
A Computationally Light Pruning Strategy for
Single Layer Neural Networks based on Threshold

Function
Edoardo Ragusa, Christian Gianoglio, Rodolfo Zunino and Paolo Gastaldo

Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture DITEN
University of Genoa

Genova, Italy
Email: {edoardo.ragusa,christian.gianoglio}@edu.unige.it, {rodolfo.zunino,paolo.gastaldo}@unige.it

Abstract—Embedded machine learning relies on inference
functions that can fit resource-constrained, low-power computing
devices. The literature proves that single layer neural networks
using threshold functions can provide a suitable trade off between
classification accuracy and computational cost. In this regard,
the number of neurons directly impacts both on computational
complexity and on resources allocation. Thus, the present re-
search aims at designing an efficient pruning technique that can
take into account the peculiarities of the threshold function. The
paper shows that feature selection criteria based on filter models
can effectively be applied to neuron selection. In particular,
valuable outcomes can be obtained by designing ad-hoc objective
functions for the selection process. An extensive experimental
campaign confirms that the proposed objective function compares
favourably with state-of-the-art pruning techniques.

Index Terms—neural networks, threshold function, embedded
systems

I. INTRODUCTION

Machine learning (ML) methods provide a powerful tool
to tackle classification and regression problems. Nowadays,
several applications exploit such technologies. Indeed, an
increasing amount of such applications rely on resource-
constrained embedded systems that are expected to yield
online inferences in real-time. [1].

Deep learning paradigms offer state-of-the-art performances
in terms of prediction accuracy; on the other hand, the hard-
ware implementation of the corresponding decision function
still does not fit low-resources device. Moreover, the number
of hyper parameters that characterizes these models discour-
age their usage when learning process should involve little
computational cost and human intervention [2].

Random networks, conversely, represent a valuable solu-
tions in term of training cost and ease of training process
automation. Furthermore, the resulting predictors are very
suitable for low cost implementations [1]. In general, random-
ness is one of the basic elements of learning from the very
beginning. Despite ever green criticism due to the obvious
structural limitation with respect to fully optimized approach,

The authors acknowledge financial support from Compagnia di San Paolo,
grant number: 2017.0559, ID ROL: 19795

the literature [3], [4] ensures learning, approximation and
compression capabilities of random based models.

This paper focuses on random Single Layer Feedforward
Networks (SLFNs) based on the hard limit (threshold) ac-
tivation function. Such configuration leads to a prediction
function that can be supported by a very simple architecture,
as multipliers are no longer needed [1]. In fact, the number of
neurons in the hidden layer directly impacts on computational
complexity and resources allocation, both in the case of
training and inference phases. However, the most efficient
training procedure for SLFNs based on threshold function is
not designed to find a proper balance between the size of
the hidden layer and the generalization performance [5]. In
fact, the algorithm exploits a remapping of the input datum
in a higher dimensional space, with explicit size N . As a
consequence, demanding pruning strategies can be replaced
by feature selection procedures because each neuron identifies
a unique feature of the remapped space.

In this regard, the paper offers two main contributions.
First, it proposes the use of feature selection algorithms as
pruning procedure for the selection of hidden neurons. This
in turn leads to the second contribution: the design of a novel
objective function for the pruning of inactive neurons derived
by learning process. The proposed objective function fit in the
framework of filter models [6]. Experimental results show that
the proposed approach can almost reach the performance of
the state-of-the-art pruning algorithm for random networks [7],
which in fact is less efficient in terms of computational costs.

