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Abstract—In the context of transmission system planning,
research proposes methods to assess the effect of uncertainties
of power system operating condition due to forecasting errors
of intermittent generation and loads. In particular probabilistic
power flow methods are illustrated to calculate the probability
distributions of the voltages and the branch currents, starting
from the distributions of power injections/absorptions. These
uncertainties play a key role in the operational planning of
power systems, as certain configurations of load and intermittent
generation can cause security problems.
This paper aims to propose a probabilistic methodology to
assess Net Transfer Capacity (NTC) among network areas, which
quantifies forecast error uncertainties by applying the Point
Estimate Method (PEM) combined with Third Order Polynomial
Normal (TPN) Transformation. This approach is compared with
a conventional NTC assessment technique and has been validated
against Monte-Carlo benchmark on an IEEE test system.

Index Terms—Net Transfer Capacity, Total Transfer Capacity,
Probabilistic Security Assessment, Point Estimate Method

I. INTRODUCTION

The increasing uncertainties in power systems originated by
liberalized market and the penetration of Renewable Energy
Resources (RES) raise more and more attention to security
issues [1] - [4]. RES forecast uncertainties are affected by
several factors, e.g. prediction techniques, RES aggregation
level and forecast horizon. Moreover, correlations in forecast
errors are likely to occur, especially as far as RES generation
and loads are weather dependent. Correlation in forecast errors
of power injections could emphasize the deviation of the
operating condition with respect to the forecast state, possibly
exacerbating security issues [5], [6].
Power system security assessment techniques can strongly
benefit from probabilistic approaches, as these can efficiently
quantify the effect of uncertainties on the operating condition.
This work provides a novel probabilistic procedure to calculate
the Net Transfer Capacity (NTC) among areas accounting for
RES and load forecast uncertainties. The proposed method is
based on coupling the Point Estimate Method (PEM) scheme
with Third order Polynomial Normal (TPN) Transformation,
which represents the major original contribution in the context
of NTC studies.
The rest of the paper is organized as follows: Section II

introduces some definitions and the conventional NTC calcu-
lation procedure. Section III presents the probabilistic NTC
methodology accounting for RES and load forecast error
uncertainties. Section IV describes the test system and the
simulation scenarios, and it reports and discusses the results.
Section V concludes, while Appendix describes PEM and TPN
Transformation in detail.

II. NET AND TOTAL TRANSFER CAPACITY: DEFINITIONS
AND CONVENTIONAL ASSESSMENT TECHNIQUE

After briefly recalling some definitions, the section describes
the basic procedure for Total Transfer Capacity (TTC) evalu-
ation and the conventional method to calculate the NTC.

A. Transfer Capacity definitions
The definition of transmission capacities is given by Euro-

pean network of Transmission System Operators for Electricity
(ENTSO-E) in [7] and it is briefly recalled here:
• Total Transfer Capacity (TTC) is the maximum exchange

programme between two areas compatible with opera-
tional security standards, applicable to each system if
future network conditions, generation and load patterns
were perfectly known in advance.

• Transmission Reliability Margin (TRM) is a security
margin that copes with uncertainties on the computed
TTC values.

• Net Transfer Capacity (NTC) is the maximum exchange
programme between two areas compatible with security
standards applicable in both areas and taking into account
the technical uncertainties on future network conditions.
NTC is evaluated according to the following formula:

NTC = TTC − TRM (1)

TTC is set by physical realities that may prevent operation
of the system according to security rules [8]: (a) current
limits; (b) voltage limits; (c) stability limits (due to frequency,
voltage and angle instability). These limits must be respected
also in post-contingency conditions, according to the operating
security criteria (typically N -1 criterion).
TTC evaluation is mostly influenced by: (1) the capability
of the single connections of the considered network corridor;
(2) The geographic location of the generators and loads with
respect to the above mentioned corridor.



