It has been proposed that the mutation can give rise to a loss or a 

gain of function with a significant impact on a variety of cellular pathways, including RNA 

processing and splicing, impairment in the proteasomal system and autophagy, alteration of 

axonal transport and induction of glutamate excitotoxicity (Dejesus-Hernandez et al., 2011; 

Renton et al., 2011; Balendra & Isaacs; 2018).  

2.3 TARDBP mutation 

The Transactive Response DNA Binding Protein (TDP-43) gene TARDBP is located on 

chromosome 1 and encodes for the nuclear protein TDP43 that binds both DNA and RNA. 

Approximately 30 mutations of this gene have been found in 5% of patients with familial 

ALS and in 1% with sporadic ALS (Tan et al., 2007; Sreedharan et al., 2008; Kabashi et 

al., 2008; Van Deerlin et al., 2008; Yokoseki et al., 2008; Rutherford et al., 2008; 

Mackenzie et al., 2010). TDP-43, a protein with  a molecular weight of 43 kDa, consists of 

414 amino acid residues, possesses two specific regions for the recognition of DNA and 

RNA, named RRM1 and RRM2, a nuclear localization sequence (NLS) and a C-terminal 

region, rich in glycine, responsible for protein-protein interaction; in the nucleus, TDP-43 
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is involved in the regulation of mRNA splicing and transcription, and in miRNA 

processing (Van Deerlin et al., 2008; Strong, 2010; Lagier-Tourenne et al., 2010; Lee et al., 

2015; Scotter et al., 2015; Feneberg et al., 2018).  

In the presence of TARDBP mutations, TDP43 is abnormally cleaved, 

hyperphosphorylated and ubiquitinated to form insoluble aggregates in the cytoplasm of 

motor neurons and glial cells that can be found both in the familial and sporadic forms of 

ALS (Neumann et al., 2006; Sasaki et al., 2010; Scotter et al., 2015; Feneberg et al., 2018).  

Also in this case, it is still not clear whether a loss of function in the capacity of TDP-43 to 

bind RNA and modulate splicing processes or a gain of toxic properties following the 

translocation and aggregation of the protein in the cytoplasm, or both, are the causes of the 

pathocascade leading to ALS.  

Following the discovery of TARDBP mutations, animal models with TDP-43 mutations 

have been created using the mPrp (mouse prion protein), the Thy-1.2 or the CaMKII 

promoter-based strategy to induce overexpression of TDP-43 (Wegorzewska & Baloh, 

2011). These murine models recapitulate some features of ALS, although to a different 

extent, showing for instance loss of nuclear TDP-43 (but rare phospho-TDP-43 inclusions), 

C-terminal TDP-43 fragments, motor neuron degeneration, muscle denervation, astrocytic 

and microglial activation, neuronal apoptosis and  show variable symptom onset and 

lifespan.  

Despite these models, it is still not clear whether a loss of function in the capacity of TDP-

43 to bind RNA and modulate splicing processes or a gain of toxic properties, following 

the translocation and aggregation of the protein in the cytoplasm, or both are the causes of 

the pathocascade leading to ALS.  

2.4 FUS/ mutation 

Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) is a gene on chromosome 16 
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encoding for  the protein FUS/TLS that mediates many physiological functions involved in 

DNA repair, transcription, mRNA stability, transport, splicing and translation, miRNA 

processing mRNA translation (Sama et al., 2014; Ratti & Buratti, 2016). Autosomal 

dominant mutations in the FUS gene accounts for 3-5% of patients affected by ALS 

familial forms and their identification has expanded the genetic and neuropathological 

landscape of ALS. Similar to TDP43, FUS proteins form aggregates in the cytoplasm and it 

is indeed worth noting that most of the FUS mutations occur in the C-terminus region that 

is critical for its nuclear localization (Kwiatkowski et al., 2009; Vance et al., 2009).   

Different rodent models of FUSopathies have been developed but none of them completely 

recapitulate the characteristics of human ALS, although they have certainly contributed to 

provide evidence supporting that both loss- and gain-of function pathomechanisms are 

associated with FUS mutations (Nolan et al., 2016) 

2.5 Other mutations 

In addition to the main genes identified as cause of familial ALS forms, seven new ALS-

associated genes have been identified: MATR3, CHCHD10, TUBA4A, TBK1, NEK1 and 

C21orf2.  

MATR3 is a nuclear protein with domains binding DNA and RNA (Coelho et al., 2015). 

The observed symptoms related to this genetic variant are mainly dysfunctions of vocal 

cords and pharynx (Johnson et al., 2014). 

CHCHD10 is a mitochondrial protein, whose function is important for the maintenance of 

the mitochondrial activity and cellular bioenergetics (Genin et al., 2016). This mutation 

seems to be more frequent in patients with frontotemporal dementia rather than in ALS 

patients (Dols-Icardo et al., 2015); it has been found in a wide range of neurodegenerative 

disease, including ALS,  frontotemporal degeneration (Zhang et al., 2015), Parkinson’s 

disease (Dols-Icardo et al., 2015; Perrone et al., 2017), Alzheimer's disease (Xiao et al., 
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2017), adult-onset spinal muscular atrophy (Penttilä et al., 2015) and Charcot-Marie Tooth 

disease type 2 (Auranen et al., 2015). 

TUBA4A protein mutation is considered a rare cause of ALS and in primary motoneurons 

it  interferes with tubulin dimerization leading to a weakening of the microtubule network 

(Smith et al., 2014; Perrone et al., 2017).  

TBK1 is a protein involved in cellular processes, including neuroinflammation and 

autophagy, and also implicated in 1% of both sporadic and familial ALS patients 

(Freischmidt et al., 2015; Van Rheenen et al., 2016; Oakes et al., 2017). 

On the contrary, NEK1 mutation is implicated only in sporadic ALS (Cirulli et al., 2015). It 

interacts with two proteins involved in lipid trafficking and associated with the 

development of ALS (Gijselinck et al., 2015). Simultaneously it has been observed that 

another mutated protein, C21orf2, is associated with the increased risk of ALS. NEK1 and 

C21orf2 interact each other and are involved in microtubule assembly, DNA damage and 

repair response, and mitochondrial functions (Fang et al., 2015; Wheway et al., 2015). 
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3 

GLUTAMATE INVOLVEMENT IN ALS 

 

3.1 Glutamate neurotransmission: a brief overview 

Glutamate is the most important excitatory neurotransmitter of the central nervous system 

and it is involved in almost all physiological functions of the brain. In neurons, it is mainly 

produced from glutamine by a reaction catalyzed by glutaminase, a phosphate-dependent 

enzyme. Once synthesized, it is stored in synaptic vesicles through three different types of 

transporters (VGLUT1-3; Santos et al., 2009). After its exocytotic release in the synaptic 

cleft, glutamate signals activates two different groups of membrane receptors, ionotropic 

(iGlu) and metabotropic (mGlu) glutamate receptors (Reiner & Levitz, 2018). 

The ionotropic group is composed by the N-methyl-D-aspartate (NMDA), the a-amino-3-

hydroxy-5-methyl-4-isoxazole propionate (AMPA) and the kainate receptors that assemble 

as cation permeable homo- or hetero-tetramers with each subunit being formed by an 

extracellular amino-terminal domain (ATD), a ligand binding domain (LBD), a 

transmembrane domain (TMD) forming the ion channel and an intracellular C-teminal 

domain (CTD).  

The NMDA receptor is the only ligand- and voltage-gated receptor known to date and it is 

composed by GluN1, GluN2 (A, B, C, D) and GluN3 (A, B) subunits that assemble into 

obligatory heterotetramers, which usually comprise two GluN1 subunits for the binding of 

glycine or D-serine and two GluN2 subunits for glutamate binding; however, during 

development and in particular cell types, GluN2 can be substituted by GluN3 to form a 

triheteromeric NMDA receptors with atypical properties (Perez-Otano et al., 2016).   

The subunits composing AMPA receptors are GluA1,2,3 and 4, whereas kainate receptors 

are formed by GluK1, 2, 3, 4 and 5 (Greger et al., 2017; Mollerud et al, 2017).  
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In general, the subunit composition of the iGluRs and the post-transcriptional 

modifications (e.g. RNA editing) of specific subunits (i.e. GluA2, GluK1) significantly 

affect the ligand binding affinity, channel kinetics, ion selectivity (Na+ and Ca2) as well as 

receptor trafficking. 

Glutamate metabotropic receptors belong to the G-protein-coupled receptor (GPCR) 

family that can exist as homo- or heterodimers with each subunit being composed by a 

long extracellular region at the N-terminal domain, seven transmembrane domains and a 

C-terminal portion in the intracellular side that is necessary for the coupling to second 

messenger systems via heterotrimeric G-proteins. mGlu receptors consist in eight different 

subtypes classified in three different groups: group I (mGluR1,5), group II (mGlu2,3) and 

group III (mGluR4,6,7,8). Group I receptors are coupled to Gq/G11 proteins and stimulate 

phospholipase C (PLC), leading to a subsequent increase in diacylglycerol (DAG) and 

inositol 3 phosphate (IP3) production, elevation of intracellular Ca2+ and activation of 

protein kinase C (PKC). In addition, they also induce phosphorylation of the extracellular 

signal-regulated kinase (ERK) both in a transient manner, dependent on PLC activity, and 

in a sustained manner, induced by b-arrestin. As for their localization, they are 

predominantly expressed at postsynaptic sites but their presence on presynaptic nerve 

terminals, where they regulate neurotransmitter release, has been also demonstrated 

(Raiteri, 2008; Pittaluga, 2016). Group II and Group III receptors are associated with Gi/Go 

proteins and inhibit adenylate cyclase (AC), causing a cAMP reduction and inactivation of 

PKA (Suh, 2018). They are localized at presynaptic level; in particular Group II mGlu 

receptors are located away from the glutamate release sites, whereas Group III mGlu 

receptors are typically localized at the presynaptic active zones and act as autoreceptors by 

inhibiting glutamate release (Shigemoto et al., 1997; Pinheiro & Mulle, 2008; Niswender 

& Conn, 2010; Nicoletti et al., 2011).  

Glutamate signaling is then terminated mainly by its neuronal and astrocytic reuptake 
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operated by five different transporters that in humans are named EAAT1-5 (Excitatory 

Amino Acid Transporters), while in rodents the nomenclature is GLAST 

(Glutamate/Aspartate Transporter), GLT1 (Glutamate transporter 1), EAAC1 (Excitatory 

Amino Acid Carrier 1). 

EAAT1/GLAST and EAAT2/GLT1 are predominantly localized on astrocytes in many 

regions of the CNS but are also expressed in some neurons, EAAT3/EAAC1 is the neuronal 

transporter localized mainly to soma and dendrites, EAAT4 is almost exclusively present 

of cerebellar Purkinje cells and EAAT5 is confined to the retina with very low levels in the 

brain (Olivares-Banuelos, 2019). 

3.2. Excitotoxicity 

Among all the different mechanisms proposed for neurodegenerative processes in ALS, a 

large body of evidence indicates that excessive excitatory neurotransmission, a 

phenomenon known as excitotoxicity, plays a key role in the disease progression (Van Den 

Bosch et al., 2006; King et al., 2016).  

Excitotoxicity may occur due to an excessive increase of extracellular glutamate (but also 

other endogenous ligands such as aspartate or quinolinic acid) concentrations or following 

exposure to environmental neurotoxins, such as domoic acid or B-N-methylamino-L-

alanine (BMAA), that act as glutamate receptor agonists. On the other hand, excitotoxicity 

can be due to an abnormal responsiveness of the postsynaptic neuron to excitatory stimuli. 

In the first case, the glutamate excess can be caused by an increase in release or a reduction 

in re-uptake. In the second case, even if the neurotransmitter concentrations are sub-toxic, 

excitotoxicity may be mediated by an altered inhibitory transmission, a modified 

expression or function of the glutamatergic receptors, functional changes of ion channels 

or a varied cellular excitability. The excitotoxicity phenomena lead to neuronal death 

mainly by inducing a pathological increase in intracellular level of calcium that determines 

mitochondrial dysfunctions, oxidative and nitrosative stress, anomalous proteases, 
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phospholipases and/or endonucleases activation (Van Damme et al., 2005a). 

3.2.1 Direct excitotoxicity in ALS 

Elevated levels of extracellular glutamic acid were detected in plasma and CSF of patients 

with both familial and sporadic forms and it was found that glutamate reuptake was 

impaired due to a dramatic reduction in CNS levels of EAAT2, including the cerebral 

cortex and the spinal cord (Perry et al., 1990; Rothstein et al., 1990; Rothstein et al., 1995; 

Fray et al., 1998; Sasaki et al., 2000; Spreux-Varoquaux et al., 2002; Fiszman et al., 2010) 

and it has been hypothesized that such a reduction could be due to alterations of 

transcription, translation or post-translation mechanisms of EAAT2 expression, possibly 

caused by an aberrant processing of RNA synthesis or oxidative damage (Lin et al., 1998; 

Rao et al., 2003; Boehmer et al., 2006; Van Landeghem et al., 2006). It has to be noted that 

EAAT2, which is mainly present on astrocytes, is the most expressed during adult life and 

responsible for more than 90% of glutamate clearance at the synaptic level (Maragakis & 

Rothstein, 2004).  

In studies carried on in ALS animal models, it was found that  GLT1 (rodent  ortholog of 

human EAAT2) expression is remarkably reduced and its induced overexpression in 

SOD1G93A mice delayed the onset of the disease but did not prevent the fatal outcome 

(Bruijn et al., 1997; Howland et al., 2002; Guo et al., 2003). Moreover, the b-lactam 

antibiotic ceftriaxone was able to selectively increase GLT1 levels and its reuptake 

function, and when administered to SOD1G93A mice resulted in the delay of motor neuron 

loss and muscle strength but it did not prevent death, although it enhanced survival 

(Rothstein et al., 2005). Actually, a multi-stage, randomized, double-blind, placebo-

controlled, phase 3 clinical trial failed to show any beneficial effect in ALS patients 

(Cudkowicz et al., 2014).  

These results suggest that other neurotoxic mechanisms, in addition to impairment of 

glutamate reuptake, contribute to determine motor neurons death in ALS. This conclusion 
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is also supported by the observation that spinal infusion of GLT1 inhibitors does not result 

in significant neuronal death which, instead, occurs if they are administered in association 

with non-toxic glutamate doses (Hirata et al., 1997; Corona & Tapia , 2004; Tovar-Y-Romo 

et al., 2009; King et al., 2016).  

Beside decreased glutamate uptake, other studies have shown that also glutamate release is 

pathologically increased in ALS.  

The research group of Prof. Bonanno, with which I have collaborated as PhD student, 

demonstrated that the spontaneous release of glutamate from spinal cord nerve terminals 

(synaptosomes) was more elevated in pre-symptomatic (30 days of life) and symptomatic 

(70-90 and >130 days) SOD1G93A mice than in age-matched controls. In addition, the 

increase of glutamate release, induced by the activation of glycine/GABA hetero-

transporters, KCl-mediated depolarization or   ionomycin, was significantly more elevated 

in spinal cord synaptosomes obtained from pre-symptomatic and symptomatic SOD1G93A 

mice than in controls (Raiteri et al., 2003, 2004, 2005; Milanese et al, 2011; Bonifacino et 

al, 2016). Further insights into the molecular mechanisms have demonstrated that, at the 

synaptic bouton level, ALS transgenic mice showed higher cytosolic Ca2+ concentrations, 

increased activation of calcium-calmodulin dependent kinase II (CaMKII) and augmented 

phosphorylation of synapsin-I and glycogen synthase kinase-3; moreover, an increased 

number of SNARE complexes, together with enhanced expression of synaptotagmin-I and 

b-actin were observed in SOD1G93A spinal cord nerve terminals. All these factors are 

known to favour neurotransmitter exocytosis and fit well with the functional observation 

that the boosted glutamate release in this ALS model is likely due to the increased size of 

the vesicle ready-releasable pool of glutamate (Milanese et al., 2011; Bonifacino et al., 

2016). These results are also in agreement with data showing that genetic reduction of the 

expression of the vesicular glutamate transporter 2 (VGLUT2), which is responsible for the 

storage of glutamate into synaptic vesicles competent for exocytotic release, in ALS mice 
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that was able to protect motor neurons in the spinal cord and brain stem, as well as 

neuromuscular junctions (Wootz et al., 2010). However, despite the obvious reduction of 

glutamate release, this procedure neither affected disease onset nor increased lifetime, thus 

further indicating that the abnormal release of glutamate is not the only cause of 

degeneration in ALS.   