II. BACKGROUND

Let X ∈ RD be an input domain and let T = {(x, y)i;x ∈
X ; y ∈ {−1, 1}; i = 1, .., Z} be a labeled training set. In
addition, let φ(x ·w+b) be an activation function, where w ∈
RD and b ∈ R are adjustable parameters; standard choices for
φ are sigmoid, tanh and Gaussian. The prediction function of
a SLFN for bi-class classification is given by:

y(x) = sign
(N∑

n

βnφ(x ·wn + bn)
)

(1)

Models such as Extreme Learning Machine (ELM) [8], Ran-
dom Vector Functional Link (RVFL) [9], and Weighted Sum
of Random Kitchen Sinks [10] rely on training procedures
where parameters wn, bn are not learned but simply extracted
from random distributions. The common rationale is to exploit
the hidden layer to complete a prearranged remapping of
the input space: X ⇒ RN . Accordingly, the parameters of
the hidden layer are set randomly or by exploiting some
characteristics of the dataset [11]. As a major result, training
can be accomplished by solving a linear regression problem in
the remapped space RN . In the usual configuration the training
objective function includes a Tikhonov regularization term [8].
Notably, the learning problem admits a unique closed form
solution:

β = (λI +HTH)−1HTy (2)

where hin = φ(xt
iωn + bn) and λ is the smoothing hyper-

parameter.

III. RELATED WORKS

Optimizing the trade off between number of neurons and
generalization capabilities of the eventual predictors is a well
known problem. In [7], [12] the optimization problem has
been modified to the purpose of obtaining sparse solution.
As a major consequence, ineffective neurons are removed. In
[12] the authors exploited a l1 regularization term to sparsify
the solution; then, the selected neurons were involved in the
training of a standard ELM. Optimally Pruned ELM (OPELM)
[7] combined multiple sparse regressions and leave-one-out
mechanism to prune the less informative neurons. In both the
approaches, tough, the resulting pruning process is compu-
tationally demanding; moreover, a few hyper-parameters are
added to the optimization problem.

Biologically-inspired solutions have stimulated various
works: self-adaptive evolutionary ELM [13], dolphin swarm
ELM [14], genetic ensemble of ELM [15], particle swarm
optimization based ELM [16] and Artificial Immune System
based ELM [17]. All these approaches exploit strategies de-
rived from the observation of natural phenomena. In general,
such models are computationally demanding. In fact, most of
them involve non-convex optimization problems.

In [1], [18] the target was the implementation of the pre-
dictor on resource-constrained device. Hence, the underlying
mapping strategy was designed to fulfill specific constraints
on the admissible activation function, i.e., respectively, hard-
limiter function and tristate function.

The original solution proposed by this paper is to approach
the pruning of ineffective neurons as a feature selection
problem. Such approach takes advantage of a peculiarity of
random SLFNs: the hidden layer performs a remapping of the
input data in a space with explicit dimensionality N [11]. To
the purpose of limiting the computational cost of the pruning
process, feature selection is implemented by using filtering
models [6].

IV. CONTROLLING THE SIZE OF THE HIDDEN
LAYER

The size of the hidden layer (i.e., the number of neurons)
represents a crucial aspect, since it affects generalization ca-
pabilities, computational complexity and resource occupancy.
Ideally, one would the training to yield a decision function
that optimizes the trade-off between size of the hidden layer
and generalization ability.

In the following, hn denotes the n-th feature in the space
{−1, 1}N , i.e., the activation of the n-th neuron. Correspond-
ingly, hn is a Z-dimensional vector, where

hi,n = sign(xi ·wn + bn); (3)

here, xi is a pattern belonging to the labeled training set T .
In principle, N affects differently training and inference

phase. The cost of the training phase can be divided into two
parts: the first part concerns the computation of matrix H ,
which involves the evaluation of Z × N neuron activation.
The number of floating point operations for each neuron can
be formalized as:

#flops act = 2 ∗D, (4)

because D multiplications and D sums should be completed.
Since a threshold function is involved, a straightforward op-
eration leads to the activation of the neuron.

The second part is the solution of a linear equation system
(LES). It is worth to note that the closed form solution
shown in eq. (2) is not the optimal approach in term of
computational cost and numerical stability. State-of-the-art
approaches employ sets of solvers and select the optimal one
based on the peculiarities of the system at hand [19].

