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stable values of the fitted strong coupling. The results of these studies show that soft-drop

thrust is a promising candidate for fitting αs at e+e− colliders with reduced impact of

hadronisation effects.
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1 Introduction

The CERN Large Hadron Collider (LHC) has recently finished its second physics run and

it has entered a long shutdown phase, which is devoted to upgrades of the main exper-

iments. Meanwhile, physics analyses employing the full dataset are being carried out,

leading to results with astonishing experimental precision. The absence of any clear indi-

cations of new particles or interactions necessitates more and more detailed comparisons of

experimental measurements with theoretical predictions. Correspondingly, high-accuracy
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calculations are of crucial importance in order to match the theoretical uncertainty to the

ever decreasing experimental one and to gain sensitivity even to tiny deviations from the

Standard Model. In this context, the theory community has put huge efforts in improving

perturbative calculations in QCD, both at fixed-order and at the resummed level. This

includes the development of sophisticated — and highly automated — simulation tools

that turn high-precision calculations into explicit predictions for the complex final states

produced in LHC proton-proton collisions.

A crucial quantity entering all these computations is the strong coupling constant αs,

which needs to be known at high precision. To give an example, even the leading-order

contribution to Higgs-boson production in gluon fusion at the LHC only starts at O(α2
s).

The current value of the coupling constant as determined by the Particle Data Group is

αs(mZ) = 0.1181±0.0011 [1], determined as the average of various different αs extractions.

This average is dominated by precise fits from lattice QCD [2–7], followed by measurements

of event-shape variables at e+e− colliders [8–16].

The most accurate αs determination from event shapes has been obtained by fitting

the thrust distribution [17] to a theoretical calculation of outstanding precision, namely

next-to-next-to-leading order matched to a resummed calculation which accounts for the

first three towers of logarithmic contributions, i.e. NNLO+N3LL accuracy [14, 18]. Notice-

ably, this result (αs(mZ) = 0.1135± 0.0011) exhibits some tension with the world average.

An analogous analysis performed for the C-parameter [16] resulted in a similar deviation.

A common feature of these extractions is a sizeable non-perturbative contamination origi-

nating from the observed final states being composed of hadrons, rather than partons. The

leading contribution to this component can be modelled analytically in terms of a single

non-perturbative parameter Ω, which is fitted jointly with the strong coupling. Unfortu-

nately, αs and Ω are highly correlated. It would thus be beneficial to break this degeneracy

in order to ensure that the extraction of αs is less dependent on non-perturbative physics.

In recent studies [19, 20], some of us put forward the idea of exploiting techniques devel-

oped in jet physics to improve on the determination of the strong coupling. Jet substructure

techniques are primarily developed to search for boosted massive particles decaying hadron-

ically. However, extensive literature on the topic (see for instance refs. [21–23] for recent

reviews) has demonstrated their ability to extend the range of applicability of perturbative

methods in jet physics. This essentially originates from a reduced sensitivity to very soft

emissions, resulting in milder hadronisation corrections. The soft-drop algorithm [24] is

particularly well-suited for this task and in ref. [19] soft-dropped versions of thrust, and

related event shapes, where discussed in detail. In this paper we continue the analysis of

soft-drop thrust and, in particular, focus on the effects that soft drop has on the impact

of non-perturbative corrections in the extraction of αs. Furthermore, we investigate how

the fit value and quality change as a function of the observable range considered for the

extraction. In the absence of experimental measurements of soft-drop thrust, we perform

our analysis on pseudo-data simulated with the Sherpa event generator [25, 26]. We will

illustrate the reduced sensitivity of the soft-drop thrust observable to non-perturbative

contributions. To this end we consider hadronisation corrections from Monte Carlo simu-

lations as well as an analytical model. This qualifies soft-drop thrust, and jet substructure

observables in general, as attractive candidates for future extractions of αs.
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Our paper is organised as follows, in section 2 we present the soft-drop thrust observable

and some detail on its evaluation to NLO+NLL accuracy. In section 3 we discuss the

generation of the pseudo data for the αs fits. Our methods to account for hadronisation

corrections are presented in section 4. The fit procedure and our treatment of statistical and

systematic uncertainties get illustrated in section 5. The corresponding results obtained

are discussed in section 6. We draw conclusions and give a brief outlook in section 7.

2 Soft-drop thrust

Soft drop [24] is an example of so-called grooming techniques. These are designed in the

context of jet substructure with the aim to clean up jets from soft wide-angle radiation. The

soft-drop algorithm recursively de-clusters the angular-ordered tree of a Cambridge-Aachen

jet [27, 28] of original radius R until a hard splitting is found. The e+e− version of soft drop

uses hemisphere jets clustered using the e+e− version of the Cambridge-Aachen algorithm.

For each (hemisphere) jet the method proceeds as follows:

1. undo the last step in clustering thereby splitting the jet into two subjets i and j;

2. check if the subjets pass the soft-drop condition:

min[Ei, Ej ]

Ei + Ej
> zcut(1− cos θij)

β/2, (2.1)

where Ei/j denote the energies of the subjets, θij is the angle between them and zcut

and β are parameters of the soft-drop algorithm;

3. if the splitting fails the soft-drop condition, the softer subjet is discarded (groomed

away) and the steps are repeated for the resulting jet (the harder subjet);

4. if instead the subjets pass the condition, the procedure is terminated and the resulting

jet is the combination of subjets i and j.

The soft-drop algorithm features two parameters: zcut and β. The first determines how

stringent the cut on the subjet energies is, whereas the latter provides an angular sup-

pression to grooming. While β → ∞ corresponds to no grooming, for β = 0 no angular

dependence is taken into account and the soft-drop algorithm reduces to the modified

Mass-Drop Tagger (mMDT) [29, 30]. For practical purpose, we have implemented the

above procedure using FastJet [31] for the jet clustering and additional manipulations.

The event shape thrust [17] is defined as

T ≡ max
~n

(∑
i∈E |~n · ~pi|∑
i∈E |~pi|

)
, (2.2)

where ~pi labels the three-momentum of particle i and the sum extends over all particles in

the event E . The resulting vector ~n defines the thrust axis. Often the related variable

τ ≡ 1− T = min
~n

(
1−

∑
i∈E |~n · ~pi|∑
i∈E |~pi|

)
(2.3)

is used instead. Henceforth, in the following we will refer to τ as thrust.
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The soft-drop thrust shape is defined following the procedure given in [19]:

1. determine the thrust axis for the full final state, i.e. without any grooming;

2. split the event into two hemispheres based on the thrust axis;

3. apply the soft-drop procedure on each hemisphere;

4. compute the thrust value for each groomed hemisphere separately, using the groomed

hemisphere-jet momenta as reference axes.

The resulting value for soft-drop thrust is given by:

τSD =

∑
i∈ESD

|~pi|∑
i∈E |~pi|

[
1−

∑
i∈HLSD

|~nL · ~pi|+
∑

i∈HRSD
|~nR · ~pi|∑

i∈ESD
|~pi|

]
, (2.4)

where ~nL/R denotes the axis for the left and right hemisphere, respectively, and the sums

extend over all particles in the full event (E), the soft-dropped event (ESD) or the hemi-

spheres (HL/R).

An important difference between this definition and what was presented in the first

version of ref. [19] is the rescaling factor in front of the observable. This additional factor

ensures collinear safety for the case β = 0. The issue occurs for an event with multiple

particles in one hemisphere and a single particle in the other one. While a virtual correction

will not alter the observable value, a collinear real emission off the lone particle, that is

soft enough to be groomed away, might alter the value of τSD if the factor is not taken

into account. If there are multiple particles present in the second hemisphere the collinear

emission is protected from grooming by the clustering history. Furthermore, if β > 0 the

collinear emission will not be groomed away due to the angular suppression given in the

soft-drop condition. Further details on this issue are given in appendix A.

NLO+NLL resummed predictions. In ref. [19] the resummation of soft-drop thrust

at NLL accuracy has been presented. The calculation is based on the factorisation of

the differential distribution in hard, soft and collinear pieces, derived using Soft Collinear

Effective Theory [32]. In the limit τ � zcut � 1 the differential cross section can be written

as
dσ

dτSD
= H(Q)SG(zcut, β)[SC(τSD, zcut, β)⊗ J(τSD)]2 . (2.5)

Here H denotes the hard function, depending on the energy scale Q only, SG is a global

soft function accounting for soft wide-angle emissions, SC describes soft-collinear emissions,

and J denotes the jet function encapsulating the effect of hard-collinear radiation. Some

detail on the various components and in particular their one-loop, i.e. NLL expressions are

collected in appendix B.1. In [19] the resummed predictions were matched to the full NLO

QCD result. NNLO QCD results for the original version of the observable definition have

been presented in [33]. For our study here we have adjusted the calculation from [19] to the

collinear-safe observable definition, resulting in an NLO+NLL accuracy of our predictions.

For the resummation contribution the approximation zcut � 1 is used and no finite

zcut corrections are included. Finite zcut effects are power corrections in τ for β > 0,
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however for β = 0 these are only power corrections in zcut (contributing at the leading-

logarithmic accuracy in τ). Despite this fact we will still study values of zcut as high as

0.33. Here the finite zcut effects will only be taken into account through means of matching

to fixed order.1 Fixed-order corrections are computed with the publicly available program

EVENT2 [35, 36]. To further validate the resummed calculation, we evaluated the soft-drop

thrust observable in the CAESAR formalism [37], using an independent implementation in

the Sherpa framework [38]. In addition a separate calculation was performed, with slightly

different treatment of the resummation uncertainty. This is further detailed in appendix E.