In addition to alterations of endogenous glutamate levels, direct excitotoxicity in ALS 

could also be linked to environmental factors, such as bacteria-produced toxicants that can 

contaminate different freshwater, marine and terrestrial habitats. Indeed, following the 

observation of a high incidence in the Chamorro population of the pacific island of Guam 

of what has been named the ALS/PD complex (also known as Guam disease), data have 

accumulated suggesting that the neurotoxic amino acid β-methyl-amino-L-alanine 

(BMAA), which is produced by symbiotic cyanobacteria, can activate NMDA, AMPA and 

mGlu5 receptors and induce oxidative stress. Human exposure to this neurotoxin could be 

an environmental factor that increases the risk of developing ALS and other 

neurodegenerative diseases (Bradley & Mash, 2009; de Munck et al., 2013; Stommel et al., 

2013; Sher, 2017; Cox et al., 2018; Lance et al., 2018). As a matter of fact, significant 

levels have been measured in CNS tissues of North American ALS patients (Pablo et al., 

2009) and exposure to BMAA, following  cyanobacteria blooms, may represent a risk 

factor for ALS in different populations (Sabel et al., 2003; Field et al., 2013; Torbick et al., 

2014). 

 

 3.2.2 Indirect excitotoxicity 

Several studies suggested that AMPA receptors may have an excitotoxic role in ALS. Both 

in vitro and in vivo studies have shown that motor neurons are more sensitive to toxic 

effects of the AMPA/kainate agonist kainic acid (Rothstein et al., 1993; Carriedo et al., 

1996; Ikonomidou et al., 1996 ; Bar-Peled et al., 1999; Sun et al., 2006; King et al., 2016), 
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an effect that could be due to low levels of the GluA2 subunit in the composition of the 

receptor. In fact, it has been amply demonstrated that with this subunit in the tetrameric 

composition of the AMPA receptor, the channel is permeable to sodium ions, while its 

absence leads to the entrance of calcium ions causing cytotoxic effects linked with an 

excessive increased in intracellular Ca2+ concentration. It was observed that in ALS patient 

primary and secondary motor neurons have a reduced expression of the GluA2 subunit 

compared to other neuronal populations (Tomiyama et al., 1996; Shaw et al., 1999; 

Takuma et al., 1999). Interestingly, expression of GluA2 subunits with reduced calcium 

permeability in SOD1G93A significantly delayed disease onset and mortality, whereas the 

genetic ablation of the GluA2 subunit in these mice increased motor neuron degeneration 

and shortened survival (Tateno et al., 2004; Van Damme et al., 2005b). At variance with 

these evidences, no changes in the expression levels of the GluA2 subunit were observed 

in another mouse model of ALS (G86R SOD1; Morrison et al., 1998). 

Impairment of the post-transcriptional GluA2 Q/R editing process, which produces sodium 

permeable, calcium impermeable AMPA receptors, has been also involved in ALS. This 

mRNA editing process is mediated by the action of the ADAR2 (Adenosine Deaminase 

Acting on RNA), an enzyme that transforms the adenosine of mRNA into inosine, thus 

leading to the expression of arginine instead of glutamine in the second transmembrane 

domain of the GluA2 subunit. Under physiological conditions, it has been estimated that 

less than 1% of AMPA receptors throughout the CNS are unedited and, therefore, 

permeable to calcium (Kawahara et al., 2003). 

In this view, it has been reported that ADAR2 mRNA expression is reduced in the gray 

matter of the ventral spinal cord and in motor neurons of patients with sporadic ALS and 

when silenced in motor neurons of mice an ALS-like phenotype could be observed 

(Takuma et al., 1999; Kawhara et al., 2004; Kwak & Kawahara, 2005; Aizawa et al., 2010; 

Hideyama et al., 2010; Kwak et al., 2010). However, such ADAR2 alterations in GluA2 
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editing are not observed in SOD1 mice and rats (Kawahara et al., 2006).  

3.3 Role of group I metabotropic glutamate receptors in neurodegeneration/ 

neuroprotection  

While initial preclinical studies showed that, besides iGluRs, activation of group I 

glutamate metabotropic receptors mGlu1 and mGlu5 was involved in mediating the 

excitotoxic effects of abnormal glutamatergic neurotransmission characterizing almost all 

neurodegenerative disorders, it is now clear that the activation of these receptors can cause 

neurotoxic or neuroprotective effects, thus making the biological scenario on their roles in 

neurodegenerative disorders much more complex. Indeed, the new concept of “ligand 

bias”, which applies to many GPCRs, add further complications to a clear-cut picture of 

the effects of mGluR1/5 under pathological conditions (Rajagopal et al., 2010; Bruno et 

al., 2017). The ligand bias implies that a GPCR can signal by activating its classical G-

protein linked effectors (i.e. PLC, IP3 and DAG) or by stimulating a non-canonical 

GRK/b-arrestin dependent pathway (e.g. MAPK, PI3K, AKT), and a given receptor 

agonist can cause neurotoxicity by activating the PLC pathway linked to calcium 

mobilization, while another agonist is able to confer neuroprotection through stimulation 

of the other pathway (e.g. MAPK).  

Finally, it has to be taken into account that mGluRs are present also on glial cells that, 

therefore, can have a significant influence on the overall effect of a selective agonist on 

neurotoxicity or neuroprotective mechanisms.  

With this premise in mind, several preclinical studies have evaluated the role of mGluR1/5 

in different models of neurodegenerative disorders. 

A large number of in vivo and in vitro studies have shown that selective mGluR1 

antagonists have a protective activity against hypoxia-induced and ischemia-induced 

neuronal damage (De Vry et al., 2001; Cozzi et al., 2002; Meli et al., 2002; Moroni et al., 
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2002; Pellegrini- Giampietro et al., 2003; Makarewicz et al., 2006; Kohara et al., 2008; 

Murotomi et al., 2008, 2010; Landucci et al., 2009).  

In rats with induced transient global ischemia, mGluR1 antagonists were able to protect 

CA1 pyramidal neurons of the hippocampus from ischemic damage and neuroprotection 

was likely mediated by the increase in GABA release from interneurons (Cozzi et al., 

2002). On the other hand, Murotomi and collaborators (2008) have suggested that the anti-

ischemic effects of mGluR1 antagonists were due to the decrease of tyrosine 

phosphorylation of the NMDA receptors. Interestingly from a mechanistic point of view, it 

has been shown that the activation of the mGluR1 stimulates the production of DAG that is 

converted by a DAG lipase into the endocannabinoid 2-arachidonoylglycerol (2-AG). 2AG 

then diffuses back to the presynaptic terminal and activates the cannabinoid receptor type 1 

(CB1), which in turn inhibits GABA release. Therefore, mGluR1 antagonists would cause 

neuroprotection by reducing the increase in 2-AG produced during ischemia and favouring 

the release of GABA (Landucci et al., 2009).  

The role of mGluR5 in ischemic neurodegeneration has been more debated, although it is 

well known that these receptors are physically and functionally coupled to NMDA 

receptors and their antagonism results in neuroprotection against NMDA neurotoxicity. A 

first study on transient forebrain ischemia in the gerbil has found that the selective 

mGluR5 negative allosteric modulator MPEP significantly protected neurons from death 

(Rao et al., 2000). In a model of a 2-hour transient focal ischemia, both MPEP and the 

selective mGluR5 agonist CHPG reduced the brain damage when administered soon after 

the induction of ischemia but no significant neuroprotection was observed when given 

after reperfusion. On the basis of in vitro data, it was concluded that MPEP neuroprotective 

effects appeared to be due to its antagonistic activity at NMDA receptors, whereas the 

agonist CHPG might have activated anti-apoptotic pathways (Bao et al., 2001). However, 

in another study no neuroprotection by MPEP was observed (Meli et al., 2002). Recently, 
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using an in vitro model of cerebral ischemia, it has been reported that mGluR5, but not 

mGluR1, positive allosteric modulators (PAM) significantly protected hippocampal 

neurons from ischemic-induced death by activating the PI3K/Akt pathway and reducing 

the down-regulation of the GluA2 AMPA receptor subunit (Cavallo et al., 2019). 

Reducing the mGluR5 activation seems also a promising neuroprotective strategy in 

Parkinson’s disease. In fact, administration of MPEP has been shown to reduce the 

methamphetamine-induced toxic effects on striatal dopaminergic nerve terminals as well as 

the loss of dopaminergic neurons in rats and mice treated with MPTP or 6-OHDA, a result 

that has been replicated also with the genetic deletion of mGluR5; similar results have 

been obtained with other mGluR5 NAMs (Bruno et al., 2017 and references therein). 

mGluR5 are also involved in the pathological processes leading to Alzheimer’s disease 

(AD). In fact, these receptors have been found to mediate the synaptotoxic effect of b-

amyloid oligomers on the synaptic plasticity phenomena of LTP and LTD, thus disrupting 

memory formation and consolidation, and mGluR5 NAMs or genetic deletion are able to 

prevent such dysfunctions (Bruno et al., 2017 and references therein). However, increasing 

evidence indicate that mGluR5 positive allosteric modulators (PAMs) have beneficial 

effects on memory deficits that could be exploited for the symptomatic treatment of AD 

(Bruno et al., 2017). Therefore, targeting mGlu5 receptors as a novel therapeutic strategy 

in this neurodegenerative pathology could be difficult to pursue.  

3.4 Group I metabotropic receptors in ALS 

Under physiological conditions, both group I  subtypes are expressed in human spinal cord 

neurons. mGluR1 immunolabeling has been observed on neurons, including motor 

neurons, in both the dorsal and ventral horns, with a more intense localization in the latter; 

similarly, mGluR5 immunoreactivity was present in both areas, but the strongest signal 

was present in the dorsal horns (Aronica et al., 2001). In both FALS and SALS patient 
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spinal cord, a decreased neuronal immunoreactivity was evident but the overall distribution 

of the two receptor subtypes was comparable to controls. Besides neurons, these receptors 

are also expressed by glial cells in the spinal cord of control subjects, although to a low 

level, but they show an important upregulation in reactive spinal cord glial cells of  ALS 

patients (Aronica et al., 2001). A recent PET study has reported a consistent increase of 

mGluR5 binding signal in the striatum, hippocampus and frontal cortex of SOD1G93A mice, 

with an average increase of approximately 50% in whole brain that was further enhanced 

(23%) during progression of the pathology; the receptors increased also in the spinal cord, 

although to a lesser extent (Brownell et al., 2015). Moreover, prolonged treatment of 

cultured motor neurons and reactive astrocytes with MPEP reduced the experimental 

AMPA-mediated neurotoxicity, an effect that was absent when motor neurons were co-

cultured with a reduced number of astrocytes, thus indicating a key role of these latter cells 

in the excitotoxic effects of mGluR5 (D’Antoni et al., 2011). Neuroprotection by systemic 

treatment with MPEP has also been demonstrated in SOD1G93A mice which showed 

delayed disease onset, slower astrocytic degeneration and a slight increase of their lifespan 

(Rossi et al., 2008). 

Although group I mGluRs have been long considered as post-synaptic receptors, several 

studies have demonstrated their presence also onto presynaptic nerve terminals where they 

induce the release of neurotransmitters, including glutamate, thus acting as positive 

feedback autoreceptors (Gereau & Conn, 1995; Chu & Hablitz, 1998; Chen & van den Pol, 

1998; Schwartz & Alford, 2000; Marino et al., 2001; Muly et al., 2003; Tan et al., 2003; 

White et al., 2003; Park et al., 2004; Luccini et al., 2007; Musante et al., 2008; Pittaluga, 

2016; Raiteri 2008; Xie et al., 2017; Vergassola et al., 2018) 

Professor Bonanno’s research group investigated the modulation of glutamate release by 

the activation of Group I metabotropic glutamate receptors in the SOD1G93A murine model 

of ALS at the late phase of the pathology corresponding to 120 days in comparison with 
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age-matched SOD1 mice. Using lumbar spinal cord synaptosomes in superfusion, they 

tested different concentrations of 3,5-DHPG (from 0,001 to 30 µM) and the results showed 

that low concentrations of the agonist (£ 0,3 µM) enhanced the basal release of glutamate 

in SOD1G93A but not in control mice demonstrating that group I metabotropic autoreceptors 

were much more active in pathological conditions; higher concentrations potentiated the 

basal release both in ALS and control animals. Experiments with selective antagonists for 

the two different subtypes (i.e. MPEP and CPCCOEt) showed both receptors were 

involved in the enhancement of glutamate release by high 3,5-DHPG concentrations 

whereas mGluR5 was preferentially involved in the high potency effects and its expression 

level was also 50% increased in SOD1G93A mice, as assessed by western blot analysis. 

Furthermore, using immunocytochemistry techniques and confocal microscopy analysis, 

they demonstrated that in mGluR1 and mGluR5 were co-localized onto spinal cord 

synaptosomes (Giribaldi et al., 2013). In a subsequent study, they reported that the genetic 

knocking down of mGluR1 in SOD1G93A mice, resulting in 50% decrease of the receptors, 

caused a significant reduction of motor neurons loss in the lumbar spinal cord that was 

associated to improved motor performances, delayed the onset of clinical symptoms, 

slowed disease progression and increased survival (Milanese et al., 2014). A more detailed 

analysis also showed that these mice had lower levels of damaged mithocondria, reduced 

oxidative stress, decreased activated astrocytes and microglia and a normalization of 

glutamate release. Interestingly,  this genetic halving of mGluR1 also induced a significant 

reduction of mGluR5 expression. Finally, the mechanisms leading to the amelioration of 

the disease picture in these mutant mice was demonstrated to be independent of GLT1 

because no modifications in its expression were found in the spinal cord (Milanese et al., 

2014). 

Using the same genetic approach, it has been reported that 50% reduction of mGluR5 in 

SOD1G93A mice also led to preservation of motor neurons, a significant decrease of 
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astrocytosis and microgliosis, possibly diminishing neuroinflammation, normalization of 

intracellular calcium concentrations and glutamate release. These changes were paralleled 

by a  significant delay in the onset of clinical symptoms, an improvement in disease 

progression and a significant increase of lifespan (Bonifacino et al., 2017). Surprisingly 

enough, halving mGluR5 expression slowed down the motor symptoms only in males 

mice, but  it is worth noting that SOD1G93A females had baseline motor performances 

higher than males, which could have minimized the beneficial effects of the mGluR5 

genetic down regulation. At variance with what was observed in the previous study on 

mGluR1 ablation, halving mGluR5 expression did not affect mGluR1 (Bonifacino et al., 

2017). However, complete ablation of mGluR5 in SOD1G93A resulted in the same 

beneficial biochemical and clinical effects reported above both in males and females; on 

the contrary, mGluR1 knocking out produced a very negative phenotype, characterized by 

reduced dimensions, ataxia, progressive motor deficits and early death (Bonifacino et al., 

2019a).   
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4 

CELL TO CELL COMMUNICATION  

AND EXTRACELLULAR VESICLES 

 

During my PhD, I spent three months for a research stage at Département de Physiologie, 

Université de Lausanne, in the laboratories directed by Prof. Rosa Chiara Paolicelli. 

During this period, I carried out a pilot project on the role of astrocytes-derived exosomes 

on microglial activation. 

Cell to cell communication can occur through direct contact between cells or by paracrine 

action mediated by secreted molecules or organelles, including extracellular vesicles 

(EVs), and different types of neural cells are largely involved in this novel mechanism of 

intercellular communication both under physiological and pathological conditions 

(Frühbeis et al., 2013). 

4.1 Extracellular vesicles  

EVs are a heterogeneous population of membrane structures with the classical 

phospholipid bilayer, secreted by different cell types, released in the extracellular space 

and they play a pivotal role in intercellular communication (Abels & Breakfield, 2016; 

Paolocelli et al., 2019; Smith et al., 2015). EVs are classified on the basis of their origin 

and size in three main categories: 

- Exosomes (30 - 150 nm): they have an endocytic origin, deriving from the inward 

budding of the limiting membrane of multi-vesicular bodies and could be degraded 

through fusion with lysosomes or released in the extracellular space upon fusion with the 

plasma membrane (Colombo et al., 2014; György et al., 2011). Exosomes are released by 

practically all healthy cells. Commonly they are enriched in proteins, such as flotillin and 

Alix, that are normally used as exosome markers. Tetraspanins (e.g. CD63, CD81, CD9) 
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are a family of membrane proteins known to cluster into microdomains at the plasma 

membrane. These proteins are abundant in exosomes and used as well as specific marker.  

