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ABSTRACT
We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is
associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function
in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal
transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This
association has been validated in an independent series of 114 melanoma metastases. In these, DST
expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other
six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune
signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from
471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also
reveal that overexpression of barrier molecules is strongly associated with early patient mortality for
melanoma (p D 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for
melanoma (p D 0.012) and ovarian cancer (p D 0.006), whereas DST overexpression is negatively
associated with CD8C gene expression, but not with patient survival. Thus, overexpression of FLG or DST
identifies two distinct patient populations with low immune cell infiltration in these cancers, but with
different prognostic implications for each. These data raise the possibility that molecules with mechanical
barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell
infiltration and immune-mediated destruction.
Abbreviations: APC2, adenomatosis polyposis coli 2; BCAT, b-catenin; BPAG1, bullous pemphigoid antigen 1; CCR5,
C–C chemokine receptor type 5, also known as CD195; CXCL10, chemokine (C–X–C motif) ligand 10, IP-10; CXCL11,
chemokine (C–X–C motif) ligand 11, I-TAC; CXCL9, chemokine (C–X–C motif) ligand 9, Mig; CXCR3, C–X–C chemo-
kine receptor type 3, CD183; DSC3, desmocollin 3; DSP, desmoplakin; DST, dystonin; EDNRB, endothelin receptor B;
EDTA, ethylene diamine tetra-acetic acid; EFNB3, ephrin B3; FLG, filaggrin; FZD3, frizzled class receptor 3; IDO, Indo-
leamine-2,3-dioxygenase; IL-10, interleukin-10; IRF1, interferon regulatory factor 1; JUP, junction plakoglobin; MYC,
c-myc; OBM, overexpression of barrier molecule genes; PD-L1, programmed-death ligand 1; PKP3, plakophilin 3;
PPL, periplakin; SOX11, SRY (sex determining region Y)-box 11; SOX2, SRY (sex determining region Y)-box 2;
TACSTD2, tumor-associated calcium signal transducer 2, trop2; TCF12, transcription factor 12; TCGA, The Cancer
Genome Atlas; TGFb, transforming growth factor b; Th1, T helper type 1; TME, tumor microenvironment; VEGFA,
vascular endothelial growth factor A; WNT7B, wnt family member 7B
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Introduction

Immune signatures associated with T-cell infiltration of
tumors, including melanoma and ovarian cancer, are associated
with improved clinical outcomes.1-11 The mechanisms enabling
and regulating T-cell infiltration and function in the tumor
microenvironment (TME) are being elucidated. Roles have

been established for T-cell homing receptors,12 chemokine
receptors, endothelial molecules,13,14 decreased antigen presen-
tation and intratumoral molecules that interfere with T-cell
function and survival in the TME.6,15-19 However, little is
known about mechanical barriers to lymphocyte infiltration
into tumors.
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In sites of immunologic privilege, including brain, testes
and retina, immune protection is achieved through an
immunosuppressive signaling milieu in combination with a
physical barrier of cell–cell adhesion at the blood inter-
face.20-25 Intact mechanical barrier function is critical to
maintenance of immune privilege in these sites. In the eye,
aberrant anti-retinal T cells are prevented from causing
autoimmune disease by the mechanical blood-retina barrier
protecting the ocular compartment,20 and both physical bar-
riers and immune regulation mediate ocular immune privi-
lege.26 Analogously, brain-reactive T cells, abundant in the
normal immune repertoire, are prevented from initiating
autoimmune encephalitis largely by the tight intercellular
junctions of the blood-brain barrier.27 Similarly, immune
privilege of the male testis is explained by a blood-testis
barrier which is a complex anatomic and physiologic barrier
in which tight junctions and desmosomal proteins play crit-
ical roles.28,29 Thus, in privileged sites, loss of integrity of
either the physical immunologic barrier or signaling milieu
may interfere with immune privilege.

Although mechanical barrier function at the blood-retina and
blood-brain interfaces is achieved primarily through intercellular
tight junctions, the blood-testis and skin-external environment
barriers are mediated through both tight junctions and desmo-
somal adhesion. Desmosomes, or macula adherens, are interme-
diate filament-based cell–cell adhesions using desmosomal
cadherins anchored to intermediate filaments via desmoplakins.
Desmosomes are reinforced by armadillo proteins including pla-
kophilin. Expression of desmosomal barrier molecules has been
observed in several solid tumors, with mixed prognostic associa-
tions.30-37 In melanoma, elevated levels of the cadherin desmo-
collin 3 (DSC3) has been associated with increased metastatic
risk, but in colon and lung cancer, it has been associated with a
better prognosis.31-33 These associations remain to be developed
and explained, and relationships between tumor expression of
barrier molecules and tumor-infiltrating lymphocytes have not

yet been reported. We hypothesized that proteins engaged in
mechanical barrier formation may be overexpressed in tumors
without T-cell infiltration and may have roles limiting T-cell
infiltration. Here, we report a novel relationship observed in sub-
sets of melanoma and ovarian carcinomas, in that elevated
expression of mechanical barrier genes are correlated with a lack
of immune signature genes.