To match the resummed result to the exact NLO QCD matrix element, i.e. the three-

parton process at NLO accuracy, we consider two different matching schemes: multiplica-

tive and LogR matching [39]. In both cases we consider the cumulative distribution

Σ(τSD) =
1

σ0

∫ τSD

0
dτ ′SD

dσ

dτ ′SD

. (2.6)

Multiplicative matching is defined by

Σ(τSD) =

(
C ΣFO

Σexp

)

FO

Σres

C
, (2.7)

where ΣFO denotes the fixed-order cumulant distribution, Σexp the power-series expansion

of the resummed cumulant Σres, and C corresponds to Σres and Σexp evaluated at the

kinematic end-point τmax. Aiming for NLO+NLL accuracy, C = 1 holds and we need to

expand the fixed-order ratio to O(α2
s)

Σ(τSD) =

[
1 +

αs
π

(
Σ

(1)
FO − Σ(1)

exp

)
+
α2
s

π2

(
Σ

(2)
FO − Σ(2)

exp + Σ(1)
exp

{
Σ(1)

exp − Σ
(1)
FO

})]
Σres . (2.8)

As an alternative scheme LogR matching is used

log Σ(τSD) =

(
log

[
C ΣFO

Σexp

])

FO

+ log

[
Σres

C

]
(2.9)

=

[
αs
π

(
Σ

(1)
FO − Σ(1)

exp

)
+
α2
s

π2

(
Σ

(2)
FO − Σ(2)

exp +
1

2

{(
Σ(1)

exp

)2
−
(

Σ
(1)
FO

)2
})]

+ log Σres,

resulting in

Σ(τSD) = Σres exp

[
αs
π

(
Σ

(1)
FO − Σ(1)

exp

)
+
α2
s

π2

(
Σ

(2)
FO − Σ(2)

exp +
1

2

{(
Σ(1)

exp

)2
−
(

Σ
(1)
FO

)2
})]

.

(2.10)

Multiplicative matching will be the default choice and the variation between the two will be

included in the theoretical uncertainty, cf. section 5. In order to ensure that the differential

cross section for the resummation and expansion vanishes for the fixed-order kinematical

end-point, the resummation is modified in accordance with [40, 41], cf. appendix B.3 for de-

tails.
1Although the study was limited to zcut = 0.1, ref. [34] showed that after matching to NLO the residual

finite zcut corrections were very small.

– 5 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
9

Transition-point treatment. We briefly want to discuss the treatment of the transition

point that marks the boundary between the soft-drop regime of the thrust distribution and

the ungroomed one. Let us consider a LO configuration, where a gluon is emitted off

the quark-antiquark pair. For sufficiently large values of thrust, i.e. above the transition

point τSD = zcut/2 + O
(
z2

cut

)
, the emission is always hard enough not to be impacted by

grooming. Above this transition point the LO distribution for soft-drop thrust coincides

with plain thrust. We note that for zcut = 1/3 and β = 2, at leading order, the transition

point coincides with the kinematic end-point, meaning the soft-drop thrust calculation

stretches over the full LO distribution. The all-order calculation also features a transition

point at zcut/2 +O
(
z2

cut

)
, while if we consider higher orders in the fixed-order expansion,

this transition point smears out due to the multiple emissions.

In the study of ref. [19], the transition point for the all-order calculation was taken as

described above. However, this had the undesirable consequence of introducing transition-

point corrections that break factorisation between the global soft and soft-collinear func-

tions. In this current analysis we exploit the fact that at NLL accuracy we can treat the

transition point between soft-drop and plain thrust as being located at zcut2
β/2, which

corresponds to the transition point for soft collinear emissions. The transition point is

only located at zcut/2 for wide-angle emissions. Since the cross term between logarithms

of 2 and logarithms of soft wide-angle origin starts contributing at NNLL accuracy, we can

make use of this treatment at NLL accuracy, thus avoiding the aforementioned complica-

tions. In addition to this change in transition point, we can introduce a transition-point

uncertainty. If the resummation uncertainty (xL) is only included in logarithms of thrust

and not in the logarithms of zcut, the transition point gains a resummation uncertainty

dependence. The details on this approach are presented in appendix E.

We also consider a further effect which was not taken into account in the analysis

of ref. [19], namely the non-trivial interplay between multiple-emission corrections and the

transition point. Let us consider the emission of two gluons in the transition region (kept by

the grooming procedure) such that the resulting τ is above the transition point. Corrections

can appear when (one of) the individual contributions of these two emissions to the total τ

value is below the transition point. This formally NNLL correction becomes parametrically

relevant close to the transition point and is calculated in detail in appendix B.2

In figure 1 the results of these analytical computations are presented. From left to right

the value of β is varied between {0, 1, 2}, whereas top to bottom shows different values

of zcut ={0.05, 0.1, 0.2, 0.33}. The results are presented at LO, NLO and NLO+NLL

using both matching schemes. First a good agreement between the two different matching

schemes can be seen. Both the contributions from the fixed-order transition point near

zcut/2 and the resummation transition point can be seen. For lower values of zcut there

is still a significant contribution from the second transition point, which is significantly

reduced for larger values of zcut.

It is interesting to point out that soft-drop also affects the thrust distribution above the

transition point. We have already talked about transition point corrections in the context

2This correction cures the discontinuity in NLL distributions at the transition point noted out e.g.

in [19, 24].
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of our resummed calculation (see also appendix B). For a fixed-order calculation the soft-

drop condition impacts the thrust distribution at all values of thrust. Finally, additional

soft emissions, such as the ones related to the non-perturbative model, are also affected by

grooming even above the transition point.

3 Monte-Carlo based pseudo data

Given that we attempt to extract the strong coupling from an observable where there

exists no actual measurement yet, we have to resort to simulated data. Furthermore,

we use Monte Carlo simulations to assess hadronisation corrections and the associated

uncertainties.

We employ the Sherpa event generator [25, 26] version 2.2.5 to simulate e+e− →
hadrons events at LEP1 energy of

√
s = mZ . We generate the hard-scattering configu-

rations for varying parton-multiplicity final states at next-to-leading order in QCD. The

matrix elements get matched to the Sherpa dipole parton shower [42] based on the Sherpa

implementation of the MC@NLO method [43, 44] and merged into inclusive samples ac-

cording to the MEPS@NLO formalism [45]. The required one-loop virtual amplitudes

are obtained from the OpenLoops-1.3.1 [46] package. The default hadronisation model in

Sherpa is the cluster fragmentation described in [47]. However, Sherpa also provides the

option to invoke the Lund string fragmentation [48] as implemented in Pythia 6.4 [49].

Using the identical perturbative inputs, i.e. shower-evolved events, this provides us with

a consistent estimate for the hadronisation related uncertainties. To analyse events we

employ the Rivet-2.7.2 package [50]. To this end we have implemented the soft-drop thrust

observable using FastJet-3.3.2 [31] for particle clustering.

For the generation of our pseudo data, used in the extractions of αs later on, we

consider the highest accuracy Monte Carlo sample which is generated using NLO QCD

matrix elements for e+e− → 2, 3, 4, 5 partons. The MEPS@NLO merging parameter is set

to ycut = (Qcut/ECMS)2 = 10−2. We evolve the strong coupling at the two-loop order,

assuming αs(mZ) = 0.117.3 While for the cluster fragmentation model all parameters are

kept at their default values, we have set the main parameters of the Lund model to

a = 0.3 (PARJ(41)), b = 0.6 GeV−2 (PARJ(42)), σ = 0.36 GeV (PARJ(21)) . (3.1)

Comparisons of Sherpa MEPS@NLO hadron-level predictions with LEP1 event-shape data

have for example been presented in [51]. To validate our event simulations, we present

in figure 2 the plain thrust distribution as measured by ALEPH [52]. Shown there are

the MEPS@NLO parton-level prediction, i.e. after parton showering, and hadron-level re-

sults for the cluster and Lund fragmentation model. Furthermore, the purely perturbative

NLO+NLL resummed prediction with an estimate of the perturbative uncertainty, indi-

cated by the red band, cf. section 5, is given. The upper ratio plot compares theoretical

predictions with the experimental measurement. Apart from the first bin both hadron-level

3The Sherpa default value is αs(mZ) = 0.118. However, we observed a marginally better description of

LEP1 observables, and in particular thrust, both for the cluster and the Lund string fragmentation using

αs(mZ) = 0.117.
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Figure 1. The differential cross section for the analytical soft-drop thrust distribution at LO

(solid red), NLO (dashed blue) and NLO+NLL with both multiplicative (dotted magenta) and

LogR (black dashed-dotted) matching.

– 8 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
9

b

b
b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b
b
b
b
b
b

b
b
b

ALEPH (Eur.Phys.J. C35 (2004) 457-486)b

Sherpa 2-5j @ NLO Parton Lev.
Sherpa 2-5j @ NLO Cluster Frag.
Sherpa 2-5j @ NLO Lund Frag.
NLO+NLL10−4

10−3

10−2

10−1

1

10 11 σ
dσ dτ

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8
0.9

1
1.1
1.2

τ

M
C

/D
at

a

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8
0.9

1
1.1
1.2

τ

H
ad

ro
n/

Pa
rt

on

Figure 2. Plain thrust distribution as measured by ALEPH compared to Sherpa at parton level

and with cluster and Lund fragmentation, and compared to the nominal resummed distribution

matched to NLO. The lower panel shows the hadronisation corrections as obtained from Sherpa

with the two fragmentation models considering MEPS@NLO with up to 5 jets at NLO.

results are in good agreement with data. However, the resummed calculation, without the

inclusion of non-perturbative corrections, significantly undershoots the data, in particular

for τ < 0.1.

