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Thin Polymer Films: Simple Optical Determination of Molecular Diffusion Coefficients
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ABSTRACT: The possibility to assess diffusion coefficients of small molecules in packaging polymer 

films directly on the shelf, or even along the fabrication line, without the use laboratory equipment 

commonly employed for gravimetric methods would represent a paradigm changer in the evaluation of 

barrier properties and byproduct formation in goods packaging and device encapsulation. In this work, 

we demonstrate a simple, effective and versatile method for the determination of the molecular diffusion 

coefficients that exploits simple UV-Vis spectroscopy and is suitable for any polymer film. This simple 

method also allows the direct identification of the intercalating molecule without the need for chemical 

targeting or of complex laboratory equipment. For this purpose, we report on the assessment of 

diffusion coefficients of both polar and non-polar molecules including water, ammonia, methanol, 

ethanol, toluene, and even hexafluorobenzene into polyvinyl chloride wrap commercialized for food 

packaging.
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Assessing the diffusion coefficient of small molecules in the vapor and gas phases through polymer 

thin films is important to evaluate barrier properties of packaging systems in food industry, in device 

encapsulation, and even for artwork protection.1-2 Monitoring these properties directly on the shelf or 

along the fabrication line can indeed provide significant information on both the polymer barrier 

properties, and on the formation of degradation byproducts, that could be harmful for human health. In 

fact, polymers are efficient absorbers for a large amount of chemicals,3-5 often used to for pollutants 

absorption in water.2, 6-7 

The diffusion of molecular species into polymer matrices is usually measured on bulky 

materials via gravimetry and pressure decay methods8 or by techniques based on refractive 

index variations.9 Conversely, when small polymer masses are involved, dedicated expensive 

and time consuming laboratory techniques such as nuclear magnetic resonance,10-11 infrared 

spectroscopy,12 and neutron reflectometry13 are frequently needed. Some attempts to 

measure diffusivity in thin films via UV-Vis spectroscopy have been done using chromophore 

analytes,14 but the use of these colored compounds aims to detect opportunely labelled 

molecules and then, it cannot be employed for uncolored species. Alternatively, the 

characterization of the chemico-physical variations induced in the polymer matrix by the 

diffusing molecules would be more versatile and potentially applicable to any polymer-solvent 

couple. 
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In a previous work, we demonstrated that the simple UV-Vis spectroscopy performed with portable 

and low-cost detectors and light sources can be used to easily assess the molecular diffusion coefficients 

through polymer multilayered photonic crystals.15-17 In these structures, periodical alternation of two 

polymers with different refractive index interacts with light to generate a diffraction pattern 

characteristic of the structure.18 The diffusion of an analyte within the multilayer can swell polymers, 

modifying the diffraction pattern proportionally to the mass intake, and with kinetics depending on the 

polymer-analyte chemico-physical interactions. This phenomenon also leads to label-free selectivity to a 

variety of analytes,15-21 and makes these structures effective sensors and actuators,22-23 besides their 

most common applications.22-33 The dynamic of the spectral changes in the diffraction pattern during the 

intercalation of a molecular species, also allows the use of classical models to estimate diffusion 

coefficient values full agreement with gravimetric data.34 These structures could then be used as 

integrated smart sensing tags in packaging system, but possess some disadvantages related to 

implementation within packaging systems. In this work we demonstrate that a similar approach method 

can be extended to any unstructured polymer films used in packaging. In this case, the packaging itself 

can be used as an active detection medium, making the method suitable for bare or multilayered 

polymer films used in both food industry and device encapsulation, allowing the assessment of 

properties that cannot be studied with standard techniques neither in-situ, nor for very small amounts of 

material.  