Results

Melanoma metastases lacking immune gene signatures
have elevated barrier molecule gene expression

Gene expression analysis of human melanoma metastases iden-
tified three subsets of melanomas: type 1, characterized by
immune signatures, and types 2 and 3 both lacking immune
signatures.6 Group 2 tumors clustered more closely to Group 1
but had low expression of most immune signature genes.
Group 3 tumors clustered with melanoma cell lines and mela-
nocyte lines. We hypothesized that the absence of immune cell
infiltration in group 2 and/or group 3 tumors may be mediated
by genes that actively interfere with infiltration. Thus, we
screened the 200 genes with greatest variance among these mel-
anoma metastases6 for genes upregulated in tumors lacking
immune cell signatures. Mean gene expression values for each
group (1, 2 and 3) were compared to mean values for the
remaining two groups. Thus, comparisons were made for group
1 versus groups 2C3, group 2 versus groups 1C3 and group 3
versus groups 1C2. We did not identify significant patterns for
group 3 compared to groups 1 and 2 (data not shown), whereas
prior work had highlighted increased immune signature genes
in group 1 versus groups 2C3.6 However, there was marked
concordant upregulation of a set of genes in group 2 tumors
versus groups 1 and 3; this finding was explained by a majority
subset of the group 2 tumors (Fig. 1).

Sixty genes had mean expression levels at least 5-fold greater
in group 2 than groups 1C3 combined, at a significance of

Figure 1. Filaggrin and desmosome-associated gene transcripts in a subset of melanomas lacking immune signature genes.
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p < 0.01 by two-sided Student’s t-test for independent samples
(data not shown). Among the genes upregulated in group 2
were genes classically associated with cell–cell adhesion and
mechanical barrier function, as well as some with known
immunologic function. The most upregulated gene was filag-
grin (130-fold, p D 0.002). It was also notable that five of the
nine most upregulated genes (16-fold or higher) were desmo-
some or tight junction genes, and that two other upregulated
genes also encode for desmosomal proteins. These included
genes encoding the tight-junction protein tumor-associated
calcium signal transducer 2 (TACSTD2, TROP2, 32-fold,
p D 0.003) and the desmosomal proteins: DSC3 (21-fold,
p D 0.004), dystonin (DST, bullous pemphigoid antigen 1;
19-fold, p D 0.009), desmoplakin (DSP, 18-fold, p D 0.001),
periplakin (PPL, 16-fold, p D 0.004), plakophilin 3 (PKP3,
8-fold, p D 0.008) and junctional plakoglobin (JUP, 7-fold,
p D 0.005). Of 26 tumors lacking immune signature genes
(groups 2 and 3), 8 (31%) had elevated barrier molecule gene
expression (Table 1 and Fig. 1). Thus, in a subset of melanoma
metastases lacking immune gene signatures, there was markedly
elevated expression of genes encoding filaggrin and the tight-
junction and desmosome-associated proteins listed in Table 1.

Melanoma and ovarian cancer metastases that lack
immune signature genes express barrier molecule gene
profiles

Having found that filaggrin as well as proteins associated with
desmosomes and tight junction are inversely associated with
immune gene signatures in a small study of melanoma, we
wished to evaluate this observation in a larger and separate set
of melanoma metastases and to test this association in a sepa-
rate epithelial cancer.

Melanoma. For these studies, we utilized gene expression
profiling data from a set of 113 metastatic melanomas, which
had been collected in a prior study.38 Two-dimensional self-
organizing clustering was performed to examine expression of
the eight barrier molecule genes as well as 17 genes comprising
a prognostically favorable Th1 immune signature. The genes
segregated such that the immune signature genes all clustered
together and separately from the barrier molecule genes
(Fig. 2A). Among the eight barrier molecules, DST clustered
separately from the others (Fig. 2A). A pattern emerged where
melanoma metastases with elevated immune signatures lacked
barrier molecule expression (right side of Fig. 2A), and a subset
of tumors lacking immune signatures had high expression of

multiple barrier molecule genes (left side of Fig. 2A). Another
subset of melanomas lacked both the immune signature genes
and most of the barrier molecule genes; however, these almost
always did express high levels of the one barrier molecule DST.
There also were a few tumors with selected immune signature
genes and barrier molecules; interestingly, these all overex-
pressed CCR5, IRF1, and usually CXCR3 and its ligands
CXCL9-11, with low expression of the other immune signature
genes (Fig. 2A, marked with orange bar).

Ovarian cancer. To examine the associations between
immune infiltration of tumors and barrier molecule expression
in ovarian cancer, gene expression data from 180 advanced
ovarian carcinoma specimens were utilized (Fig. 2B).39 Similar
to melanoma tumors, DST again clustered separately from
filaggrin and most of the other barrier molecule genes. Perhaps
more strikingly than for melanoma, tumors lacking immune
signatures were characterized by high expression of barrier
molecule genes (left side of Fig. 2B). Specifically, immune sig-
natures were absent in tumors that expressed high levels of at
least three barrier molecules (left side of Fig. 2B, section w).
Interestingly, high DST expression correlated with a lack of
immune signature genes and a lack of expression of other bar-
rier molecules, in ovarian cancer specimens, suggesting that
DST may be an effective immune barrier molecule by itself
(Fig. 2B, section x), as in melanoma. In total, approximately
two out of three ovarian tumors lacking immune signature
genes displayed elevated levels of barrier molecule genes. Con-
versely, tumors with high expression of immune signature
genes (right side of Fig. 2B) had relatively low expression of
barrier molecule genes.

