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Abstract: Statins are effective lipid-lowering drugs with a good safety profile that have become, over
the years, the first-line therapy for patients with dyslipidemia and a real cornerstone of cardiovascular
(CV) preventive therapy. Thanks to both cholesterol-related and “pleiotropic” effects, statins have
a beneficial impact against CV diseases. In particular, by reducing lipids and inflammation statins,
they can influence the pathogenesis of both myocardial infarction and diabetic cardiomyopathy.
Among inflammatory mediators involved in these diseases, interleukin (IL)-1β is a pro-inflammatory
cytokine that recently been shown to be an effective target in secondary prevention of CV events.
Statins are largely prescribed to patients with myocardial infarction and diabetes, but their effects on
IL-1β synthesis and release remain to be fully characterized. Of interest, preliminary studies even
report IL-1β secretion to rise after treatment with statins, with a potential impact on the inflammatory
microenvironment and glycemic control. Here, we will summarize evidence of the role of statins in
the prevention and treatment of myocardial infarction and diabetic cardiomyopathy. In accordance
with the dual lipid-lowering and anti-inflammatory effect of these drugs and in light of the important
results achieved by IL-1β inhibition through canakinumab in CV secondary prevention, we will
dissect the current evidence linking statins with IL-1β and outline the possible benefits of a potential
double treatment with statins and canakinumab.

Keywords: cardiovascular disease; myocardial infarction; diabetic cardiomyopathy; cytokines;
interleukin 1β; inflammation; CANTOS; canakinumab

1. Introduction

Statin discovery dates back to 1976, when mevastatin was isolated from cultures of Penicillium
citrinum and proven to inhibit the production of cholesterol molecules [1]. Further experiments
showed that statins occupy a portion of the rate-controlling enzyme of cholesterol synthesis
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGR) by binding its active site with
very high affinity, thus displacing the natural substrate, HMG-CoA, and inhibiting its function [2].
Furthermore, the statin-related reduction of circulatory lipoprotein induces the hepatic expression
of low-density lipoprotein (LDL) receptor (LDLR) and LDL clearance from the bloodstream, thus
accounting for a further decrease in circulating cholesterol levels [3]. Thanks to this dual mechanism
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of action and a good safety profile, both natural and synthetic statins became, over the years, the
first-line therapy for dyslipidemia patients and a real cornerstone of cardiovascular (CV) preventive
therapy. Soon after first trials with statins were published, evidence suggested that those compounds
might have putative, non-lipid-related effects. Both Cholesterol and Recurrent Events (CARE) and
Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) trials showed that their overall
cardiovascular benefit was disproportionate to the magnitude of lipid reduction [4,5]. In addition,
the speed by which statins exercised their protective role was faster than that obtained with other
lipid-lowering interventions such as ileal bypass [6]. These “pleiotropic” effects have been related to
statins’ inhibitory effect on the activation of different intracellular signaling mediators downstream
the mevalonate pathways (i.e., Rho, Ras, and Rac proteins) alongside direct stimulatory effects on
peroxisome proliferator-activated (PPAR)-α and -β [7].

Lipids and inflammation are closely interconnected and contribute to the pathogenesis of most
CV disease [8,9]. Among those, myocardial infarction constantly rates among the most important
causes of morbidity and mortality worldwide, while diabetic cardiomyopathy is an emerging disease
whose incidence is set to rise in the next years following the increased prevalence of the diabetic
population. Although the role of circulating lipoproteins in the determination of the individual CV
risk have been appreciated since a long time ago, recently, clinical and experimental observations
support a role for systemic inflammation [10]. Inflammatory cells and cytokines have been identified
in human atherosclerotic vessels, and their dynamic regulation plays an important role in cardiac
remodeling [11,12]. Observational studies reported a reduced CV risk in patients being treated with
anti-inflammatory agents for immunological disease (e.g., rheumatoid arthritis), supporting the concept
of inflammation as a valuable target for CV prevention [13]. However, not all anti-inflammatory
drugs provided efficacy in reducing CV risk as different trials designed to test this hypothesis gave
negative results (i.e., Cardiovascular Inflammation Reduction Trial [CIRT] testing methotrexate), and
non-steroidal anti-inflammatory agents are even associated with an increased CV morbidity [14,15].
Of importance, in 2017, the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS)
trial showed the efficacy of IL-1β neutralization in patients with established coronary heart disease,
highlighting this cytokine and its pathway as effective targets, as well as suggesting that specific
interaction with inflammatory mediators might be a better strategy than providing anti-inflammation
in a global fashion [16,17].