- Microvesicles or ectosomes (MVs; 50 nm - 1 μm): they originated from the outward 

budding of plasma membrane. Their release occurs in physiological conditions or after 

specific stimuli, such as ATP. 

- Apoptotic bodies (50 nm - 5 μm): dimensionally, they are the largest vesicles produced by 

cells and their release is linked to the apoptosis process of the cells. 

 

                               Extracellular vesicles classification. 
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In the last decade, some oncologist described specific EVs derived from cancer cells, 

having 1 - 10 μm dimension, called oncosomes (Al-Nedawi et al., 2008; Minciacchi et al., 

2015). 

EVs have been isolated from biological fluids using a variety of methods, such as 

ultracentrifugation, ultrafiltration and immunologically-based separation by means of 

magnetic beads (Momen-Heravi et al., 2013; Konoshenko et al., 2018). 

Extracellular vesicles are secreted by progenitor cells, of which they maintain some similar 

characteristics (for example the lipid membrane), and are able to elicit diverse responses in 

recipient cell types. Indeed, once released, they exert their effects on specific recipient 

cells, after being taken up. Uptake mechanisms include endocytosis, fusion with the 

plasma membrane of recipient cells or uptake through specific surface proteins binding 

(i.e. tetraspanins). They can transport bioactive molecules to the target cells, such as 

specific proteins, lipids, messenger RNA, non-coding RNA and genomic DNA (Théry et 

al., 2002; Henderson & Azorsa, 2012; Rufino-Ramos et al., 2017). EVs content is 

protected from the RNAse digestion thanks to the lipid coating and could be internalized 

by recipient cells acting also on specific cells functions (Mulcahy et al., 2014). In addition, 

the presence of the lipid membrane confers stability in the bloodstream, protection against 

the immune system and facilitate the transition through physiological barriers, such as the 

BBB (Rajendran et al., 2014; Rufino-Ramos et al., 2017). RNA transported by EVs can 

modulate gene expression in recipient cells, where mRNA is translated in new proteins and 

can also inhibit the expression of other proteins (Skog et al., 2008; Zhang et al., 2010).  

All brain cells (neurons, astrocytes, microglia and oligodendrocytes) can release EVs 

(Fauré et al., 2006; Taylor et al., 2007; Krämer-Albers et al., 2007; Bakhti et al., 2011; 

Hooper et al., 2012; Glebov et al., 2015). In neurons, there were evidences of the 

involvement of glutamate in the regulation of EVs release (Lachenal et al.,2011).  
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There are controversial evidences about the role of EVs in brain disease: they can play the 

important role of removing toxic proteins and aggregates from releasing cells or they can 

contribute in the spreading of the pathology, transferring their cargo of toxic elements to 

healthy cells (Croese & Furlan, 2018).  

EVs may also represent specific biomarkers for neurodegenerative diseases, since they are 

released in the extracellular space in the brain and can be found in biological fluids, such 

as blood (Garcia-Contreras et al., 2017). The possibility to evidentiate suitable biomarkers 

could lead to early diagnosis and systemic monitoring of the progression of the disease, for 

instance in clinical trials. 

Once their release from neural cells was documented, EVs were studied as a potential 

source of information about neural cells involved in the pathogenesis of neurodegenerative 

disease (Scolding et al., 1989; Rajendran et al., 2006; Verderio et al., 2012). Furthermore, 

besides neurons, astrocytes, microglia and oligodendrocytes, blood-infiltrating cells, which 

contribute to neuroinflammation during neurodegenerative processes, can also represent 

another source of EVs.  

However, many aspects of EVs still remain unknown, such as what kind of vesicles have 

the ability to move into the biological liquids, why they are released, which types of 

message they carry and which are the target cells.  

Despite the lack of information, extracellular vesicles may represent a novel therapeutic 

approach in brain diseases and a way to deliver drugs to specific targets.  

Interestingly, it is also possible to engineer the surface of EVs with a small peptide derived 

from the rabies virus glycoproteins to better pass the BBB (Kumar et al., 2007). An 

alternative way to reach the brain is the intranasal administration of exosomes, an 

administration route tested in a Parkinson’s disease animal model that showed 

neuroprotective effects (Haney et al., 2015).  
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The research on the therapeutic use of EVs concentrated the efforts on the possibility to 

load them with therapeutic elements. The internalization of specific molecules can be 

performed by incubation with drugs or transfection with specific miRNA (Pascucci et al., 

2014; Kosaka et al., 2010). However, the most common method is the drug-loading 

through passive or active incubation (Ingato et al., 2016). Among the active loading 

strategies, electroporation was demonstrated to maintain the integrity of EVs (Kooijmans 

et al., 2013). Other approaches are incubation at room temperature, permeabilization with 

saponin, freeze-thaw cycles and sonication. 

The wide range of EVs content identified may have numerous applications in the treatment 

of brain diseases, also because their use could be safer than the use of the progenitor cells. 

For example, mesenchymal stem cells are the progenitor cells most commonly used in 

therapy, but since they are able to differentiate in-vivo they can exhibit undesirable effects 

(Rani et al., 2015). 

4.2 Extracellular vesicles as therapeutic agents 

Many studies have focused on EVs as potential tools for therapeutic intervention in 

neurological and neurodegererative diseases (Croese & Furlan, 2018), which are reported 

in the following sections.  

4.2.1 Alzheimer’s disease 

Alzheimer’s disease is a progressive neurodegenerative disease characterized by dementia, 

memory and cognitive decline and affects 35 millions of people usually after 65 years old, 

with a 2/3 incidence in women (Brookmeyer et al., 2011). The main features of this 

pathology are the presence of extracellular amyloid senile plaques, intracellular 

neurofibrillary tangles containing abnormally phosphorylated tau protein, 

neuroinflammation, excessive microglia activation and the downregulation of pre- and 

post-synaptic proteins that lead to neurodegeneration (Reddy et al., 2005). 
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As in other brain pathologies, there are evidences regarding the dual role of EVs, both 

beneficial or detrimental, also in AD. Particular attention was given to the discovery of 

proteins and peptides associated with AD, such as Amyloid Precursor Protein (APP) and β-

amiloid (Aβ), in association with exosomes. In addition, also exosomal specific proteins, 

such as flotillin, have been found in Aβ plaques (Agosta et al., 2014; Rajendran et al., 

2006; Vingtdeux et al., 2007; Sharples et al., 2008; Perez-Gonzalez et al., 2012).  

Another protein involved in Alzheimer etiology is Tau and there are several studies 

demonstrating that it spreads via exosome secretion and that the inhibition of EVs release 

significantly reduces Tau propagation both in vitro and in vivo (Asai et al., 2015). In vitro 

studies demonstrated that EVs derived from Aβ-stimulated astrocytes and from Tau-treated 

microglia are involved in Aβ aggregation and Tau propagation, respectively (Asai et al., 

2015; Dinkins et al., 2016; Fiandaca et al., 2015; Xiao et al., 2017). 

4.2.2 Parkinson’s disease 

Parkinson’s disease is a progressive neurodegenerative disorder especially, but not 

exclusively, affecting movements. In general, the main cardinal symptoms of this disease 

resting tremors, bradykinesia/akinesia and muscle stiffness (rigidity) that are caused by the 

progressive loss of dopaminergic neurons in the substantia nigra pars compacta due to 

different mechanism of cellular toxicity, including excitotoxicity, mitochondrial 

dysfunctions and oxidative stress. Another main pathological characteristic of PD is the 

accumulation of insoluble alpha-synuclein protein in neurons (Capriotti & Terzakis, 2016). 

Similarly to what reported for AD, alpha-synuclein oligomers associated with EVs can 

enter in the recipient cells inducing a more serious toxicity compared to EVs free from 

alpha-synuclein oligomers, contributing with this mechanism to Parkinson’s spreading 

(Emmanouilidou et al., 2010; Danzer et al., 2012; Chang et al., 2013). 
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4.2.3 Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic, autoimmune and inflammatory neurodegenerative 

disease destroying myelinated axons in the central nervous system. There are three main 

forms of MS that are classified as relapsing-remitting (RRMS), primary progressive 

(PPMS) and secondary progressive (SPMS). The most common form is the RRMS that 

affects 80-85% of patients, followed by SPMS, whereas PPMS affects 15% of patients 

(Thompson et al., 2018).  

Due to the important role of EVs in immune regulation, the growing interest of their 

involvement in MS is not surprising. In this scenario, endothelial and platelet-derived 

extracellular vesicles from MS patients have been shown to increase the permeability of 

endothelial layers, suggesting their involvement in the disruption of the BBB (Sheremata et 

al., 2008; Marcos-Ramiro et al., 2014; Alexander et al., 2015).  

One of the most used animal model for Multiple Sclerosis is the Experimental 

Autoimmune Encephalomyelitis (EAE) mouse (Constantinescu et al., 2011). The brain 

injection of microglia-derived exosomes in EAE mice resulted in enhanced inflammation 

and exacerbated disease (Jy et al., 2004). It has been reported that EVs are higher in MS 

patients than controls and that their level in plasma or CSF was shown to reflect disease 

progression, but the molecular mechanisms remain unknown. In accordance with these 

results, mice in which the secretion of microvesicles was inhibited were more resistant to 

EAE (Verderio et al., 2012).  

4.2.4 Amyotrophic Lateral Sclerosis 

As largely reported in the first part of this thesis, ALS is a multifactorial and multicellular 

neurodegenerative disease characterized by upper and lower motor neurons death.  

In experiments with the Neuro2a cell line and with primary neurons, TDP- 43 was detected 

in exosomes isolated from the brain, but not in those released by astrocytes or microglia. 

The exposure of Neuro2a cells to ALS brain-derived exosomes caused cytoplasmic 
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redistribution of TDP-43, while the exposure to EVs from control brain did not, suggesting 

that the formers can contribute to propagation of the TDP-43 proteinopathy (Iguchi et al., 

2016).  

In a recent study, EVs progenitor cells were transfected with mutant SOD1G93A protein and 

the effects of their derived exosomes (mSOD1 exosomes) were studied on the recipient N9 

microglial cell line. The activation and polarization of microglia toward a mixed pro- and 

antiinflammatory phenotype was detected (Pinto et al., 2017). 

Although both exosomes and MVs can transfer biological information between cells, most 

of the studies on the potential therapeutic role of EVs and ALS have been focused on the 

use of exosomes since they are the smallest EVs and they are able to cross the BBB 

(Bonafede & Mariotti, 2017). Bonafede and colleagues demonstrated that exosomes 

derived from adipose stromal cells may increase NSC-34 cell line viability, protecting from 

oxidative damage, which is one of the main neurotoxic mechanism of ALS (Bonafede et 

al., 2016). Moreover, it has been shown that exosomes derived from adipose stromal cells, 

which are considered to possess therapeutic effects in neurodegenerative diseases, were 

able to ameliorated the aggregation of SOD1 in neurons derived from SOD1G93A mice (Lee 

et al., 2016).  

Other studies have demonstrated that, besides micropinocytosis of free aggregates, 

misfolded SOD1 can propagate into recipient cells also both through an exosome-

dependent mechanism (Silverman et al., 2016) and CNS-derived EVs are mainly secreted 

by astrocytes and neurons, rather than by microglia, both in normal and SOD1G93A mice 

(Silverman et al., 2019). In particular, it has been shown that astrocytes-derived EVs 

spread SOD1 to spinal neurons, thus inducing motor neuron death (Basso et al., 2013).  

In addition to TDP-43 and SOD1, other relevant abnormal for ALS have been 

characterized in EVs, such as FUS and C9Orf72, as well as non-coding miRNAs 

characteristic for the pathology.  
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4.3 Neural cells producing EVs 

Microglial cells represent the CNS resident macrophages involved in the maintenance of 

brain homeostasis, repair and defense during insults. Microglial release vesicles (0,1 – 1 

µm) with high level of phosphatidylserine on the surface. When stimulated with ATP, 

microglia released EVs containing pro-inflammatory cytokines (Bianco et al., 2005). These 

microglial EVs carry inflammatory messages to recipient microglia or neurons, causing in 

the latter an increased spontaneous and evoked excitatory transmission through the 

induction of ceramide and sphingosine synthesis that augments release probability 

(Verderio et al., 2012; Antonucci et al., 2012; Turola et al., 2012).  

Under pathological conditions, microglia switch from a surveying ramified state into an 

activated amoeboid state and migrates to the lesion site, blocking the spread of the damage 

(Davalos et al., 2005; Teeling & Perry, 2009). Activated microglia is involved in 

neurogenesis as well as in neurotoxic effects. The activation state can vary between the 

classical activated M1 phenotype, with pro-inflammatory characteristics, and the 

alternative M2 state with antiinflammatory characteristics (Tejera & Heneka, 2016). The 

two phenotypes are not clearly separated. 

Astrocytes are present throughout the brain tissue and are constitutive part of the BBB; 

besides their well-known trophic role to neurons, we now know that they actively 

participate in cell-to-cell signaling by releasing gliotransmitters and also take part to repair 

processes. Similarly to microglia, they can display two activation states, A1 and A2. They 

release EVs with a size of 8 μm or more and also in this case the process can be evoked by 

ATP stimulation (Bianco et al., 2009). Due to the large dimensions, these EVs can carry 

also entire mitochondria but they have heterogeneous composition and can produce both 

positive or negative effects (Falchi et al., 2013). In AD, ALS and HIV, it has been reported 

that they can negatively contribute to the disease processes by spreading the pathology 

(Wang et al., 2012; Basso et al., 2013). 
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In the CNS, oligodendrocytes have long been known to provide to neuronal axons with the 

myelin sheath to speed up the transmission of action potentials along the axons. Besides 

this role, it is now clear that they are also crucial in providing trophic support to neurons to 

maintain axon integrity (Nave & Trapp, 2008). It has been reported that such a function 

may depend on exosome transfer from oligodendrocytes to neurons triggered by 

neurotransmitters, in particular glutamate acting at AMPA and NMDA receptors (Frühbeis 

et al., 2013). On the other hand, oligodendrocyte-derived exosomes were observed to 

negatively regulate myelin synthesis in an autocrine manner under control of neurons 

(Bakhti et al., 2011).  

4.4 Cross-talk between microglia and astrocytes 

Microglia and astrocytes take active part in various pathological brain conditions, such as 

trauma and neurodegenerative disorders, and their activation is proportional with the 

development of diseases. Astrogliosis consists in the activation and increase in the number 

of astrocytes to minimize and repair damages (Osborn et al., 2016). Similar modifications 

take place during microglia activation. 

Increasing evidence support the existence of a bidirectional relationship between the 

activation of astrocytes and the recruitment of microglia (Liu et al., 2011; Jha et al., 2019). 

Although the cross-talk between astrocytes and microglia is a well-documented process 

and profoundly influence reciprocally the features of the two cell populations, the two 

distinct activations seem to occur with a spatially and temporarily delay from each other 

and there is a general consensus that microglia is activated first and promotes astrocytic 

activation (Liu et al., 2011).  

The time-course of microglia and astrocytes activation depends on the neurodegenerative 

disease considered for example. In the EAE animal model of MS, microglial cells 

proliferate at the initial stage while astrocytes activation occurs at the late stage of the 

disease (Matsumoto et al., 1992). Similarly, astrocytes activate subsequently to microglia 
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in AD (Frautschy et al., 1998; Gatan & Overmier, 1999). Diminishing reactive gliosis in a 

mouse model of AD led to migration of microglial cells in plaques and increased the 

expression of microglia markers (Kraft et al., 2013), whereas activated astrocytes 

suppressed the recruitment of microglia (Pekny et al., 2014).   

There is also evidence for the role of the released inflammatory molecules produced and 

released by M1 microglia on GFAP-positive and negative astrocytes that, in turn, release 

other molecules that cause an increased in microglia activation, thus triggering a vicious 

circle. Proinflammatory cytokines, in particular interleukin-1 (IL-1) produced by activated 

microglia, may facilitate astrocytes activation (Herx et al., 2000; Herx & Yong, 2001). The 

pivotal role of IL-1 is due to its fast release in pathological conditions and to its ability in 

upregulating other inflammatory cytokines, such as IL-6 and tumor necrosis factor alpha 

(TNF-α; John et al., 2005). It was reported that IL-1 produces astrocytes activation, but it 

manifests also a protective role (John et al., 2004).  

