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A FEW QUESTIONS ABOUT CURVES ON SURFACES

CIRO CILIBERTO, ANDREAS LEOPOLD KNUTSEN, JOHN LESIEUTRE, VICTOR LOZOVANU, RICK MIRANDA,
YUSUF MUSTOPA, AND DAMIANO TESTA

Abstract. In this note we address the following kind of question: let X be a smooth, irreducible, projective
surface and D a divisor on X satisfying some sort of positivity hypothesis, then is there some multiple of D

depending only on X which is effective or movable? We describe some examples, discuss some conjectures
and prove some results that suggest that the answer should in general be negative, unless one puts some
really strong hypotheses either on D or on X.

1. Introduction

LetX be a smooth, irreducible, projective, complex surface, henceforth simply called surface. A celebrated
result by Franchetta and Bombieri (see [4, 7, 8]) implies that if X is of general type, i.e., the canonical line
bundleKX is big, then h0(X,OX(5KX)) ≥ 3. It seems natural to ask whether there might be similar effective
non–vanishing results for divisors on X other than the canonical, asserting that if a divisor D satisfies some
type of positivity hypothesis, then some multiple mD of that divisor, with m depending only on X , must
be effective, i.e., h0(X,OX(mD)) > 0, or even movable, i.e. h0(X,OX(mD)) > 1.

It appears that this is unlikely without some strong hypotheses either on D or on X . Here we describe
some examples, discuss some conjectures and prove some results that any future research in this direction
should take into account. We have been motivated by the following three questions, asked by A. L. Knutsen
during the Warsaw workshop “Okounkov bodies and Nagata type Conjectures” held at the Banach Centre
in September 2013, discussed there and also during the workshop “Recent advances in linear series and
Newton–Okounkov bodies” held in Padua in February 2015.

Question 1. Does there exist a constant m1 = m1(X) such that if D is any divisor with h0(X,OX(D)) = 1
and D2 > 0, then one has h0(X,OX(m1D)) ≥ 2?

Question 2. Does there exist a constant m2 = m2(X) such that if D is a divisor with D2 > 0 and H ·D > 0
for an ample divisor H , then one has h0(X,OX(m2D)) > 0?

Question 3. Does there exist a constant m3 = m3(X) such that if D is a divisor with D2 ≥ m3 and
H ·D > 0 for an ample divisor H , then one has h0(X,OX(D)) > 0?

Blow-ups of P2 at r ≥ 10 very general points, having quite complicated nef cones, appear to provide a fertile
source of counterexamples, though in most cases we will find it necessary to assume the Segre–Harbourne–
Gimigliano–Hirschowitz (SHGH) conjecture (see §2) in order to compute the dimensions of various linear
systems. Under the hypothesis that SHGH conjecture holds, we show that Questions 2 and 3 both have
negative answers (see §3). To the other extreme, Question 2 has an affirmative answer if the nef cone of X
is as simple as possible, i.e., it is rational polyhedral. This is shown in §4.

We have not been able to answer Question 1. In §5 we relate it to the following:

Question 4. Does there exist a constant m4 = m4(X) such that

D ·KX

D2
< m4

for any effective divisor D on X with D2 > 0?

If one can answer Question 4 affirmatively for a surface X , then the same happens for Question 1.
However the answer to Question 4 is in general negative, so the problem arises to classify surfaces X for
which Question 4 has an affirmative answer.

Finally in §6 we discuss a conjecture by B. Harbourne which also sits in this same circle of ideas.
1
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Conventions. We use standard notation and terminology. We will often use the same notation for divisors,
divisors classes and line bundles, hoping that no confusion arises.

2. The Segre–Harbourne–Gimigliano–Hirschowitz conjecture

The virtual dimension of the complete linear system |L| on a smooth projective surface X is

vdim(L) = χ(L)− 1 = pa(X) +
L · (L−KS)

2
.

Let f : Xr → P
2 be the blow–up of the plane at r very general points, with exceptional divisors E1, . . . , Er.

We set E = E1 + · · ·+ Er and denote by H the total transform of a line via f . If

D = dH −
r

∑

i=1

miEi =: (d;m1, . . . ,mr),

then

vdim(D) =
d(d + 3)

2
−

r
∑

i=1

mi(mi + 1)

2
=

D2 −KXr
·D

2

and the expected dimension of the linear system |D| is
expdim(D) = max{−1, vdim(D)}.

We will assume m1 ≥ . . . ≥ mr > 0 and we will use the SHGH conjecture in the following form due to
Gimigliano (see [9]).