In this review article, we aim to summarize evidence of the role of statin treatment in myocardial
infarction and prevention of myocardial remodeling in patients with diabetes mellitus. In accordance
with the dual lipid-lowering and anti-inflammatory effect of these drugs and in light of the important
results achieved by CANTOS in CV secondary prevention, we dissect the current evidence linking
statins with IL-1β and outline possible benefits of double treatment with canakinumab.

2. Statins in Myocardial Infarction and Diabetic Cardiomyopathy

2.1. Myocardial Infarction

Coronary atherosclerotic heart disease is the major cause of CV events including stable and
angina, non-ST-segment elevation myocardial infarction (NSTEMI), ST-segment elevation myocardial
infarction (STEMI), and sudden coronary death [18]. Ample evidence demonstrated the key role of
dyslipidemia and, in particular, of elevated LDL levels in the development of coronary heart disease
and thus CV risk. As such, statins have become the first-line therapy for hyperlipidemia and reduction
of CV risk in patients at high and very high risk [19]. With clinical guidelines becoming increasingly
stringent with respect to cholesterol levels [20–22], the prescription and utilization of statins in the last
30 years has increased considerably, with most of the patients taking these drugs for primary prevention
of CV events [23]. To date, several randomized clinical trials (RCTs) and systematic reviews have
investigated the role of statins in this setting, reaching different conclusions [24–27]. These apparent
discrepancies might be explained by different factors: (i) the population in primary prevention is highly
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heterogeneous, including patients with low CV risk and those with chronic kidney disease or diabetes
mellitus with organ damage, who are usually considered as risk-equivalent to CV patients; (ii) most
published systematic reviews, although focusing on primary prevention, included trials in which
a proportion of patients had a history of CV disease. A very recent overview of systematic reviews
tried to overcome these limitations by including exclusively primary prevention trials or individual
patient data of trial participants using only data from patients without established CVD [28]. Here, the
authors report a trend towards reduction of all-cause mortality in all systematic reviews, although
this reached statistical significance only in one study out of three [28]. Furthermore, when patients
where stratified for baseline risk, the effect of statin treatment lost statistical significance in almost all
categories [28]. Similar inconclusive results were reported also when considering different outcomes
such as vascular or non-vascular deaths or composite ones; here, again, stratification for baseline risk
deeply impacted the magnitude of the results. The authors concluded that despite the high number of
patients under statins treatment for primary CV prevention, the evidence for their prescription in this
setting is very limited and should be substantiated by a careful individual assessment of baseline risk,
absolute risk reduction, and potential harm [28].

On the other hand, the role of high-intensity statin treatment as a secondary prevention measure
to reduce the recurrence of CV and cerebrovascular events is well established and highlighted by all
international guidelines [20–22]. In patients with previous myocardial infarction and stroke, statins
blunt the rate of recurrent CV events as well as the need for revascularization procedures. In addition,
mortality is considerably reduced: In the five years after myocardial infarction, treatment of only
30 patients with statin is already able to prevent one cardiovascular death [29]. The pioneering
Scandinavian Simvastatin Survival Study (4S) trial compared simvastatin treatment vs. placebo
in n = 4444 patients with angina pectoris or previous myocardial infarction and found statin to
greatly reduce the risk of death (both cardiovascular and non-cardiovascular ones) as well as that
of undergoing revascularization procedures [29]. More recently, the Pravastatin or Atorvastatin
Evaluation and Infection Therapy—Thrombolysis in Myocardial Infarction 22 (PROVE-IT TIMI 22) trial
compared high-intensity (atorvastatin 80 mg/day) vs. moderate-intensity (pravastatin 40 mg/day) statin
treatment early after ACS and found the strongest intervention to bring an additional 16% reduction
of cardiovascular events as compared to pravastatin 40 mg/day, in 4162 patients [30]. Of interest,
the benefit was already evident within 30 days and became statistical significant throughout the
2.5 years of follow-up [30]. After this, several other trials tested different statins at different dosages,
and results have been summarized in numerous meta-analyses. Among them, in 2010 the Cholesterol
Treatment Trialists (CTT) Collaboration analyzed five randomized trials comparing more intensive
vs. less intensive statin regimens in n = 39612 patients with ACS or stable coronary disease [30]. As a
result, the intensive statin treatment showed a greater reduction in major CV events compared to
the less intensive one. Moreover, this research highlighted that statin benefit is maintained among
patients with and without hypercholesterolemia, and no threshold was found under which LDL
lowering was ineffective [30]. Recently, a specific analysis investigated specific population such as
elderly people and the benefit of statin treatment in secondary prevention remained valid, although
some warnings have been raised for specific high-dose regimens [31,32]. Importantly, the prognostic
role of LDL reduction and the importance of an early start to high-dose statin treatment after ACS
was consistently shown among the majority of clinical trials. This aspect has been taken further by
the recent secondary prevention trials investigating the use of non-statin lipid-lowering agents in
association with the maximally tolerated statin dose in ACS patients, confirming the concept of “the
lower, the better” [33]. Accordingly, the very recent guidelines on dyslipidemia by the European
Society of Cardiology (ESC)/European Atherosclerosis Society (EAS) have adopted a more aggressive
approach with never-seen-before very low targets for LDL levels in high-risk categories (such as
individuals with previous CV events) [20]. Indeed, the LDL target for patients at very high risk is
now set at 1.4 mmol/L (<55 mg/dL), while in patients at very high-risk with multiple recent events,
the target reaches 1.0 mmol/L (<40 mg/dL) [20].
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2.2. Diabetic Cardiomyopathy