Correlation between gene expression in melanoma tumor
specimens and corresponding cell lines. Additionally, we investi-
gated barrier molecule gene expression correlation between
melanoma metastases and their matched cell lines. For correla-
tion analyses, gene expression data were utilized from a subset
of 15 melanoma metastases for which matched cell lines were
available (Fig. 2C). Among these 15 tumors, there was good
concordance of expression of the barrier molecule genes except
for DSC3 and DST. Comparing tumors to their matched cell
lines, there was poor correlation in gene expression. Interest-
ingly, DST was the only barrier molecule with gene expression
that correlated significantly between the melanoma cell lines
and tumor metastases (R D 0.52; p D 0.04, Fig. 2C). The lack of
correlation of barrier molecule gene expression between tumor
cell lines and tumor metastases suggests that factors in the
TME or host may influence the expression of the barrier genes

Table 1. Barrier molecules upregulated in a subset of low-TIL tumors.

Gene (protein) Fold increase p-value Protein function

FLG (filaggrin) 131 0.002 Skin cornified envelope formation, flattened keratinocyte morphology
TACSTD2 (tumor-associated calcium signal transducer 2) 32 0.003 Epithelial barrier function, tight junction related proteins.

Binds Claudin 1 and 7.
DSC3 (desmocollin 3) 21 0.004 Forms desmosomes
DST (dystonin; bullous pemphigoid antigen 1) 19 0.009 Component of hemidesmosomes
DSP (desmoplakin) 18 0.001 Critical component of desmosomes
PPL (periplakin) 16 0.004 Component of desmosomes and epidermal cornified envelope

in keratinocytes
PKP3 (plakophilin 3) 8 0.008 Component of desmosomes, present in nuclei of epithelial cells
JUP (junction plakoglobin) 7 0.005 Participates in intercellular junctions

ONCOIMMUNOLOGY e1240857-3



Figure 2. Transcriptional profiling of 113 melanoma metastases and 180 ovarian adenocarcinomas and of melanoma cell lines. Self-organizing heat maps display selected
immune signature transcripts together with the expression of mechanical barrier molecules. Genes highlighted in yellow are associated with mechanical barrier function,
and in green constitute a Th1 immune signature. For melanoma (A), categories of gene expression are grouped within yellow boxes, from the right, into four subclusters:
(z) robust immune signatures, and lacking barrier molecule expression, (y) low or mixed immune signatures and sporadic barrier molecule expression, (x) absent immune
signatures with DST overexpression, and (w) overexpression of at least three barrier molecule genes and low level of immune genes. For ovarian cancer (B), yellow boxes
mark 3 of the same categories (z, w, x). For both graphs, orange rectangles identify a small subset of tumors in subcluster (w) with high expression of some barrier mole-
cules (but not DST), and limited expression of chemokines and IRF1. (C) Gene–gene matrix correlation between barrier molecule genes in melanoma metastases and their
matched cell lines. Gene expression data are from a subset of melanoma metastases (nD 15) for which matched cell lines (nD 15) were available. Each square represents
the Pearson product-moment correlation (R), obtained by correlating: (i) genes within tumor metastases, (ii) genes within tumor cell lines or (iii) genes between tumor cell
lines and matched tumor metastases. Pink indicates direct correlation, while green inverse correlation. Genes in tumor metastases are labeled with their gene symbol,
whereas genes in tumor cell lines are labeled by “cl,” followed by their gene symbol.
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in vivo. However, the strong correlation of DST expression
between melanoma metastases and cell lines suggests that the
modulation of this gene may be tumor cell-intrinsic.

Melanoma and ovarian cancer cells express filaggrin and
desmosomal proteins

Some of the melanoma tumors evaluated in our gene array
studies were from cutaneous or subcutaneous sites. Filaggrin is
highly expressed in the epidermis; so a possible explanation for
the finding could be inclusion of epidermis in the surgical
specimens. However, most cutaneous metastases of melanoma
arise in the deep dermis and subcutis, where filaggrin is not
expected. Furthermore, one of these metastases arose in lymph
nodes and one in small bowel, so it appeared likely that the
expression of filaggrin and other barrier molecules could not be
explained by epidermal keratinocytes and thus may be from
tumor cells themselves. To test whether human melanoma cells
directly express filaggrin, we assessed filaggrin expression by
immunohistochemistry. Additionally, ovarian cancer speci-
mens were also evaluated to assess expression of filaggrin.

Skin and placental tissue controls revealed intense staining
for filaggrin. As expected, in skin, filaggrin expression was
confined to the epidermis, and spleen controls lacked filaggrin
staining (Fig. 3A). In metastatic melanoma samples,
filaggrin expression was varied. We observed examples where
filaggrin expression was intense and clearly expressed by tumor
cells, and we also found examples of tumors that lacked
filaggrin expression (Fig. 3A and B). Similarly, filaggrin
expression by ovarian cancer cells was observed in a subset of
ovarian cancer specimens (Fig. 3A). These experiments confirm
direct tumor cell expression of filaggrin in human melanoma
and ovarian carcinoma.

Evaluations of filaggrin expression in melanoma metastases
led to an interesting observation that CD45C immune cell infil-
tration was inversely correlated with filaggrin expression. In
general, tumors with strong filaggrin expression had few infil-
trating CD45C cells, whereas tumors with no detectable filag-
grin expression showed diffuse immune cell infiltration
(Fig. 3A and B). To evaluate this observation more rigorously,
we assessed filaggrin expression in TMAs of melanoma metas-
tases previously evaluated for immune cell infiltration4; tumor
cores previously noted to contain high (> 300) or low (< 10)
CD8C T cells per core were selected for evaluation of filaggrin
protein expression. High or low immune cell infiltration was
confirmed by inspection of CD45 staining. For cores with con-
firmed infiltration phenotype, filaggrin expression was graded
from 0 to 3; “high” expression was defined as level 2 or 3 stain-
ing (Fig. 3B). Of the tumor cores selected for examination based
on past measurements of CD8C T-cell infiltration,4 43 out of 54
(80%) of CD8C-high and 164 out of 199 (82%) of CD8C-low
cores were evaluable, representing 21 and 58 tumors, respec-
tively. For each tumor, one to four cores were examined, and
heterogeneity of filaggrin expression was noted both among
cores from the same tumor deposit, and among cores from dif-
ferent tumors. High filaggrin expression was present in 30% of
tumor cores with very low immune infiltrate, but only 9% of
cores with high immune infiltrate (p D 0.007, Fig. 3C). Thus,

these data suggest that filaggrin expression is inversely corre-
lated with CD8C cell infiltrate in melanoma metastases.