Once astrocytes are activated, the cytosolic Ca2+ concentration increases and propagates 

among astrocytes in form of calcium waves. Following an insult and upon the increase of 

Ca2+ concentration, astrocytes releases ATP, leading to microglia activation and causing 

rapid changes in microglial morphology and migration, also suggesting that the calcium 

waves can also spread to microglia (Verderio & Matteoli, 2001; Schipke et al., 2002; 

Davalos et al., 2005).  

Astrocytes-derived ATP can promote microglia activities, enhancing also EVs formation 

and release by microglia and inducing phagocytosis (Bianco et al., 2005, 2009; Dou et al., 

2012; Sieger et al., 2012; Domercq et al., 2013).  

EVs released by microglia under ATP stimulation induced a strong inflammatory reaction 

in glial cells (Verderio et al., 2012). Moreover, ATP modified the EVs content of proteins 

implicated in adhesion and extracellular matrix organization, autophagy and cellular 

metabolisms, thus, affecting also astrocytes (Drago et al., 2017). Astrogliosis may improve 
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activation of distant microglia and inhibit its activities, decreasing for example NO, 

reactive oxygen species (ROS) and TNF-α production by microglia (Smits et al., 2001; von 

Bernhardi & Eugenín, 2004; Tichauer et al., 2007).  

Thus, the scenario of astrocytes and microglia cell-to-cell communication also by EVs 

release is quite complex and more studies are needed to better understand the 

pathophysiological functions and the mechanisms involved. 
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5 

AIM OF THE PROJECT 

 

All the results reported in the previous chapter have shown that glutamate 

neurotransmission by group I metabotropic receptors is altered in ALS and, therefore, these 

receptors could represent druggable targets for novel pharmacological strategies effective 

in the treatment of this neurodegenerative pathology. 

In particular, mGluR1 and mGluR5 feedforward autoreceptors modulating glutamate 

release from spinal cord nerve endings were found to be more active in SOD1G93A mice at 

the end stage of the pathology (120 days of age) than in control animals, suggesting that 

the abnormal release of glutamate induced by these receptors could participate in 

exacerbating excitotoxicity phenomena that contribute to the death of spinal MNs 

(Giribaldi et al., 2013). However, since these results were obtained at the end stage of the 

SOD1G93A pathology, it was not possible to evaluate whether the functional alterations of 

group I autoreceptors were a cause/concause or an effect of the disease.  

Therefore, in order to better understand the role of mGluR1 and mGluR5 in the 

development and progression of the disease, we analysed the effects of the selective 

agonist 3,5-DHPG on the release of glutamate through the activation of glutamatergic 

metabotropic autoreceptors of group I in the pre-symptomatic and subsequent phases of the 

pathology, corresponding to 30, 60 and 90 days of life of SOD1G93A mice. 

I carried out this project in collaboration with the research group of Prof. Bonanno, in 

particular with Dr. Claudia Rebosio and Dr. Tiziana Bonifacino. To study these 

phenomena, the model of the superfused synaptosomes was adopted, and western blot and 

confocal analysis were performed to analyse mGluR1 and mGluR5 expression in 

glutamatergic spinal cord synaptosomes from both WT and SOD1G93A. 



 60 

Another part of my thesis work has been dedicated to the possible cross-talk between 

astrocytes and microglia via exosomes and the role of mGluR5 in modulating this type of 

cell-to-cell communication. As a matter of fact, results obtained by the research group of 

Prof. Bonanno, in particular Dr. Francesca Provenzano, have shown that astrocytes treated 

with mesenchymal stem cell (MSC)-derived exosomes show a less noxious phenotype and 

can rescue MNs from death in mixed astrocytes/MNs co-cultures (manuscript in 

preparation). Thus, exosome-treated astrocytes can support MN viability directly by 

reducing the toxicity of the extracellular milieu or by transferring protective molecules to 

MNs by secreted exosomes. Besides this direct effect, astrocytes could indirectly improve 

MN viability by ameliorating the pro-inflammatory phenotype of microglia, which in turn 

can positively affect MNs.  

As previously reported, it was also showed that mGluR5 are up-regulated in SOD1G93A 

mice and abnormally stimulated glutamate release in the spinal cord of these animals 

(Giribaldi et al., 2013; Bonifacino et al., 2019a). Moreover, reduction of mGluR5 activity, 

by the genetic down-regulation of these receptors in-vivo ameliorated the progression of 

the disease in SOD1G93A mice (Bonifacino et al., 2018, 2019b). Interestingly, astrocytes 

derived from SOD1G93A with halved mGluR5 mice were able to reduce in vitro motor 

neuron death in comparison with astrocytes derived from SOD1G93A mice, and the 

exposure to a negative allosteric modulator of mGluR5 ameliorated the activation 

phenotype of astrocytes (manuscript in preparation). 

Therefore, for this part of the project, in the laboratory of Prof. Paolicelli, I set up a method 

to isolate extracellular vesicles secreted from cultured astrocytes and evaluated their 

characteristics and impact on microglia activation. In particular, I addressed whether the in 

vitro pharmacological antagonism of mGluR5 present on astrocytes could affect astrocyte-

released extracellular vesicles and influence the microglia activation state.  
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6 

METHODS 

 

6.1 Animals 

B6SJL-TgN SOD1/G93A(þ)1Gur adult mice with a high copy number of mutant human 

SOD1 carrying a Gly93Ala substitution [SOD1G93A] (Gurney et al., 1994) were obtained 

from Jackson Laboratories (Bar Harbor, ME, USA). Animals were bred in the animal care 

facility at the Department of Pharmacy (University of Genova, Genova, Italy) at constant 

temperature (22 ± 1°C) and relative humidity (50%), with a regular light–dark exposure 

(light 7 a.m.-7 p.m.). Food and water were available ad libitum.  

Transgenic animals for SOD1 gene were crossed with background-matched B6SJL wild-

type females to permit the maintenance of each transgene in the hemizygous state. Wild 

type (WT) non-transgenic animals have been used as controls in each experimental 

condition and both female and male mice were equally distributed in each series of 

experiments to limit possible gender influence. In general, death in transgenic mice 

occured between 120 and 140 days (late phase of disease). To collect the data regarding the 

time course of the pathology, animals were killed at 30, 60, and 90 days of life, 

corresponding to pre- (30 and 60 days) and early-symptomatic (90 days) stages of the 

disease. 

Experiments were carried out in accordance with the European Union Directive 

2010/63/EU for animal experiments and the ARRIVE guidelines, and were approved by 

the Ethical Committee of the University of Genoa (protocol n° 09/02/2016 OPBA). All 

efforts were made to minimize animal suffering and to use the minimal number of animals 

necessary to produce reliable results. 
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Similarly, the animals used in Lausanne were C57BL/6J wild-type mice and they were 

housed on a 12–12 h light cycle (lights on at 7:00) with food and water ad libitum. All 

procedures aimed to fulfill the criterion of the 3Rs and were approved by the Veterinary 

Offices of Vaud (Switzerland; license  VD3409). P2-P5 (postnatal day) were used for each 

experiments and all efforts were made to minimize the number of subjects used and their 

suffering.  

6.2 Animal genetic analysis   

Genotypization was performed on each animal of the colony to detect the presence of the 

mutant superoxide dismutase gene analyzing tissue extracts from tail tips. Tissues were 

manually homogenated in PBS Dulbecco, freeze-thawed twice and centrifuged at 23,000 x 

g for 15 minutes at 4°C. Then, each sample was added with a buffer solution containing 

40% glycerol, 250 nM Tris HCl (pH 6.8) and bromophenol blue. The technique consists in 

analyzing the samples by gel electrophoresis on a vertical polyacrylamide gel. After the 

electrophoretic run, gels were stained in a solution of 1 mg/ml of nitrotetrazolium blue for 

45 minutes. The gel was then immersed in a solution having the following composition: 

K2HPO4 36 mM (pH 7.8), TEMED 28 mM and Riboflavin 37 µM. In this way, 

nitrotetrazolium blue is able to interact with the superoxide radicals produced by the photo-

oxidation of riboflavin giving a violet color. This signal makes it possible to distinguish the 

samples containing the transgenic human SOD1 that present two characteristic bands with 

different molecular weights (human and murine SOD1) from the samples containing only 

the murine SOD1. 

Screening was performed before each experiment to discriminate between G93A positive 

(transgenic mutated) non-transgenic animals and between positive and non-transgenic 

SOD1 animals. 



 63 

6.3 Preparation of purified synaptosomes 

Spinal cords were rapidly removed at 0-4°C after mice euthanasia. Tissues were 

homogenized in sucrose (0,32 M, 1:10 weight/volume) buffered at pH 7.4 with Tris–HCl, 

using a glass-teflon tissue homogenizer (clearance 0,25 mm, 12 up-down strokes in 

approximately 1 min). The homogenate was first spun at 1,000 x g for 5 min (4°C) to 

remove nuclei and debris. Then, purified synaptosomes were prepared by a Percoll® 

gradient separation (Sigma-Aldrich, St Louis, MO; Nakamura et al., 1993). The 

supernatant obtained from the first centrifugation was stratified on a discontinuous 

Percoll® gradient (6, 10, and 20% v/v in Tris-buffered sucrose, pH 7.4) and spun at 33,500 

x g for 5 min at 4°C. The enriched synaptosomal fraction (layer between 10 and 20% 

Percoll) was collected and washed by a third centrifugation.  

6.4 Release experiments 

Spinal cord purified synaptosomes from 30, 60, 90 day-old WT an SOD1G93A mice were 

resuspended in physiological medium (NaCl 140 mM; KCl 3 mM; CaCl2 1.2 mM; MgSO4 

1.2 mM; NaH2PO4 1.2 mM; HEPES 10 mM; glucose 10 mM; pH 7.4),  incubated at 37°C 

for 15 min with 0.01 µM [3H]D-Aspartate (a metabolism-resistant marker of glutamatergic 

nerve terminals; Perkin-Elmer, Milan, Italy) and then stratified in identical aliquots on 

microporous filters that were positioned at the bottom of parallel superfusion chambers 

(Superfusion System, Ugo Basile, Comerio, Varese, Italy) maintained at 37°C. Once 

stratified, synaptosomes were superfused with physiological medium (same composition as 

above) at a flow rate of 0.5 mL/min for a total time of 51 min;  five 3-min superfusate 

samples (t = 36-39, 39-42, 42-45, 45-48, 48-51 min) were collected after the system was 

equilibrated for 36 min to reach a steady-state level of neurotransmitter release. To study 

the effects of mGluR1/5 activation, synaptosomes were exposed to different concentrations 

(0.03-30 μM) of the non-subtype-selective agonist (s)-3,5-Dihydroxyphenylglicine (3,5-
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DHPG) from the end of the first sample collected (t = 39 min) to the end of the 

experiments (t = 51). The selective drugs used to characterize the receptor subtypes 

involved (LY367385 mGluR1 antagonist and MPEP mGluR5 negative allosteric 

modulator, both at 1 μM)  and the other drugs used to analyse the release mechanisms (the 

phospholipase C inhibitor U73112 and the IP3 receptor blocker 2-APB) were introduced 9 

min before the 3,5-DHPG challenge (t=30 min). To analyse whether the 3,5-DHPG-

induced effects were dependent on extracellular calcium, in some experiments Ca2+ was 

omitted from the superfusion medium 19 min before the 3,5-DHPG challenge (t = 20 min). 

To evaluate whether the effects of 3,5-DHPG involved intracellular calcium and release of 

glutamate from synaptic vesicles, in some experiments synaptosomes were incubated for 

30 min (15 min before and during [3H]D-Asp labelling) in the presence of 100 μM of the 

calcium chelator BAPTA-AM or with 0.1 μM of the neurotransmitter vesicle depleting 

agent bafilomycin A1. Appropriate controls were always used in parallel. At the end of the 

experiment, the radioactivity in the collected fractions and that remaining in synaptosomes 

were counted by liquid scintillation counting. The efflux of radioactivity in each fraction 

was expressed as a percentage of the total radioactivity present in synaptosomes at the 

beginning of the fraction collection (fractional rate, FR). 

The effect of 3,5-DHPG was quantified by calculating the ratio between the fractional 

release of the fifth fraction (t = 48-51 min, FR5, where the maximum effect of the agonist 

on neurotransmitter release was observed) and the one of the first fraction (t = 36-39 min, 

F1, basal release). This FR5/FR1 ratio was then compared to the corresponding one 

obtained under control conditions. Differences have been analysed by one-way ANOVA 

followed by Dunnett's or Tukey-Kramer multiple comparison test, where appropriate, and 

considered significant at the level of P < 0.05, at least. 
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6.5 Western blot analysis 

Purified synaptosomes or total tissue derived from spinal cord of WT and SOD1G93A mice 

at the different time points and astrocytes-derived EVs fraction were lysed in ice-cold 

RIPA buffer containing 1% protease inhibitor cocktail. After lysis, samples were 

centrifuged at 10,000 x g for 10 min at 4°C and the resulting supernatants were subjected 

to immunoblot analysis. The concentration of proteins in each sample was in the linear 

portion of the standard curve. 

Following separation by electrophoresis on SDS-polyacrylamide gels (4 to 20% gradient), 

proteins were transferred to nitrocellulose membranes using a 25 mM Tris cold buffer, 192 

mM glycine and 20% methanol. Membrane were incubated for 12 hours at 4°C in TBS 

TWEEN (t/TBS: 200 mM Tris, 1,3 M NaCl, pH 7.5, 0.05% tween 20, 5%  skimmed milk 

powder) and electroblotted proteins were monitored using Naphthol blue black staining 

(Sigma Aldrich, MO, USA). After saturation, membranes were incubated with the 

following antibodies: Mouse monoclonal anti-mGluR1 (1:500, cat n. 610964; BD 

Biosciences, San Jose, CA, USA); rabbit monoclonal anti-mGluR5 (1:500, cat n. ab53090; 

Abcam, Cambridge, UK); mouse monoclonal anti-glyceraldeide phosphate dehydrogenase, 

GAPDH (1:10000, cat. N. G8795; Sigma Aldrich, MO, USA); mouse monoclonal anti-β-

tubulin III (1:1000; cat. N. T8578; Sigma-Aldrich, MO, USA). After washing in t/TBS and 

incubation with  secondary antibodies conjugated to horseradish peroxidase, protein bands 

were analysed for optical density using an enhanced chemiluminescence substrate (ECL, 

LiteAblot PLUS, Euroclone, Milan, Italy) and a chemiluminescence system (Alliance 6.7 

WL 20M, UVITEC, Cambridge, UK) using the UV1D software (UVITEC). GAPDH or β-

tubulin III levels in the same membrane were used to normalise bands of interest. 

Regarding EVs samples in loading buffer 1X (10% beta-mercaptoethanol and 90% 4X 

Protein sample loading buffer LI-COR Biosciences), they were loaded (10 µg protein) on 

Bio-Rad pre-custom gels 10% and run in running buffer 1X (Bio-Rad®)  added with 3 μl 
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of ladder Precision Plus Protein western (Bio-Rad®) and applying 200 Volt for 30 min. 

Proteins were transferred to Trans-blot turbo midi nitrocellulose transfert packs (Bio-Rad®) 

using Trans-blot turbo Transfert System (Bio-Rad®) at 1,3 A, 25 V for 7 min. After 1 hour 

blocking at room temperature, in TBS TWEEN (TBS + 3% BSA + 0,05% TWEEN), 

membranes were incubated overnight with rabbit monoclonal anti-Alix (1:1000; cat. N. 

12422-1-AP; Proteintech); mouse monoclonal anti-CD9 (1:2500; cat. N. 60232-1-Ig; 

Proteintech); rabbit polyclonal anti-Calnexin (1:5000; cat. N. 10427-2-AP;  Proteintech); 

mouse monoclonal anti-glyceraldeide phosphate dehydrogenase, GAPDH (1:15000, cat. N. 

60004-1-Ig; Proteintech); mouse monoclonal anti-β-actin (1:5000; cat. N. 60008-1-Ig; 

Proteintech). After three times 10 min washing in TBS-TWEEN, membranes were 

incubated for 1 hour at room temperature with appropriate secondary antibodies (1:20000). 

Protein bands were detected and analyzed for optical density using Li-Cor Odyssey and 

Image Studio Lite. 