Diabetic patients are at increased risk of developing heart failure. The Framingham Heart Study
clearly indicated that diabetes and heart failure are associated, independently of the presence of coronary
artery disease and hypertension [34]. As such, hyperglycemia can cause cardiac insufficiency not only
by increasing the risk of heart failure determinants but also by directly affecting cardiac structure
and function. Diabetes is associated with cardiac oxidative stress, intracellular ion abnormalities,
inflammation, and mitochondrial dysfunction, with metabolic turbulences directly causing the
development of heart failure, and particularly, heart failure with preserved ejection fraction, by altering
specific signaling pathways [35]. Although debated [36], diabetes is also thought to be associated
with systolic heart failure, as previous work showed that indexes of systolic function may be slightly
reduced in diabetic patients without overt coronary disease [37,38]. In this case, the chronic alteration
of glucose levels may cause a reduction of myocardial flow reserve due to microvascular alterations
and lead to subendocardial ischemia and systolic dysfunction [39]. Although the molecular signaling
deranged by the chronic exposure to high glucose levels is very diverse and several pathways have
been involved in the pathophysiology of diabetic cardiomyopathy, in general, they all converge
towards the activation of the transcription factor NF-kB, which then leads to upregulation of cytokines,
chemokines, and adhesion molecules [40]. Indeed, genetic or pharmacologic inhibition of this
nuclear factor mitigates cardiac inflammation and oxidative stress in animal models of diabetes, thus
preventing the development of diabetic cardiomyopathy [41,42]. Glycemia-oriented therapy does
not effectively prevent cardiac complications of long-term type 2 diabetes mellitus [43], thus other
drugs have been tested to reduce cardiac damage. Statins have been hypothesized to hold a protective
role in the setting of diabetic cardiomyopathy thanks to their anti-inflammatory role. Furthermore,
hyperlipidemia is associated with intracardiac accumulation of fatty acids and dysfunction due to
lipotoxicity in the diabetic myocardium [44]. Pre-clinical evidence strongly supports this hypothesis;
atorvastatin could improve left ventricular function by reducing cardiac intramyocardial inflammation
and myocardial fibrosis in an experimental model of diabetic cardiomyopathy [45]. In addition,
atorvastatin could reduce β-adrenergic dysfunction in rats with diabetic cardiomyopathy via increasing
nitric oxide (NO) availability [46]. Rosuvastatin also exhibited protective properties in this setting
by reducing NLRP3 inflammasome and IL-1β activation via suppression of MAPK pathways [47].
Finally, simvastatin could reduce cardiac dysfunction in streptozotocin-induced diabetic rats by
attenuating hyperglycemia-induced cardiac oxidative stress, inflammation, and apoptosis. In the
clinical setting, intensive lipid control with statins and other drugs is associated with an important
decrease of cardiovascular risk in diabetic patients [48–50]. Accordingly, statins together with other
lipid-modifying agents (i.e., peroxisome proliferator-activated receptor (PPAR) agonists) are suggested
by diabetes guidelines for both primary and secondary CV prevention [51]. This being said, statins
failed to effectively modify the course of diabetic cardiomyopathy, and they may even facilitate the
onset of diabetes by impacting peripheral insulin sensitivity and β-cell function [52]. Nevertheless,
discontinuing statin therapy in diabetic patients is not recommended [53].

