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Abstract

In autonomous systems, self-awareness capabilities are
useful to allow artificial agents to detect abnormal situa-
tions based on previous experiences. This paper presents
a method that facilitates the incremental learning of new
models by an agent. Available learned models can dynam-
ically generate probabilistic predictions as well as evalu-
ate their mismatch from current observations. Observed
mismatches are grouped through an unsupervised learning
strategy into different classes, each of them corresponding
to a dynamic model in a given region of the state space.
Such clusters define switching Dynamic Bayesian Networks
(DBNs) employed for predicting future instances and detect
anomalies. Inferences generated by several DBNs that use
different sensorial data are compared quantitatively. For
testing the proposed approach, it is considered the multi-
sensorial data generated by a robot performing various
tasks in a controlled environment and a real autonomous
vehicle moving at a University Campus.

1. Introduction

Dynamical models that allow autonomous systems to
predict and make decisions are fundamental for the next
generation of smart devices and services. The combined use
of machine learning and signal processing techniques has
demonstrated to facilitate the designing of predictive mod-
els that recognize sensory information as part of a given
context where multiple entities interact [1, 2, 3]. A self-
aware autonomous system is characterized by its ability
to recognize own states, possible actions and their effects
on both, the environment (system’s surroundings) and own
body [4]. Such characteristics can be seen as a result of
learning different predictive models based on multisensory
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data, facilitating the understanding of a phenomenon from
various viewpoints. Currently, self-awareness is an essen-
tial topic in the field of robotics [5]. Autonomous mobile
robots are designed to support humans by cooperating with
them for accomplishing a given task. Accordingly, the next
generation of smart robots is required to be able to learn
from their own experiences and interact dynamically with
human users. Current advancements in robotics are focused
on increasing the robots’ autonomy by employing data fu-
sion strategies for predicting future instances of multisen-
sory data. Recent research developments in autonomous
systems also include modern transfer learning techniques
for mapping learned knowledge among diverse robot ar-
chitectures [6]. Multi-agent Transfer learning and learn-
ing in dynamic environments have recently examined [7].
The aforementioned research raises the necessity of learn-
ing new experiences incrementally in an automatic fashion.

Developing a system that can learn incrementally from
the environment is the most difficult task, which falls in the
category of computational intelligence. Its difficulty lies on
the lack of necessary information to handle unpredictable
situations at the design time. Applications of such task in-
clude autonomous robots and self-driving vehicles [8, 9].

The world is dynamic and objects can move, appear or
disappear. Every situation that an autonomous system may
face, cannot be predicted and there is no complete model
which can train the system for every predictable situation.
That’s why it has an incomplete knowledge of its own way
of working. In a lot of existing approaches, this is done off-
line by trying to take into account a large amount of possible
situations. These systems have impressive results in partic-
ular environments and situations; nonetheless, they can be
totally disoriented in other situations[3, 4, 10]. Machine
learning is one of the promising research areas that try to
solve this kind of problems.

The identification of new situations by using an initial
training the model and the inclusion of such such novelties



as part of the system’s knowledge, i.e., updating the initial
training model, it is defined as incremental learning. Many
machine learning algorithms support incremental learning,
which facilitates a faster classification and forecasting times
[11].This paper introduces the application of machine learn-
ing techniques for incremental learning. The adaptation of
new situations learned incrementally and the internal repre-
sentation should be updated by keeping the previous knowl-
edge.

The most important researched parameter of incremental
learning is the complexity of the system [12]. If the system
is complex at the initial training phase, it cannot be imple-
mented in real time devices because its complexity will in-
crease as it experiences new situations. Reduction in com-
plexity is understood by a concept of free energy principle.
The generic relation between free energy, complexity, and
accuracy of the model is shown in Eq. (1),

Free energy = complexity − accuracy, (1)

this shows that by minimizing the free energy, the accuracy
of model increases and its complexity decreases, leading to
the optimization of the model.

This paper presents a method that analyzes internal and
external data sources from a robot and autonomous vehicle
while performing specific tasks in a controlled environ-
ment. Abnormalities from each module are obtained and
the accuracy for each of them is calculated. Our approach
shows how anomalies can be learned incrementally from an
autonomous system and used for prediction and decision-
making purposes.
Detailed contribution. The novelties of this paper include:
i) the detection of novel situations,
ii) the comparison of performances for detecting abnormal-
ities between different modules of a moving robot,
iii) the usage of an anomaly measurement based on the
Hellinger distance.
iv) the minimization of free energy principle,
v) the understanding of new situations by learning incre-
mentally and extend the knowledge.