When their roughness is small enough, thin films provide interference patterns that depend on their 

thickness and on their refractive index. Such patterns typically arise from the constructive and 

destructive interference between light beams reflected and refracted from the upper and bottom film 

interfaces. As depicted in Figure 1a, for a film with thickness  and refractive index , when a light 𝐿 𝑛

beam ( ) hits the film, it is partially reflected ( ) and partially refracted ( ) through the interface. 𝐼1 𝑅1 𝑇1

Since the refractive index of the polymer is always larger than the one of air, , the phase of  is 𝑛 > 𝑛𝑎𝑖𝑟 𝑅1

is shifted by  with respect to .35 The refracted beam  hits instead the lower interface of the thin  𝜆/2 𝐼1 𝑇1
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4

film where it is again partially reflected within the polymer ( ) and partially transmitted ( ). In this 𝑅2 𝑇2

case, no phase shift occurs for the reflected beam .35 The beam  reaches then the upper interface 𝑅2 𝑅2

where it is transmitted and can interfere with the beam . Whether the interference between the beams 𝑅1

 and  is constructive or destructive depends on their phase difference. At normal incidence, without 𝑅1 𝑇2

any phase shift, we would obtain constructive interference when the difference of the optical path  2𝑛𝐿

equals a multiple of the beam wavelength ( ). Because the phase of the beam is shifted by 180 𝑚𝜆 𝑅1

degrees,  and are in-phase when the path difference  equals .36 This condition 𝑅1 𝑇2 2𝐿𝑛 𝜆 (𝑚 +
1
2)

corresponds to full constructive interference between the two beams, that arises in the thin film 

spectrum as relative maxima (Figure 1b). The beams are instead out-of-phase (disruptive interference, 

corresponding to minima in the spectrum of Figure 1b) when the path difference equals . 36 When a 𝑚𝜆

small molecule diffuses into a polymer film, the macromolecules can swell so that the thickness 

variation modifies the position of the interference maxima and minima. Then, the spectral variations 

occurring in the interference pattern during intercalation of molecular species can be directly linked to 

the variations of film thickness.  As a proof of principle, we exposed a commercial polyvinyl chloride 

(PVC, cling wrap) thin film (see supporting Information S1 for details), to different solvents including 

some found in foods. This PVC wrap is commonly used in food packaging for preservation, and 

protection from chemical (gases, moisture, and light), biological (microorganisms, insects and animals), 

as well as physical and mechanical damages.37 

EXPERIMENTAL

Commercial PVC thin films with thickness of 8.5 m was used as purchased. For the measurement 

the film was cut in different sections of about 5 mm2 and supported on a reflecting substrate to increase 

the background reflectance. 

For all the samples, reflectance data were collected at normal incidence at set time intervals with a 

homemade setup based on optical fibers. The sampling intervals where established on the basis of the 
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sensor response kinetics to the different analytes. For analytes showing slow response the sampling 

intervals was longer than for faster systems to avoid collection of redundant spectra. For the 

measurement, the sample was placed in the holder of a Y-bundle immersion probe purchased from 

Avantes. The probe has a bundle of optical fibers that takes the light from the illumination sources to the 

sample with normal incidence. Another fiber collects the light specularly reflected from the sample with 

the same angle and take it to the detector. The light detection system is an Avantes AvaSpec-2048 

spectrometer (200−1150 nm, resolution 1.4 nm) which allow to register the entire spectral range in a 

single measurement. The light source is a deuterium−halogen Micropak DH2000BAL lamp. The 

measurements were registered during the exposure to water, ammonia, methanol, ethanol and toluene 

vapors at ∼26 °C, 1 atm, and humidity within 65−80%. This was achieved by immersion of the probe 

containing the sample in a sealed tube saturated with the analyte vapor by placement of  0.5 mL of 

liquid analyte.