The majority of this deviation originates from neglecting hadronisation effects in the

analytic calculation. This is apparent from the lower ratio plot. Here the two hadron-

level results are compared with the parton-shower-level prediction. For τ ≈ 0.05 the

hadronisation corrections are of order 20%. In order to justify the direct extraction of

hadronisation corrections for our analytic predictions of the soft-drop thrust observable we

compiled Monte-Carlo simulations that better fit the fixed-order accuracy of the matched

resummed calculations. For this purpose we only consider NLO QCD matrix elements for

e+e− → 2, 3 partons in our Sherpa MEPS@NLO simulations, with the merging parameter

still set to ycut = 10−2. All other parameters are also kept unchanged. A dedicated

comparison of Sherpa parton-shower simulations and NLL accurate predictions of some

event-shape variables can be found in [53].

In figure 3 we present results for soft-drop thrust, considering zcut =

{0.05, 0.1, 0.2, 0.33} (increasing from top to bottom) and β = {0, 1, 2} (increasing from left

to right). Besides the Sherpa parton-level predictions the respective hadron-level results

for cluster and Lund fragmentation are given. Further, we show the NLO+NLL predic-

tions. The lower panels contain the respective ratios with the corresponding parton-level

MC predictions.

We begin with noting that the hadronisation corrections for soft-drop thrust are indeed

reduced in comparison to plain thrust. As already seen in [19], the region where the
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Figure 3. Comparison of NLO+NLL matched predictions for soft-drop thrust to Sherpa

MEPS@NLO simulations with up to 3 jets at NLO at parton level and with cluster and string

fragmentation applied.

hadronisation corrections are rather flat is extended towards smaller values of τSD. For all

values of zcut and β the shape of the corrections from the cluster and Lund string model

are very similar. In particular for zcut = 0.33 both hadron-level predictions agree very well

also in their nominal size. However, for the other zcut values the differences remain in the

few percent range.

– 10 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
9

Besides the size of the MC hadronisation corrections to be used later in the fits, figure 3

contains the direct comparison of the NLO+NLL calculations to the Sherpa parton-level

prediction. For a wide range of the observables the agreement is well within ±10%, the ratio

between both calculations being rather flat. Both results are certainly consistent within

the inherent uncertainties. Note that, in contrast to the analytic NLO+NLL prediction,

the shower result accounts for additional effects such as momentum conservation and finite

recoil [53]. In appendix D further validation results are provided. We compare Sherpa

results against hadron-level predictions from Pythia [54] and Herwig [55]. Furthermore, we

also compare to the Dire [56] algorithm for parton showering within Sherpa in conjunction

with the default cluster model for hadronisation.

4 Hadronisation corrections

Prior to describing our actual fits, we still need to address the issue of non-perturbative

corrections from the parton-to-hadron transition. As mentioned before, this is crucial for

fits performed with the plain thrust distribution, as perturbation theory alone is not able

to reproduce the experimental data in the fitting range. We have seen that the situation is

greatly ameliorated if we employ the soft-drop version of thrust. However, although reduced

in size, hadronisation corrections play a non-negligible role also for soft-drop thrust.

To supplement resummed and matched calculations with non-perturbative hadronisa-

tion corrections, two main approaches can be found in the literature. On the one hand,

analytical models of hadronisation can be constructed, based on fairly general physical

assumptions and depending on one or few input parameters only. On the other hand, one

can exploit the hadronisation models used in Monte Carlo events generators to extract

a numerical estimate of hadronisation corrections by considering bin-by-bin ratios of the

hadron-level and parton-level distribution. In the case of plain thrust, analytic models

were used, for instance, in refs. [13–16, 18],4 while examples of fits of αs exploiting Monte

Carlo based hadronisation models can be found in refs. [8–12, 57].

4.1 Monte-Carlo hadronisation model

Analytical estimates of non-perturbative corrections in the presence of grooming are char-

acterised by additional complexities, which require dedicated studies (see e.g. ref. [58] for

a recent study). Therefore, in the current analysis, we have decided to resort to a Monte-

Carlo based approach as our default model for hadronisation corrections. To this end the

ratios of hadron- to parton-level distributions are considered. The hadronisation models

implemented in general-purpose Monte Carlo event generators depend on various parame-

ters, whose values get tuned to data [59]. Hence, hadronisation corrections obtained from

Monte Carlo simulations inevitably include some perturbative contribution from missing

higher-order corrections that are specific to the underlying parton-level. Therefore, if we

are to supplement our analytic calculations with hadronisation corrections extracted from

Monte Carlo, a decent agreement with the parton-level Monte Carlo prediction should be in

4Note that [14, 16, 18] make use of a shape function approach including renormalon subtraction, which

is more advanced than the approach presented in this work.
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place. These comparisons were presented in section 3 for the Sherpa results at MEPS@NLO

2+3j level. There it is evident that the agreement is significantly improved for soft-drop

thrust in contrast to plain thrust. This makes the use of Monte-Carlo based hadronisation

corrections more viable for soft-drop thrust at the current accuracy.

As the actual hadronisation corrections we take the hadron-to-parton ratios extracted

from the Sherpa MEPS@NLO 2+3j predictions, shown in figure 3. We consider the differ-

ence between the results for the cluster model and the Lund string fragmentation as an

estimate of the hadronisation related uncertainty. As illustrated in appendix D these two

ratios provide a good coverage of the complete span found for different Monte Carlo event

generators. In addition, we include a comparison of our default method to a bin-by-bin

migration-matrix approach and find only small differences between the two at our accuracy.

4.2 Analytical hadronisation model

As an alternative, we present the general concepts behind the analytical hadronisation

model that was applied to ungroomed event (and jet) shapes [60] and has been extended,

more recently, to the case of mMDT [30] and soft drop [61]. Details on the specific calcu-

lations underlying the results presented here are given in appendix C.

In general we consider an additional (single) non-perturbative emission, that is sup-

posed to be soft. For emissions below an infrared factorisation scale µI the perturbative

coupling is replaced by a universal, non-perturbatively defined, finite quantity. When

properly subtracting all perturbative contributions, one can thus estimate a hadronisation

contribution to the observable. For plain thrust this results in a shift of the observable value:

δτ(Ω) = 2
Ω

Q
, (4.1)

with Q the centre of mass energy. The shift thereby is parametrised by the non-perturbative

parameter

Ω ≡ CFΛ(µI) = CF

∫ µI

0

dkt
π
δαs(kt) (4.2)

that needs to be fitted simultaneously with αs.

For soft-drop thrust the situation is slightly more complicated. Typically, a non-

perturbative emission will be soft enough to be groomed away and thus has no impact on

the observable value. However, this does not hold for a sufficiently collinear emission, with

a low enough transverse momentum to be called non-perturbative but energetic enough to

survive grooming. These types of contributions are suppressed in kt and will depend on a

separate non-perturbative parameter, that is a function of β, cf. appendix C.2. However, in

the region we are interested in, the dominant hadronisation correction to soft-drop thrust

originates from a different configuration, namely a non-perturbative emission that survives

grooming as it is protected by hard emissions through the clustering history. Accordingly,

the non-perturbative emission must lie within an angular cone determined by the thrust

value. The corresponding shift of the thrust distribution is calculated in the appendix

and reads

δτ(Ω) = τ1/2
〈

(z(1− z))−1/2
〉Ω

Q
, (4.3)
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where the average is calculated using as weight the appropriate QCD splitting function.

Note that the integral involved in the above average is sensitive to the transition point, as

is described in detail in appendix C.2.

In addition to shifts in the value of thrust, there is a second way non-perturbative

corrections affect soft-drop observables. Specifically, after radiating a non-perturbative

emission the energy of one of the two hard subjets found by the soft-drop procedure —

more precisely the softer one — can be reduced so that it fails the soft-drop condition and

gets groomed away. This energy shift can be taken into account in the form of a shift in

the grooming parameter zcut:

δzcut(Ω) =
CA
CF

(
ZSD(1− ZSD + τ)

2τ

)β/2 (ZSD − τ)(1− ZSD)− τ√
τ(ZSD − τ)(1− ZSD)

Ω

Q
, (4.4)

where ZSD = z
2/(2+β)
c (2τ)β/(2+β). Because at LO it is not possible for an emission to be

groomed away above transition point, we freeze this correction in that region.

The Ω parameter for both the groomed thrust shift and zcut shift have the same

corresponding integral definitions and approximations in their derivations, and are therefore

assumed equal. While we use the same formal definition of the parameter Ω in the case of

plain and soft-drop thrust, different approximations were assumed in the derivation of the

respective hadronisation corrections and hence their numerical (fit) values are not expected

to be identical. The model builds in the assumption that the observable and energy shifts

are not too large and therefore the value of Ω is also assumed rather small. Accordingly,

we restrict our fits to Ω ∈ [0, 2] GeV.

The variation of plain thrust and soft-drop thrust under different assumptions for the

non-perturbative parameter Ω is illustrated in figures 4 and 5, respectively. For plain

thrust the analytical hadronisation model produces hadronisation corrections very similar

in shape5 to those extracted from Monte Carlo, cf. figure 2, though differences between

parton level and resummation still cause different, but compatible, fitted values of αs.