The rest of the paper is organized as follows: Section
1.1 describes the motivation and importance of our work.
Section 2 explains the training and testing dataset from the
robot and autonomous vehicle and the proposed method-
ology for incremental learning. Section 3 illustrates the
experimental results of the proposed method for incremen-
tal learning and compare the performances of the different
modules. Section 4 concludes the paper and presents future
paths of the research.

1.1. Motivation

Learning from data distributions that could change over
time is a challenging problem. A free energy principle

[13, 14] illustrates how self-organizing agents prevent learn-
ing to disorganize. This can be performed by minimizing
the free energy, i.e, minimize the difference between the
system’s state and observation, which leads to improving
the system model. The following subsections present the
free energy principle, the motivation of using it and its im-
portance for incremental learning.

1.1.1 Free energy Principle

The free energy [13, 14] is a function that represents the pre-
diction error between sensory input and a given generative
model, i.e., a model estimates the future states of sensory
samples and explain their causes. Eq. (2) represents the free
energy function, which is the expected energy under a den-
sity that links the system’s state to the environment ψ(φ).
p(X, φ) is a generative density function, where X denotes
the generalized state and φ refers to the causes of the sen-
sory input. The generative density function factorizes into a
likelihood p(X|φ) and prior p(φ). The < · >ψ denotes the
expectation under density ψ.

F = −
∫
ψ(φ) ln

p(X, φ)

ψ(φ)
dφ

= − < ln(p(X, φ)) >ψ + < ln(ψ(φ)) >ψ

(2)

where p(X, φ) = p(X|φ)p(φ)

The Free energy principle illustrates how the au-
tonomous system tries to minimize the variations of free
energy. This minimization can be performed in two ways:

• Modify the model representation of the system to op-
timize the bound.

• Apply actions, i.e., energy, to minimize a bound on
surprise based on the deviations between sensory input
and the generative model.

In this paper, we focus on modifying the model repre-
sentation to minimize free energy. As we explained in the
introduction, the minimization of free energy leads to the re-
duction of the system’s complexity. Such reduction in com-
plexity is obtained when we group our data in an optimal
number of clusters and in return we have a small and use-
ful vocabulary which makes our system less complex. Ac-
cordingly, optimization is the point where we get maximum
accuracy for the detection of abnormalities by utilizing the
minimum (optimal) number of clusters.

1.1.2 Incremental learning

Knowledge acquisition is essential for both humans and
artificial machines. As data becomes available over time
while facing changeable environments, algorithms that can



process and understand new concepts from such data are
required. This leads to incremental learning concepts, al-
lowing to acquire new knowledge while sustaining the pre-
vious one [15, 16]. Many machine learning researchers in
different domains tried to tackle the problem of incremen-
tally learning without forgetting previous knowledge [17].In
this paper, we also tackle this problem by proposing an ap-
proach based on the free energy principle to incrementally
learn without losing previous knowledge.

2. Proposed Methodology
The whole process is shown in Figure 1. According to

this, the initial data is obtained using null-force filter to train
the model. Clustering the data in the optimal number of
groups, this optimization is obtained by the minimization of
the free energy principle. After that detect whether the situ-
ation is new or already learned if abnormalities are detected
then incremental learning performed on that abnormal data
and learned it to extend the knowledge.

Learning initial model

Free  energy minimization

Detection of abnormalities

Incremental learning model

Null Force

Figure 1. Model of autonomous adaptive system using incremental
learning.

2.1. Experimental data-set

(a) (b)
Figure 2. Autonomous vehicle “iCab” and LegoEV3 Robot used
for collecting data-set.

Experiments are performed on the data-set obtained from
autonomous vehicle iCAB and LegoEV3 robot as shown in
Figure 2[4].
In the case of iCAB three different tasks perform on au-
tonomous vehicle i.e., perimeter monitoring, u-turn and ob-
stacle avoidance. Perimeter monitoring is used for training

purpose and the other two are used for testing and learned
the abnormalities of these tasks.
In the case of robot two different experiments are conducted
i.e., perimeter monitoring and obstacle avoidance. Three
types of sensors are used for monitoring the robot’s state,
which in turn correspond to three modules of information.
They are: (i) Odometry, consisting of the two encoders’
data of the motors. (ii) Sonar, composed of the two dis-
tance measurements from ultrasonic sensors. (iii) External
camera, which consists of the robot’s positions extracted in
each frame from a surveillance camera placed at the top of
the scene as shown in Figure 4(a,b).

For the acquisition of the robot’s location from an ex-
ternal camera, we perform the tracking of a big red circle
placed on the robot’s top, see figure 2(b) and consider the
center as its position. For noise removal and adjustment
of illumination, median filters [18] and gamma correction
[19] techniques are utilized. Measurements from the three
modules are aligned temporally, such that signals can be an-
alyzed contemporaneously.