Additionally, melanoma metastases and ovarian cancer
specimens were evaluated by immunohistochemistry for direct
tumor cell expression of desmosomal proteins, desmoplakin
and periplakin. In normal skin controls, desmoplakin and peri-
plakin expression were observed in the epidermis and adnexal
structures. A subset of melanoma and ovarian cancer tumors
also showed desmoplakin and periplakin expression (Figs. 4A
and B), thus indicating that these barrier proteins could be
directly expressed by cancer cells. Interestingly, here too we
observed a pattern in which melanomas with CD45C immune
cell infiltrate typically lacked expression of the desmosomal
proteins, and conversely melanomas with high expression of
the desmosomal proteins typically lacked immune cell infil-
trates (Figs. 4A and B). Furthermore, this pattern was also
observed in ovarian cancer specimens, with CD45C immune
cell infiltrates being inversely correlated with expression of
filaggrin and desmosomal proteins (Figs. 4A and B).

Filaggrin, TACSTD2 and desmosomal barrier molecule
overexpression is largely independent of endothelin
receptor B or WNT/b-catenin overexpression in melanoma
and ovarian cancers

Endothelin receptor B (EDNRB) has been reported to interfere
with T-cell infiltration into human ovarian cancers,13,14,16 and
activation of WNT/b-catenin signaling has been identified as a
mechanism by which melanomas may exclude T cells.40,41

Thus, we have explored whether EDNRB or WNT/b-catenin
overexpression is associated with overexpression of filaggrin,
TACSTD2 and desmosomal proteins. Gene expression data
were obtained from The Cancer Genome Atlas (TCGA) project
and analyzed through cBioPortal.org.42,43 This data set
(accessed 15 May 2016) contains RNA-seq gene expression
data from 471 primary and metastatic melanomas. Overexpres-
sion of the following genes was assessed (z> 1.5): the eight bar-
rier molecules from the present manuscript, EDNRB, nine
WNT/b-catenin pathway genes41 and genes associated with
CD8C T cell infiltration and Th1 immune signatures (CD8A,
CD8B, interferon-gamma and CXCL10). Overexpression of
Th1 immune genes was identified in 7% of melanomas
(Fig. 5A). This number is comparable to the proportion we
have identified as having diffuse T cell infiltration (8%), desig-
nated as Immunotype C, in a different set of melanoma metas-
tases.4 Among the melanomas with overexpression of Th1
immune genes, very few overexpressed EDNRB, barrier mole-
cule genes or b-catenin/WNT genes. Among those overexpress-
ing 3–4 of the Th1 genes (Th1-high), 0–1 barrier molecules
were overexpressed and there was no overexpression of
EDNRB or of b-catenin/WNT genes (Fig. 5C). Even for those
overexpressing only 1–2 of the Th1 genes (Th1-low), the vast
majority expressed 0–1 of the barrier molecule genes and only
2 overexpressed EDNRB. Thus, high CD8C T cell infiltration
and immune gene signatures are confined to melanomas that
do not overexpress the barrier molecules that are the focus of
this report, and also that do not overexpress EDNRB or b-cate-
nin/WNT pathway genes.

ONCOIMMUNOLOGY e1240857-5



On the other hand, among 437 melanomas without overex-
pression of CD8A, CD8B, IFNg or CXCL10 (non-inflamed),
62% overexpress EDNRB, barrier molecules or WNT/b-catenin
genes. One group primarily overexpressed EDNRB, while
another had overexpressed barrier molecules (OBM), and a
third overexpressed one or more of the WNT/b-catenin genes

(Fig. 5A). Among the OBM group, there was striking concor-
dance of overexpression for seven of the eight barrier mole-
cules, while another set of melanomas was identified by
overexpression of DST (also known as BPAG1) alone,
(Fig. 5A). Overall, 1–7 of the barrier molecule genes were over-
expressed in 129 (30%, Fig. 5B). Among these, 44 also