Conjecture 1 (SHGH Conjecture). Suppose that D = (d;m1, . . . ,mr), with d > m1 + m2 + m3. Then
dim(D) = expdim(D).

In what follows, we will mainly consider homogeneous divisor classes on Xr, namely

D = dH −mE =: (d;mr).

3. Pell divisors and counterexamples to Questions 2 and 3

Let X be the blow-up of P2 at r very general points and consider homogeneous divisor classesD = (d;mr),
such that vdim(D) = 0. This condition boils down to the Pell-type equation

(1) x2 − ry2 = 9− r.

where x = 2d+ 3 and y = 2m+ 1.
In the case r = 10, the solution is particularly simple (the case r > 10 not a square can be treated in a

similar way, but we do not dwell on this here). Let Ck = pk

qk
be the k–th convergent of the simple continued

fraction of
√
10 = [3; 6̄], with (pk, qk) = 1. One has (p0, q0) = (3, 1) and

(2)
(

3 +
√
10
)k+1

= pk + qk
√
10, for all k ∈ N.

The norm of 3 +
√
10 in Z[

√
10] being −1, the solutions of the equation

x2 − 10y2 = −1 [resp. of x2 − 10y2 = 1]

are
x = p2k, y = q2k, [resp. x = p2k+1, y = q2k+1], for all k ∈ N.

It is easy to verify, using (2), that every such solution has both x and y odd.
Hence we have a sequence of divisor classes Dk = (dk;m

10
k ) on X10 with

dk =
p2k − 3

2
, mk =

q2k − 1

2
, for all k ∈ N, and vdim(Dk) = 0,

which we call Pell divisors. The properties of continued fractions imply that C2k >
√
10 > 3, which yields

dk > 3mk, for all k ∈ N.

Thus, if SHGH conjecture holds, we have

dim(|Dk|) = 0 for all k ∈ N.
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Lemma 2 (Divisibility Lemma). For all positive k ∈ N, one has

Dk = ckFk,

where
{

ck = pk−1

Fk = (pk; q
10
k )

for k odd,

{

ck = qk−1

Fk = (10qk; p
10
k )

for k even.

Proof. It may be verified with straightforward calculation. �

The coefficients can be calculated directly using the recurrence

dk+1 = 19dk + 60mk + 57

mk+1 = 6dk + 19mk + 18,

with d0 = m0 = 0 and k ∈ N− {0}. The first few such values are listed below.

k (pk, qk) Dk ck Fk

0 (3, 1) (0; 010)
1 (19, 6) (57; 1810) 3 (19; 610)
2 (117, 37) (2220; 70210) 6 (370; 11710)
3 (721, 228) (84357; 2667610) 117 (721; 22810)
4 (4443, 1405) (3203400; 101300410) 228 (14050; 444310)

Lemma 3. For every h < ck, one has vdim(hFk) < 0.

Proof. For odd k, by taking into account (2), one has

vdim(hFk) =
(hpk)(hpk + 3)

2
− 10

(hqk)(hqk + 1)

2

=
h2

2

(

p2k − 10q2k
)

+
h

2
(3pk − 10qk)

=
h

2
(h− pk−1).

This is 0 in the case h = ck = pk−1, and negative if h < pk−1. The calculation for even n is analogous. �

Proposition 4. If the SHGH conjecture holds, then the divisors Fk, for k any odd positive integer, provide
a negative answer to Question 2.

Proof. If k is odd, then F 2
k = p2k − 10q2k = 1. Moreover, by Lemma 3, one has vdim(hFk) < 0 for 0 ≤ h < ck

and so |hFk| is empty. On the other hand, vdim(ckFk) = 0 and so |Dk| is effective. As ck attains arbitrarily
large values, this provides a negative answer to Question 2. �

Remark 5. The k = 1 case is not subject to SHGH conjecture: by [5], the divisor (57; 1810) is effective, but
(19; 610) and (38; 1210) are not.

Proposition 6. If SHGH conjecture holds, then the divisors (ck − 1)Fk, for k any odd positive integer, give
a counterexample to Question 3.

Proof. The same calculation as above shows that ((ck − 1)Fk)
2 = (ck − 1)2, which can be arbitrarily large,

but vdim(X,OX((ck − 1)Fk)) < 0. �

Remark 7. Whenever we use the SHGH conjecture in this section, we really use it for 10 points. Thus, in
Propositions 4 and 6 we could assume that the SHGH conjecture holds for 10 points.
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4. Question 2 when the nef cone is rational polyhedral

In this section, for a smooth, irreducible, projective surface X we use the (by now standard) notation
from [11]: for instance, NS(X) := N1(X) is the Néron–Severi group, N1(X)R := N1(X) ⊗ R is the Néron–
Severi space, Nef(X) is the nef cone, Big(X) is the big cone, NE(X) is the pseudo–effective cone, and so
on.