B. Basic algorithm for TTC Evaluation and Conventional
NTC Assessment

The procedure exploited in this work to evaluate the TTC is
taken from [8] and it is based on the definition of a reference
scenario. This scenario can be determined by optimal power
flow technique or can be defined by the Transmission System
Operator in order to study a real case.
Let A and B the two areas under investigation for TTC
evaluation. Starting from a reference scenario, the generated
power is shifted from one area to the other in order to cause
additional cross-border flows. This is done by increasing the
generation in A step by step and decreasing the generation
in B by the same steps, thus obtained a new grid operating
state. The modification of the generator set-points doesn’t
involve renewable sources, but only the dispatchable units.
The consumer loads in both areas remain unchanged. The
generation stress is performed until one of the following
conditions occurs in the new operating state:
• the generation variation in one area cannot be compen-

sated by the generation in the second area due to the
attainment of generators minimum or maximum active
power limits

• static security violations in N condition
• static security violations during N -1 analysis applied to

all branches
A dichotomy algorithm is used to determine the maximum
stress which does not cause any security violations. Dynamic
security assessment is not included in the TTC calculation
procedure, up to now. Some dynamic simulations may be run
in the final operating point, to check the fulfillment of dynamic
security requirements.
The conventional procedure for the NTC evaluation, imple-
mented in this work, is based on equation (1): after the
deterministic TTC evaluation a TRM value, equal to the 5%
of TTC, is applied.

III. PROPOSED PROBABILISTIC APPROACH FOR NTC
ASSESSMENT

This section discusses the probabilistic models needed to
characterize the RES and load forecast errors, and proposes
the probabilistic method which assesses the NTC among grid
areas, accounting for the above mentioned uncertainties.

A. Probabilistic modeling of the forecast errors

Statistical dependences among the forecast errors may in-
crease problem complexity. To this aim, two aspects are
analyzed in detail: (1) the marginal distributions of the forecast
errors of RES and loads; (2) possible dependences among the
forecast errors. As for point 1, the marginal distributions for
the k-hour ahead forecast errors of RES (solar and wind plants)
can be derived from climatological models or from more
advanced models like ensemble forecasts [4]. The approach
presented in the simulations implements models drawn from
different studies [3]. In particular, the non-symmetry of the
forecast errors, derived from statistical analysis of historical
data, suggests the use of non-symmetric distributions (like

beta distributions) for wind and solar generation forecast
errors. It is worth remarking that systematic errors in forecasts
may determine a non-null mean value for the forecast errors,
especially with regard to RES generation.
The standard deviation of RES generation forecast errors
depends on [9] - [10]:
• Level of aggregation of RES: the larger is the number

of wind/solar farms aggregated into the same equivalent
generation, the lower is the standard deviation expressed
in % of the total rating;

• Geographic extension of the RES aggregation: given the
same number of aggregated RES sources, the larger the
area where they are distributed the higher the compensa-
tion effect among RES, thus the smaller is the standard
deviation again expressed in % of the total rating;

• The forecast time horizon: typically the larger the time
horizon the larger the variance in forecast errors.

Other factors (like the day of the year or the sky clearness)
affect the standard deviation of the forecast errors on specific
RES typologies (solar farms) and they are taken into account
too [10]. The standard deviation associated with load forecasts
is usually very low (typically 1-4 % of the rated power).
As for point 2, different techniques, like the Nataf transfor-
mation [11] and the TPN Transformation [12], have been
proposed in literature to simulate the behavior of dependent
stochastic variables without using time consuming Monte-
Carlo techniques. The present work adopts the TPN Transfor-
mation to model input dependencies, as the input distributions
may significantly differ from the normal distribution: in fact,
this transformation allows to pass from dependent not normal
variables to independent (possibly normal) variables.

B. The proposed NTC calculation method

The conventional NTC evaluation proposed in the previous
section seems pragmatic; however, the reliability margin does
not explicitly depend on the k-hour ahead RES and load
forecast errors referring to the scenarios studied in operational
planning sessions. The proposed probabilistic evaluation (sum-
marized in Figure 1)intends to better evaluate the NTC, taking
into account the RES and load forecasting errors.
The proposed methodology is based on two main points:

1) Calculation of TTC Probability Density Function (PDF),
resulting from the uncertainties on the RES/loads fore-
casting errors.