For equal values of Ω, the hadronisation contribution to soft-drop thrust is significantly

reduced. However, the behaviour for the analytical model does not fully replicate the

hadron-to-parton ratios from Monte Carlo, cf. figure 3. For β = 0 below the transition

point (zcut/2) the decrease in cross section corresponds to the behaviour seen in the Monte

Carlo results. However, above the transition the zcut shift has little effect and therefore

the thrust shift dominates. This leads to an increase in the cross section, which does not

correspond to what is seen in the Monte Carlo simulations.

Recently a more refined computation of non-perturbative corrections to the groomed

jet mass for e+e− colliders was performed [58]. This calculation can potentially be ap-

plied to the soft-drop thrust observable. However, as stressed in ref. [58], the calculation

is only applicable below the transition point and, in particular, it does not reduce to

5Note that, even if they are similar in shape, analytic and Monte-Carlo-based hadronisation corrections

can differ significantly. For example, analytic hadronisation corrections can be made arbitrarily small by

taking Ω → 0, while Monte-Carlo-based corrections are bounded around what is given by the different

generators.
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Figure 4. Comparison of the plain thrust NLO+NLL cross section under variation of the analytical

hadronisation parameter Ω. The lower panel displays the ratios with respect to the case of vanishing

non-perturbative corrections, i.e. Ω = 0 GeV and the green band showing the hadron to parton level

ratio for comparison.

the standard, i.e. ungroomed, non-perturbative correction. Since the region neighbour-

ing the transition point is quite relevant to the fit, further developments are needed to

employ a field-theoretical description of hadronisation corrections in precision fits of the

strong coupling.

5 Fitting procedure

Having presented the theoretical calculations we are going to use for the determination of

the strong coupling, as well as the Monte Carlo tools employed to generate pseudo data

and our approaches to account for hadronisation corrections, we are now ready to discuss

the actual fitting procedure. The fits are based on a prescription similar to what has been

done for plain thrust, making use of a χ2 minimisation.

Fitting setup and uncertainty definition. The fit of αs is performed by minimising

the χ2 given by:

χ2 =
∑

i,j

[(
1

σ

dσ

dτ
(τi)

)

exp

−
(

1

σ

dσ

dτ
(τi)

)

th

]
V −1
ij

[(
1

σ

dσ

dτ
(τj)

)

exp

−
(

1

σ

dσ

dτ
(τj)

)

th

]
, (5.1)

where both the experimental and theoretical thrust distributions are normalised to the

respective inclusive cross section and the thrust distribution in a bin of width dτ = 0.01 is

computed using differences of the cumulative distribution Σ(τ) at the edges of the bin. The

sums in the definition of χ2 extend over the considered observable bins. The correlation

matrix Vij contains the uncertainties based on the experimental data

Vij = δijσ
2
stat + min

(
σ2

sys,i, σ
2
sys,j

)
(5.2)
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Figure 5. Ratios for the soft-drop thrust NLO+NLL cross section under variation of the analytical

hadronisation parameter Ω with respect to no non-perturbative corrections, i.e. Ω = 0 GeV. Where

the green band shows the hadron to parton level ratio for comparison.

as assumed for previous fits [14, 15, 18]. The uncertainties for our Sherpa pseudo data are

taken as directly proportional to the plain thrust ALEPH uncertainties:

σMC
stat = σALEPH

stat

√
dσMC/dτ

dσALEPH/dτ
, (5.3)

σMC
sys = σALEPH

sys . (5.4)

The strong coupling constant is fitted for the central renormalisation scale choice

µR/Q = 1. The resummation scale, which appears in the logarithms of τ and zcut (cf.
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appendix B.1), is also used at its central value µQ/Q ≡ xL = 1. Finally multiplica-

tive matching is used and the power for the end-point correction is p = 1 [41] (cf. ap-

pendix B.3). When the Monte Carlo based hadronisation model is applied, the central fit

is made using the average of the ratios of cluster and Lund string fragmentation to the

parton-level prediction.

The experimental uncertainty on the central results is determined by the range of αs
values with ∆χ2 = 1 around the central value while keeping the hadronisation parameter Ω

fixed. The theory uncertainty is determined by varying simultaneously the theory inputs,

i.e. the parameter p assuming p = 1 and 2, the matching scheme by switching between the

multiplicative and LogR prescription and by 7-point variations of the perturbative scales

(excluding µR/Q = xL = 2 and µR/Q = xL = 1/2) using the best fit for each of these

variations. The corresponding uncertainty is then defined by the difference between the

central value fit and the found minimum and maximum variations in the fitted value of

αs (and Ω).

The hadronisation uncertainty is model dependent. For the analytical model the un-

certainty is determined by ∆χ2 = 1 as above while allowing for a variation of Ω. The

previously mentioned experimental uncertainty needs to be subtracted from this quadrat-

ically to prevent double counting. For the Monte-Carlo based model the hadronisation

uncertainty is determined by the range between the best fit using either the cluster model

or the Lund string fragmentation.

6 Results

In this section we present our results for the extraction of αs from fitting NLO+NLL

predictions for the soft-drop thrust observable to Monte-Carlo pseudo data. To account for

the parton-to-hadron transition we employ both the analytical approach and Monte-Carlo

simulations. We are particularly interested in assessing the impact of soft-drop grooming

on the stability of the fits and their quality. To this end we compare results obtained for

soft-drop thrust to those for plain thrust.

The default observable range used in the fits is 0.06 ≤ τ ≤ 0.25. The lower boundary

equals the one used in the previous thrust fits, cf. [14, 18]. However, the upper boundary

is somewhat reduced, as in our study we work at a lower fixed-order precision, i.e. NLO

instead of NNLO QCD, resulting in a reduced accuracy for the distributions large-τ tail.

We begin by considering the stability of the extracted strong coupling under variations

of the type of theoretical prediction entering the fit. In figure 6 we present results for the

best-fit αs(mZ) value and the associated total and hadronisation related (shaded band)

theoretical uncertainties. Besides the pure fixed-order result from EVENT2 [35, 36] (FO),

we use the NLO+NLL resummed prediction matched to the NLO matrix element (Res),

as well as this resummed result dressed with non-perturbative corrections from the Monte-

Carlo fragmentation approach (NP (MC)) and the analytic model (NP (ana)). We present

results for three values of the soft-drop angular exponent β = 0, 1, 2. For each value of

β we consider zcut = 0.05, 0.1, 0.2, 0.33, indicated by different colours. Furthermore, for

comparison, we present the results obtained for plain thrust in each plot.
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Figure 6. Results for fits of αs(mZ) to Monte-Carlo pseudo data using theoretical predictions

at different levels: FO for NLO, Res for NLO+NLL and NP for the inclusion of non-perturbative

effects. The non-perturbative effects are modelled based on either the Monte-Carlo based hadron-

to-parton level ratios (NP (MC)) or an analytical model with a single parameter Ω (NP (ana)).

The bands indicate the total uncertainty, the shaded region displays the hadronisation-related

uncertainty.

From the plots we can draw some first general conclusion. The impact of incorporating

NLL resummation is sizeable both for the groomed and ungroomed observables. We observe

a significant reduction of the best fit αs(mZ) in comparison to the fixed-order hypotheses.

However, the role that non-perturbative corrections play is rather different. The shift

induced by the inclusion of hadronisation corrections is significantly reduced when soft-

drop is employed. This is true for both the analytical and the Monte-Carlo based models

for hadronisation. Unfortunately, this reduced impact of hadronisation corrections is not

accompanied by a reduction of the associated uncertainties.

However, while these general patterns appear to be well-established, there are notice-

able counterexamples in particular when using the analytical model for estimating hadro-
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nisation corrections. The first one standing out is β = 0 and zcut = 0.1 (shown in red in

the upper left plot of figure 6). For this particular set of soft-drop parameters the lower

boundary of the fitting region is just above the LO transition point. However, in the ana-

lytic hadronisation model the transition point can, for large enough value of Ω, be shifted

into the fitting interval. This effect leads to an odd fitting behaviour. It is dominant for

β = 0 as in this case transition-point effects are more significant. Additionally, too little

grooming such as zcut = 0.05 and β > 0 (shown in blue in the upper right and lower plot of

figure 6) shows a significant decrease in the fitted value of αs, when the analytic model of

hadronisation is employed. An identical study for an independent resummation code with

a different resummation uncertainty treatment, which allows for a shift in the transition

point, is presented in appendix E.

All in all, our study suggests that a tighter grooming — i.e. larger values of zcut,

namely zcut = 0.2 and zcut = 0.33, or smaller values of β, namely β = 0 or β = 1 — shows

a significant improvement compared to plain thrust with respect to both the shift in the

fitted value due to the inclusion of hadronisation effects and the stability under variations

of the hadronisation model. While the reduced shift from the analytical hadronisation

corrections is clearly visible for the β = 0 and β = 1 cases, for β = 2 this shift is qualitatively

similar to the one observed for plain thrust. The results are further detailed in table 1.

Besides the values obtained for αs(mZ) for the various scenarios considered, we provide

the best-fit χ2-values, and, for the case of the analytic hadronisation model, the best-fit

Ω-parameter. For most of the groomed observables the χ2/dof for the NLO+NLL matched

calculation without any non-perturbative effects are already close to 1. The only soft-drop

parameter combinations that yield larger χ2 values are the two cases that were pointed out

previously, zcut = 0.1 with β = 0 and zcut = 0.05 with β = 2. An important validation of

our approach is the consistency between the value of αs when fitting to ALEPH data instead

of the pseudo-data for plain thrust. Additionally, it can be seen that despite the reduced

data in the fitting region due to grooming the experimental uncertainty does not increase

significantly, unless a significant amount of grooming is applied, for example zcut = 0.33

and β = 0.