 

6.6 Confocal microscopy 

Spinal cord purified synaptosomes were resuspended in a physiological HEPES buffered 

solution (NaCl 140 mM, KCl 3 mM, MgSO4 1.2 mM, CaCl2 1.2 mM, NaHCO3 5 mM, 

NaH2PO4 1.2 mM, HEPES 10 mM, glucose 10 mM, pH 7.2-7.4). SOD1G93A and WT spinal 

cord derived synaptosomes from mice of the same age (40 μg of protein) were stratified 

onto poly-L-lysine pre-treated coverslips and maintained for 45 min at room temperature 

to allow setting and sticking to the surface. The preparations were fixed with 2% 

paraformaldehyde for 15 min, washed with phosphate buffered saline (PBS; 3 × 5 min), 

permeabilized with 0.05% Triton X-100 for 5 min and incubated overnight at 4°C with 

primary antibodies diluted in PBS containing 3% bovine serum albumin. The following 

primary antibodies were used: murine anti-vesicular transporter Glu antibody (anti-

vGluT1, 1:1000; Merk Millipore, Billerica, MA, USA), anti-mGluR1 murine antibody 
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(1:1000; BD Biosciences, NJ, USA) and anti-mGluR5 rabbit antibody (1:500; Abcam, 

Cambridge, UK). After washing  with PBS containing 0.5% BSA (3 x 5 min), the 

preparations were incubated for 45 min with the following secondary antibodies (diluted 

1:2000 in PBS containing 3% albumin): goat anti-guinea pig Alexa Fluor A488-conjugated 

(cat n. A11073), donkey anti-mouse Alexa Fluor A647-conjugated (cat n. A31571), and 

goat anti-rabbit AlexaFluor A555-conjugated (cat n. A21428) (Molecular Probes Europe, 

Leiden, The Netherlands).  

For fluorescence image acquisition (512 x 512 x 8 bits) we used a three-channel Leica TCS 

SP5 confocal laser scanning microscope (excitation lines 458, 476, 488, 514, 543 and 633 

nm) using a 63x oil immersion lens. Configuration for light collection was optimized for 

each combination of fluorochromes and sequential channel acquisition was performed to 

avoid crosstalk. For acquisition of images, we used the Leica "LAS AF" software package. 

Co-localized protein estimation was performed by calculating co-localization coefficients 

(Manders et al., 1993) and is expressed as mean ± SEM of three independent experiments 

(3 WT and 3 SOD1G93A mice) run in triplicate (3 replicates). 

6.7 Cytosolic Ca2+ concentration measurements 

The intracellular concentration of cytosolic calcium [Ca2+]c was determined in 

synaptosomes purified from spinal cords derived from 30-, 60-, and 90-day-old WT and 

SOD1G93A mice using the fluorescent dye fura 2-AM (Laemmli, 1970). Synaptosomes 

were incubated for 40 min at 37°C in physiological HEPES medium, under gentle stirring, 

in a medium containing CaCl2 20 μM and fura-2AM 5 μM (dissolved in 0.5% 

dimethylsulfoxide: DMSO; Sigma-Aldrich, St Louis, MO, USA). In order to measure auto-

fluorescence, we used synaptosomes incubated only with 0.5% DMSO. After incubation, 

excess of fura 2-AM was removed by centrifugation and synaptosomes were resuspended 

in 4°C calcium-free, HEPES-buffered medium and then divided into 200 μL aliquots (200 
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μg proteins/sample) that were kept in ice till the measurement, which were carried out 

within 2 hours. Each synaptosomes aliquot was diluted in a final volume of 2 ml of 

physiological medium containing 1,2 mM CaCl2 and equilibrated at 37°C for 15 min. 

Measurements were made at 37°C in a thermostated cuvette under continuous stirring 

using a double wavelength RF-5301PC spectrophotofluorimeter (Shimadzu Corporation, 

Milan, Italy), with the alternation of excitation wavelength between 340 nm and 380 nm, 

and emission monitored at 510 nm. 

After recording basal fluorescence for 1 min, synaptosomes were exposed to 3,5-DHPG at 

the concentrations of 0.3 or 30 μM for another 10 min. Calibration was performed at the 

end of each measurement by the addition of ionomycin (10 mM ) together with CaCl2 to 

obtain Fmax, followed by EDTA (10 mM) at pH 8.0 buffered with Tris (3 mM) to obtain 

Fmin. After correction for extracellular FURA, [Ca2+]c was calculated with the equation of 

Grynkiewicz and collaborators (Grynkiewicz et al., 1985; using the Ca2+/ fura-2 complex 

KD = 224 nM). 

6.8 Astrocyte and microglia cell cultures and microglia treatment 

Primary microglia cultures were obtained from mixed glial cultures prepared from the 

brains of mice at P2-5. After removing the meninges, brains were enzymatically (TrypLE 

ExpressTM Enzyme 1X, Thermo Fisher Scientific®) and mechanically dissociated and then 

plated on T75 flask in DMEM Gibco® (4.5 g/L D-glucose, L-glutamine, 25 mM HEPES, 

pyruvate and additioned with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-

Streptomycin). After 24 hours, medium was completely replaced with fresh one. In the 

next 14 days, medium change occurs every 2-3 days. Once astrocytes reached the 

confluence and microglia grew on top, microglial cells were detached by shaking and 

seeded at a density of 30000 cells/well on poly-D-lysin (Sigma) pre-coated 96 well plates.  

After microglia detaching, astrocytes were mantained in culture and they were exposed 
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every 2 days to the mGluR5 negative allosteric modulator 2-chloro-4-((2,5-dimethyl-1-(4-

(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP) at 100 nM 

concentration (provided by Pharmacology and Toxicology Unit, Department of Pharmacy, 

University of Genoa).  

At day 5,  astrocytes were activated with TNF-alpha 30 ng/ml (Biologend®) in fresh 

medium for 24 hours as reported in literature, in the presence or in the absence of CTEP, as 

appropriate. At day 6, medium was changed with DMEM added with FBS exosomes-

depleted medium (Thermo Fisher Scientific®), to eliminate the contribution of exosomes 

derived from FBS. After 24 hours astrocytes-derived EVs were isolated. 

 

6.9 Extracellular vesicle isolation from astrocytes and microglia treatment  

The ultracentrifugation protocol used for the extracellular vesicles isolation was obtained 

by Prof. Nunzio Iraci, University of Catania. 

Astrocytes culture medium from three flasks per condition (not-treated astrocytes, 

astrocytes exposed to CTEP, astrocytes activated with TNF-α, astrocytes activated with 

TNF-α and exposed to CTEP ) was collected and centrifuged at 1,000 x g for 15 min at 

4°C. The supernatant was collected in Thick wall tubes (355631 Beckman Coulter for rotor 

70 Ti) and spin down at 100,000 x g for 130 min at 4°C. The pellet obtained was 

resuspended in PBS in small ultracentrifuge tubes (362305 Beckman Coulter) and spin 

down at 162,000 x g for 30 min at 4°C. The pellet, constituted by exosome-enriched 

extracellular vesicles, was resuspended in culture medium. Microglia was exposed to 

exosomes-containing culture medium for 24 hours. Exosomes originating from 15 

astrocytes were used for each microglia cell.  

6.10 RNA isolation and RT-qPCR 

Both astrocytes and microglia cultures were added with trizol overnight at -20°C. Cells 

were scraped on ice and 20% of sample volume of chloroform was added. After vigorous 
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shaking for 15 s, samples allowed to stay at room temperature for 5 min. The suspension 

was centrifuged at 12,000 x g for 15 min at 4°C; the aqueous phase was transferred into 

other tubes and added with an equal volume of isopropanol, and incubated for 10 min at 

room temperature. The solution was centrifuged at 12,000 x g for 8 min at 4°C to 

precipitate the RNA, while the supernatant was discarded. The pellet was twice added with 

1 ml of 75% EtOH in nuclease-free water and centrifuged at 7500 x g for 5 min at 4°C. The 

RNA pellet was air-dried for a few minutes and then 10 min at 37°C. The RNA was 

resuspended in 20 μl of RNAse free water and solubilized for 10 min at 55°C. RNA was 

treated with DNAse enzyme for 30 min at 37°C, which was inactivated adding EDTA 5 

mM. RNA was quantified and total RNA (20 - 40 ng) was used in 20 - 40 μl of reverse 

transcription reaction (high-capacity cDNA Reverse Transcription Kit). The ΔΔCt method 

was applied to determine differences in gene expression levels after normalization to the 

arithmetic mean of Beta-2-Microglobulin (B2M), Large Ribosomal Protein (RPLP0) and 

Peptidylprolyl isomerase A (PPIA) used as housekeeping genes. The primer used to 

determine the pro- and antiinflammatory panel were for: interleukin-6 (IL-6), transforming 

growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-

1β), inducible nitric oxide synthase (iNOS), cluster of differentiation 86 (CD86), 

interleukin-10 (IL-10), cluster of differentiation 163 (CD163), arginase 1 (Arg1), cluster of 

differentiation 206 (CD206), the macrophage protein YM1 and the cysteine-rich secreted 

protein (Fizz1). Real-time PCR was performed using ViiA7 (Applied Biosystems). 

6.11 Statistics 

Data presented in the graphs are expressed as mean ± SEM of the number of experiments 

reported in the figure legends. Normality of the data was assessed by the Shapiro-Wilk 

normality test and Grubbs’ test was performed to eliminate outlier values. Comparison 

between two population means was performed by unpaired two-tailed student’s t-test, 
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whereas when comparing more than two population means, data were first analysed with 

one or two-way ANOVA, as appropriate, and then by Bonferroni’s or Dunnet’s multiple 

comparison test with statistical significance set at P < 0.05. Analyses were carried out 

using the SigmaStat software (Systat Software 3.5, Inc., San Jose, CA, USA). 
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7 

RESULTS 

 

As previously mentioned, Giribaldi et al. (2013), reported the effects of metabotropic Glu 

autoreceptors of group I on glutamate release at the end stage of SOD1G93A mice. They 

showed that the release of glutamate from purified spinal cord synaptosomes was 

differently regulated by glutamatergic group I metabotropic autoreceptors in 120 day-old 

SOD1G93A mice and age-matched wild type controls; in particular concentration of the 

mGluR1/5 agonist 3,5-DHPG above 0.3 μM stimulated the spontaneous neurotransmitter 

release both in ALS and control mice, while concentrations of the agonist ≤ 0.3 μM 

increased glutamate release in SOD1G93A mice only. Then, to understand which receptor 

subtype was involved in the increase of glutamate release, they performed release 

experiments in the presence of selective mGluR1 and mGluR5 antagonists that were both 

able to antagonize the effect of 3,5-DHPG, indicating the implication of both receptors, 

although to a different extent. In addition, it was demonstrated the vesicular origin of the 

glutamate release and the involvement of internal calcium. Confocal microscopy imaging 

analysis on spinal cord synaptosomes highlighted the co-existence of both receptor 

subtypes on glutamatergic nerve terminals and excluded their possible localization at the 

postsynaptic levels; indeed only few mGluR1 and mGluR5 positive synaptosomal particles 

were also positive for PSD95 (a specific postsynaptic density marker). Western blot 

permitted to quantify the receptors expression and showed that there were no differences 

for mGluR1 between WT and SOD1G93A, whereas mGluR5 levels were significantly higher 

in ALS mice.             

To understand at which age the observed abnormal activity of the release-regulating group 

I mGlu receptors occurs and if it could be a possible cause/concause of neuronal damage or 
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a consequence of the disease, we investigated the effects of the mixed mGluR1/5 agonist 

3,5-DHPG on the release of glutamate, monitored by using the non-metabolizable 

analogue of glutamate [3H]D-aspartate, from purified synaptosomes isolated from 

SOD1G93A and WT mice spinal cord at 30, 60 and 90 days of life, corresponding to the pre-

symptomatic and early symptomatic phase of the pathology. 

The following results have been published in the article entitled “Enhanced Function and 

Overexpression of Metabotropic Glutamate Receptors 1 and 5 in the Spinal Cord of the 

SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis during Disease Progression” of 

which I am co-author (Bonifacino et al., 2019b). 

7.1 Glutamate release induced by 3,5-DHPG during disease progression in SOD1G93A 

mice 

Release experiments were performed on purified spinal cord synaptosomes isolated from 

SOD1G93A mice and age-matched control animals at the three different stages of the disease 

described before. When synaptosomes were exposed to increasing concentration of 3,5-

DHPG (0.03 - 0.3 - 3 - 30 μM), a concentration-dependent increase of [3H]D-Asp release 

was observed in both animal groups. Labelling by [3H]D-Asp did not significantly differ 

between control and SOD1G93A mice when normalized for synaptosomal protein content. 

During the experiments, five 3 min samples were collected and counted for radioactivity, 

analyzing variations of the basal release after 3,5-DHPG exposure. No differences in the 

3,5-DHPG effects on [3H]D-Asp release were observed in WT and SOD1G93A pre-

symptomatic mice at 30 (Figure 1A; F(1,3,3,33) = 0.189) or 60 (Figure 1B; F(1,3,3,17) = 0.0423) 

days of life.  On the contrary, when the effects of the mixed mGluR1/5 agonist were 

analysed on the release from purified synaptosomes obtained from 90 day-old mice, we 

found a significant difference between WT and SOD1G93A mice. In fact, at the 

concentration of 0.3 μM 3,5-DHPG significantly increased [3H]D-Asp release in 

SOD1G93A mice by approximately 25%, while it was ineffective in control animals (Figure 
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1C; * p < 0.05; F(1,3,3,48) = 1.502). 

These data show that glutamate release induced by 3,5-DHPG abnormally increased in 

SOD1G93A mice concomitantly with early clinical symptoms manifestation, while there are 

no statistically significant differences during the first stages of the disease, when the 

pathological signs are still latent and motor functions are still preserved. 

 



 75 

 

 



 76 

 
 

Figure 1. Effects of 3,5-DHPG on [3H]D-ASP release from spinal cord synaptosomes of 
SOD1G93A mice at different stages of the pathology. The effect of (S)-3,5-dihydroxyphenylglycine 
(3,5-DHPG) was measured on the spontaneous release of glutamate, monitored as [3H]D-Asp, from 
spinal cord synaptosomes prepared from SOD1G93A mice at the pre-symptomatic phase (30 and 60 
days of life; panels A and B) and at disease onset (90 days of life; panel C). WT animals at the 
same age were used as controls. Synaptosomes were pre incubated with [3H]D-Asp, to label the 
intra-terminal releasing pools of glutamate, and exposed during superfusion experiments to 
increasing concentrations (0.03, 0.3, 3, and 30 µM) of 3,5-DHPG. Bars expressed the percentage 
increase over control basal release. The data reported are the means ± SEM of five independent 
experiments (n=5 mice per each type of animals). *p < 0.05 vs. wild type mice (two-way ANOVA 
followed by Bonferroni’s post-hoc test). 
 

 

7.2 Pharmacological characterization of the receptor subtypes responsible for the 

increased release of [3H]D-Asp induced by 3,5-DHPG 

Since the abnormal [3H]D-Asp release induced by 0.3 µM 3,5-DHPG just occurred in 90-

day-old SOD1G93A mice, the other experiments planned to characterize the mechanisms 

through which this effect happens, were carried out at disease onset. 

In order to identify the subtype of the metabotropic receptors involved in the 3,5-DHPG-

evoked release of [3H]D-Asp, we used the competitive mGluR1 antagonist (S)-(+)-a-
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amino-4-carboxy-2-methylbenzeneacetic acid (LY367385; Bruno et al., 1999) and the 

mGluR5 negative allosteric modulator 2-methyl-6-(phenylethynyl)pyridine (MPEP; 

Gasparini et al., 1999).  

Spinal cord synaptosomes from SOD1G93A mice were, therefore, exposed in superfusion to 

1 µM of the selective antagonists 8 min before and concomitantly with the 0.3 µM 3,5-

DHPG challenge.  

As shown in Figure 2, the 0.3 µM 3,5-DHPG-induced glutamate release was strongly 

reduced by both antagonists (*p < 0.05; F(4,9) = 8.422), demonstrating that activation of 

both mGluR1 and mGluR5 triggers the abnormal increase of glutamate release observed at 

disease onset.  