Figure 3. A Filaggrin staining in human tissues: (from top to bottom) normal skin, spleen, placenta, metastatic melanoma, metastatic melanoma and ovarian carcinoma.
Specimens are double-stained with filaggrin (blue) and CD45 (purple for spleen, placenta and melanoma, and brown for ovarian cancer); a methyl green counterstain
identifies nuclei. (B) Visual analog scale grading filaggrin expression in metastatic melanoma. Scores are based on the number of positively stained cells per 40X field.
White arrowheads indicate positively staining cells in levels 1 and 2. (C) Filaggrin staining in melanoma TMA cores with low and high CD8C infiltration. Levels of staining:
0 (white), 1 (dotted gray), 2 (dark diagonal hash lines), 3 (black), n D number of tumor cores examined.
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overexpressed one or more WNT/b-catenin genes, 10 also
overexpressed EDNRB and 10 overexpressed genes in all three
groups. Thus, 15% of the non-inflamed tumors had overexpres-
sion of the barrier molecules without overexpression of EDNRB
or WNT/b-catenin pathway genes. On the other hand, 22% of
the non-inflamed tumors had overexpression only of WNT/
b-catenin pathway genes, and 4% had overexpression only of
EDNRB (Fig. 5B). Analyses of gene co-occurrence or mutual
exclusivity in the TCGA also confirmed significant co-occur-
rence of genes within each of the groupings (Th1 genes, barrier
molecule genes, WNT/b-catenin genes) in melanoma, and
mutual exclusivity between members of each grouping, in both
melanoma and ovarian cancer (Table S1). Thus, there are sub-
sets of melanomas and ovarian cancers overexpressing the bar-
rier molecule genes (FLG, TACSTD2, DST and five other
desmosomal genes) that are distinct from those with other
known mechanisms for T-cell exclusion.

Associations between barrier molecule overexpression
and patient survival

Immune cell infiltrates in melanoma and ovarian cancer have
been associated with significantly prolonged patient survival and
may predict response to immune therapies. Thus, we hypothe-
sized that overexpression of barrier molecules would be associ-
ated with shorter patient survival. Kaplan–Meier curves are
shown in Fig. 6. For the 478 melanoma samples in the TCGA
dataset, RNAseq data are available for 471, and survival data are
available for 458 (219 deceased, 239 censored). Follow-up times
among the deceased and censored groups are similar, with 50%
and 51% evaluable to year 3, and 13% and 18% evaluable to
year 10, respectively (Table S2). For ovarian cancer, follow-up
intervals are somewhat longer for the deceased patients than for
the censored patients, with 48% and 34% evaluable to year 3,
and 16% and 22% evaluable to year 5, respectively (Table S2).

Figure 4. (A) Periplakin (blue) and (B) desmoplakin (blue) staining in melanoma and ovarian carcinoma specimens. Melanoma and ovarian carcinoma specimens are dou-
ble-stained with CD45 (purple for melanoma, and brown for ovarian CA), and a methyl green counterstain identify nuclei. Tissues controls for each panel are spleen (top
left, negative control), and normal skin (bottom left, positive control).
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For melanomas, there was significantly shorter survival in
patients with tumors overexpressing FLG (n D 28, p D 0.012,
Fig. 6A), or TACSTD2 (n D 61, p D 0.0002, Fig. 6B), or five of
the remaining barrier molecules (DSC3, DSP, PPL, PKP3, JUP,
n D 80, p < 0.02, data not shown). However, overexpression of
DST was not associated with significantly different survival
(n D 47, Fig. 6D). Overexpression of any of the eight barrier
molecules was strongly associated with decreased patient survival
(p D 0.0002, Fig. 6E). On the other hand, survival was not
diminished for patients whose melanomas overexpressed EDNRB
(Fig. 6E), or any of the WNT/b-catenin genes, individually
(p-valuesD 0.17 to 0.91, data not shown) or in aggregate (Fig. 6F).

Patients whose melanomas overexpressed FLG, TACSTD2
or any of the eight barrier molecules were similar to those

without overexpression in terms of age, gender, mutation
counts and the incidence of neoadjuvant and adjuvant therapy
(Table S3). However, FLG- or TACSTD2-overexpressing
tumors (n D 29 and 64, respectively) were less likely to be from
metastases and less likely to be stages III and IV, but the pri-
mary melanomas for those patients tended to be thicker and
were more likely ulcerated than those not overexpressing those
barrier molecules. On the other hand, mitotic rate tended to be
lower for the FLG- or TACSTD2-overexpressing melanomas.
Thus, there were clinical features associated with lower risk on
one hand but higher risk on the other hand, These differences
were diminished when considering the population of all
patients whose melanomas overexpressed at least one of the
eight barrier molecules (n D 168, Table S3). To assess whether

Figure 5. Overexpression of barrier molecules identifies melanomas that lack immune signatures and are largely distinct from those that overexpress endothelin receptor
B or WNT/b-catenin genes. (A) Overexpression of genes in each tumor is shown by a red bar (z > 1.5), and reduced expression is shown by a blue bar (z< ¡1.5). Th1
immune genes (CD8A, CD8B, IFN-gamma, CXCL10) are grouped at the top (Immune); then ETNBR (E) ; then barrier molecule genes (FLG, TACSTD2, DST, DSP, DSC3, PPL,
PKP3, JUP) are grouped in the middle (Barrier molecules), and genes in the b-catenin/WNT pathway (EFNB3, APC2, MYC, TCF12, VEGFA, WNT7B, SOX2, SOX11, FZD3) are
grouped at the bottom. This image was obtained from the TCGA bioportal (cbioportal.org); (B) The proportion of 437 “cold” melanomas lacking overexpression of Th1
immune genes in the TCGA database are shown, with overexpression of barrier molecule genes (OBM), b-catenin/WNT genes (BCAT), the endothelin B receptor gene
(ETBNR) alone or in combination, as indicated; (C) Tumors were organized into three groups based on the number of Th1-immune genes overexpressed (0 D Th1-none;
1–2 D Th1-low; 3–4 D Th1-high); For each tumor, the number of the eight barrier molecule genes that are overexpressed is represented by a circle, the number of the
nine b-catenin/WNT1 genes that are overexpressed is identified by an x, and overexpression of ETNBR is indicated by a plus sign.
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the associations of barrier molecule overexpression with shorter
patient survival may be attributed to differences in clinical risk
factors, those associations were assessed for several relevant
clinical subsets. The significant association of overexpression of
any of the eight barrier molecules with shorter survival persists
within the following subsets of melanoma patients: stages I and
II (p D 0.0013), M0 melanomas (p D 0.0086) and patients who
received adjuvant therapy for melanoma (p D 0.0007,
Table S4). Significant associations did not persist for patient
subsets with sample size significantly smaller than the full data
set, but significant associations did persist for most of the larger
clinical patient subsets also for FLG and TACSTD2 (Table S4).
The negative associations with survival persist among patients
who received adjuvant therapy, for FLG (p < 0.05), TACSTD2
(p D 0.014) and for the set of all barrier molecules, which is
notable despite the modest subset of 90 patients reported to
have received systemic adjuvant therapy (Table S4).