3. Statins, Inflammation, and IL-1β

The effectiveness of statin anti-inflammatory properties in the CV setting has been definitively
proven in clinical trials. The Justification for the Use of Statins in Prevention: an Intervention Trial
Evaluating Rosuvastatin (JUPITER) trial enrolled apparently healthy persons without hyperlipidemia
but with elevated hs-CRP and demonstrated that treatment with rosuvastatin significantly reduced the
incidence of major CV events [54]. Similarly, the Pravastatin Or Atorvastatin Evaluation and Infection
Therapy (PROVE-IT), Aggrastat to Zocor (AtoZ), and Improved Reduction of Outcomes: Vytorin
Efficacy International Trial (IMPROVE-IT) trials also reported the clinical relevance of statin-related
hs-CRP reduction [30,55,56]. Statins exert these anti-inflammatory effects by blunting the downstream
synthesis of molecules in the mevalonate pathway through the inhibition of small GTPase prenylation
and isoprenoid production [57–59]. Of note, small GTPases regulate different signaling pathways
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and thus cellular processes dependent on isoprenylation and involved in the development of CV
diseases [60,61]. Rho and Rac cooperate in the surge of oxidative stress and inflammatory mediators
that characterize different pathologic processes [62,63]. Furthermore, Ras is thought to play a central
role in the regulation of cellular growth and proliferation [64]. The inhibition of those pathways is
associated with a number of protective immunomodulatory effects in inflammatory cells and vascular
and myocardial tissue [65,66]. In vascular cells, statins can enhance the availability of protective
nitric oxide (NO) by increasing its synthesis and reducing its degradation [67,68]. This accompanies
a sensible reduction of endothelial oxidative stress and modulation of redox-sensitive transcription
factors such as NF-kβ and activator protein 1 (AP-1), key enzymes involved in the regulation of several
pro-inflammatory genes [69]. As a result, treatment with statins is associated with blunted expression
of pro-thrombotic factors as well as different adhesion molecules such as vascular cell adhesion
molecule 1 (VCAM-1), platelet endothelial adhesion molecule 1 (PECAM-1), intercellular cell adhesion
molecule-1 (ICAM-1), and P-selectin [70–72]. Moreover, statin treatment reduces monocyte, endothelial,
and vascular smooth cell production of different pro-inflammatory cytokines including monocyte
chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell expressed and secreted
(RANTES), and interleukin (IL)-6 and IL-8 [70,73,74]. Statins also exert their immunomodulatory effects
by reducing monocyte expression of CD11β (an integrin with a key role in monocyte–endothelium
interaction), suppressing the expression of major histocompatibility complex (MHC) class II protein,
as well as reducing the proliferation and differentiation of activated T- and B-lymphocytes [75–77].

Dyslipidemia, altered glucose metabolism, and inflammation share several cardiac signaling
pathways and are closely interconnected (Figure 1). Although the anti-inflammatory role of statins is
widely accepted, different studies demonstrated that those molecules could paradoxically increase the
production of IL-1β—among the most important pro-inflammatory cytokines—as a result of reduced
protein prenylation in immune cells [78]. Mature, active IL-1β derives from the cleavage of its pro-form
by the NOD-like receptor family, pyrin-domain-containing (NLRP) 3 inflammasome [79]. The NLRP3
inflammasome complex is formed by the sensor molecule NLRP3, the adaptor protein ASC, and
pro-caspase-1. This multimeric protein complex regulates the release of cytokines IL-1β and IL-18,
alongside initiating an inflammatory form of cell death known as pyroptosis [80]. Inflammasome
activation is a two-step process that requires adequate priming of NLRP3 followed by a signal
triggering the assembling [80]. The priming step occurs via different inflammatory stimuli such as
TLR4 agonists, resulting in activation of NF-kB and transcription of NLRP3 and pro-IL-1β [81–83].
Furthermore, NLRP3 priming also associates with post-translational modifications of NLRP3 (such
as phosphorylation and ubiquitination), further regulating its activation [84,85]. The second step is
provided by the recognition of damage-associated molecular patterns (DAMPs) causing the perturbation
of cellular metabolism with the production of reactive oxygen species, ion disturbances, and lysosomal
disruption [86–89]. Due to its pro-inflammatory role, the NLRP3 inflammasome has progressively
become an important molecular target to cope with different chronic diseases, including myocardial
infarction and diabetes [90]. To date, five specific NLRP3 inhibitors have been validated in vivo or
in vitro and entered clinical testing at different phases [91]. On the other hand, many drugs able to
modify cellular metabolism and homeostasis have been shown to activate the inflammasome [92].
Although some controversies still exist due to possible differences between different molecules, statins
are acknowledged among NLRP3 activators and thus IL-1β inducers. Of note, this characteristic
is thought to account for their association with diabetes onset [78,93,94]. Various statins have been
shown to increase IL-1β secretion from macrophages through NLRP3 activation, but none of them
were able to act as a priming agent on the inflammasome as they all need bacterial liposaccharide to
induce caspase-1-dependent cleavage of pro-IL1β into its active form [95,96]. In a report from 2014,
Henriksbo and colleagues showed that long-term treatment of obese mice with fluvastatin promoted
insulin resistance in adipose tissue and increased caspase-1 activity and IL-1β production in adipose
tissue explants in the presence of LPS [95]. Of interest, this effect was not observed in NLRP3−/−