(a) (b) (c)

Figure 3. Three different action scenarios for iCAB data-set:
(a) Perimeter monitoring under normal situation, (b,c) Obstacle
avoidance and U turn respectively under abnormal situation.

(a) (b)
Figure 4. Two different scenarios for robot data-set (a) perimeter
monitoring under normal situation, (b) perimeter monitoring in the
presence of an abnormality due to an obstacle.

Perimeter monitoring (PM) task. The entity follows a
rectangular path in the proposed environment as shown in
Figure 3(a) and in Figure 4(a). The multisensory informa-
tion collected from the PM task is used as training data from
which predictive models are learned and embedded into the
links of Bayesian network architecture. The PM task is con-



sidered as the initial training task from which abnormalities
are detected and compared and then learned from these ab-
normalities.
Obstacle avoidance task. The entity performs perimeter
monitoring until it encounters an obstacle, the abnormality
is a standing pedestrian and obstacle in case of the robot
between the perimeter maneuvering. When the entity en-
counters the obstacle, it performs an avoidance maneuver
by surrounding the obstacle and then continuing its rectan-
gular path as shown in Figure 3(b) and in Figure 4(b). Mul-
tisensory information collected from this task is employed
as testing data to detect anomalies with respect to the PM
task.
U-turn. The autonomous vehicle follows perimeter moni-
toring and performs u-turn when encountered with an obsta-
cle and then continues perimeter monitoring in the opposite
direction as shown in Figure 3(c).

2.2. Generalized states

Let Zmk be the measurements of the module m in a time
instant k. Additionally, let Xm

k be the states associated to
the measurements Zmk ; such that Zmk = g(Xm

k ) + ωk. g(·)
is a function that maps states into observations and ωk en-
codes the sensors’ noise. As explained in [20, 21], states’
time derivatives allow predictive models to make inferences
dynamically even when some unknown quantities are con-
stant. The generalized states of a module m is defined as:

Xm
k = [Xm

k Ẋm
k Ẍm

k · · · X
(L)m
k ]ᵀ, (3)

where (L) indexes the L-th time derivative of the vector
state. The l-th time derivative in a given module m at the
time k is approximated as:

X
(l)m
k =

X
(l−1)m
k −X(l−1)m

k−1

∆k
, (4)

where X(0)m
k = Xm

k and ∆k is the uniform sampling
time for all multisensory data.

2.3. Vocabulary and label generation

A clustering approach based on the application of several
GNGs facilitates to group generalized states into a set of
regions that encode the dynamics of observed experiences.
GNG presents some advantages in comparison with other
clustering algorithms like K-means or SOM. In GNG, the
learning is continuous, and the addition/removal of nodes is
automated [22].

For each module, a total number of L + 1 GNGs are
trained, where L is the maximum time derivative order of
states. Each GNG encodes data related to a specific deriva-
tive of order (l), where l ∈ [0, L]. Such GNG training strat-
egy guarantees the compactness in clusters that carry the
same type of information concerning time derivative orders.

The output of each GNG consists of a set of nodes
that encode constant behaviors for a specific module’s time
derivative order. Nodes inside each GNG can be seen as a
set of letters containing the main behaviors of generalized
states. The set of nodes encoding derivatives of order l-th in
a module m is defined as follows:

V ml = {X̄(l),m
1 , X̄

(l),m
2 , · · · X̄(l),m

Nm
l
}, (5)

where Nm
l is the number of nodes in the GNG associated

to the l-th order derivative of data in module m. The node
n is defined as the centroid values X̄(l),m

n , which have the
same dimension and form of states Xm

k . Such centroids are
the codifications of state time derivatives in each module.
Accordingly, V ml can be seen a vocabulary which contains
a set codified versions, i.e., nodes (centroids), of the state
time derivative of order l-th for the module m.

By considering the possible combinations among cen-
troids (letters) containing different derivative orders in a
module m, it is possible to obtain a set of words, which
define generalized states in an entirely semantic way. Such
words are defined as:

Wm = {ϕm, ϕ̇m, · · ·ϕ(L)
m }, (6)

where ϕ(l)
m ∈ V ml . Wm contains all possible combinations

of discrete generalized states. Wm is a high-level hierar-
chy variable that explains the module states from a semantic
viewpoint.