For ovarian cancers, there was significantly shorter survival
for patients with tumors overexpressing FLG (n D 10,
p D 0.006, Fig. 6G), but not DST (n D 27, p D 0.44, Fig. 6H).
Overexpression of FLG, TACSTD2, DST, DSC3 and/or JUP
was evident in 91 (30%), and these patients had significantly

poorer survival (p < 0.01, Fig. 6I). Overexpression of PPL alone
was also associated with poorer survival (p D 0.026, not
shown), but the remaining two barrier molecules, DSP and
PKP3, were not associated with survival differences. Patients
whose ovarian cancers overexpressed FLG, or any of the five
barrier molecules FLG, TACSTD2, DST, DSC3, JUP were very
similar to those without overexpression, in terms of age,
gender, mutation counts, tumor size and grade, incidence of
vascular invasion, and overall stage (Table S5). For ovarian
cancer, the vast majority of tumors (>90 %) were stages III and
IV on initial diagnosis, and the tumor specimens themselves
were primary tumors in 98% of patients. Significant associa-
tions of barrier molecule overexpression persist among patients
limited to those dominant subsets, both for FLG overexpression
(p < 0.01), and for overexpression of any of the eight barrier
molecules (p < 0.02, Table S6).

Discussion

In sites of immune privilege, immune cell infiltration is limited
by multiple barriers. These may include physical or mechanical
barriers created by endothelial or epithelial cells with tight

Figure 6. Associations between overall survival and overexpression of barrier molecule genes or b-catenin/WNT1 genes in melanoma or ovarian cancer, in The Cancer
Genoma Atlas. Overall survival of patients with melanoma is significantly decreased with overexpression of genes for barrier molecules filaggrin (A), TACSTD2 (B), but not
dystonin (C). Survival is significantly decreased for all melanomas overexpressing any of the eight barrier molecules (D). Survival is not associated with overexpression of
endothelin receptor B (E) or any of the b-catenin/WNT genes (EFNB3, APC2, MYC, TCF12, VEGFA, WNT7B, SOX2, SOX11, FZD3) in melanoma (F). In ovarian cancer, overex-
pression of FLG is associated with worse survival (G), whereas DST overexpression is not associated with lower survival (H). On the other hand, expression of one or more
of the barrier molecules FLG, TACSTD2, DST, DSC3, JUP was associated with decreased patient survival (I). In each graph, the red line represents the tumors with overex-
pression of one or more of the selected genes. Overexpression was based on a z score of 1.5 or greater.
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junctions, or functional barriers created by immunosuppressive
molecules including IDO, TGFb, PD-L1 and IL-10.44 In cancer,
the roles of immunosuppressive molecules in the TME are now
appreciated as mechanisms of immune escape by tumors,
which can otherwise be targeted effectively with immunother-
apy.45,46 Other studies have identified molecular mediators of
T-cell exclusion from human cancers, including EDNRB over-
expression in human ovarian cancers14 and genes in the WNT/
b-catenin pathway in melanoma.40,41 Here, we provide new evi-
dence that both melanoma and ovarian cancer cells can express
genes encoding proteins with known mechanical barrier func-
tion, and that expression of those genes is associated both with
the lack of immune gene signatures and with significantly
shorter overall patient survival.

We have found that a subset of metastatic melanomas and
ovarian carcinomas express high levels of genes encoding eight
barrier molecules, including filaggrin, TACSTD2 and six des-
mosomal proteins. These molecules are classically associated
with keratinocytes and skin, especially the most superficial epi-
dermal layer, which is a critical barrier layer. Melanomas and
ovarian cancers that are densely infiltrated by T cells have low
expression of the barrier molecules, and a subset of those can-
cers with high expression of the barrier molecule genes usually
lack T-cell infiltrates and immune signatures, as is evident
across multiple gene expression datasets (Figs. 1, 2 and 5).
Most of these barrier molecules (FLG, TACSTD2, DSP, PPL,
DSC3, PKP3, JUP) are co-expressed with each other, as is par-
ticularly evident in the pilot data set in Fig. 1, and in the larger
TCGA dataset in Fig. 5A. Interestingly, another subset of mela-
nomas lacking immune signatures have high expression only of
DST, but lack the other barrier molecules (Figs. 2A and B and
Fig. 5A). Also, there is a small subset of melanoma metastases
(7%, Fig. 2A) and a similar proportion of ovarian cancers
(Fig. 2B) that co-overexpress both a subset of immune signa-
ture genes and a subset of barrier molecules. Interestingly, these
all have very low expression of the barrier molecule DST, and
almost all have marked downregulation of IFNg expression
despite IRF1 upregulation. Other than IRF1, the upregulated
immune signature genes are limited primarily to CCR5,
CXCR3 and GNLY for melanoma and CXCL10 and CXCL11
for ovarian cancers. The TCGA data also identify a very small
subset of seven melanomas (< 2% of total) with upregulation
of 4–7 of the barrier molecules, but lacking DST, CD8C and
IFNg overexpression, while also overexpressing one or more
Th1 genes (GNLY, CXCL10, CXCL11 and/or CCR5), with a
few ovarian cancer patients with similar phenotypes (data not
shown). Thus, these data suggest that melanoma and ovarian
cancers may be categorized into multiple subgroups based on
gene signatures and barrier molecule expression. There is a
need to understand the phenotypic and functional correlates of
these patterns of immune signatures and barrier molecule
expression, and to understand the mechanisms governing
immune and barrier function.