RESULTS AND DISCUSSION

Figure 1b shows the variations occurring in the interference pattern of the pristine commercial PVC 

cling film (red line) and after 5 min in toluene vapors (black line). The variations consist in a reduction 

of the reflectance intensity of the interference pattern and in a densification of the fringes. The latter 

characteristic is assigned to the increase of thickness of the film induced by the swelling.15 The intensity 

reduction can be instead linked to two phenomena: first, the reduction of the optical quality of the PVC 

film and second, the decrease of the dielectric contrast at the PVC-air interface. Figure 1c shows the 

dynamic of these variations during the exposure to toluene as a contour-plot. There, the x-scale 

represents the wavelength and the y-scale represents the exposure time. The reflectance intensity is 

conversely reported as a color scale so that we can distinguish any interference fringe as an oscillation 

between green and blue colors. In this plot we notice that the interference pattern is smoothly modified 

during the exposure to toluene. Indeed, all the fringes shift to the longer wavelengths side of the 
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spectrum, in agreement with an increase of the film thickness. In this system, the volume variation 

induced by the intercalation of molecules can be described as the thickness variation. Moreover, dealing 

with vapor analytes ,20, 38-41 we can assume that the refractive index ∆𝑑/𝑑(0) ≫  ∆𝑛/𝑛(0)

variation is negligible during the swelling process, 15. To better clarify this 𝑛(0) ≈ 𝑛(𝑡) ≈ 𝑛(∞)

point, one can consider as an extreme case the total replacement of a polymer film with refractive index 

~1.6  and which does not modify its geometrical thickness with a solvent with index ~1.33. In this case 

the error performed on the optical thickness of the material (n times d) would approach 20%. In the real 

case the effective variation of refractive index is lower than 5%15, 17, 40-41 for swelling approaching 100% 

of the initial thickness,15, 17 implying a way smaller error on the thikness variation and in turn on the 

evaluation of D. Then,  for additive volumes the polymer mass intake (M) can be related to the film 

thickness (L) as follows:

 (1)
𝑴(𝒕)

𝑴(𝒕∞) =
𝑳(𝒕) ― 𝑳(𝒕𝟎)

𝑳(𝒕∞) ― 𝑳(𝒕𝟎) =
∆𝝀(𝒕)

∆𝝀(𝒕∞)

Where  is the exposure time, so that  is t=0 s (before the exposure), and  represent the steady state.34 𝑡 𝑡0  𝑡∞

Then we can derive the molecular diffusion coefficient within the polymer film from the fringes 

spectral position during the vapor exposure from:15, 34

(2)
𝑴(𝒕)

𝑴(𝒕∞) =
∆𝝀(𝒕)

∆𝝀(𝒕∞) =  
𝟐
𝑳 𝒕 𝓓

𝝅

Equation 2 described the linear part of the sorption curves commonly retrieved by gravimetric 

measurements, where < 0.5,34, 42-47   and no accumulation occurs. In this range,  𝑀(𝑡) 𝑀(∞) 𝒟
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7

is commonly evaluated from the angular coefficient of the sorption curves reported as 

 vs. . Such curves can be retrieved from the data reported in Figure 1c by ∆𝜆(𝑡)/∆𝜆(∞) t

extrapolation of the fringes spectral position (relative maxima) during the exposure. Due to the 

small film thickness (8.5 m), concentration gradients that could affect the local diffusion coefficient can 

be neglected, as demonstrated in previous works on molecular diffusion in multilayered thin films.15, 20 

Figure 1d shows the retrieved data as the variation of spectral position (λ) normalized by the spectral 

shift registered at the steady state for one of these relative maxima (λ∞). There, the spectral position of the 

fringe moves initially with fast kinetics to the longer wavelength side of the spectrum and then the shift 

slows down until the position is stable. These data have been extracted tracing the position of the relative 

maximum initially positioned at ~800 nm (marked with “*” in Figure 1b). We would like to highlight that 

the choice of this maximum was completely arbitrary. Indeed, once normalized the spectral behavior of 

all the pattern maxima is identical, and the retrieved curves are perfectly superimposable, as reported in 

Supporting Information S2, panels c of Figure S2-S7. Then, this method can be applied to thin films 

showing light interference in any spectral region unaffected by light absorption and scattering phenomena, 

making the method applicable to a large variety of materials. 
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Figure 1: (a) Scheme of thin film reflectance. (b) reflectance of PVC film before (red line) and 

after (black line) ~5 min in toluene vapor. (c) Dynamic PVC spectral response during toluene 

exposure. (d) normalized spectral shift of the relative maxima initially positioned at ~800 nm 

during the exposure. 