Overall, the number of floating point operations of the
training phase can be formalized as:

#flops training = Z ∗N ∗#flops act + #LES (5)

where #LES is the number of operation required by the LES
solver.

Inference phase consists in the evaluation of eq. (1). Thus,
N linearly affects the number of floating point operations and
the number of network parameters. The memory consumption
of the eventual predictor can be formalized as follow:

#par predictor = N(D + 1) +N (6)

where the first term takes into account the number of hidden
parameters and the second term refers to the number of
parameters in the linear separator. Similarly, the number of
floating point operation is:

#flops test = N ∗#flops act +N (7)

In general, SLFNs that exploits randomness to complete a
prearranged remapping of the input space does not address
effectively the trade-off between number of neurons and
generalization abilities. This drawback is indeed related to the
choice of not adjusting the neurons’ parameters according to

a cost function. In principle, one may tackle this issue by
keeping in mind that the hidden layer actually remaps the
original input space X into a new feature space RN [11]. As a
result, feature selection methods can be applied in such space.
In this case, feature selection eventually drives a ’neuron
selection’. Hence, the SLFN is first trained by setting the size
N of the hidden layer. Then, feature selection is exploited to
downsize the layer from N to M (M < N).

The literature provides different techniques designed to
shrink the number of features [6]. This paper focuses on a spe-
cific category of feature selection methods: filter models [6].
These methods share a common, iterative approach to select
M relevant features out of N candidate features. Initially, the
set S of selected features is empty, while the set F includes
all the N candidate features. At each iteration, an objective
metric is used to identify in F the most relevant feature; such
feature is added to S and removed from F . The procedure
ends when S include M features.

Actually, standard objective functions for filter models do
not fit properly the problem at hand. Threshold function admits
only two values. As a consequence, their behaviour is differ-
ent from the common activation function that characterizes
hidden layers. On one hand, this non linearity suits theoretical
constraints for universal approximation capability [8]. On the
other hand, in terms of feature selection, one has to deal with
binary features. Interestingly, though, thresholds and entropy
gain criteria are two of the core elements of random forest
(RF) classifiers [20]. RFs proved to be very effective in several
application; hence, they established de facto the suitability of
the pair {entropy gain, threshold function}.

Following this rationale, the present research adopts the min
entropy (mEN) method as objective function. Since a threshold
function is involved, the entropy gain can be assessed by
observing that the generic n-th neuron separates the training
set T into two subsets:

Ωn,u = {(x, y)i|xwn + bn < 0},
Ωn,o = {(x, y)i|xwn + bn > 0} (8)

Accordingly, one identifies the most relevant feature in F
as follows:

arg max
hn∈F

{
E(T)− E(Ωn,u)− E(Ωn,o)

}
(9)

The second objective function presented in this paper is a
linear combination of (9) and the standard min redundancy
(mRD) (10) criterion. Among the criteria available for feature
selection, diversity is well-known as a reliable metric. In gen-
eral, two features that are highly correlated do not introduces
information. Thus, mRD is formalized as:

arg min
hn∈F

{ ∑
hq∈S

P (hn,hq)
}

(10)

where P () is the Pearson correlation coefficient between two
vectors. The eventual objective function is called min entropy
min redundancy (mENmRD).

V. EXPERIMENTAL RESULTS

The experimental session evaluated the ability of the feature
selection methods described above to yield a predictor that can
balance accuracy and size of the hidden layer.

The performance of the feature selection methods has been
evaluated on 5 multiclass problems and 9 bi-class problems.
All the datasets belong to the UCI database [21]: Glass
Identification, Wine, Image Segmentation, Statlog (Vehicle
Silhouettes), Pima Indians Diabetes, Ionosphere, Connectionist
Bench, LSVT voice rehabilitation, Ozone level detection,
QSAR Biodegradation, Breast Cancer Wisconsin (Diagnos-
tic), Statlog (Australian Credit Approval) and Breast Cancer
Wisconsin (Original). For each dataset, the experiment was
organized as follows:
• randomly split the dataset into three sets: training (70%

of the dataset), development (15%), and test (15%).
• generate 2,000 neurons with as many random pairs

(wn, bn).
• select M neurons out of the 2,000 by using feature

selection
• train the SLFN with 2,000 neurons by exploiting the

development set to configure the regularization parameter
λ

• train the SLFN with M neurons by exploiting the devel-
opment set to configure the regularization parameter λ.