We have also evaluated TCGA data for overexpression of
EDNRB and of genes in the b-catenin/WNT pathway that have
been implicated in T-cell exclusion. Interestingly, these
immune exclusion signatures are largely independent. Though
some tumors may overexpress both the barrier molecule genes
and the b-catenin/WNT genes, or other combinations, 15% of

melanomas only overexpress barrier molecule genes, 22% only
overexpress b-catenin/WNT genes, and 4% only overexpress
endothelin B receptor (Fig. 5B). In particular, barrier molecule
genes and b-catenin genes tend to be expressed in a mutually
exclusive manner (Table S1). Additional studies may help to
clarify the relative contribution of these three gene signatures
to T-cell exclusion and what subsets of them may be most use-
ful as prognostic biomarkers.

CD8C T cell infiltration is associated with improved sur-
vival for patients with melanoma or ovarian cancer in this
study of TCGA data.2,4,11,47,48 Since the lack of CD8C T cell
infiltrates is identified by overexpression of barrier molecules,
EDNRB or WNT/b-catenin, it would be reasonable to expect
that overexpression of any of those gene sets would identify
patients with shorter survival. However, we found that overex-
pression of EDNRB or of WNT/b-catenin genes do not pre-
dict decreased survival (Figs. 6E and F). On the other hand,
overexpression of the barrier molecules does predict worse
survival for melanoma and ovarian cancer (Figs. 6D and I).
Also notable is the finding that DST overexpression identifies
a subset of cancers with barrier molecule overexpression who
lack CD8C gene signatures (Figs. 2A and B and Fig. 5) but do
not have worse survival (Figs. 6C and H). Any large data set
can be limited by variations in the data quality and/or biases
in the selection of patients and their survival follow-up. How-
ever, survival data are available for the vast majority of the
patients with RNAseq data, and follow-up intervals for the
deceased and censored groups are similar (Fig. S2). The asso-
ciations of high barrier molecule expression with poor overall
survival persist in multiple clinical subsets of patients with
melanoma and ovarian cancer (Tables S4 and 6). Interestingly,
there is a significant association in melanoma patients who
received adjuvant therapy (Table S4), suggesting that the lack
of barrier molecule overexpression may have positive predic-
tive value for improved survival after adjuvant therapy, which
was primarily high-dose interferon in this era. Thus, there
may be value in exploring associations with response to other
systemic therapies. Certainly, additional validation of the sur-
vival associations in large datasets would be valuable, but
within the limitations inherent to this data set, we find that
expression of genes FLG, TACSTD2, and the desmosomal
genes DSP, DSC3, PKP3, PPL and JUP are unique among
other markers of T-cell exclusion by their identification of
cancers with decreased survival.

A limitation of the present study is that it does not estab-
lish functions of the barrier molecules or a specific mechanism
for their association with lack of T-cell infiltration and poorer
survival. However, these genes encode proteins with known
mechanical barrier function. Filaggrin is normally expressed
in the epidermis, and is secreted by keratinocytes to form a
polymeric mechanical barrier. Filaggrin expression by cancer
cells was not expected or previously reported, but we con-
firmed expression in melanoma and ovarian cancer cells, by
immunohistochemistry (Fig. 3). In melanoma, filaggrin locali-
zation appears to be predominantly intracellular and not
secreted; thus, further investigation is needed to address how
filaggrin may affect T-cell infiltration in tumors. Filaggrin
upregulation is associated with overexpression of one or more
other intercellular barrier molecules, among them periplakin
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and desmoplakin, which may be regulating the formation of
desmosomes or other intercellular barrier junctions. By immu-
nohistochemistry, we have confirmed that periplakin and des-
moplakin proteins are also expressed in human melanomas
and ovarian cancers (Fig. 4). Further studies are needed to
define the function of these barrier molecules in cancers.
Interestingly, the expression of barrier molecules in melanoma
cell lines often is discordant with expression in the surgical
tumor specimens from which the lines were derived (Fig. 2C).
Thus, expression of the barrier molecules by cancer cells is
likely to be modulated by other cells in the TME or by soluble
factors. This suggests that expression of barrier molecules may
be susceptible to therapeutic modulation once the factors
underlying their expression are defined.

New immune and targeted therapies are capable of inducing
T-cell infiltration along with tumor control,49-52 but subsets of
tumors fail to respond to these therapies and fail to be infil-
trated by immune cells.53 The present report suggests that there
may be several different phenotypes of non-inflamed tumors
that lack immune signatures, which may explain different
mechanisms for T-cell exclusion and clinical outcome. A better
understanding is needed of the mechanical and biochemical
barriers to T-cell infiltration, retention and function in the
TME. Disruption of these barriers offers the promise of new
therapeutic approaches and potential for combined treatments
to render more tumors responsive to immune therapy.