explants and was reversed by glyburide, a known inflammasome inhibitor and antidiabetic drug [95].



J. Clin. Med. 2019, 8, 1764 6 of 18

Similarly, fluvastatin could increase the secretion of 1L-1β and IL-18 in peripheral blood mononuclear
cells stimulated by Mycobacterium tuberculosis [97]. In additon, lovastatin increases reactive oxygen
species (ROS) and synergizes with LPS to trigger IL-1β release in macrophages and monocytes [98].
Of interest, these pro-inflammatory effects have been shown to relate with statin-related disturbances
on protein prenylation as addition of mevalonate or GGPP—an intermediate in the mevalonate
pathway—could prevent IL-1β release [96,99]. Recently, this aspect has been further dissected by
showing that, differently from LDL lowering, statin-related reduction of isoprenoids was required
for NLRP3/caspase-1 inflammasome activation and IL-1β-dependent insulin resistance in adipose
tissue [100]. Furthermore, supplementation of geranylgeranyl isoprenoids or caspase-1 inhibition
could prevent statin-induced alteration of insulin signaling [100]. Moreover, IL-1β, but not IL-18,
is necessary to induce insulin resistance in adipose tissue treated with atorvastatin [100]. Summarizing,
inflammasome activation and IL-1β secretion likely link statins with impaired glucose metabolism.
Thus, inflammasome might be an effective molecular target to reduce statin-related diabetes onset.
On the other hand, targeting the inflammasome and IL-1β might reduce the effectiveness of statin
treatment on CV prevention, as the importance of this interleukin has been recently highlighted in the
CANTOS trial.