In the paper [10], the authors prove the following result.

Theorem 8. ([10, Theorem 4.10]). Let X be a smooth, irreducible, projective surface, let D be a divisor
on X and assume that the nef cone (or, dually, the pseudo–effective cone) of the surface X is rational
polyhedral. Question 2 restricted to ample divisors D on X admits an affirmative answer.

The proof is based on Fujita’s vanishing theorem and diophatine approximation.
Following the ideas from [10] and using a local version of a famous theorem of Anghern–Siu about the

generation of adjoint line bundles as in [6], in this section we extend [10, Theorem 4.10]. Indeed, we give an
affirmative answer to Question 2, whenever the nef cone of the surface is rational polyhedral and D is big
(in particular, our result applies without restriction to the divisors appearing in Question 2).

Before stating and proving this result, we recall some notation. If D is a pseudoeffective divisor on X ,
one has the Zariski decomposition D = P (D) + N(D), where P (D) is the nef part of D and N(D) is the
negative part of D. If D is a big divisor on X , one defines Null(D) to be the divisor (containing N(D)) given
by the sum of all irreducible curves E on X such that P(D) ·E = 0.

Theorem 9. Let X be a smooth, irreducible, projective surface with rational polyhedral nef cone (or pseudo–
effective cone). Then there exists an integer m := m(X) > 0 such that for any big divisor D on X one has
h0(X,OX(mD)) > 0.

Remark 10. Theorem 9 explains the need we had in §3 to take a sequence of divisor classes whose limit
is an irrational class in N1(X)R. In order to find surfaces X which are counterexamples to an affirmative
answer to Question 2 one needs the pseudo–effective cone of X to be complicated, and it is well known that
the blow–up of the projective plane at 10 or more very general points is such that Nef(X) is far from being
rational polyhedral.

Proof of Theorem 9. The proof consists in two steps:

• first, we show that there exists a translate of the big cone in N1(X)R such that any divisor class
simultaneously in this translate and in the Néron–Severi group is effective;

• second, we use diophantine approximation to deduce the theorem.

Step 1: there exists an ample divisor R ∈ N1(X), such that

(3) ∀ D ∈
(

R+ Big(X)
)

⋂

N1(X) it follows that h0(X,OX(D)) > 0 .

The condition that the nef cone is rational polyhedral implies that there exist only finitely many negative
curves on X , i.e., irreducible curves E such that E2 < 0; denote by E1, . . . , Eh these negative curves. The

negative part of any pseudoeffective divisor on X is of the form
∑h

i=1 aiEi, with rational numbers ai ≥ 0,
for i ∈ {1, . . . , h}.

We choose a point x ∈ X that does not sit on E1 ∪ · · · ∪ Eh and we choose an ample divisor A ∈ N1(X)
such that:
(a) A2 > 9;
(b) A · C > 3 for any irreducible curve C ⊂ X passing through the point x;
(c) the adjoint line bundle KX +A is ample.

We will prove that R := KX +A verifies (3). In order to do so, we will use [6, Theorem 2.20], which is a
generalization to the big case of a theorem of Anghern and Siu. In the case of surfaces, it says that for a big
divisor B ∈ N1(X), and a point x /∈ Null(B) such that

(4) volX(B) > 9 and volC(B) > 3 for any curve C ⊂ X passing through x,

then x is not in the base locus of KX +B; in particular, the divisor KX +B is effective.
In the case of surfaces the volumes appearing in (4) are easy to compute from the Zariski decomposition

B = P (B) + N(B), as explained in [6, Example 2.19]. If C is not contained in N(B) (which is the case,
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since x ∈ C and x /∈ N(B)), then

volX(B) = volX(P (B)) and volC(B) = volC(P (B)).

Going back to our setup, let D be any big divisor on X and set B = A+D. We prove that (4) holds, so
that we may apply to B the aforementioned [6, Theorem 2.20]. Indeed, N(D)−N(B) = P (B)−A− P (D)
is effective (see [3, Lemmas 14.8 and 14.10]). Hence

volX(B) = volX(P (B)) ≥ volX(A+ P (D)) = (A+ P (D))2 > 9,

proving the first part of (4). As for the second part, note that N(D)−N(B) = P (B)−A−P (D) consists of
negative curves, thus not passing through x. Hence, no irreducible curve C passing through x is contained
in P (B)−A− P (D), thus

volC(B) = volC(P (B)) ≥ volC(A+ P (D)) = (A+ P (D)) · C > 3.