To better visualise the results of our study, we can directly compare our theoretical

predictions for the thrust observable using the corresponding best-fit αs with the (pseudo-

)data. In figure 7 we present this comparison for plain thrust. The left plot shows the

result for the fit to the ALEPH data while the right plot shows those for the Monte-Carlo

pseudo data instead. Both plots illustrate a very good agreement of analytic predictions

and both the actual collider and the pseudo data over the whole fitting range. The red

band represents the theoretical uncertainty on the fitted distribution for the analytical

model. The differences to the distribution with hadronisation corrections based on the

Monte Carlo model are small compared to the overall size of the uncertainty, so we choose

not to include a separate error band for this to keep the plot clearer. It can also be seen

that the behaviour in the small thrust region would be hard to reproduce using the analytic

model. The corresponding results for soft-drop thrust, compared to our pseudo data, are

presented in figure 8, for all the zcut and β values considered in this study. Again, a good

agreement is found. For the considered fit range the biggest deviations are observed for
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large values of thrust when using the analytic model. The agreement in this region could

potentially be improved by including NNLO fixed-order corrections, cf. [33]. When the

Monte-Carlo based hadronisation model is used the most sizeable deviations are found in

the centre of the fitting range, which may also be resolved by increasing the calculational

accuracy. One also sees that the deviations are larger for the more problematic cases

discussed above, zcut = 0.1, β = 0 and zcut = 0.05, β = 2, while they remain very small for

zcut = 0.2, β = 0, 1.

All the results presented so far have been obtained performing the fits in the range

that is typically employed in αs extractions using plain thrust, i.e. 0.06 ≤ τ ≤ 0.25. In

particular, the lower bound of this interval is a consequence of sizeable non-perturbative

corrections for even smaller values of thrust, signalling the breakdown of the perturbative

approach. However, a key observation of ref. [19] was that the impact of non-perturbative

corrections on the soft-drop thrust distribution is consistently below 10% for a much wider

observable range compared to plain thrust. Therefore, we can take advantage of this

behaviour and push the lower bound of the fitting range to smaller values of τ , while

retaining perturbativity. This is a key property of soft-drop observables, which has been

exploited also in the context of jet-mass measurements at the LHC [34, 61].

In order to quantitatively assess this observation, we perform several fits for the strong

coupling reducing the lower bound of the fitting region. The results are reported in figure 9.

As a measure of the fit quality, we present in the left column the resulting χ2/dof values

as a function of the lower bound of the fitting range τmin, for plain thrust and the various

soft-drop parameters. The fits are performed with the analytic model for the hadronisation

corrections. It is apparent that the fit quality for plain thrust rapidly deteriorates below

τmin ' 0.04. Non-perturbative corrections become so large that they invalidate not only

the perturbative approach but also the assumptions that go into the rather simple analytic

model of hadronisation. Indeed the deterioration of the χ2/dof is not as dramatic, when

using the Monte-Carlo based model for hadronisation. However, the fit quality as measured

by the χ2/dof for soft-drop thrust depends very weakly on the value of τmin only. It is

consistently better than what is obtained for plain thrust.

Similar conclusions can be drawn by looking at the right column of figure 9, where

the best-fit αs(mZ) values are shown as a function of the lower bound of the fitting region

τmin. The best-fit αs obtained with plain thrust exhibits a significant dependence on τmin,

while the values obtained with soft-drop thrust are rather stable under variation of τmin.

Furthermore, we remind the reader that in figure 6 we observed an issue for the fit performed

with zcut = 0.1 with β = 0, resulting in a rather small value of the strong coupling (with

large uncertainties). We argued that this originates from the proximity of the transition

point and the lower bound of the fitting range, causing an instability in the modelling.

The top right plot in figure 9 fully supports this interpretation and indeed shows that the

issue can be resolved by pushing the lower bound of the fitting range to smaller values.

Choosing τmin . 0.05, we obtain fitted values of αs that are compatible with all the other

combinations of soft-drop parameters.

In addition to the fitted value of αs(mZ) and the value of χ2 one can investigate the

dependence of the uncertainty on the increased fitting range. However, at the current

theoretical precision the impact on the uncertainty is found to be not significant.
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Figure 7. Plain thrust distribution as measured by ALEPH (left) and for Monte Carlo pseudo data

(Sherpa MEPS@NLO 2-5j, right) compared to the NLO+NLL prediction with the best-fit values for

αs(mZ) and the analytic (red) and Monte-Carlo (blue) hadronisation corrections. Uncertainties of

the pseudo data are determined by rescaling of the uncertainties for the plain-thrust ALEPH data.

7 Conclusion

In previous work it has been shown that the soft-drop thrust observable features reduced

sensitivity to non-perturbative effects. Motivated by this observation we have considered

fits of the strong-coupling constant for this variable. We have analysed the impact of both

resummation and hadronisation corrections and compared to plain thrust. Two different

approaches to estimate hadronisation corrections have been used, one based on Monte-

Carlo results from Sherpa and another based on analytical computations.

The Monte-Carlo based model turns out more viable for soft-drop thrust than for

plain thrust. This roots in an improved agreement of parton-level predictions based on

NLO QCD matrix-element plus parton-shower simulations and the NLO+NLL analytical

results. Through the use of this model we have shown a significant decrease in the shift of

the extracted αs(mZ) due to hadronisation effects.

As an alternative an analytical hadronisation model for soft-drop thrust has been

presented. Also here the general trend shows an improvement over plain thrust, however,

some outliers have been noted. In particular lower values of zcut show issues in the fits

related to the transition point. In addition, for the analytical model we have shown that it

is viable to extend the fitting range to significantly lower values of the observable, which is

not possible for plain thrust when using the analytical model. Despite these improvements

for the analytic hadronisation model it still shows a relatively different behaviour compared

to the Monte-Carlo based approach. This indicates the need for a more detailed analysis

of the analytical model based on a more elaborate computation.

These conclusions were all made based on an analytical computation at NLO+NLL

accuracy. However, for a future accurate measurement of the strong coupling this will need

to be extended to at least NNLO+NNLL precision. The NNLO computation presented

in [33] has been performed for the original definition of soft-drop thrust and could be
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Figure 8. Pseudo-data (Sherpa MEPS@NLO 2-5j) and NLO+NLL result with best-fit values for

αs(mZ) and the analytic (red) and Monte-Carlo (blue) hadronisation corrections. Uncertainties

of the pseudo data are determined by rescaling of the uncertainties for the ALEPH ungroomed

thrust data.

extended to the collinear-safe definition used in this work. The NNLL accuracy has been

achieved in the limit τ � zcut � 1, however in the region relevant to this fit transition-

point effects (τ ∼ zcut) will also need to be taken into account up to NNLL. Finally, due

to the higher values of zcut used in this analysis the impact of finite zcut corrections (in

particular for β = 0) needs to be studied.
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Figure 9. The best-fit χ2/dof (left column) and αs(mZ) (right column) values as a function of the

lower bound of the fitting range, τmin. Shown are results for plain thrust and for soft-drop thrust,

using different combinations of the soft-drop parameters β and zcut.

Finally, we note that, in order to reduce the impact of transition-point corrections and

to simplify their computation, it would be worth considering other observables and modified

definitions of the soft-drop grooming procedure itself. Similar studies can also be performed

for event shapes at the LHC, where, besides hadronisation, in particular the underlying
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event obscures the comparison of perturbative predictions with actual collider data. In

conclusion, the work presented here shows promising possibilities for the application of

soft drop to the measurement of the strong-coupling constant. However, additional work

will need to go into improving the theoretical accuracy to result in a precision extraction

entering the world average.
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A Collinear safety

In this appendix we show that the rescaling factor in front of eq. (2.4) is crucial to make

soft-drop thrust infrared-and-collinear safe for the modified Mass-Drop tagger (i.e. soft-

drop with β = 0).

Consider the situation where there is a single massless particle, of energy ER in the

right hemisphere. The square bracket in eq. (2.4) is then

τ
(unscaled)
SD = 1− ER + PL

ER + EL
=
EL − PL
ER + EL

, (A.1)

with PL =
∑

i∈HLSD
|~nL · ~pi| and EL =

∑
i∈HLSD

|~pi| the contributions of the left hemisphere

to the numerator and denominator respectively (after soft-drop).

If the particle in the right hemisphere splits collinearly in two particles of energies zER
and (1 − z)ER the softest of these two particles, say the one with energy zER, will be

groomed away and the unscaled soft-drop thrust becomes

τ
(unscaled)
SD, coll = 1− (1− z)ER + PL

(1− z)ER + EL
=

EL − PL
(1− z)ER + EL

, (A.2)
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Figure 10. Illustration of the collinear divergence for unscaled soft-drop thrust using EVENT2

simulations.

which obviously differs from (A.1) by a finite amount independent of the angle of the

collinear emission in the right hemisphere. For the corresponding virtual corrections (un-

scaled) soft-drop thrust would still be given by (A.1), yielding a mis-cancellation between

real and virtual contributions and hence a collinear unsafety. It is worth noting that this

collinear divergence starts at O(α2
s) since at O(αs) there is only one particle in the left

hemisphere (the only emission being the collinear one) and EL = PL.

If instead one introduces the scaling factor of eq. (2.4), one gets

τSD = τSD, coll =
EL − PL

Q
, (A.3)

and collinear safety is restored.