The present work compares the proposed objective func-
tions with three state-of-the-art metrics that can support filter
models: max relevance (MRL) [21], min redundancy (mRD)
[21], max relevance min redundancy (MRLmRD) [21]. Be-
sides, an additional approach based on MultiResponse Sparse
Regression (MRSR) algorithm is added to the comparison.
Such algorithm supports the pruning procedure in OP-ELM,
i.e., a state-of-the-art SLFN based on random parameters [22].
Accordingly, its performance provides a reference value for the
other methods. It is worth noting, though, that the MRSR al-
gorithm is expected to be order of magnitude more demanding
of filter models in terms of computational complexity. MRSR
should solve multiple regression problems, while filter models
implies the solution of a single regression problem.

Table I compares the performance of the different feature
selection methods. Each row of the table refers to a specific
method and provides the outcome of the experiment for differ-
ent values of M . The outcome is expressed as the difference
-in terms of classification accuracy on the test set- between the
SLFN with M neurons and the SLFN with 2,000 neurons; thus,
a positive value means an increased accuracy. The accuracy
is expressed as percentage, in the range [0, 1], over the size
of the test set. The table actually gives the average value of
such quantity over the 14 problems along with its standard
uncertainty (between brackets).

As expected, the table shows that filter models were not
able to improve the performance of MRSR. MRSR indeed
proved able to not affect classification accuracy even when
200 neurons out of 2,000 were selected. Nonethless, among
the filter models, the proposed mENmRD metric achieved

TABLE I
EXPERIMENTAL RESULTS

Method M= 100 M = 200 M = 500
mEN -0.042(0.004) -0.030(0.004) -0.012(0.003)

mENmRD -0.045(0.006) -0.015(0.003) -0.012(0.004)
MRL -0.067(0.005) -0.037(0.004) -0.016(0.004)
mRD -0.169(0.003) -0.102(0.004) -0.026(0.004)

MRLmRD -0.058(0.003) -0.024(0.002) -0.013(0.003)
MRSR -0.003(0.003) +0.006(0.003) +0.004(0.003)

satisfactory performances with M = 200. Overall, this means
that feature selection can support an effective, computationally
light pruning strategy for the proposed SLFN.

The experiments can also reveal which of the filtering
method has been the most consistent over the different datasets
and the different training/set pairs. Accordingly, MRSR is not
involved in this campaign. Thus, for each benchmark and for
each training/set pair, one point was assigned to the pruning
that scored the best classification accuracy. The graph in Fig.
1 reports on the results of this experiment. The y-axis gives
the cumulative score over the 560 tests (14 dataset × 40
training/test splits). On the x-axis, bars are grouped according
to the size of M = {100, 200, 500} . In each group, bars refers,
respectivley, to mEN, mENmRD, MRL, mRD, MRLmRD
starting from the left.

The plot shows that the proposed objective functions, mEN
and mENmRD, proved to be the very consistent, i.e., the corre-
sponding predictors often occupied the highest position in the
rank order over the different experiments. The MRL method
slightly outperformed mENmRD only when M = 500.

VI. CONCLUSION

This paper proposed the use of feature selection techniques
for implementing pruning procedures in random SLFNs. Two
objective functions designed to deal with binary features have
been introduced to the purpose of dealing with threshold
activation functions. Experimental results involving 14 real
world problems proved the effectiveness of the proposed
solution in balancing the size of the hidden layer and the
generalization performance of the eventual predictor.