2) The probabilistic NTC is derived starting from the
Cumulative Distribution Function (CDF) of TTC. In
particular, the NTC is defined as the TTC value having
a probability of being exceeded equal to α: NTCα =
CDF−1TTC(1 − α), where CDFTTC is the cumulative
distribution function related to the TTC evaluated at
point 1. Parameter α can be evaluated by each TSO
based on its yearly targets for security requirements: in
fact α = H

8760 where H indicates the number of hours
when total transfer capacity is higher than the 1 − α
quantile.



Fig. 1. Probabilistic NTC evaluation procedure

In order to execute point 1 the Point Estimate Method (PEM)
[13] - [12] is implemented in the security assessment platform
described in [14]. This technique requires to compute a finite
set of initial power system states characterized by different
combinations of values for the stochastic inputs, and to apply
the TTC algorithm to this set of states. In particular, in this
work the 2N+1 PEM scheme, where N represents the number
of stochastic inputs, is exploited. This scheme requires the
application of the algorithm aimed at TTC evaluation on
2N+1 different initial power system states. In addition the
2N+1 PEM represents a suitable tradeoff between accuracy
and computational burden. 2N+1 PEM technique provides
good results with independent stochastic inputs, while TPN
Transformation is used to account for input dependence. The
fundamentals of 2N+1 scheme and of the TPN Transformation
are presented in the Appendix.

IV. TEST SYSTEM AND SIMULATION RESULTS

The proposed algorithm for the NTC evaluation has been
tested on IEEE RTS-96 network [15]. Its one line diagram is
reported in Figure 2. This network is divided into 3 macro-
areas: in turn, each macroarea has two areas at different
voltage levels, respectively 138 kV and 230 kV. All 230 kV
areas are labeled with even numbers, while all 138 kV areas
are labeled with odd numbers. For simulation purposes, six

conventional units have been replaced with three wind farm
injections and three solar plant injections (shown in Figure 2)
with equivalent ratings and active power set-points so that the
original loadflow is not altered. The loads and the generators
set-points have been reduced by a factor equal to 2/3 with
respect to the RTS-96 configuration in [15].

A. Conventional calculation of NTC

Four simulation scenarios are shown in Table I together
with the TTC and NTC values calculated via the conventional
method. Columns ”Area UP” and ”Area Down” identify
respectively the generation increase area and the generation
decrease area. The tolerance between the last secure and the
first insecure generation increment in the dichotomy algorithm
is set to 2 MW. The TRM value is set to 5% of the correspond-
ing TTC value.

TABLE I
SIMULATION SCENARIOS

ID Area Area TTC NTC Stop
UP DOWN [MW] [MW]

A 4 6 366 348 N-1 analysis
B 3-4 1-2 762 724 N-1 analysis

In particular, the TTC for scenario A is limited by the
overload of branch between nodes 223 and 318 due to the
outage of branch 121-325; the TTC calculated for scenario
B is constrained by the overload of branch connecting nodes
113 and 215 due to the outage of branch 123-217.

B. Probabilistic calculation of NTC

As far as probabilistic modeling is concerned, Beta distribu-
tions are used to model forecast errors of solar and wind plants.
Realistic values of standard deviations equal to 15% and of
25% (for a 24 hour time horizon of forecast) are derived from
literature [9], [10] to model errors on wind turbine (WT) and
solar panel (SP).
The validation process consists into two steps: (I) comparing
the result of the proposed method against the Monte-Carlo
method (the benchmark); (II) checking the behavior of the
method in case of negligible uncertainties and verifying the
consistency with the conventional TTC calculation.
As far as point (I) is concerned, Figure 3 compares the CDF
of the TTC calculated with the Monte-Carlo method (with
500 samples) and the probabilistic method, considering stress
scenario B and a time horizon of 12 hours. The matching is
found to be satisfactory, as confirmed by the comparison of
the first two statistical moments (mean and standard deviation)
in Table II, while the computational time is extremely lower
in the proposed method.
In order to perform validation step (II) for each stress scenario
A and B, standard deviations have been set to 1/10 of the above
mentioned values for WFs and SPs. Figure 4 reports the CDFs
of the TTC for scenario B.
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Fig. 3. Comparing the CDF of the TTC from proposed probabilistic method
against the benchmark (Montecarlo): validation step I