Notwithstanding PVC films are used for their barrier properties for food preservation, this material 

strongly interacts with many compounds. Indeed, Figure 2 reports the spectral evolution of the fringe 
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maxima marked with “*” in Figure 1b in environments enriched with vapors of water (a), commercial 

ammonia (4% in water, b), methanol (c), ethanol (d), toluene (e) and even of a perfluorinated compound 

(f). The behavior of the other fringes in the interference patterns is reported in Supporting Information 

S2. In all the cases, we see that the spectral position of the maxima shifts towards longer wavelengths 

with different kinetics that depends on the different chemical species. The detailed description of the 

sample responses is reported in Supporting Information Figures S2-S7. We would like to add a 

comment to the data of Figure 2. The large interaction between the PVC cling film with solvents 

commonly present in food such as water and ethanol can increase the migration of plasticizers,48 which 

are largely present in these films,49 into the food. Then, decreasing such interaction could make the use 

of these materials safer and healthier. 
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Figure 2: Optical sorption curves for the PVC film during exposure to water(a), commercial 

ammonia solution (4% in water), b), methanol (c), ethanol (d), toluene (e), and 

hexafluorobenzene (f). The black line represents the linear fit of the optical sorption curves 

retrieved for . ∆𝜆(𝑡) ∆𝜆(𝑡∞) < 0.5

The data of Figure 2 were analyzed accordingly to Equation 2 to retrieve the diffusion coefficients (D) 

for the intercalation of the species investigated within the PVC film. Notice that the sorption curves 

were retrieved for single concentration (saturated vapors: 23 mg/ml for ammonia, 23 mg/ml for water, 

155 mg/ml for ethanol, 238 mg/ml for methanol and 120 mg/ml for toluene, see also Supporting Table 

S1) and that concentration dependence of D was not investigated.We did not extract the coefficient for 

hexafluorobenzene because the system did not reach the steady state even after 4h of exposure. The 

calculated data are reported in Figure 3a (as black squares) and compared with different 

analyte properties and with the Flory-Huggins, Hansen and Hildebrand parameters for the 

polymer-solvent pairs. Notice that commercial packaging polymers such as PVC cling wrap 

contains a large amount of unknown plasticizers such as di-ethyl-hexyl-phthalate and di-ethyl-

hexyladipate that give hard plastics like PVC the desired flexibility and durability.50 Then, we 

can only provide a qualitative analysis of the polymer-solvent interactions, as the actual Flory-

Huggins and Hildebrand parameter of the PVC film are unknown.  On the other hand, to be 

compatible with PVC, the parameters of the latter and those of the plasticizers should 
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11

necessarily be similar, then we do not expect large variation of the actual values from the data 

we could retrieve for pristine PVC. We would like to highlight that the possibility to apply this 

method, that was already reported for structured neat polymer films,15 on commercial systems 

with unknown composition is an important achievement because it allows to asses diffusive 

processes in both pristine polymers and packaging polymers directly on the shelf of the market.

In Figure 3a, we notice that the diffusion coefficients for the different diffusing chemicals 

appears inversely proportional to the Flory-Huggins parameter of the pristine PVC-solvent 

pairs (green squares). Such parameter is evaluated as the product of the van der Waals size 

of the solvent multiplied by the quadratic difference of the pristine PVC-solvent Hildebrand 

parameters, that decreases with the solubility of the polymer-solvent pairs (Figure 3b). Hence, 

we can reasonably state that the diffusion of the molecular species within the complex PVC 

film could be affected by the molecular dimensions and by their solubility within the polymer.51 