 

 
Figure 2. Effects of the mGluR1 and mGluR5 antagonists on the release of [3H]D-Asp induced 
by 3,5-DHPG in spinal cord synaptosomes of 90-day SOD1G93A mice. The effects of the selective 
antagonists for mGluR1 (LY367385) and mGluR5 (MPEP) were tested on the increased glutamate 
release induced by 0.3 µM 3,5-DHPG. During superfusion experiments, synaptosomes were 
exposed to 1 µM LY367385 or 1 µM MPEP to study the receptor subtypes contribution. The data 
reported are the means ± SEM of five independent experiments (n=5 mice per group) conducted in 
triplicate (three superfusion chambers for each experimental condition). The effect of 0.3 µM 3,5-
DHPG was reduced by the exposure to both LY367385 and MPEP in SOD1G93A mice (*p < 0.05 
vs. 3,5-DHPG; one-way ANOVA followed by Bonferroni’s post-hoc test). 
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7.3 Effect of 3,5-DHPG on intracellular calcium concentration in SOD1G93A and 

control WT mice at the onset of the disease 

It is well known that Group I metabotropic glutamate receptors acts through the activation 

of Gq proteins that lead to the hydrolysis of phosphatidylinositol 3-phosphate by 

Phospholipase C. This process generates the second messengers diacylglycerol and inositol 

3-phosphate, the latter rapidly translocating from the membrane to the endoplasmic 

reticulum where it acts on its own specific receptors, allowing the exit of calcium ions into 

the cytosol (Pin & Acher, 2002).  

Therefore, we wanted to investigate whether the release of glutamate induced by 3,5-

DHPG in spinal cord synaptosomes from 90-day-old WT and SOD1G93A mice, was 

accompanied by an increase in the cytosolic calcium concentration ([Ca2+]C).   

The intracellular calcium levels were monitored both under basal conditions and following 

the exposure to 3,5-DHPG. Synaptosomes were incubated with the fura-2-acetoxymethyl 

ester (FURA 2-AM) fluorescent dye and were then exposed to increasing concentrations of 

3,5-DHPG (0.3, 3 and 30 μM).  

The data obtained show that the basal intracellular calcium concentration was significantly 

more elevated in SOD1G93A with respect to WT mice (Figure 3, first bar group from the 

left; * p < 0.001; F(1,3,3,30) = 11.154). When synaptosomes were exposed to 3,5-DHPG, the 

agonist evoked a [Ca2+]C increase in a concentration-dependent manner in both animal 

groups (Figure 4; *p < 0.001; F(1,3,3,30) = 11.154). However, the increase in cytosolic 

calcium levels produced by 3,5-DHPG was statistically greater in SOD1G93A mice than in 

WT mice. 
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Figure 3. Effect of 3,5-DHPG exposure on intracellular calcium concentration in spinal cord 
synaptosomes of 90-day SOD1G93A and WT mice. Cytosolic [Ca2+] concentrations before and after  
3,5-DHPG challenge were measured in purified spinal cord synaptosomes obtained from early 
symptomatic SOD1G93A and age-matched WT control mice. Following labelling with fura-2-
acetoxymethyl ester (Fura 2-AM), synaptosomes, were exposed to standard medium or to 0.3, 3, 
and 30 µM 3,5-DHPG, as described in the methods. Data are expressed as mean ± SEM of three 
independent experiments (n=3 mice per group) conducted in triplicate (three replications for each 
experimental condition). * p < 0.001 vs. WT mice (two-way ANOVA followed by Bonferroni’s 
post-hoc test). 

 

7.4 Intracellular mechanisms involved in the modulation of the glutamate release 

induced by 3,5-DHPG in SOD1G93A mice at disease onset 

In order to identify the cellular mechanisms underlying the  0.3 μM 3,5-DHPG-induced 

[3H]D-Asp release from spinal cord synaptosomes of 90 days SOD1G93A, we performed 

additional experiments under the following conditions: 

- absence of extracellular Ca2+; 

- intracellular calcium sequestration by 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-

tetraacetic acid (BAPTA), a Ca2+ chelator;  

- blockade of phospholipase C (PLC) by the selective inhibitor 1-[6-[((17)-3-
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methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122; 

Bleasdale et al., 1990); 

- blockade of the IP3 receptor by the selective antagonist 2-aminoethoxydiphenyl 

borate (2-APB; Maruyama et al., 1997); 

- depletion of the vesicular neurotransmitter content in synaptic vesicles by 

bafilomycin A1, a vesicular ATPase inhibitor (Bowman et al., 1988). 

 
When synaptosomes were perfused with a Ca2+-free perfusion medium, 3,5-DHPG was 

still able to fully increase the release of [3H]D-Asp (Fig. 4). In contrast, when 

synaptosomes were pre-incubated with BAPTA-AM (100 μM) to load and entrap the 

calcium chelator into nerve terminal cytosol, the effect of 3,5-DHPG on [3H]D-Asp release 

was abolished (Figure 4; *p < 0.001; F(5,28) = 567.116). Similarly, the 3,5-DHPG-induced 

increase of release [3H]D-Asp was also prevented by 1 μM U73122 or by 10 μM 2-APB 

(Figure 5; *p < 0.001; F(5,28)=567.116). Finally, the effect induced by 3,5-DHPG was also 

abolished by the pre-incubation of synaptosomes with 0.1 μM bafilomycin A1 (* p < 

0.001; F(5,28) = 567.116). 

Overall, these data demonstrate that the abnormal effect of 3,5-DHPG in 90-day-old 

SOD1G93A mice is mediated by the classical pathway coupled to glutamatergic group I 

metabotropic receptors, that is activation of PLC, production of IP3, induction of calcium 

release from endoplasmic reticulum stores and activation of synaptic vesicle exocytosis. 
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Figure 4. Study of the mechanisms supporting the [3H]D-Asp release induced by 3,5-DHPG in 
spinal cord synaptosomes isolated from 90-days SOD1G93A mice. The graph reports the effects of 
0.3 µM 3,5-DHPG in the absence of extracellular calcium or in the presence of calcium chelator 
BAPTA-AM (100 µM), of the phospholipase C inhibitor U73122 (1 µM), the IP3 receptor blocker 
2-APB (10 µM) or the V-ATPase inhibitor bafilomycin A1 (0.1 µM). The incubation before 
release experiments with BAPTA-AM or bafilomycin A1 did not significantly affect synaptosomal 
labelling by [3H]D-Asp. The results are expressed as percent increase with respect to basal 
glutamate release. Data are expressed as mean ± SEM of four independent experiments (n=4 mice 
per group) conducted in triplicate (three superfusion chambers for each experimental condition). *p 
< 0.001 vs. the effects of 3,5-DHPG (one-way ANOVA followed by the Bonferroni post-hoc test). 

 

7.5 Group I metabotropic glutamate receptors expression in spinal cord 

synaptosomes from SOD1G93A mice during disease progression 

In order to evaluate changes in mGluR1 and mGluR5 expression during disease 

progression, we performed Western blot experiments on protein extracts derived from 

spinal cord synaptosomes prepared from SOD1G93A and age matched WT mice of 30, 60 

and 90 days of age. 
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The results obtained showed no significant changes in the expression of group I 

metabotropic glutamate receptors. Both mGluR1 (Figure 5) and mGluR5 (Figure 6) did not 

change in SOD1G93A mice at any of the time points analysed during the development of the 

disease.  

 

 
 

 
 
Figure 5. Expression of mGluR1 in purified spinal cord synaptosomes of SOD1G93A and WT 
mice at presymptomatic stages and at the clinical onset of the disease. The expression of mGluR1 
was measured by western blot on purified synaptosomes obtained from the spinal cord of mice at 
30, 60 and 90 days of life. Representative immunoreactive bands are shown (top). mGluR1 
expression levels were normalized for β-tubulin III in the same blotted membrane and data 
quantification is reported in the bar graph. Results are expressed as the relative density and the 
expression of mGluR1 in WT synaptosomes is referred to as 1.00. Data are expressed as mean ± 
SEM of 3 independent experiments (n=3 mice per group) conducted in triplicate (3 experimental 
replicates). No significant differences were detected in mGluR1 expression between the two 
experimental groups (two-tailed Student’s t-test). 
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Figure 6. Expression of mGluR5 in purified spinal cord synaptosomes of SOD1G93A and WT 
mice at presymptomatic stages and at the clinical onset of the disease. The expression of mGluR5 
was measured by western blot on purified synaptosomes obtained from the spinal cord of mice at 
30, 60 and 90 days of life. Representative immunoreactive bands are shown (top). mGluR5 
expression levels was normalized for β-tubulin III in the same blotted membrane and the data 
qunatification is reported in the bar graph . Results are expressed as the relative density and the 
expression of mGluR5 in WT synaptosomes is referred to as 1.00. Data are expressed as mean ± 
SEM of 3 independent experiments (n=3 mice per group) conducted in triplicate (3 experimental 
replicates). Similarly to mGluR1, no significant differences were detected in mGluR5 expression 
between the two experimental groups (two-tailed Student’s t-test). 
 
 
 
However, it must be taken into account that total synaptosomal lysates may include 

heterogeneous populations of spinal cord synaptic terminals with different expression 

levels of metabotropic receptors. Therefore, to circumvent this possible bias, we performed 

immunofluorescence analysis to verify the levels of mGluR1 and mGluR5 expressed onto 

glutamatergic synaptosomes, herein after referred to as metabotropic autoreceptors, during 

disease progression. To this purpose, we carried out immunofluorescence labelling of 

purified spinal cord synaptosomes with antibodies for mGluR1 and mGluR5 and 
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antibodies for the vesicular glutamate transporter type 1 (vGluT1), and then imaged signal 

co-localization by confocal microscopy. Since synaptosomes were efficiently labelled by 

all the antibodies used and the expression of vGluT1 did not vary between control and 

SOD1G93A mice, a very accurate analysis of the relative fluorescence intensity of the 

mGluR1 and mGluR5 co-localized with vGluT1 was possible.  

The image analysis showed that the expression of both metabotropic autoreceptor subtypes 

was not significantly changed at the presymptomatic stage in SOD1G93A mice compared to 

WT controls (Figure 7). In contrast, both mGlu1 and mGlu5 autoreceptors were 

significantly increased in symptomatic SOD1G93A mice of 90 days of life (Figure 8; 

mGluR1, *p < 0.001, t(4) = −12.021; mGluR5, *p < 0.001, t(4) = −12.728). 
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Figure 7. mGlu1 and mGlu5 autoreceptors in spinal cord synaptosomes of SOD1G93A and WT 
mice at pre-symptomatic stage of the disease. Synaptosomes have been obtained from SOD1G93A 
and WT mice of 30 (A) and 60 (B) days of life, corresponding to the pre-symptomatic phases of the 
pathology. After purification, synaptosomes were stratified on coverslips, fixed with 
paraformaldehyde, permeabilized with triton X-100, incubated with specific primary and secondary 
antibodies, and analysed by laser confocal microscopy. These representative images show triple-
stained immunopositivity for vGluT1 (blue; representing glutamatergic synaptosomes), mGluR1 
(red) and mGluR5 (green). The merge panels show the co-expression of the three proteins. The bar 
graphs indicate the quantitative relative florescence intensity of mGluR1 or mGluR5 on vGluT1-
positive glutamatergic spinal cord synaptosomes. The bars represent the mean ± SEM of 3 
independent experiments (n=3 mice per group) conducted in triplicate (3 experimental replicates).  
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Figura 8. mGlu1 and mGlu5 autoreceptors in spinal cord synaptosomes of SOD1G93A and WT 
mice at early symptomatic stage of the disease. SOD1G93A and WT mice of 90 days of life, 
corresponding to the early symptomatic phase of the pathology, were used for these experiments. 
Experimental details are the same as in figure 7. (A) mGluR1 and mGluR5 autoreceptors were 
significantly over-expressed in synaptosomes purified from 90-day-old SOD1G93A mice (*p < 0.001 
vs. WT mice; two-tailed Student’s t-test). (B): magnification of the red frames in merge panels of 
spinal cord synaptosomes purified from 90-day-old WT and SOD1G93A mice. Red arrowheads point 
to vGluT1, mGluR1, and mGluR5 triple-stained synaptosomes. 
 
 

7.6 Expression of mGluR1 and mGluR5 in spinal cord total tissue homogenate from 

SOD1G93A mice during disease progression 

It is well known that mGluR1 and mGluR5 are present both in neurons, at pre- and post-

synaptic levels, and in non-neural cells, such as astrocytes, microglia and oligodendrocytes 

(Biber et al., 1999; Luyt et al., 2003; Panatier & Robitaille, 2016). 

The data reported above indicate that the expression of mGluR1 and mGluR5 does not 

change significantly in the total population of synaptosomes obtained from the spinal cord 

of SOD1G93A mice before disease onset. However, we found that their expression is 

upregulated at glutamatergic axon terminals, concomitantly with the manifestation of early 

clinical symptoms.  

To verify if these receptors were also over-expressed even in non-presynaptic sites (for 
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example on post-synaptic terminals and/or non-neuronal cells in the ALS mouse model, we 

performed western blot experiments to measure their expression on protein extracted from 

whole spinal cord tissue of both pre- and early-symptomatic SOD1G93A and WT mice.  

With regards to mGluR1, the results showed that its expression did not change in 

SOD1G93A mice of 30 and 90 days of life, whereas a significant increase was observed at 

60 days (Figure 9; *p < 0.05, t(4) = −3.148). Instead, the expression of mGluR5 was 

significantly over-expressed in SOD1G93A mice both at 60 and 90 days of life (Figure 10; 

*p < 0.05, t(8) = −2.615 and * p < 0.05, t(6) = −3.374, respectively).  

 
Figure 9. Changes in the expression of mGluR1 in spinal cord homogenates of SOD1G93A and 
WT mice at presymptomatic stages and at the clinical onset of the disease. Western blot analysis 
was performed on homogenate samples obtained from spinal cord of 30-, 60- and 90-day-old 
SOD1G93A and age-matched WT mice. The expression levels of mGluR1 was normalized for 
GAPDH acquired on the same membrane and the quantification is reported in the bar graph. 
mGluR1 level is expressed as the relative density of SOD1G93A with respect to WT mouse bands, 
which is referred to as 1.00. Data are expressed as mean ± SEM of 3 independent experiments (n=3 
mice per group) conducted in triplicate (3 experimental replicates). *p < 0.05 vs. WT mice (two-
tailed Student’s t-test).  
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Figure 10. Changes in the expression of mGluR5 in spinal cord homogenate of SOD1G93A and 
WT mice at presymptomatic stages and at the clinical onset of the disease. Western blot analysis 
was performed on homogenate samples obtained from spinal cord of 30-, 60- and 90-day-old 
SOD1G93A and age-matched WT mice. The expression levels of mGluR5 was normalized for 
GAPDH acquired on the same membrane and the quantification is reported in the bar graph. 
mGluR5 level is expressed as the relative density of SOD1G93A with respect to WT mouse bands, 
which is referred to as 1.00. Data are expressed as mean ± SEM of 3 independent experiments (n=3 
mice per group) conducted in triplicate (3 experimental replicates). *p < 0.05 vs. WT mice (two-
tailed Student’s t-test).  
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7.7 Preliminary results on the role of astrocytes-derived exosomes on microglial 

activation 

In this section, I have reported the preliminary results obtained during my research stage in 

Prof. Paolicelli’s laboratory at the University of Lausanne, regarding the astrocyte-to-

microglia signaling via extracellular vesicles. 

7.7.1 Efficiency of the EVs isolation protocol 

Western blot analyses were conducted to demonstrate that EVs enriched with exosomes 

were contained within the isolated fraction. We have used an ultracentrifugation protocol 

that permits to isolate EVs from a comparable amount of primary cultured astrocytes and 

BV2 microglial cells in order to evaluate the efficiency of the method in different cell 

types. To characterize the isolated fraction, we used rabbit monoclonal anti-Alix and 

mouse monoclonal anti-CD9 antibodies as specific markers for EVs, and rabbit polyclonal 

anti-Calnexin antibody as a cellular marker.  

The analysis showed that the astrocytic EVs presented the characteristic band at the level 

of molecular weights of the specific marker Alix and CD9, while there were no detectable 

bands related to Calnexin (Figure 11). This result evidenced the adequacy of the protocol 

used in producing an EVs sample consisting mainly of exosomes purified from the cellular 

fraction. 
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Figure 11. Expression of EVs and cellular markers in EVs fraction isolated from WT primary astrocytes 
cultures and BV2 cellular line. Western blot was performed on the isolated fraction derived from primary 
cultured astrocytes and BV2 cell line to demonstrate the efficiency of the isolation protocol for EVs. 