TABLE II
COMPARISON OF FIRST TWO STATISTICAL MOMENTS OF TTC CDF:

MONTE-CARLO VS PROPOSED METHOD

Monte-Carlo (500 samples) PEM

Mean [MW] 761.6 761.9
Standard deviation [MW] 5.7 5.6
Calculation time [minutes] 240 10

It can be noticed that the curve has very little variance and
its centered on the TTC value calculated by the conventional
method (i.e. 762 MW).
After that, for each stress scenario (A and B) the goal is
to compare the results of the probabilistic calculation with
conventional one, accounting for:

• Correlation among the RES injections
• Time horizon of forecast

Table III reports the set of simulation scenarios analyzed.
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Fig. 4. Assessing the CDF of TTC in case of negligible uncertainties:
validation step II

TABLE III
SIMULATION SCENARIOS

ID Area Area Time Distance
UP DOWN horizon [h] among WF’s [km]

A1 4 6 12 20
A2 4 6 24 20
A3 4 6 12 200
A4 4 6 24 200
B1 3-4 1-2 12 20
B2 3-4 1-2 24 20
B3 3-4 1-2 12 200
B4 3-4 1-2 24 200

C. Effect of linear correlation coefficients among the RES

Figure 5 compares the CDFs of scenarios A2 and A4 which
differ for the distance among WFs, thus also for correlation
coefficients among relevant power injections are different (0.75
and 0.057 for scenarios A2 and A4). It can be noticed that in
case of α = 90% the NTC value reduces from 363 to 360 MW
if the WFs have a higher correlation: this demonstrates that



the proposed tool is able to quantify the effect of correlation
of forecast errors on the final NTC value. These NTC values
are lower than TTC calculated via the conventional method,
but higher than the NTC estimated using a conservative 5%
TRM.

D. Effect of time horizon of forecast

Figure 6 compares the CDFs of the TTC between areas 4+3
and 1+2 for scenarios B1 and B2 with time horizons equal
to 12 and 24 hours. Assuming a value equal to 90% for α
parameter it can be noticed that NTC value passes from 754
to 755 when time horizon passes from 24 to 12 hours.
This slight increase is justified by the modest reduction of the
standard deviation of the forecast error of a WT, given by
the characteristics in Figure 7: the curve provides the derating
factor σk−hours

σ24−hours
estimated from [9] which links the standard

deviation σ of forecast error for a WT to forecast time horizon.
A similar trend holds valid for solar panels [16]. In both
cases, the values of NTC are higher than the NTC (724 MW)
evaluated via the conventional method, which demonstrates
that an accurate evaluation of the forecast uncertainties instead
of adopting a prudential margin can lead to a less conser-
vative estimation of the NTC. The same consideration holds
valid for A scenarios: given α=90% for A1 (12 hours ahead
forecasts) and A2 (24 hours ahead forecasts) the NTC values
are respectively equal to 364 and 363 MW, which are lower
than conventional TTC (366 MW) but higher than 348 MW
provided by conventional NTC calculation.
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Fig. 5. Comparison of CDFs of TTC between Areas 4 (UP) and 6 (DOWN)
for two distances among WFs: 20 km (dotted line) and 200 km (solid line)

V. CONCLUSIONS

This work proposes a probabilistic procedure based on
the innovative coupled implementation of PEM and TPN
Transformation. The advantage of the proposed method with
respect to the conventional approach is that the reliability
margin is not a fixed value (in MW or in % of the TTC), but
it is accurately determined as a function of the uncertainties
due to RES forecast errors over the time horizon under study
for operational planning purposes. This allows a more precise
determination of the transfer capacity allowable for market
transactions, avoiding under or over-estimations often brought
by the adoption of the conventional method.
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forecast horizons: 12 hours (dotted line) and 24 hours (solid line)
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Fig. 7. Derating factor for standard deviation of the forecast error of WTs as
a function of time horizon: factor 1 corresponds to a 24 hour time horizon

The proposed approach has been validated against a bench-
mark method (Monte-Carlo): results show a good matching
between the two methods, and significant computational time
savings by using the proposed method instead of Monte-Carlo.