M=100 M=200 M=500
0

50

100

150

200

S
c
o
re

mEN

mENmRD

MRL

mRD

MRLmRD

Fig. 1. Consistency evaluation of the five filtering methods; the plot gives
the number of neurons M on the x-axis and the corresponding total amount
of collected points on the y-axis.

REFERENCES

[1] E. Ragusa, C. Gianoglio, P. Gastaldo, and R. Zunino, “A digital
implementation of extreme learning machines for resource-constrained
devices,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 65, no. 8, pp. 1104–1108, 2018.

[2] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

[3] C. Gallicchio, J. Martin-Guerrero, A. Micheli, and E. Soria-Olivas,
“Randomized machine learning approaches: Recent developments and
challenges,” in Proceedings of the 25th European Symposium on Artifi-
cial Neural Networks (ESANN). i6doc. com, 2017, pp. 77–86.

[4] Y. Miche, B. Schrauwen, and A. Lendasse, “Machine learning tech-
niques based on random projections.” in ESANN, 2010.

[5] G.-B. Huang, Q.-Y. Zhu, K. Mao, C.-K. Siew, P. Saratchandran, and
N. Sundararajan, “Can threshold networks be trained directly?” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 3,
pp. 187–191, 2006.

[6] J. Xu, B. Tang, H. He, and H. Man, “Semisupervised feature selection
based on relevance and redundancy criteria,” IEEE transactions on
neural networks and learning systems, vol. 28, no. 9, pp. 1974–1984,
2017.

[7] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“Op-elm: optimally pruned extreme learning machine,” IEEE transac-
tions on neural networks, vol. 21, no. 1, pp. 158–162, 2010.

[8] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: A review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[9] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and generalization
characteristics of the random vector functional-link net,” Neurocomput-
ing, vol. 6, no. 2, pp. 163–180, 1994.

[10] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks:
Replacing minimization with randomization in learning,” in Advances
in neural information processing systems, 2009, pp. 1313–1320.

[11] P. Gastaldo, F. Bisio, C. Gianoglio, E. Ragusa, and R. Zunino, “Learning
with similarity functions: a novel design for the extreme learning
machine,” Neurocomputing, vol. 261, pp. 37–49, 2017.

[12] S. Decherchi, P. Gastaldo, A. Leoncini, and R. Zunino, “Efficient digital
implementation of extreme learning machines for classification,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 8,
pp. 496–500, 2012.

[13] J. Cao, Z. Lin, and G.-B. Huang, “Self-adaptive evolutionary extreme
learning machine,” Neural processing letters, vol. 36, no. 3, pp. 285–
305, 2012.

[14] T. Wu, M. Yao, and J. Yang, “Dolphin swarm extreme learning machine,”
Cognitive Computation, vol. 9, no. 2, pp. 275–284, 2017.

[15] X. Xue, M. Yao, Z. Wu, and J. Yang, “Genetic ensemble of extreme
learning machine,” Neurocomputing, vol. 129, pp. 175–184, 2014.

[16] Y. Xu and Y. Shu, “Evolutionary extreme learning machine–based on
particle swarm optimization,” in International Symposium on Neural
Networks. Springer, 2006, pp. 644–652.

[17] H.-y. Tian, S.-j. Li, T.-q. Wu, and M. Yao, “An extreme learning machine
based on artificial immune system,” in The 8th International Conference
on Extreme Learning Machines (ELM2017), Yantai, China, 2017.

[18] A. Patil, S. Shen, E. Yao, and A. Basu, “Hardware architecture for large
parallel array of random feature extractors applied to image recognition,”
Neurocomputing, vol. 261, pp. 193–203, 2017.

[19] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2012, vol. 3.

[20] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[21] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information: criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis & Machine Intel-
ligence, no. 8, pp. 1226–1238, 2005.

[22] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“Op-elm: optimally pruned extreme learning machine,” IEEE transac-
tions on neural networks, vol. 21, no. 1, pp. 158–162, 2010.