To better illustrate the divergence, figure 10 shows the LO (O(αs)) and NLO (O(α2
s))

cross sections for soft-drop thrust, with β = 0 and zcut = 0.2, to be between 0.25 and

0.3 as obtained using EVENT2 [35, 36]. The results are presented as a function of the

soft cut-off used in the program. It is evident from the figure that the unscaled version

of soft-drop thrust exhibits a logarithmic divergence as the cut-off is decreased while the

rescaled version is collinear safe.

We note that this collinear unsafety issue is only present for β = 0. Indeed, when

β > 0 the maximum value of z depends on the angle of the emissions and goes to zero like

a power of this angle. As a consequence, eq. (A.2) coincides with (A.1) in the collinear

limit and the unsafety is absent.

B Changes to the analytical calculation

The analytical calculation we employ in this study does not deviate significantly from

what was previously presented in ref. [19]. Therefore, in this appendix we limit ourselves
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to the presentation of those expressions we actually use and focus on any difference to the

aforementioned paper, the notation of which we follow rather closely.

B.1 Resummation equations

The all-order expression for the soft-drop thrust distribution, in the region where the soft-

drop condition is active can be written as [19]:

Σ(τ) =
1

2πi

∫

C

dN

N

[
1 +

∞∑

n=1

(αs
π

)n
C̃(n)

]
e−R(λN̄ ,λzcut) , (B.1)

where C̃ encapsulates the constant contributions in τ and zcut, which are neglected at NLL

accuracy, and αs is evaluated at scale µ. The resummed exponent R in the conjugate

moment space is given by

R(λN̄ , λzcut) = − 1

αs
f1(λN̄ , λzcut)− f2(λN̄ , λzcut)− αsf3(λN̄ , λzcut)− . . . , (B.2)

with λN̄ = αsb0 log
(
xLN̄

)
, where N̄ = NeγE , and λzcut = αsb0 log

(
xL2β/2zcut

)
. The

parameter xL is an arbitrary rescaling factor that we vary in order to estimate missing

higher-order corrections in the resummation, cf. section 5. Note, the term f3 does not

contribute at NLL accuracy. The remaining functions fi (i = 1, 2) can be expressed through

fK1 (λT ) =
Γ

(0)
K

2b20π
[(1 + 2λT ) log(1 + 2λT )− 2λT ], (B.3)

fK2 (λT ) =
Γ

(1)
K

b20π
2

[
λT −

1

2
log(1 + 2λT )

]
+

Γ
(0)
K b1

4b30π
[log(1 + 2λT )(2 + log(1 + 2λT ))− 4λT ]

+
Γ

(0)
K

2b0π
log(1 + 2λT )LKµ −

γ
(0)
K

2b0π
log(1 + 2λT ), (B.4)

according to

fi(x, y) = fSGi

(
p

(zcut)
SG

y
)

+ 2fSCi

(
p

(N̄)
SC

x+ p
(zcut)
SC

y
)

+ 2fJi

(
p

(N̄)
J x

)
. (B.5)

Here SG, SC and J indicate contributions from soft wide-angle, soft collinear and hard

collinear regions, respectively. We here furthermore used the short-hand notation

LKµ = log

(
Q2

µ2

)
+ 2p

(2)
K log 2−

(
p

(zcut)
K − p(N̄)

K

)
log xL. (B.6)

The explicit coefficients needed for NLL accuracy read

ΓJ = 2CFΓcusp, (B.7)

ΓSG =
2

β + 1
CFΓcusp, (B.8)

ΓSC = −β + 2

β + 1
CFΓcusp, (B.9)

γ
(0)
J =

3

2
CF , (B.10)

γ
(0)
SG

= γ
(0)
SC

= 0, (B.11)
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where

Γcusp =

∞∑

n=0

Γ(n)
cusp

(
αs
π

)n+1

, with Γ(0)
cusp = 1, Γ(1)

cusp =
CA
2

(
67

18
− π2

6

)
− 5

9
TRnf . (B.12)

Finally, the power coefficients are given by

p
(N̄)
J = −1

2
, p

(zcut)
J = 0 (B.13)

p
(N̄)
SG

= 0, p
(zcut)
SG

= 1 (B.14)

p
(N̄)
SC

=
β + 1

β + 2
, p

(zcut)
SC

=
1

β + 2
, (B.15)

and p
(2)
K = 0 for all K.

B.2 Treatment of the transition point

A significant difference with respect to the approach of ref. [19] is the observation that,

if we limit ourselves to NLL, as we do in this study, the transition point, marking the

boundary between the groomed and ungroomed regions, can be taken at τ = zcut2
β/2.

Thus, we naturally resum logarithms of xLzcut2
β/2 instead of logarithms of xLzcut/2 and

consequently all coefficients for the logarithms of 2 vanish, i.e. p
(2)
K = 0 for all K.

We also include an additional correction associated with a discontinuity of the dif-

ferential soft-drop thrust distribution at τ = zβ ≡ zcut2
β/2 at NLL accuracy, which was

not included in ref. [19]. To identify the origin of the discontinuity, let us start with the

expression for the resummed (cumulative) as given e.g. in ref. [37]:

Σres(τ) = lim
ε→0

∞∑

n=0

1

n!

n∏

i=1

∫ τ

ετ

dτi
τi
R′(τi) exp[−R(ετ)]Θ

(
τ −

n∑

i=1

τi

)
, (B.16)

where the exponent is related to the one presented in the previous subsection as R(τ) =

R(λN̄ , λzcut)|N→τ . One can then use the following expansions:

R(ετ) = R(τ) + log

(
1

ε

)
R′(τ) +

1

2
log2

(
1

ε

)
R′′(τ) +O(R′′′(τ)), (B.17)

R′(τi) = R′(τ) + log

(
τ

τi

)
R′′(τ) +O(R′′′(τ)). (B.18)

At NLL accuracy, we can only keep the terms proportional to R(τ) and R′(τ). Eg. (B.16)

can then be evaluated and one gets

Σ(NLL)
res (τ) =

exp[−R(τ)− γER′(τ)]

Γ(1 +R′(τ))
. (B.19)

For soft-drop thrust, the issue is that R′′(τ) is discontinuous at τ = zβ , meaning that if one

computes the differential distribution by taking the derivative of (B.19), one would get a

discontinuity at the transition point τ = zβ .
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Since this contribution is proportional to R′′(τ), it is formally NNLL in log(1/τ). Here,

we want to extract from the NNLL corrections the part responsible for the discontinuity

and include it as a transition-point correction. To do this, we now include the terms propor-

tional to R′′(τ) in (B.17). We first consider the case where τ < zβ for which (B.16) becomes

Σres(τ)|τ<zβ = lim
ε→0

∞∑

n=0

1

n!

n∏

i=1

∫ τ

ετ

dτi
τi

[
R′(τ) + log

(
τ

τi

)
R′′(τ)

]

× exp

[
−R(τ)− log

(
1

ε

)
R′(τ)− 1

2
log2

(
1

ε

)
R′′(τ)

]
Θ

(
τ −

n∑

i=1

τi

)
.

At the accuracy of interest, it is sufficient to include a single correction proportional to

R′′(τ) and one obtains after a few trivial manipulations

Σres(τ)|τ<zβ =
exp[−R(τ)− γER′(τ)]

Γ(1 +R′(τ))

{
1 +

∫ 1

0

dx0

x0
log

(
1

x0

)
R′′(τ)

[
(1− x0)R

′(τ) − 1
]}
.

(B.20)

The integration over x0 in the above expression can be performed and one recovers the

soft-collinear NNLL corrections associated with multiple-emission (cf. ref. [62]).

When τ > zβ , one has to be a bit more careful as the expansions in (B.17) can involve

crossing the transition point where R′′ is discontinuous. In particular, for τi < zβ < τ and

for ετ < zβ < τ , one should instead use

τi < zβ < τ : R′(τi) =R′(τ) + log

(
τ

zβ

)
R′′(τ) + log

(
zβ
τi

)
R′′(zβ) +O

(
R′′′(τ)

)
, (B.21)

ετ < zβ < τ : R(ετ) =R(τ) + log

(
1

ε

)
R′(τ) (B.22)

+
1

2
log2

(
τ

zβ

)
R′′(τ) + log

(
τ

zβ

)
log

(
zβ
ετ

)
R′′(τ)

+
1

2
log2

(zβ
ετ

)
R′′
(
zβ

)
+O

(
R′′′(τ)

)
.

Following the same procedure as for τ < zβ leads to

Σres(τ)|τ>zβ =
exp[−R(τ)− γER′(τ)]

Γ(1 +R′(τ))

{
1 +

∫ 1

zβ/τ

dx0

x0
log

(
1

x0

)
R′′(τ)

[
(1− x0)R

′(τ) − 1
]

+

∫ zβ/τ

0

dx0

x0

[
log

(
τ

zβ

){
R′′(τ)−R′′(zβ)

}
+ log

(
1

x0

)
R′′(zβ)

]

×
[
(1− x0)R

′(τ) − 1
]}
.