2.4. State estimation

The creation of modules’ vocabularies, see equation (5);
and words, see equation (6); is performed based on mea-
surements belonging to training data, i.e., previously ob-
served data. Accordingly, by observing how such mea-
surements activate series of words/letters through time, it
is possible to obtain transition models that facilitate the es-
timation of future words, i.e., p(Wm

k+1|Wm
k , tk); and letters,

i.e., p(V ml,k+1|V ml,k, tk), depending on the time tk spent in the
current word Wm

k .
Estimations of future letters carry information about the

dynamics of generalized states Xm. In this paper, due to
the high sample rate of multisensory data, only the first or-
der time derivative of states is considered, such that Xm

k =
[Xm

k Ẋm
k ]ᵀ. For such a case, it is possible to consider mod-

els of constant velocity for tracking generalized states’ dy-
namics, such that:

Xm
k+1 = AXm

k +BUk + wk, (7)

where,

A =

[
Ij 0j,j

0j,j 0j,j

]
; B =

[
0j,j
Ij∆k

]
.

The variable j indexes the number of states in the module
in question. Ij is an identity matrix of dimension j. 0j,j



is a zero j × j matrix. wk ∼ N (0, σ), encodes the model
noise. Uk is a control vector that defines the states’ dy-
namics. Uk = E(V m1,k+1|V m1,k, tk), where E(·) is the ex-
pectation operator. As can be seen, higher hierarchy levels
defines the dynamics of generalized states.

Proposed discrete and continuous information can be de-
scribed as a DBN, see Figure 5. For inference purposes,
A PF algorithm is employed for estimating future modules’
discrete information, i.e., words and letters. To each particle
in the PF, it is attached a KF that uses equation (7) as a dy-
namical model. The joint usage of continuous and discrete
probabilities in a DBN hierarchy facilitates the inference of
future states in each module by the MJPF [3].
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Figure 5. Proposed DBN

2.5. Abnormality measurement

As an abnormality measurement, it is used the Hellinger
distance [23] between predicted generalized states, i.e.,
p(Xm

k |X
m
k−1) and measurement evidence, i.e., p(Zk|Xm

k ),
such that:

θmk =
√

1− λmk , (8)

where λmk is defined as the Bhattacharyya coefficient [24],
such that:

λmk =

∫ √
p(Xm

k |X
m
k−1)p(Zk|Xm

k ) dXm
k . (9)

As shown in equation (8), the proposed abnormal mea-
surement is defined for each module. Such consideration
makes possible to compare abnormal behaviors from mul-
tiple sensory perspectives. The variable θmk ∈ [0, 1], where
values close to 0 indicate that measurements match with
predictions; whereas values close to 1 reveal the presence
of an abnormality.

2.6. Incremental update of vocabulary

An initial DBN model (we call it a “null force” model)
is learned by using an unmotivated Kalman filter (UMKF).
In the UMKF, the model predicts that the system will stay
in the same state in the next time instance, while, the next

observation shows a change in the system’s state. By using
this way, a generative model will be learned. Figure 6 shows
these deviations.

Figure 7 shows the surprise (deviations) between the sen-
sory samples from the generative model, which is generated
from density distribution over perimeter monitoring data
and sensory input, which is a pedestrian avoidance scenario.
These deviations represent the free energy that we want to
minimize. The abnormal signals are employed for learning
new models incrementally in an automatic way to minimize
free energy. A threshold is applied to use the high abnormal
signals to generate a new DBN model with new vocabular-
ies that are associated with high deviations as it is shown in
figures 10 and 11. This threshold is the boundary of each
node which is selected on the basis of the following equa-
tion,

ξNl
= E(dNl

) + 3 ∗
√

(V (dNl
)) (10)

where dNl
is the data inside Nl node, E denotes the mean

and V represents the variance. This threshold acts as deci-
sion boundary in abnormality measurement such that if the
new observations fall inside that boundary it will be nor-
mal and we will not experience any abnormality but if it
will fall outside the boundary then it will be considered as
abnormal which gives high peaks. As mentioned before,
both the initial DBN models for each system and each sen-
sor module and the new DBN models are learned based-on
free energy principle. In this case, the system tends to mini-
mize the free energy by modifying the model representation
of the system, i.e., adjusts the distribution that was learned
from previous scenarios to also cover the new observations,
which produces a new generative model that gives no ab-
normalities when it tested with previously seen scenarios.
In this paper, for us minimization of the error between pre-
dictions and observations is equivalent to minimization the
free energy, i.e., the free energy is minimized when the error
tends to zero.

3. Experimental Results
This section explains the results obtained from the pro-

posed methodology. First, we select the one module from
the three modules of the robot having a higher performance
by evaluating the abnormality signals. Then use that module
for learning the new situations incrementally which are con-
sidered an abnormality with respect to the training model.