The value of D seems indeed to increase when the solubility increases; Figure 3b also report 

the quadratic difference between the Hansen parameters calculated for all the analytes with 

respect to pristine PVC. For this data, we notice that the Hildebrand parameter is dominated 

by Hydrogen bonding forces (orange squares in Figure 3b), while dispersive and polar forces 

(blue and green squares respectively in the same figure) have a secondary role. We can then 
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state that the diffusion coefficient in PVC is lower for highly polar molecules (ammonia and 

water), that arecharacterized by strong hydrogen bonding which makes their solubilization in 

PVC unfavorable and the diffusivity lower. Conversely the value of D increases when 

hydrogen bonding within the solvent is weaker or absent and other intermolecular forces, 

which also present in the PVC film, become predominant. Then, we can reasonably state that 

the formation of weak intermolecular interactions between polymer and analyte increases the 

efficiency of the diffusion process. Concerning instead the volume of the molecule, it does not 

seem to be strictly correlated to the diffusion parameter. On the other hand, it perfectly 

matches with the optical shift of the interference maxima measured at the steady state, which 

is proportional to the swelling degree, 1% for water, 1.5% for ammonia, 5 % for methanol, 7% 

for ethanol, 20% for toluene, 40% for hexafluorobenzene. As previously stated, the data 

regarding the latter have not been reported in Figure 3 as the system does not reach the 

equilibrium even after long exposure time. This data indicate that the larger the molecular 

volume, the larger is the spectral shift, and in turn the swelling. This characteristic also allows 

to use this simple method to discriminate molecules in the vapor phase without the use of any 

chemical target and complex laboratory equipment, 52 and could be used to assess the 

presence of degradation byproducts.

Page 12 of 22

ACS Paragon Plus Environment

ACS Applied Polymer Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

Figure 3: (a) Diffusion coefficient (black squares) and Flory Huggins parameter (green 

squares) for ammonia, water, ethanol, toluene and methanol in the PVC film. (b) Quadratic 

difference between the polymer-solvent Hildebrand parameters (red), and Hansen Parameter 

for dispersive (blue), polar (green) and Hydrogen-bonding (orange) forces.   (c) comparison 

between the van der Waals volume of the diffusing species and the spectral shift of the relative 

maximum detected at 850 nm in the PVC reflectance spectra at the steady state.51” 

The values of diffusion coefficient retrieved optically (see also Supporting Information Table S1) are in 

good agreement with literature data where available. For instance, the literature coefficient for the two 

alcohols varies between 10-9 and 10-12 cm2/s,53 while the value for water ranges from 10-5 to 10-9 

cm2/s.45, 53 We would like to highlight that the differences in the coefficient retrieved for water may 

arise because we performed the measurement in equilibrium with the environmental humidity instead of 
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on dry films. This makes the water concentration larger than zero in the PVC, and thus the diffusion 

driving force smaller and the process slower. Moreover, the diffusion coefficient can vary by orders of 

magnitude depending on the polymer molecular weight,54 thickness,14, 55-56 and on the use of additives 

and plasticizers that are widely used in these commercial films.

CONCLUSIONS

We demonstrated a new simple methodology for the assessment of the diffusion coefficient of 

molecular species in the vapor phase into polymer thin films used for food packaging by mean of simple 

reflectance spectroscopy. This method is based on the thickness variation of the polymer thin film 

induced by the diffusion of molecules and on the variation of the interference pattern of the film itself. 

The procedure allows the simple extraction of optical sorption curves that can be employed to assess the 

diffusion coefficient of the molecular species and the polymer barrier properties, paving the route to a 

new smart packaging technology. Moreover, this approach allows to easily distinguish different 

penetrants, providing a smart tool for assessment of goods quality directly in the shelf.

ASSOCIATED CONTENT 

Supporting Information:

RAMAN characterization of the commercial wrap film (S1); complete optical response of the 

PVC film during exposure to the six analytes (S2). Diffusion coefficients van der Waals 

volumes, Hildebrand parameters, Flory-Huggins parameters, percentual spectral shift of the 

fringes maxima and concentration for the different chemical species (S3). 
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