(B.23)

One can further simplify these expressions by keeping only the contributions associated

with the transition point. This is equivalent to subtracting the NNLL correction below

the transition point, i.e. the correction that a standard NNLL calculation would give, from
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both (B.20) and (B.23). One then obtains our final expressions

Σres(τ)|τ<zβ =
exp[−R(τ)− γER′(τ)]

Γ(1 +R′(τ))
, (B.24)

Σres(τ)|τ>zβ =
exp[−R(τ)− γER′(τ)]

Γ(1 +R′(τ))

×
{

1 +

∫ zβ/τ

0

dx0

x0

[
log

(
τ

zβ

)[
R′′(τ)−R′′(zβ)

]][
(1− x0)R

′(τ) − 1
]}

=
exp[−R(τ)− γER′(τ)]

Γ(1 +R′(τ))

× exp

{∫ zβ/τ

0

dx0

x0

[
log

(
τ

zβ

)[
R′′(τ)−R′′(zβ)

]][
(1− x0)R

′(τ) − 1
]}
,

where the exponentiation of this contribution holds at NLL accuracy for both cumulative

cross section and the differential distribution. Here the universal contribution is the usual

Mellin inversion contribution, whereas an additional is included above the transition point.

One can show that the above result is, as expected, continuous at τ = zβ . It is however

interesting to comment on how this happens. The correction in the curly bracket in (B.24)

are contributing only at the NNLL accuracy, and one can view the log(zβ/τ) in the exponent

as being small. However, when taking the derivative with respect to log(1/τ), it gives a

correction which exactly compensates the divergence in (B.19). This extra dependence of

the coefficient of R′′(τ) contrasts with the standard case (cf. eq. (B.20)) where it does not

depend on τ at NNLL accuracy.

B.3 End-point correction

Here we briefly describe our treatment to ensure that the resummed cross section and its

expansion respect the kinematic end-point τmax of the fixed-order calculation, we thereby

follow the procedure given in refs. [40, 41]. The primary modification is an alteration of

the argument of the logarithm

log(xLτ)→ −1

p
log

(
1

(xLτ)p
− 1

(xLτmax)p
+ 1

)
= log τ̄ , (B.25)

where the parameter p determines the slope of the approach to the end-point.

However, the modification of the logarithm is not enough in order to ensure for the

derivative of the expansion to approach 0. To implement this an additional contribution is

included in the resummed exponential

Σres → Σres exp

[
−
(

τ

τmax

)p
R̃′(τ → τmax) log τ̄

]
, (B.26)

where R̃ includes the transition-point and multiple-emission effects. The derivative here is

taken with respect to log τ̄ .

The value of the end-point depends on the accuracy of the fixed-order calculation which

we match to. At NLO precision this is given by τmax = 0.4225 [41].
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C An analytic model for hadronisation corrections

In this section the analytic hadronisation model is described in detail. The derivation

follows the approach of [60], which was applied to mMDT and soft drop in [30, 61].

C.1 Non-perturbative effects on plain thrust

For plain thrust non-perturbative corrections result in a simple shift of the observable value.

To derive this shift we evaluate the observable for a 2 → 2 process with one additional non-

perturbative emission k off the hard legs 1 and 2. We find it convenient to align the z axis

with one of the final-state particles, so the kinematics for this computation are given by

p2 = E2(1, 0, 0, 1) ,

k = Ek

(
1, 0,

√
1− c2

2k, c2k

)
, (C.1)

where c2k = cos θ2k, with θ23 the angle between leg 2 and the soft non-perturbative emission

k, while p1 = q− p2 − k, with q = Q(1, 0, 0, 0). Exploiting energy momentum conservation

and on-shell relations, we can express the energies E1 and E2 as a function of the energy

of the non-perturbative emission Ek and c2k

E1 =
Q2 − 2(1− c2k)Ek(Q− Ek)

2(Q− Ek(1− c2k))
, (C.2)

E2 =
Q(Q− 2Ek)

2(Q− Ek(1− c2k))
. (C.3)

This results in a contribution to the thrust

τ(k) = δτ+(k) = 1− 2E1

Q
=
Ek(Q− 2Ek)(1− c2k)

Q(Q− Ek(1− c2k))
, when c2k > −

Ek
Q− Ek

, (C.4)

τ(k) = δτ−(k) = 1− 2E2

Q
=

Ek(1 + c2k)

(Q− Ek(1− c2k))
, when c2k < −

Ek
Q− Ek

, (C.5)

where the two cases correspond to the hemisphere in which the non-perturbative emission

resides. Making use of the eikonal rules we can write down an integral for the expectation

value of the shift as a result of this non-perturbative emission:

〈δτ〉h = CF

∫
dEkEkdc2k

αs(kt,12)

2π

p1 · p2

(p1 · k)(p2 · k)
δτ(k) , (C.6)

where the scale for αs [63] is given by

k2
t,12 = 2

(p1 · k)(p2 · k)

p1 · p2
(C.7)

and

δτ(k) = δτ+(k)Θ

(
c2k +

Ek
Q− Ek

)
+ δτ−(k)

[
1−Θ

(
c2k +

Ek
Q− Ek

)]

= δτ−(k) + Θ

(
c2k +

Ek
Q− Ek

)[
δτ+(k)− δτ−(k)

]
. (C.8)
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It can be shown [60] that the first contribution is power-suppressed with the exception

of the collinear divergence, which will anyway cancel. Therefore we shall focus on the

difference

δτ+(k)− δτ−(k) = −2Ek
Q

Qc2k + Ek(1− c2k)

Q− Ek(1− c2k)
. (C.9)

In addition, with kt,12 being the argument of αs, we change the integration variable to

kt,12 = Ek

√
1− c2

2k

Q

Q− Ek(1− c2k)
, (C.10)

which, for simplicity, we denote as kt in what follows. This results in the final integral

〈δτ〉h = −CF
∫ µI

0

dkt
Q

δαs(kt)

π

∫ 1

−1
dc2k

[
2c2k

(
1− c2

2k

)−3/2
Θ(c2k) +O(kt/Q)

]
, (C.11)

where we have performed an expansion with kt as the softness parameter. δαs(kt) denotes

the difference between the non-perturbative and the perturbative description of the strong

coupling. The angular integral can easily be performed, with the collinear divergence

cancelling against the first term in (C.8), and we can redefine the kt integral

〈δτ〉h = 2CF
Λ(µI)

Q
, (C.12)

where we have introduced

Λ(µI) =

∫ µI

0

dkt
π
δαs(kt) . (C.13)

The actual fitted parameter is defined as

Ω = CFΛ(µI) . (C.14)

C.2 Non-perturbative effects on soft-drop thrust

Now that we have reviewed the effect of a non-perturbative emission on the value of thrust

we can study the groomed distribution. In general a non-perturbative emission for the

2 → 2 case will be groomed away leaving no change in thrust unless the emission is hard

enough and very collinear (resulting in a small kt but large enough energy).

This can be computed by including the soft-drop restriction for the non-perturbative

emission:

kt > zcut
Q

2
(1− c2k)

(1+β)/2(1 + c2k)
1/2, (C.15)

where the small kt approximation has been used. This can be rewritten as a condition on

c2k under the assumption that 1 + c2k is close to 2, i.e.

c2k > 1−
(√

2kt
zcutQ

)2/(β+1)

. (C.16)

The integral will now be over δτ+(k) instead of the difference as there is no shift if the

emission is groomed. Performing the angular integral results in a contribution:

〈δτ〉h,SD = 2(β+2)/(2(β+1))CF z
−1/(β+1)
cut

ΛSD(µI , β)

Q(β+2)/(β+1)
, (C.17)
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including a factor 2 for both hemispheres where

ΛSD(µI , β) =

∫ µI

0

k
1/(β+1)
t dkt

π
δαs(kt). (C.18)

This effect is suppressed in kt. Note that the limit β → ∞ does not work in this case as

there are contributions of the type 2−
(√

2kt/(zcutQ)
)2/(β+1)

, which approach 1 for β →∞
but result in a factor 2 in the small kt limit.

A contribution which is not suppressed originates from a 2 → n process where the

non-perturbative emission is protected by larger-angle hard emissions, which pass soft

drop. This is given by:

〈δτ〉h = CF

∫
dEkEkdc23,k

dφk
2π

αs(kt,ij)

2π

p1 · p23

(p1 · k)(p23 · k)
δτ+(k)Θ(c23,k − c23), (C.19)

where we apply the same shift as for the 2 → 2 kinematics with an angular constraint

now set by the angle θ23 between the emissions passing the soft-drop condition. Here, the

non-perturbative emission is constrained by the angle between the two hard particles in

one hemisphere, c23,k > c23 . This condition can be translated to a restriction based on

a value of thrust. Here we make use of the same kinematics as in last subsection with

k → p3, thus

τ =
E2(Q− 2E2)(1− c23)

Q(Q− E2(1− c23))
, (C.20)

resulting in

c23 = 1− 2τ

(1− z)(z + τ)
, (C.21)

with z = 1− 2E2/Q.

We have once again

kt,1,23 = Ek

√
1− c2

23,k

Q

Q− Ek(1− c23,k)
. (C.22)

This results in the integral

〈δτ〉h = CF

∫
dkt
Q

δαs(kt)

2π
dx
dφk
2π

τ1/2(1− z)(τ + z)

x1/2(τ(1− x− z) + (1− z)z)3/2
+O(kt/Q)

= CF
Λ(µI)

Q

τ1/2

(z(1− z − τ))1/2
= CF

Λ(µI)

Q

τ1/2

(z(1− z))1/2
+O(τ), (C.23)

with 1− c23,k = x(1− c23).