 
 

7.7.2 TNF-α activation and CTEP exposure of primary astrocytes cultures 

WT primary astrocytic cultures were divided in four different experimental groups:  

- Controls (no treatment); 

- TNF-α activation (30 ng/ml) for 24 hours; 

- CTEP (100 nM) treatment for 5 days, after microglia detachment and before EVs 

isolation; 

- CTEP (100 nM) treatment for 5 days and TNF-α activation for 24 hours before EVs 

isolation. 

To verify whether the treatment with TNF-α was able to promote an inflammatory 

phenotype in astrocytes and whether mGluR5 antagonism by CTEP could change the 

inflammatory phenotype, RT-PCR was performed to measure a panel of pro- and anti-

inflammatory cytokine genes in RNA isolated from the different experimental groups. 

However, the results obtained were too variable and difficult to interpret at the moment 

(Figure 12). Representative in this sense is the fact that in TNF-α-activated astrocytes, the 

expression of TNF-α itself was not significantly increased. Such a high variability suggests 

that probably the protocol must be ameliorated to optimize the activation of astrocytes. 
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Figure 12. RT-PCR on the expression of pro and anti inflammatory markers in astrocytes. The semi-
quantitative PCR analysis was performed to quantify the RNA extracted from WT primary cultured 
astrocytes, activated with TNF-α (30 ng/ml) for 24 hours, exposed to CTEP 100 nM or both. Results are 
expressed as fold change with respect to gene expression in RNA derived from untreated primary cultured 
astrocytes which we refer as 1.  
 

 

7.7.3 Effects of EVs treatment on microglial cells 

Isolated EVs were used to treat microglia to evaluate if there were differences in the 

microglia inflammatory gene expressions. In particular, we analyzed changes between 

control microglia, microglia exposed to EVs isolated from untreated astrocytes and 

microglia exposed to EVs isolated from astrocytes treated with TNFa  (Figure 13 A). We 

also analyzed changes in microglia exposed to EVs derived from astrocytes treated with 

TNF-α, CTEP or both in comparison to those isolated from untreated astrocytes (Figure 13 

B).  

It is worth noting that there are differences in the expression of several genes in microglia 

treated with EVs obtained from untreated astrocytes; in particular, we observed a 

significant increase in the expression of the pro-inflammatory IL-6, TNF-α, IL-1β and 

iNOS, while only the expression of Arg1 improved in the panel of anti-inflammatory 

molecules (Figure 13 A). Disappointingly, no relevant differences were observed between 

microglia treated with EVs derived from untreated astrocytes or  from astrocytes activated 

with TNF-α (Figure 13 A). Similarly, no significant differences were observed in microglia 
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cultures treated with EVs isolated from astrocytes exposed to TNF-α, CTEP or the 

combination of TNF-α + CTEP (Figure 13 B).  

 

 
 
 

 
 
Figure 13. RT-PCR on the expression of pro- and anti-inflammatory markers in primary microglia from 
WT mice, after EVs treatment. The semi-quantitative PCR analysis was performed to quantify the RNA 
extracted from WT primary microglia cultures after EVs treatment. (A) Results were expressed as fold 
change of microglia treated with EVs derived from astrocytes activated or not with TNF-α with respect to the 
gene expression in RNA derived from untreated primary microglia which we refer as 1 (red line). (B) Results 
were expressed as fold change of microglia, treated with EVs derived from astrocytes activated with TNF-α 
(30 ng/ml) for 24 hours, exposed to CTEP 100 nM for 5 day or activated with TNF-α and exposed to CTEP, 
respect to the gene expression in RNA derived from primary microglia treated with EVs derived from 
untreated astrocytes which we refer as 1. 
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8 

DISCUSSION 

 

There are many evidences in the literature showing enhanced extracellular glutamate levels 

in a large number of patients with both familial and sporadic Amyotrophic Lateral 

Sclerosis (ALS), as well as in murine models of the disease. These data are in accordance 

with the important role played by excitotoxicity in motor neuron degeneration (Shaw et al., 

1995; Spreux-Varoquaux et al., 2002; Wuolikainen et al., 2011). The first mechanism 

proposed for causing the neurodegeneration was a reduced expression of type 1 glutamate 

transporters that provoked an altered reuptake of glutamate from the synaptic cleft 

(Rothstein et al., 1995; Foran et al ., 2011; Blasco et al., 2014; Rosenblum & Trotti, 2017), 

but it is now clear that dysfunction of this process is not the only mechanism involved in 

the increased synaptic levels of this excitatory neurotransmitter.  

In search of a possible target to modulate excitatory synaptic transmission, metabotropic 

glutamate receptors were studied with interest to try to maintain controlled glutamate 

levels. Previous works reported the important role of Group I metabotropic glutamate 

receptors (mGluR1 and mGluR5) in the regulation of key cellular processes altered in ALS 

(Aronica et al., 2001; Anneser et al., 2004; Nicoletti et al., 2011; Vergouts et al., 2018). In 

this view, Prof. Bonanno’s research group demonstrated that various mechanisms of 

neurotransmitter release could be affected. In particular, both spontaneous and KCl-evoked 

glutamate release, as well as the release induced by activation of GABA and glycine 

heterotransporters, is abnormal in the spinal cord of SOD1G93A mice, the most used animal 

model to study the pathogenetic mechanisms of ALS (Raiteri et al., 2003; Milanese et al., 

2010, 2011, 2015). Further studies showed that the excessive and abnormal release of 

glutamate in SOD1G93A was present even before the onset of clinical symptoms at the early 

stage of the disease, suggesting that it could be a cause and not just a consequence of the 
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progression of ALS (Raiteri et al., 2004; Bonifacino et al., 2016;).  

In addition, it was also observed that the stimulation of mGlu1 and mGlu5 autoreceptors 

induced an abnormal increase in the release of glutamate from spinal cord of late 

symptomatic SOD1G93A mice (Giribaldi et al., 2013). In particular, it has been shown that 

relatively high concentrations of the non-subtype selective metabotropic group I antagonist 

3,5-DHPG (1-3-10 μM) stimulated glutamate release in both control and SOD1G93A mice 

to the same extent, while concentrations less than or equal to 0.3 μM led to an increase in 

glutamate release only in SOD1G93A mice. Both metabotropic autoreceptor were involved 

in this effect as demonstrated using mGluR1 and mGluR5 selective antagonists or negative 

allosteric modulators, with the latter subtype playing a major role. More recent in vivo 

studies showed also the positive effect of partial or total knocking-out of mGluR1 and/or 

mGluR5 SOD1G93A mice that led to both amelioration of motor symptoms and increase of 

survival probability (Milanese et al., 2014; Bonifacino et al., 2017, 2019a).  

However, the possible involvement of mGlu5 and mGlu1 autoreceptors in contributing to 

the excessive release of glutamate in the early phases of ALS has not been yet studied. 

Therefore, the aim of this study was to investigate whether, and to what extent, mGluR1 

and mGluR5 activation could modify glutamate release at different time points during the 

disease course. Therefore, to complete the temporal profile of the possible changes in the 

functions of glutamatergic metabotropic autoreceptors in SOD1G93A mouse model of ALS, 

the present study was carried out at the presymptomatic stage, that is at 30 and 60 days of 

life, and at early symptomatic phase, corresponding to 90 days of life.  

 

8.1 Methodological considerations: superfused synaptosomes 

Glutamate release has been evaluated using purified synaptosomes in superfusion, 

according to the original technique described by Raiteri et al. (1974), which still represent 
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the optimal method to study neurotransmitters release and its modulation by auto- and 

etero-receptors (Raiteri & Raiteri, 2000). 

For those who are not familiar with this technique, synaptosomes are isolated subcellular 

particles derived from nerve terminals following homogenization of a brain tissue in an 

isosmotic buffer (Gray & Whittaker, 1962). During the homogenization, synaptic boutons 

are “pinched-off” from axons and immediately reseals, thus forming viable synaptosomes 

of  1-2 µm in size that maintain all the neurochemical functions of in situ synaptic nerve 

endings. In fact, synaptosomes are capable to synthesize, store in vesicles, release and 

reuptake neurotransmitters and they have auto- and etero-receptors to modulate this 

release. During tissue homogenization, other subcellular particles are formed, called 

gliosomes, similar to synaptosomes but derived from astrocytes. They also possess vesicles 

and the cellular machinery that make them competent for the release of gliotransmitters, 

especially glutamate, and have also release-regulating membrane receptors (Stigliani et al., 

2006; Bonanno et al., 2007; Patti et al., 2007; Raiteri et al., 2008; Milanese et al., 2009, 

2010; Cervetto et al., 2015). Purification of synaptosomes from gliosomes is then carried 

out by centrifugation of the homogenized tissue on a discontinuos Percoll gradient (see, 

Methods. Dunkley et al., 1988; Nakamura et al., 1993). 

An important implementation for experiments with synaptosomes is the superfusion 

technique that allows to study release-regulating presynaptic receptors in isolation. In this 

case, synaptosomes are stratified in a quasi-monolayer on filters that are placed at the 

bottom of thermostated chambers of a superfusion system and are continuously up-down 

superfused with a physiological solution that immediately removes the released 

neurotransmitters, thus  avoiding the formation of a synaptic biophase and the activation of 

auto- and etero-receptors on the membrane and the correlated indirect effects. Thus, under 

these experimental conditions any receptor (auto or hetero) present on any nerve terminal 

is inactive in the absence of endogenous ligands and can be activated only by adding 
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selective agonists to the superfusion medium. In addition, antagonists will not affect the 

neurotransmitter release on their owns but they will be able to block the effects of 

exogenous agonists. This experimental method, therefore, permits to evaluate and 

pharmacologically characterize the effects of a receptor activation and its exact localization 

on a given nerve terminal population.  

8.2 Group I metabotropic glutamate autoreceptors are functionally hyperactive at the 

early symptomatic stage of experimental ALS  

The data obtained in the present study show that stimulation of group I metabotropic 

autoreceptors with the non-subtype-selective agonist 3,5-DHPG increased the spontaneous 

release of glutamate in WT and SOD1G93A at all the time points investigated (30, 60 and  

90 days of life). Similarly to what observed in 120-day-old ALS mice, the mGluR1/5 

agonist had the same maximal effect at 30 μM, potentiating glutamate release by 

approximately 100%, but it seemed to possess lower potency. Indeed, when 3,5-DHPG 

was used at concentrations lower than 30 μM (i.e. 0.03, 0.3 and 3 μM)  the potentiation of 

glutamate release  at pre- and early symptomatic phases was always lower than that 

observed at 120 days (Giribaldi et al., 2013). The present results show that at 30 and 60 

days of life, the concentration-dependent effects induced by 3,5-DHPG on glutamate 

release were similar in ALS and control mice, indicating that there are no differences in the 

sensitivity of these autoreceptors to the endogenous agonist at the presymptomatic stages. 

On the contrary, when clinical manifestations occur (disease onset, 90 days of life), the 

exposure of synaptosomes to 0.3 μM 3,5-DHPG provoked a 25% significant increase of 

glutamate release in SOD1G93A mice, while no significant effects were  observed in age-

matched WT mice.  

The availability of selective antagonists/NAMs allowed us to identify which subtype of 

group I metabotropic glutamate autoreceptors was involved in the observed effects on 

glutamate release. We found that both the mGluR1 antagonist LY367385 and the mGluR5 
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NAM MPEP were able to prevent the 3,5-DHPG-induced increase of glutamate 

spontaneous release in spinal cord synaptosomes obtained from early symptomatic 

SOD1G93A mice, a result that indicate that both mGlu1 and mGlu5 autoreceptors are 

involved.  

Comparing these results with those obtained previously at 120 days of age, two interesting 

differences emerged. First, in the late phase of the disease, 3.5-DHPG is more effective in 

stimulating glutamate release, being active already at the concentration of 0.003 μM. 

Moreover, between the two autoreceptor subtypes of group I, the most involved at late 

stage appears to be mGluR5, whose expression increased by 50% (Giribaldi et al., 2013).  

Present and previous data provide enough evidence showing that group I mGlu feed-

forward autoreceptors become hyperactive and increase their expression during the 

development of ASL, a phenomenon that manifests at the disease onset and progresses to 

the late stage of the pathology, although with a different pattern for the two receptor 

subtypes.   

Interestingly, it has been reported that the depolarization-evoked glutamate release is 

almost doubled in SOD1G93A mice compared to control animals at 30 days of age; 

furthermore, this effect is accompanied by variations of numerous exocytosis molecular 

determinants, such as CAMKII, synapsin I, synaptotagmin I and SNARE complexes, that 

can significantly impact the glutamate vesicular ready releasable pool (Milanese et al., 

2011; Bonifacino et al., 2016).  

On the basis of all these results, we can speculate that the excessive release of glutamate, 

which occurs at the early presymptomatic phases of the disease, is able to trigger long-term 

aberrant neuroplastic processes leading to increased expression/hyperactivity of group I 

mGlu autoreceptors that, in turn, would further enhance glutamate release, thus 

exacerbating excitotoxic effects on motor neurons from disease onset to the chronic late 

stage. As a matter of fact, it has been reported that induction of synaptic plasticity (e.g. 
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chemical LTP) in hippocampal cultured neurones increased mGluR1 through the activation 

of NMDA receptors, which are known to present onto glutamatergic nerve terminal where 

they also act as feed-forward autoreceptors (Beretta & Jones 1996; Woodhall et al., 2001; 

Suarez et al., 2005; Yang et al., 2006; Luccini et al., 2007; Cheyne & Montgomery, 2008; 

Musante et al., 2011; Summa et al., 2011).   

The excessive 3,5-DHPG-induced glutamate release was of vesicular origin and occurred 

by calcium-dependent exocytosis, as it was abolished by Bafilomicin A1, which depletes 

vesicular neurotransmitter content (Bowman et al., 1988), and by BAPTA, a chelator of 

Ca2+, suggesting that the calcium involved originated from intracellular deposits. Indeed, 

the increase of glutamate release by 3,5-DHPG was also prevented by exposing spinal cord 

synaptosomes to the PLC inhibitor U73122 and the IP3 receptor blocker 2-APB, 

demonstrating that the effect is mediated by canonical group I metabotropic glutamate 

receptors that activate PLC and phospholipid hydrolysis, formation of IP3 and calcium 

release from intracellular stores (Bleasdale et al., 1990; Maruyama et al., 1997). 

The hyperactivity of mGluR1 and mGluR5 was also associated to a dysregulation of 

cytosolic Ca2+ homeostasis at the intraterminal level that can activate several pathways, 

such as the calpain-calpastatin protease system found to be abnormally activated altered in 

SOD1G93A mice (Stifanese et al., 2010, 2014).  

In line with the functional data described above, demonstrating the presence of altered 

group I mGlu autoreceptors, our immunofluorescence image analysis, performed on 

purified spinal cord synaptosomes, revealed an increased expression of both mGluR1 and 

mGluR5 on vGluT1 positive synaptosomes from SOD1G93A at 90 days of life with respect 

to WT controls. In contrast, the glutamatergic terminals from the spinal cord of 30- and 60-

day-old SOD1G93A mice showed no significant changes of mGluR1 or mGluR5 expression, 

although a trend toward an increase could be observed. Interestingly, when the expression 

of these receptors was evaluated by western blot analysis on spinal cord synaptosomal 
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homogenates, no differences between SOD1G93A and control mice was observed at any age 

tested, indicating that the overexpression of presynaptic mGluR1/5 was confined to 

glutamatergic nerve terminals. Moreover, this analysis also highlighted the co-existence of 

the two receptor subtypes on the same glutamatergic nerve terminal, confirming the 

functional results that showed the involvement of both mGluR1 and mGluR5 in the 

modulation of glutamate release. It has to be noted that functional interactions between 

mGluR1 and mGluR5 autoreceptors have also been reported by Musante and collaborators 

(2008) in mouse cortical synaptosomes, with the two subtypes that may represent the low 

and the high affinity binding site, respectively. 

On the other hand, overexpression of mGluR1 and mGluR5 was observed in total tissue 

homogenates of spinal cord in SOD1G93A mice at 60 days (mGluR1) and at 90 days (both 

subtypes) of life, thus suggesting that non-presynaptic receptors located on membranes of 

neuronal and/or non-neuronal cells (D’Antoni et al., 2008; Scheefhals & MacGillavry, 

2018) may also play a role at presymptomatic and  early symptomatic stages. Indeed, the 

possible modulatory roles of group I glutamatergic metabotropic receptors on the different 

functions of astrocytes, oligodendrocytes and microglia needs to be investigated since it is 

well known that non-neuronal cells are actively involved in motor neurons degeneration 

(Boillée et al., 2006b; Yamanaka et al., 2008; Haidet-Phillips et al., 2011; Frakes et al., 

2014) . 