VI. APPENDIX

This Appendix reports the fundamentals of the 2N+1 PEM
Scheme and TPN Transformation which are essential for the
proposed probabilistic procedure.

A. 2N+1 PEM Scheme
The 2N+1 PEM Scheme is used to calculate the PDF of

TTC. The stochastic inputs of this method are the forecast
errors on RES (wind and solar injections) and on load ab-
sorption, indicated as X with distribution fX(x). The 2N+1
PEM Scheme requires to apply the TTC evaluation algorithm
to 2N+1 different initial network states. This 2N+1 starting
points are given by replacing the stochastic inputs by:
• 2 vectors for each stochastic variable:

X l,k = (µ1, µ2, . . . , xl,k, . . . , µN ), k = 1, 2

where l identify the stochastic variable, µi (i =
1, . . . , N, l 6= i) the mean of ith stochastic input and
xl,k given by the following formula:

xl,k = µl + ξl,k · σl
where σl is the standard deviation of the lth variable,
while ξl,k is evaluated through the successive relations:

ξl,k =
λl,3
2

+(−1)3−k ·

√
λl,4 −

3λ2l,3
4

, k = 1, 2, ξl,3 = 0



with λl,3 e λl,4 which represent respectively the normal-
ized third and fourth moments, evaluated as a function of
the expectation value of an order statistic EX [17]:

λl,r =
1

r
·
r−1∑
k=0

(−1)k ·
(
r − 1

k

)
· EXr−k:r

where EXr−k:r is determined according to fX(x) and
its CDF FX(x):

EXr−k:r =
r!

(j − 1)!(r − j)!
·

·
∫ +∞

−∞
x · fX(x) · [FX(x)]j−1 · [1− FX(x)]r−jdx.

• 1 vector composed of the mean value µi (i = 1, . . . , N)
of all the stochastic variables.

For each vector a the TTC evaluation algorithm, presented
in section II-B, is run. The results, in terms of generation
increase, are stored in the Z(l, k) functions (location k of
variable l). The values of the moments necessary to calculate
the CDF of the TTC are obtained according to the following
relation:

E(Zj) =

N∑
l=1

3∑
k=1

wl,k · Z(l, k)j

where the weights wl,k are given by:

wl,k =
(−1)3−k

ξl,k · (ξl,1 − ξl,2)
, k = 1, 2,

wl,3 =
1

N
− 1

λl,4 − λ2l,3

After the reconstruction of the fundamental moments, the
Gram-Charlier [17] method allows to reconstruct the PDF and
then the CDF of the TTC.

B. TPN Transformation

Considering the distribution fX(x) of inputs X , the basic
idea is to express non normal variables X = (X1, . . . , XN ) as
a third order polynomial of dependent normal variables W =
(W1, . . . ,WN ):

Xi = a0,i + a1,i ·Wi + a2,1 ·W 2
i + a3,i ·W 3

i , i = 1, . . . , N

where the coefficients a0,1, a1,i, a2,i, a3,i are calculated as
functions of L-moments:

a0,1 = λ1,i − 1.81379937 · λ3,i
a1,i = 2.25518617 · λ2,i − 3.93740250 · λ4,i
a2,i = 1.81379937 · λ3,i
a3,i = −0.19309293 · λ2,i + 1.574961 · λ4,i

Also W variables are dependent and the correlation matrix
RW among them can be derived from correlation matrix RX

of original variables by solving the equation below for any
pair of X variables:

6a3,ia3,jρ
3
Wi,Wj

+2a3,ia3,j ·ρ2Wi,Wj
+(a1,i+3a3,i)·(a1,j+3a3,j)·

·ρWi,Wj
+[(a0,i+a2,i)·(a0,j+a2,j)−ρXi,Xj

·σi·σj−µi·µj ] = 0

RW is positive definite matrix and it can be subject to
Cholesky decomposition:

RW = GW ·GTW .

Using matrix GW it is possible to transform normal dependent
variables W into independent normal variable Y to which
2N+1 PEM Scheme can be applied. The linear transformation
between W and Y is given by:

Y = G−1W ·W.
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