The mean value of this shift can be obtained by averaging the above result with the

appropriate QCD splitting function. Here the integration boundaries will have a transition

point in thrust:

〈
(z(1− z))−1/2

〉
=

∫ 1−ZSD

ZSD−τ dz(z(1− z))−1/2Pqg(z)
∫ 1−ZSD

ZSD−τ dzPqg(z)
, (C.24)
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for τ < zcut/2, and

〈
(z(1− z))−1/2

〉
=

∫ 1−2τ
τ dz(z(1− z))−1/2Pqg(z)

∫ 1−2τ
τ dzPqg(z)

, (C.25)

for τ > zcut/2 with ZSD = z
2/(2+β)
cut (2τ)β/(2+β). Finally for τ > 1/3 both these integrals

approach 0 simultaneously and we make use of the limit

〈
(z(1− z))−1/2

〉
=

3√
2
, (C.26)

however this is not relevant to the fitting range.

C.3 Shift in energy

In addition to shifting the value of thrust it is also possible to shift the energy of an

emitted gluon downwards to below the needed energy fraction in order to pass the grooming

condition. Effectively this shift in the energy can be interpreted as a shift in zcut

δzcut = −2

(
(z + τ)(1− z)

2τ

)β/2 δE
Q
, (C.27)

where we have made use of E2 = (1− z)Q/2 and E3 = (z + τ)Q/2 and we have assumed

the angle is fixed and determined by the value of thrust. Here we can compute the energy

difference using the same techniques than those applied to derive the shift in thrust. Once

again we will make use of the observable difference for the 2→ 2 case:

δE+(k) = E3 + Ek −Q/2 =
Ek(Q− 2Ek)(1− c3k)

2(Q− Ek(1− c3k))
, (C.28)

δE−(k) = E3 −Q/2 =
−EkQ(1 + c3k)

2(Q− Ek(1− c3k))
. (C.29)

The first shift corresponds to the case where the particles k and 3 are clustered together

first, whereas the second case assumes k does not cluster with 3. This results in the integral

〈δE〉h = CA

∫
dEkEkdc2k

αs(kt,12)

2π

p1 · p3

(p1 · k)(p3 · k)

(
δE+ − δE−

)
Θ(c3k − c23). (C.30)

Note the different colour factor with respect to the previous effect: we now expect the

dominant contribution to come from a non-perturbative gluon that shifts the energy of the

perturbative one. Again we use

kt,13 = Ek

√
1− c2

3k

Q

Q− Ek(1− c3k)
. (C.31)

Resulting in the integral

〈δE〉h = CA

∫
dkt

δαs(kt)

2π
dc3k

dφk
2π

2
(
1− c2

3k

)3/2 +O(kt/Q)

= −CAΛ(µI)
c23√

1− c2
23

= −CAΛ(µI)
z(1− z − τ)− τ
2
√
τz(1− z − τ)

. (C.32)
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Since we know z ∼ ZSD − τ we can fill this into the expression resulting in

〈δzcut〉h = 2CA

(
ZSD(1− ZSD + τ)

2τ

)β/2 (ZSD − τ)(1− ZSD)− τ
2
√
τ(ZSD − τ)(1− ZSD)

Λ(µI)

Q
. (C.33)

However this only holds for τ < zcut/2, therefore we freeze the shift for τ > zcut/2 leading to

〈δzcut〉h = −2CA(1− zcut/2)β/2
zcut

2
√

1− zcut

Λ(µI)

Q
, when τ >

zcut

2
. (C.34)

D Validation of Hadronisation corrections from Monte Carlo generators

In figure 11 we compare the predictions of various general purpose Monte Carlo generators

with different hadronisation models for the various choices of zcut and β. Being mainly

interested in modifications due to different fragmentation models, we perform this compar-

ison for LO e+e− → 2j matrix elements with parton showers attached as the perturbative

input for all generators. In addition to the Sherpa setups described in the main text, we

use Sherpa with the Dire parton cascade [56] thus changing the underlying showering algo-

rithm but still using cluster hadronisation model. We find relatively mild changes in the

predicted hadronisation corrections with respect to using the dipole shower.

We furthermore compare to Herwig version 7.1.4 [55, 64] and Pythia version 8.235 [49,

54]. For Herwig we use the angular-ordered parton shower in conjunction with its clus-

ter fragmentation model [65]. Pythia implements a transverse momentum ordered parton

shower supplemented with the Lund fragmentation model. Both hadronisation models are

used with their respective default tuning parameters [66–68]. The effect of soft-drop groom-

ing on the thrust distribution is modelled consistently between the generators. We observe

that the hadronisation corrections, taken from ratios between the nominal predictions of

the generators to their respective parton level, are at most about 10% in the relevant range

for most soft-drop parameters, irrespective of the generator used. For all but the most ex-

treme choice of zcut = 0.33, the range between the default Sherpa dipole shower with cluster

or string hadronisation cover the spread of the other generator choices, at least in the de-

fault fitting range of the observable. This justifies the exclusive use of the Sherpa dipole

shower to generate pseudo data for the αs fits and to determine hadronisation corrections,

with the average of cluster and string model as our default choice and the difference to

cluster fragmentation and the string model as an estimate of the related uncertainty.

An alternative way to account for hadronisation corrections other than the ratio be-

tween parton and hadron level is to obtain a bin-by-bin transition matrix from the Monte

Carlo and apply it to the analytic calculation. We compare the two methods in figure 12,

for plain thrust and for soft-drop thrust with parameters zcut = 0.2 and β = 0 (other

parameter choices show a similar behaviour). Although the methods are clearly not equiv-

alent in the peak region and in the far tail, we find only small numerical differences in the

region where the fit is performed, with almost no dependence on αs. Similarly, small effects

are observed for other parameter choices. We conclude that the difference between these

two methods does not significantly add to the uncertainty assigned to the hadronisation

corrections, and is irrelevant at the overall level of accuracy considered.
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Figure 11. Predictions from general-purpose Monte Carlo generators for soft drop thrust with

various zcut and β values at parton shower accuracy. Shown are the nominal distributions at hadron

level and the ratios of hadron level to the respective underlying parton level predictions.

– 35 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
9

Plain

Analytic×Ratio αS = 0.115
Transition Matrix
Analytic×Ratio αS = 0.117
Transition Matrix
Analytic×Ratio αS = 0.120
Transition Matrix10−3

10−2

10−1

1

10 11 σ
dσ dτ

Fit range

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.7
0.8
0.9

1
1.1
1.2
1.3

τ

M
at

rix
/R

at
io

zcut = 0.2, β = 0

Analytic×Ratio αS = 0.115
Transition Matrix
Analytic×Ratio αS = 0.117
Transition Matrix
Analytic×Ratio αS = 0.120
Transition Matrix10−3

10−2

10−1

1

10 1

10 2

1 σ
dσ dτ
SD

Fit range

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.7
0.8
0.9

1
1.1
1.2
1.3

τSD

M
at

rix
/R

at
io

Figure 12. Comparison of different methods to apply hadronisation corrections obtained from

Monte Carlo to the analytic calculations, for plain thrust (left) and soft-drop thrust (right) with

zcut = 0.2, β = 0. The corrections are obtained from simulations at parton shower accuracy and are

applied either by multiplying the analytic calculation at various αs values by the ratio from Monte

Carlo, as described in the main text (solid) or alternatively by applying a bin-by-bin transition

matrix obtained from the same Monte Carlo run (dotted). The cluster hadronisation model is used

in all cases, the blue band indicates the uncertainty assigned to the calculation for αs = 0.117

based on the difference to using the Lund model. The bottom panel shows the ratio between the

distributions using the two methods for equal values of αs.

E Alternative treatment of the resummation uncertainty

In the study we have presented here we have chosen to estimate the theoretical uncertainty

due to missing higher-logarithmic contributions in our resummation by rescaling the argu-

ments of both the logarithms of thrust and of zcut by an arbitrary factor xL, which we are

free to vary. As an alternative, we can consider to include the rescaling factor in logarithms

of thrust only. In this case the location of the transition point depends on the value of xL.

In order to test the impact of this another code was developed for the resummation which

is formally equivalent at NLL accuracy, but uses the alternative treatment for estimating

the resummation uncertainty. In figure 13 the results of the fit using the alternative ap-

proach can be seen. Here the central values are slightly different due to some formally

NNLL differences. However, the main difference is the significantly reduced uncertainty.

In fact the uncertainty shown here is smaller than for plain thrust. We have decided to

adopt a rather conservative approach, i.e. using the method described in the main text and

in appendix B as the default choice to estimate the resummation contribution to the total

theoretical uncertainty.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 36 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
1
(
2
0
1
9
)
1
7
9

0.090

0.100

0.110

0.120

0.130

0.140

0.150

0.160

0.170

F
O

R
es

N
P

(M
C
)

N
P

(a
na

)

Q = 91.2 GeV

β = 0

Alternative
α
s

plain

zcut = 0.05

zcut = 0.1

zcut = 0.2

zcut = 0.33

0.090

0.100

0.110

0.120

0.130

0.140

0.150

0.160

0.170

F
O

R
es

N
P

(M
C
)

N
P

(a
na

)

Q = 91.2 GeV

β = 1

Alternative

α
s

plain

zcut = 0.05

zcut = 0.1

zcut = 0.2

zcut = 0.33

0.090

0.100

0.110

0.120

0.130

0.140

0.150

0.160

0.170

F
O

R
es

N
P

(M
C
)

N
P

(a
na

)

Q = 91.2 GeV

β = 2

Alternative

α
s

plain

zcut = 0.05

zcut = 0.1

zcut = 0.2

zcut = 0.33

Figure 13. Similar results to figure 6 making use of an alternative resummation code with a

different treatment for the resummation uncertainty.
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