In conclusion, KX + B = KX + A + D is effective for any big divisor D on X , thus proving (3) with
R = KX +A.

Before turning to Step 2, we notice that, by substituting R with its sum with an ample divisor one has

(5) ∀ D ∈
(

R+NE(X)
)

⋂

N1(X) it follows that h0(X,OX(D)) > 0.

Step 2. By taking (5) into account, in order to accomplish the proof it suffices to apply to NE(X) the
following property of rational polyhedral convex cones: Let C ⊂ R

n be a rational polyhedral convex cone and
let R ∈ int(C) ∩ Z

n; then there exists a natural number m > 0 such that

∀ ξ ∈ int(C)
⋂

Z
n it follows that mξ ∈ R+ C.

This result is shown in [10, Theorem 4.10]. For the benefit of the reader, we include here the proof: this
is the step where diophantine approximation comes into play.

Let H ⊂ R
n be an integral hyperplane through the origin, i.e., there exists a u ∈ Z

n such that H = {x ∈
R

n|〈x, u〉 = 0}. The distance of P ∈ R
n from H is

distance(P,H) =
|〈P, u〉|
||u|| .

If P ∈ Z
n and P /∈ H , then |〈P, u〉| ≥ 1, hence distance(P,H) ≥ 1/||u||. Therefore, there is a constant c > 0

such that distance(P,H) ≥ c for any integral point P /∈ H .
Since C ⊂ R

n is rational polyhedral, it follows that the supporting hyperplanes of each face are integral.
Thus there exists a constant c > 0 such that

(6) distance(P, ∂C) ≥ c, for any P ∈ int(C) ∩ Z
n,

where ∂C denotes the boundary of C in R
n.

Pick P ∈ int(C), and let Λ be the plane determined by the origin O ∈ R
n, R and P . Let CΛ = C ∩ Λ.

This is a cone in R
2 with edges two half lines ℓi = R+vi generated by the vectors vi, for i = 1, 2. Since ∂C

is supported by rational hyperplanes and Λ is also defined by equations with rational coefficients, we may
assume that v1, v2 are rational.

Furthermore, (R+ C)∩Λ is the cone ℓ1 + ℓ2 translated by R. Without loss of generality, we may suppose
that the half line R+(OP ) intersects first the half line R+ ℓ1 at a point D. Then it suffices to find a constant

C > 0, not depending on P , such that ||OD||
||OP || < C. Using similar triangles, one has

||OD||
||OP || =

distance(D, ℓ1)

distance(P, ℓ1)
≤ ||OR||

c
,

where the latter inequality follows from (6). This finishes the proof of the theorem. �



6 CILIBERTO, KNUTSEN, LESIEUTRE, LOZOVANU, MIRANDA, MUSTOPA, AND TESTA

5. On Questions 1 and 4

We have not been able to find counterexamples to Question 1. As for Question 4, we note that:

Lemma 11. Given a surface X, if Question 4 is answered affirmatively, then the same holds for Question 1.

Proof. Assume Question 4 is answered affirmatively. First of all, we can find a positive integer N such that
for any effective divisor D on X and for any integer m > N , the divisor KX −mD is not effective: if KX is
not effective, one takes N = 1, otherwise one takes N = H ·KX , with H an ample divisor on X .

Let D be any effective divisor such that D2 > 0. For all integers m > N , one has, by Riemann–Roch

dim(|mD|) ≥ vdim(mD) ≥ pa(X) +
m2D2 −mD ·K

2
> pa(X) +

m(m−m4)

2
.

We can certainly find an m1 > N such that m(m−m4) is large enough as soon as m > m1, thus answering
Question 1 affirmatively. �

However, Question 4 has a negative answer in general.

Example 1. (Attributed to J. Kollár, see [11, Example 1.5.7]). Let E be an elliptic curve and set Y = E×E,
with F1 and F2 the numerical divisor classes of the fibers of the two projections to E.

Let a, b be coprime integers and let fa,b : Y → E be the morphism sending (x, y) to ax+ by (where + is
the addition on E). Let Ea,b

∼= E be the general fibre of fa,b. Then

F1 · Ea,b = b2, F2 · Ea,b = a2, E2
a,b = 0.

For a fixed non–zero integer b, set

An = F1 + En,b, so A2
n = 2b2 > 0, An · (F1 + F2) = n2 + b2 + 1.

Pick B ∈ |2(F1 + F2)| general and let f : X → Y be the double cover of Y branched over B. Take

Dn = f∗(An), so that D2
n = 4b2.