Overall, the activity of group I metabotropic glutamate autoreceptors at the early onset and 

late phase of ALS, demonstrated here and in previous studies, suggests the possibility of 

using antagonists/NAMs for these receptors as a novel neuroprotective therapeutic 

approach in this motor neuron disease. As a matter of fact, in vitro studies have shown that 

these pharmacological interventions are effective in protecting spinal cord motor neurons 

from different neurotoxic insults (Pizzi et al., 2000; Anneser et al., 2006; D’Antoni et al, 

2011). Most importantly from a translation point of view, different genetic manipulations, 
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aimed at decreasing or deleting these mGluR subtypes, have shown several in vivo 

beneficial neurochemical and clinical effects in the SOD1G93A mouse model, including a 

significant increase of lifetime (Milanese et al., 2014; Bonifacino et al., 2017, 2019a). 

In conclusion, we have demonstrated for the first time that the function of mGlu1 and 

mGlu5 autoreceptors is altered in SOD1G93A mice starting from the symptom onset of the 

disease and they result hyperactive in enhancing the release of glutamate in the spinal cord, 

an effect that was paralleled by the increase of their expression on glutamatergic synaptic 

boutons. Moreover, we have also found that these receptors are overexpressed in spinal 

cord total tissue, but not in synaptosomes, even at pre-symptomatic disease stages, 

suggesting that they may be a cause/concause of ALS when mediating altered glutamate 

signalling at the postsynaptic levels and/or to astrocytes, oligodentrocytes or microglia. Of 

course, this latter aspect needs a more detailed analysis to indemnify what type(s) of non-

neuronal cells could be involved in triggering the initial phases of the disease.  

Overall, our data further support the therapeutic potential of group I metabotropic 

glutamate receptor antagonist in ALS. In this view, selective and potent antagonists of the 

mGluR5  subtype (fenobam, AFQ056, CTEP) are available today, which  have shown good 

pharmacokinetic properties, a favorable safety profile and good efficacy in other 

pathologies (Abd-Elrahman KS et al., 2018; Montana et al. , 2009; Michalon et al., 2014; 

Lindemann et al., 2011; Levenga et al., 2011; Peterlik et al., 2017; Berry-Kravis et al., 

2009; Levandis et al., 2008; Porter et al., 2015). However, a polydrug therapy aimed at 

blocking both mGluR1 and mGluR5 could turn out to be more effective and could 

represent a rapid translation application in human. 

8.3 Role of EVs astrocytes derived in microglia activation 

The results obtained in the pilot project carried out in Lausanne in the laboratory of  Prof. 

Paolicelli, although preliminary and related to a limited number of experiments, can 

represent a promising starting point for the development of this research line. 
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TNF-a activation in primary astrocytes cultures did not appear effective. This suggests that 

changes to the protocol, such as exposure time or concentration used, are needed. Another 

point is the 24-hour washout in medium with FBS depleted from exosomes, performed in 

the absence of TNF-a. During this time, the effect of TNF-a may have disappeared. 

Unfortunately, the activation with TNF-a is a key point to observe the effects of CTEP. 

The treatment with exosomes isolated from astrocytes, exposed or not to CTEP, showed no 

differences in microglia cytokine expression and this event could be linked to the fact that 

there is only a little or no activation of astrocytes.  

One interesting result, however, is related to the effect of the exposure of microglia 

cultures to EVs isolated from astrocytes, treated or not with TNF-a, that indeed caused the 

increase in the expression of several genes, thus confirming that extracellular vesicles 

could play a crucial role in the cross-talk between astrocytes and microglia. 
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Claudia Rebosio, Elisa Calcagno, Matilde Balbi, Britt T. J. van Hagen, Elentina K. 
Argyrousi,  Hong Zhang, Maria Adelaide Pronzato, Olga Bruno, Ernesto Fedele. 
“Memory-enhancing effects of GEBR-32a, a new PDE4D inhibitor holding promise 
for the treatment of Alzheimer’s disease” Sci Rep. 2017 Apr; 7:46320.  
 

• Claudia Rebosio*, Matilde Balbi*, Mario Passalacqua, Roberta Ricciarelli, 
Ernesto Fedele. “Presynaptic GLP-1 receptors enhance the depolarization-evoked 
release of glutamate and GABA in the mouse cortex and hippocampus” *Equally 
contributed. Biofactors. 2018 Mar; 44(2):148-157.  
 

• Tiziana Bonifacino, Claudia Rebosio, Francesca Provenzano, Carola Torazza, 
Matilde Balbi, Marco Milanese, Luca Raiteri, Cesare Usai, Ernesto Fedele, 
Giambattista Bonanno. “Enhanced Function and Overexpression of Metabotropic 
Glutamate Receptors 1 and 5 in the Spinal Cord of the SOD1G93A Mouse Model of 
Amyotrophic Lateral Sclerosis during Disease Progression” Int J Mol Sci. 2019 
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Meetings 
 
Oral communication: 
 

• 2018 September: XXI SIF Seminar for PhD students, Fellows, Post Doc and 
Specialist Trainees, Bresso, 19th-22nd September 2018. 
Oral communications: Treatment with exosome-shuttled miRNAs derived from 
mesenchymal stem cells shifts spinal cord astrocytes isolated from late disease state 
SOD1G93A mice from a neurotoxic to a neuroprotective phenotype. 
 

Posters: 
 

• 2016 July: 10th FENS, Forum of Neuroscience, Copenhagen, Denmark, 2nd-6th July 
2016. 
C. Rebosio, C. Garbarini, M. Balbi, M. Passalacqua, R. Ricciarelli, E. Fedele. 
Poster: Presynaptic GLP-1 receptors modulate glutamate release in mouse cortical 
and 
ippocampal synaptosomes. 

• 2016 September: XIX National Meeting of PhD student in Pharmacology, 
Pharmacology Italian Society (SIF) Rimini, 20th-22nd September 2016. 
C. Rebosio, C. Garbarini, M. Balbi, M. Passalacqua, R. Ricciarelli, E. Fedele. 
Comunicazione orale: Presynaptic GLP-1 receptors modulate glutamate release in 
mouse cortical and ippocampal synaptosomes. 

• 2017 October: XVII National Meeting of Neuroscience Italian Society (SINS), 
Ischia, 1st-4th October 2017. 
M.  Balbi, C. Rebosio, M. Passalacqua, R. Ricciarelli, E. Fedele .  
Poster: Presynaptic GLP-1 receptors enhance glutamate and GABA release from 
purified mouse cortical and ippocampal synaptosomes. 

• 2017 October: 38° National Congress of Pharmacology Italian Society (SIF) 
”Farmaci, salute e qualità della vita”, Rimini, 25th-28th October 2017. 
M. Balbi, C. Rebosio, C. Brullo, J. Prickaerts, O. Arancio, O. Bruno, E. Calcagno, 
R. Ricciarelli, E. Fedele. 
Poster: GEBR-32a, a new promising PDE4D inhibitor for the treatment of 
Alzheimer’s disease. 
C. Rebosio, M.Balbi, M. Passalacqua, R. Ricciarelli, E. Fedele. 
Poster: Release-regulating GLP-1 receptors are present on cortical and 
hippocampal glutamatergic and GABAergic nerve terminals. 

• 2018 February: National Meeting of PhD student in Neuroscience, Neuroscience 
Italian Society (SINS), Napoli, 23rd February 2018. 
M. Balbi 
Poster: Treatment with CTEP, a mGluR5 negative allosteric modulator, in the 
SOD1G93A ALS animal model. 

• 2018 June: XXXVI National Conference about Flow Cytometry, Cytometry Italian 
Society (GIC), Frascati, 6th-8th June 2018. 

• 2018 June: Glial cells and therapeutic perspectives: from maladaptive plasticity to 
neurorestoration, Firenze, 29nd June 2018. 

• 2018 June: First brainstorming research assembly for young neuroscientists, 
Genova, 29nd-30nd June 2018. 
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M. Balbi, M. Milanese, T.Bonifacino, C. Rebosio, S. Ravera 
Poster: Pharmacological treatment with CTEP, an mGluR5 negative allosteric 
modulator, in SOD1G93A mice. 
S. Ravera, T. Bonifacino, M. Bartolucci, C. Torazza, F. Provenzano, M. Balbi, K. 
Cortese, I. Panfoli, G. Bonanno 
Poster: Characterization of the mitochondrial aerobic metabolism at the pre- and 
perisynaptic districts of the SOD1G93A mouse model of amyotrophic lateral 
sclerosis. 

• 2018 September: Focus SLA, Genova, 27th-29th September 2018. 
M. Balbi, C. Rebosio, T. Bonifacino, M. Milanese, L. Raiteri, M. Nadeem, C. Usai, 
G. Bonanno  
Poster: The function of release-regulating presynaptic Group I metabotropic 
glutamate autoreceptors is enhanced in the spinal cord of SOD1G93A mice. 

• 2018 December: Meet the microglia: homeostatic role and harmful contribution to 
neurological disorders, Milano, 19th December 2018. 

• 2019 July: XIV European Meeting on Glial Cells in Health and Disease (GLIA 
2019), Porto, Portugal, 10th-13 th July, 2019. 
M. Balbi, T. Bonifacino, M. Milanese, G. Bonanno 
Poster:  Partial deletion of mGluR5 affects M1 and M2 phenotypes in microglia 
acutely isolated from SOD1G93A mice during disease progression. 

• 2019 November: 2nd Brainstorming Research Assembly for Young Neuroscientists, 
Milano, 14th-16th November, 2019. 
M. Balbi, T. Bonifacino, M. Milanese, G. Bonanno 
Poster: Pro- and anti-inflammatory phenotypes of acute microglia isolated from 
spinal cord of SOD1G93A mice  during disease progression and effects of the 
partial deletion of mGluR5. 

• 2019 November: 39° National Congress of Pharmacology Italian Society (SIF) 
Firenze, 20th-23rd November, 2019 
M. Balbi, T. Bonifacino, M. Milanese, G. Bonanno 
Poster: Pro- and anti-inflammatory state of microglia is affected by the partial 
deletion of metabotropic glutamate receptor type 5 in SOD1G93A mice during 
disease progression. 
 

Courses: 
 

• 2018 September-December: specialisation course in “Economia del farmaco, della 
salute e delle tecnologie sanitarie APHEC”, University of Genoa.   

• 2018 June: Flow Cytometry course organized by Cytometry Italian Society (GIC), 
Frascati.   

• 2017 May: specialisation course in “Nutrition and longevity”, Dept. of Medicine 
(DIMI), University of Genoa. 

 
Seminars: 
 

• 17.01.2017. Seminar at Dimes, Aula di Fisiologia, Viale Benedetto XV, 3: 
Prof. Emanuele Albano (Dipartimento di Scienze della Salute - Università del 
Piemonte Orientale) “Stress ossidativo e reazioni immunitarie nell’evoluzione della 
steatoepatite” 
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Prof. Giuseppe Poli (Università degli Studi di Torino) “Ossisteroli nella 
progressione dell’aterosclerosi e nella malattia di Alzheimer” 

• 01.02.2017. Seminar at Istituto Giannina Gaslini, Aula Magna: 
Prof. Attilio Bondanza (Ospedale San Raffaele, Milano) “Car-T for cancer, 
autoimmune and inflammatory disease” 

• 03.02.2017. Seminar at DIFAR, Università di Genova, Viale Cembrano, 4: 
Dott.ssa Marta Fumagalli (Dipartimento di Scienze Farmacologiche – Università 
degli Studi di Milano) “The GPR17 receptor a key player in oligodendrogenesis: 
physiological roles and involvement in demyelinating disorders” 

• 16.02.2017. Seminar at DIMI, Viale Benedetto XV, 6: 
Prof. Alberto Diaspro (Università di Genova e Istituto Italiano di Tecnologia) “The 
extra microscope” 

• 10.03.2017. Seminar at CBA-Torre D, Largo Rosanna Benzi, 10:  
Prof. Dario DiFrancesco (Dipartimento di Bioscienze – Università di Milano) “The 
funny curret: how to make a heart beat (and excite a brain)” 

• 08.06.2017. Seminar at DIMI, Aula A, Viale Benedetto XV, 10: 
Prof. Giorgio Cantelli Forti (Presidente Società Italiana di Farmacologia) “Le 
farmaco proteine e le grandi rivoluzioni della terapia” 

• 11.05.2018. Seminar at DIFAR, Aula C, Viale Cembrano 4: 
Dott.ssa Antonella Gentile (Dipartimento di Medicina dei Sistemi, Laboratorio di 
Immunopatologia sinaptica - Università Tor Vergata) “Modelli animali di Sclerosi 
Multipla: dall’indagine comportamentale allo studio dei meccanismi patogenetici” 

• 18.05.2018. Seminar at DIFAR, Aula Angelo Ranise, Viale Benedetto XV 3: 
Dr. Andrea Petretto (Istituto Giannina Gaslini) “La proteomica nella Ricerca 
Traslazionale e Clinica” 
Dr. Ulrich Pfeffer (Istituto San Martino) “Data analytics nei centri di ricerca 
sanitari” 

• 24.05.18. Seminar at DIFAR, Aula Angelo Ranise, Viale Benedetto XV 3: 
Prof.ssa Barbara Anna Bobrowska-Korczak (Warsaw Medical University) 
“Epigenetic cenge, trace elements and antioxidant status for cancer prevention” 

• 3.07.18. Seminar at DIFAR, Aula Angelo Ranise, Viale Benedetto XV 3: 
Dott.ssa Carlota Rangel-Yangui (San Paolo University) “Research & development 
of nanotechnological alternatives for biological drugs” 

• 3.07.18. Inter-doctorate course at Polo Alberti, Aula 6, Via Leon Battista Alberti 4: 
Prof. Rodolfo Quarto, Dott.ssa Barbara Parodi e Dott.ssa Chiara Baldo “Biobanche 
per diagnosi e ricerca” 

• 4.07.18. Inter-doctorate course at Polo Didattico Biomedico, Aula 8, Corso Aldo 
Gastaldi 161: 
Dott.ssa Paola Pagani, Dott.ssa Cristina Bottazzi, Dott.ssa Alessandra Bo “Le 
biobanche ad uso terapeutico” 

• 4.10.18. Seminar at DIFAR, Aula D, Viale Cembrano 4:  
Miltenyi Biotec “Inspiring technologies for creative neuroscientists” 

• 10.10.18. Elsevier on Campus @ Università degli Studi di Genova, Scuola 
Politecnica, Villa Cambiaso, via Montallegro 1, Salone al Piano Nobile. 
Dott. Massimiliano Bearzot  “Come scrivere un articolo scientifico e pubblicarlo su 
riviste scientifiche ad alto impatto” 

• 11.03.2019. Seminar at Department de Physiologie, Seminar room, Rue du Bugnon 
7, Lausanne: 
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Frèdèrique Varoqueaux “Emergence of neuronal communication: peptidergic 
signaling in placozoans” 

• 23.03.2019. Seminar at Department de Physiologie, Seminar room, Rue du 
Bugnon, 7, Lausanne: 
Bertrand Mollerau “The expanding role of lipid droplets in neurodegenerative 
diseases” 

• 26.03.2019. Seminar at DNF (Departement of Foundamental Neuroscience), 
Seminar room, Rue du Bugnon, 9, Lausanne: 
Cornelius Gross “Primal Fear- the neural circuitry of instinctive defense” 

• 8.04.2019. Seminar at Department de Physiologie, Seminar room, Rue du Bugnon 
7, Lausanne: 
Aude Panatier “Glycolysis derived-L-serine contributes to early memory deficits in 
Alzheimer’s disease” 

• 15.04.2019. Seminar at Department de Physiologie, Seminar room, Rue du Bugnon 
7, Lausanne: 
Fanny Martineau “Consequences of early neuronal migration failure in the 
neocortex” 

• 3.06.2019. Seminar at Department de Physiologie, Seminar room, Rue du Bugnon 
7, Lausanne: 
Juan P. Bolanos “Regulation of brain metabolism and behavior by astrocytic 
mithocondrial ROS” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