Materials and methods

Screening for genes upregulated in tumors without
immune signatures

In prior work, gene expression profiling of human melanoma
metastases identified three subsets of melanomas: group 1 was
characterized by expression of genes for T-cell receptor,
immunoglobulin and cytokines (immune signature), and
groups 2 and 3 both lacked those immune signatures. Expres-
sion levels of the 200 genes with greatest variability across the
samples were published in the appendix for that study.6 We
calculated the mean raw intensity of gene expression for each
of the listed genes. Means were calculated for each gene across
each tumor group, and a fold-increase in expression over the
others was calculated. Genes with 5-fold or greater elevation
at a significance level of p < 0.01 were selected for further
study (Table 1).

Gene expression analysis in metastatic melanoma and
ovarian carcinoma

Melanoma and ovarian carcinoma samples. Primary snap-fro-
zen ovarian cancer biopsies were collected at the University of
Turin (Turin, Italy) from previously untreated patients under-
going debulking surgery after verbal informed consent. Pre-
treatment snap-frozen metastatic melanoma samples were col-
lected from 113 patients enrolled in five sequential adoptive
therapy trials at the National Cancer Institute (NCI), Bethesda,
Maryland. All patients signed an informed consent approved
by the NCI Institutional Review Board. Fifteen melanoma cell
lines derived from melanoma metastases were also analyzed;

early passage cultures were used, and clonal sub-selection was
not performed.38 Cell lines were cultured with RPMI 1640
medium (Gibco) supplemented with 10% heat-inactivated fetal
bovine serum (Cellgro), 0.01% L-glutamine Pen-Strep solution
(Gemini Bio-Products), 0.001% Ciprofloxacin (10 mg/mL) and
0.01% Fungizone Amphotericin B (Gibco), and detached with
0.2% Trypsin-EDTA (Gemini Bio-Products).

Gene expression assays performed on metastatic melanoma
and ovarian carcinoma tumor specimens. Total RNA was
extracted with the Qiagen miRNeasy Mini kit and its quality
tested with the Agilent Bioanalyzer 2000 (Agilent Technologies,
Palo Alto, CA). RNA amplification was performed according to
manufacturer’s instructions (WT Expression Kit; Ambion,
Austin, TX). aRNA were reverse transcribed into cDNAs fol-
lowed by fragmentation. After hybridization to the GeneChip
Human Gene 1.0 ST Arrays, the chips were labeled with a WT
Terminal Labeling Kit (Affymetrix, Santa Clara, CA) and
scanned on a GeneChip Scanner 3000 7G (Affymetrix). Data
were normalized using the Robust Multi-Chip Average (RMA)
method and Log2 transformed using Partek Genomics Suite
6.4 (Partek Inc., St. Louis, MO). Data analyses were based on
the whole transcripts. Some data from these gene expression
studies have been published.38,39 Self-organizing hierarchical
clustering was used to generate heat maps based on the barrier
molecules of interest and selected genes associated with prog-
nostically favorable Th1 immune signatures.54 Cluster analysis
was performed using Partek software.

Immunohistochemistry

Tumor tissue microarrays (TMA) of melanoma metastases and
ovarian carcinomas were prepared as previously described.4,11

These and other additional formalin-fixed paraffin-embedded
specimens of tissue and tumor specimens were analyzed (UVA
IRB numbers 5202, 10598, 13281). Tissue sections were depar-
affinized, hydrated using xylene and a graded alcohol series,
and antigen retrieval was performed (Vector Laboratories, Bur-
lingame, CA). Sections were stained with antibodies to: filag-
grin (Novus Biologicals, Littleton, CO), Periplakin (PPL,
Sigma-Aldrich, St. Louis, MO) or desmoplakin (DSP, Progen,
Heidelberg, Germany), and detected using an alkaline phospha-
tase kit and Vector Blue (Vector Laboratories). Double-staining
with CD45 antibody (Dako, Carpinteria, CA) was also per-
formed on most sections, and detected using a horseradish per-
oxidase kit and VIP, Vector Purple, or 3,30-diaminobenzidine
(DAB) chromogens (Vector Laboratories). After rinsing with
water, sections were counterstained with Hematoxylin, or
methyl green, and cover-slipped with mounting medium (Vec-
tor Laboratories). Negative control slides were obtained by
omitting the primary antibodies.

RNAseq data and patient survival analysis through The
Cancer Genome Atlas (TCGA) portal

RNAseq data in the TCGA were accessed through cbioportal.
org May 15, 2016. RNA-seq data were available from 471
patients with cutaneous melanoma and 307 ovarian serous
cystadenocarcinomas, both from the TCGA Provisional data
sets.42,43 Overexpression of selected genes was identified at
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z D 1.5, and associations with overall patient survival were
assessed through the Bioportal using Kaplan–Meier curves and
significance tested with a log-rank test. p values < 0.05 were
considered significant.

Statistical analysis

For the publicly available melanoma gene expression dataset,
differences between groups in mean raw intensity of gene
expression were evaluated using two-sided Student’s t-tests for
independent samples. A x2 analysis was used to evaluate pro-
portions of high filaggrin expression between tumors with high
and low CD8C T-cell infiltration. Statistical analyses were per-
formed with SPSS Version 21 (IBM, Armonk, NY). The corre-
lation matrix of tumor biopsy and tumor cell line gene
expression data was based on the Pearson product-moment
correlation (R).
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