However, the canonical divisor KX is numerically equivalent to f∗(F1 + F2), hence

Dn ·KX = 2An · (F1 + F2) = 2(n2 + b2 + 1), so that lim
n

Dn ·KX

D2
n

= +∞.

A similar example can be constructed on a rational surface.

Example 2. Set Y := Xr, the blow-up of P2 at r ≥ 9 very general points. Let A0 := H be the strict
transform of a general line in P

2. By choosing elements from the Cremona orbit of A0, we may find a
sequence of rational curves An for which A2

n = 1, and An ·H ∼ nm for any exponent m > 0.
Let f : X → Y be the double cover branched along the transform on Y of a general conic of P2. We have

KX = f∗(KY +H). Set Dn = f∗(An). Then

Dn ·KX ∼ nm, and D2
n = 2, so that lim

n

Dn ·KX

D2
n

= +∞.

Note that Y is isomorphic to the blow-up of P1×P
1 at 2r ≥ 18 points in special position, or equivalently,

to the blow-up of P2 at 2r + 1 ≥ 19 points in special position.

Of course the natural question arises:

Question 5. For which surfaces X does Question 4 have an affirmative answer?

6. A conjecture by B. Harbourne

The following conjecture is due to B. Harbourne.

Conjecture 12 (See [1], Conjecture 2.5.3). Let X be a smooth projective surface. There exists α = α(X)
such that for every irreducible curve D on X one has h1(X,OX(D)) ≤ αh0(X,OX(D)).

This conjecture has a different flavor according to the sign of D2. If D2 < 0, an affirmative answer to this
question provides an affirmative answer to the famous Bounded Negativity Conjecture (see, e.g. [2]):

Conjecture 13 (Bounded Negativity Conjecture). Let X be a smooth projective surface. Then there is an
integer N = N(X) such that for any irreducible curve D on X one has D2 > N .
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Proposition 14. If Conjecture 12 holds for a surface X then the Bounded Negativity Conjecture 13 holds
for X.

Proof. Let D be an irreducible curve such that D2 < 0. Then h0(X,OX(D)) = 1. If Conjecture 12 holds,
then h1(X,OX(D)) ≤ α, with α a constant. By Riemann-Roch one has

1 + h2(X,OX(D)) = pa(X) +D2 − pa(D) + 2 + h1(X,OX(D)),

which implies

D2 ≥ −pa(X)− α− 1,

proving the Bounded Negativity Conjecture. �

If D2 ≥ 0, Conjecture 12 is related to Question 4.

Proposition 15. Let X be a surface. If Conjecture 12 holds for irreducible curves D on X such that D2 ≥ 0,
then Question 4 has an affirmative answer for X for irreducible curves D.

Proof. Assume Conjecture 12 holds for X , and we may assume α > 0. Let D be an irreducible curve on X .
By Riemann-Roch one has

h0(X,OX(D)) ≤ h0(X,OX(D)) + h2(X,OX(D))

= pa(X) + 1 +
D2 −KX ·D

2
+ h1(X,OX(D))

≤ pa(X) + 1 +
D2 −KX ·D

2
+ αh0(X,OX(D)).

Since D2 + 2 ≥ h0(X,OX(D)), we have

KX ·D ≤ 2(α− 1)(D2 + 2) + 2(pa(X) + 1) +D2 ≤ (6α+ 2pa(X)− 4)D2,

whence the assertion. �

As well as Question 4, also Conjecture 12 is false in general. Indeed, Kollár’s Example 1 provides a
counterexample to this conjecture too (see [1, Corollary 3.1.2]). In this setting it has been asked whether
Conjecture 12 holds for rational surfaces. This is probably false too, and in a very strong sense. In fact we
have:

Proposition 16. Assume that the SHGH conjecture holds. Then there is a rational surface X and a sequence
of irreducible curves {Gn} on X with

h0(X,OX(Gn)) = 1 and h1(X,OX(Gn)) arbitrarily large.

Proof. On X10, let {Dn} be the sequence of Pell divisors as in the counterexample to Questions 2 and 3.
Let π : X → X10 be the double cover as above. Finally, let {Gn} = {π∗(Dn)}. Then

vdim(|Gn|) = −Dn ·H and h0(X,OX(Gn)) = 1

hence

lim
n

h1(X,OX(Gn)) = +∞,

as required. �

The surface X in the proof of Proposition 16 is isomorphic to a blow-up of P2 at 21 special points. A
natural question is the following.

Question 6. For which surfaces does Harbourne’s Conjecture 12 hold?
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