3.1. Evaluation of abnormality signals among dif-
ferent modules

As mentioned before, the PM data generated by the robot
is employed for training probabilistic models that facilitate
the prediction of the state of multisensory data. Predicting
models are then used for estimating the states of multisen-
sory information in case of abnormalities by introducing an
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Figure 6. Free Energy (deviations) for initial DBN model in
perimeter monitoring scenario. An initial generative model is
learned

80 100 120 140 160 180 200 220
60

80

100

120

140

160

180

200

220

110 115 120

205

210

215

Figure 7. Free Energy (deviations) between the generative model
(over perimeter monitoring data distribution) and measured input
(obstacle avoidance data) in the robot environment

avoidance maneuver. Results obtained in each module are
described and compared as follows:

The proposed method is applied to learn predictive mod-
els that describe the PM tasks in each module of the robot.
Figure 8 shows the abnormality signals produced by our
method when the robot performs the obstacle avoidance
task. The red line represents the signal generated by the
sonar module. It can be seen that in the initial time in-
stances (from k = 0 to 35), as the front sensor is detect-
ing the presence of the obstacle, an abnormality (before the
actual abnormal motion) is obtained. In the case of the ex-
ternal camera and odometry modules, blue and black lines
respectively, the initial period of the robot’s task is similar to
the training phase, which leads to low abnormality signals.
When the robot starts the avoidance maneuver (from k = 36
to 170), the sonar module still detects an abnormal situation.

In addition, the signals from the visual and odometry mod-
ule start detecting anomalies with respect to the regular PM.
Additionally, while the robot finishes the avoidance maneu-
ver (from k = 100 to 170), the sonar module perceives
previously learned distances from the PM task. After finish-
ing the avoidance maneuver, the measurements return to the
normal case, except for some false alarms from the sonars’
signals and odometry measurements. This can be explained
by the noise produced by the sensors/actuators and the slight
differences of curving with respect to the training data. The
abnormalities detected by the sonar modules could lead to
understanding the causality between modalities. We can
expect that abnormalities in visual and odometry measure-
ments are a consequence of previously anomalies detected
by the sonar module.
Figure 9 presents the ROC curve for the testing cases men-
tioned previously. Overall, it can be noticed that the external
camera’s module is the most robust approach for detecting
abnormalities. Even in the case of noisy data, the visual
information offers high performance at detecting anomalies
correctly. From the curves, it is possible to see that other
modules of the robot present the lowest accuracy. This is
due to the noise of the sensor data and in the case of the
sonar module, its low performance is also due to the ear-
lier detection of anomalies discussed previously. Because
of the higher accuracy in the external camera, that module
is used for incremental learning instead of odometry and
sonar module.

3.2. Incremental learning results

Robot case. Figure 12 shows the abnormality signals
produced by different DBN models. The first one is trained
with perimeter monitoring task, while the second one is
trained fully trained by the proposed method to learn incre-
mentally. The red line represents the obtained abnormality
measurements for a DBN model is trained with a single sce-
nario (PM) and tested with obstacle avoidance (OA). It can
be seen in the time instances (from k = 0 to 35) that there
is abnormality as the robot in the testing task performs an
avoidance maneuver. While the blue line represents the ob-
tained abnormality measurements for a full DBN model (we
call it a full model because it is incrementally trained with
all scenarios) tested with obstacle avoidance (OA). The re-
sults show no abnormality in the time instances (from k =
0 to 35) where the robot performs an avoidance maneuver,
which means the new DBN is successfully learned incre-
mentally.

Vehicle case. Figure 13 presents a comparison for ab-
normality measurements between a DBN model has already
trained with perimeter monitoring (PM) scenario and a new
DBN model is incrementally learned based on the proposed
approach. In this figure, the testing scenario is U-turn. Re-
sults in green color represents the measurements of test-
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Figure 10. Observation of data related to the obstacle avoidance
with parameter monitoring for iCAB and (b) extract the abnormal
part to learn.
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Figure 11. (a)Observation of data related to U-turn with perimeter
monitoring for iCAB and (b) extract the abnormal part to learn.

ing with U-turn where the DBN model is trained with PM.
While the results in blue color represents the measurements
of testing with U-turn where the DBN model is incremen-
tally learned all scenarios.

4. Conclusion
We proposed an algorithm to employ abnormal signals

for learning new models incrementally in an automatic way.
The initial model for each DBN and the newly learned mod-
els are based on the minimization of the free energy princi-
ple. Results show that the new models of DBNs incremen-
tally learned to produce no abnormalities when tested on
sequences that generated deviations from which the models
were created. As future work, the proposed approach will
be employed for multi-agent transfer learning or to a new
environment.
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