4. Perspective

Human coronary plaques are inflammatory lesions in which immune cells and inflammatory
molecules are detectable at a high level and play pivotal roles [101–104]. Recently, the CANTOS trial
confirmed the inflammatory theory of atherosclerosis and shed new light on the role of IL-1β in CV
risk determination [16]. A total of 10,061 patients with a previous myocardial infarction and showing
inflammatory residual risk (CRP > 2 mg/L) under optimal CV-protective therapy were enrolled in
this randomized, double-blind trial to receive canakinumab, a IL-1β inhibitory monoclonal antibody,
or a placebo every 3 months. Levels of lipids remained unaltered upon treatment with canakinumab,
while a significant decrease in CRP levels was observed already after the first administration of
the anti-inflammatory drug. The primary endpoint composed of cardiovascular death, non-fatal
myocardial infarction, and non-fatal stroke was successfully met by the intermediate doses of the
drugs (100 and 150 mg/administration) [16]. Of interest, those patients with CRP levels reduced to
<2 mg/L after the first administration benefitted the most from the long-term treatment as this was
associated with a 31% reduction in CV mortality, a 31% reduction in all-cause mortality, and a 25%
reduction in major adverse CV events [105]. Conversely, in patients with on-treatment high-sensitivity
CRP ≥ 2 mg/L, the treatment effects were non-significant [105]. Of interest, canakinumab was also
effective in reducing rates of non-cardiovascular inflammatory disease, such as lung cancer, arthritis,
and gout. As expected, patients treated with IL-1β inhibitory antibody had a higher rate of fatal
infections as well as of neutropenia or thrombocytopenia [16]. The CANTOS trial not only provided
solid proof of the effectiveness of IL-1β inhibition in secondary CV prevention; it also allowed
a deepening of the complex relationship between lipids and inflammation. Indeed, cholesterol crystals
can induce IL-1β activation via canonical (i.e., NLRP3-mediated) and non-canonical pathways, then
IL-1β establishes a vicious circle that ends up in further pro-IL1β cleavage [106–108]. Then, blocking
this pathway via canakinumab could reduce the effect of lipids on atherosclerotic inflammation. On the
other hand, substantial evidence exists demonstrating a role for inflammation on the induction of
dyslipidemia [109,110]. Differently from other anti-inflammatory drugs, in CANTOS, canakinumab
did not affect cholesterol levels, while it slightly increased triglycerides [16]; thus, the cardiovascular
preventive effects did not depend on any lipid effects related to IL-1β.
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Figure 1. Altered lipid and glucose metabolisms share common molecular pathways in the
pathophysiology of cardiac remodeling, relying on the release of pro-inflammatory interleukin (IL)-1β.
The increased levels of different deleterious mediators (such as AGE, AngII, DAMP, and modified
lipoproteins) are sensed by promiscuous receptors on cell surfaces and trigger secondary signaling
pathways leading to activation of NF-κβ and AP-1, two transcription factors involved in the regulation
of NLRP3 inflammasome activity. The activated inflammasome then leads to the activation and release
of IL-1β, which fuel the sterile inflammation associated with cardiac remodeling. AGE: advanced
glycation end-product; AngII: angiotensin II; AP-1: activator protein 1; DAMPs: damage-associated
molecular patterns; ERK: extracellular signal-regulated kinases; HMGB1: high mobility group box
1; IL-1β: interleukin 1β; JNK: Janus kinases; NF-κβ: nuclear factor kappa-light-chain-enhancer of
activated B cells; NLRP3: NACHT-, LRR-, and PYD-domain-containing protein 3; NOX: NADPH
oxidase; PKC: protein kinase C; TLR: Toll-like receptor; RAGE: receptor of AGE; ROS: reactive oxygen
species; oxLDL: oxidized low-density lipoproteins.
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Canakinumab is effective and relatively safe for secondary prevention of CV events; whether
this might also be the case for primary CV prevention or for the treatment of myocardial infarction
sequelae such as cardiac remodeling remains to be investigated. Cardiac repair after myocardial
infarction depends on the tight regulation of sterile inflammation, which serves to clear damaged cells
and promote the formation of a functional scar; alterations of the inflammatory balance associate with
deleterious myocardial remodeling, resulting in cardiac dysfunction and heart failure [111]. Being a key
regulator of inflammation, IL-1β plays an important role in orchestrating the inflammatory response in
an ischemic/reperfused myocardium [112]. In this setting, IL-1β can activate downstream mediators
which further amplify inflammation via MAPK and NF-κB signaling. Furthermore, it allows for the
spatial extension of inflammation by activating local parenchymal and infiltrating cells that express its
receptor and facilitates leukocytes recruitment via increasing the expression of adhesion molecules and
chemoattractant in the damaged myocardium [111]. In line with this evidence, previous experimental
studies reported a role of IL-1 blockade in preventing adverse cardiac remodeling (Table 1).

Table 1. Experimental studies investigating the effect of IL-1 inhibition in preventing cardiac remodeling
after myocardial infarction.

Author Year Drug(dose) Schedule Results

Abbate A. et al.
[113] 2008 Anakinra

(1 mg/kg)

Immediate or
delayed (24 h after
ischemia) and then

daily for 6 days.

Anakinra-treated mice showed signs of
more favorable ventricular remodeling.

Van Tassell et al.
[114] 2010 IL-1 Trap (1, 5

or 30 mg/kg)
Every 48 h after

surgery.

Mice treated with 5 or 30 mg/kg of IL-1
Trap had more favorable cardiac

remodeling and echocardiographic
assessment of infarct size at 7 days.

Toldo et al.
[115] 2012 rhIL-1Ra

10 mg/kg given
either 30 min or 4 h

prior to surgery

Irrespective of dose, treated mice
showed marked cardio-protection in

terms of LVEF and the reduction of the
infarct size.

Toldo et al.
[116] 2013 Anti-IL-1β Ab

10 mg/kg
immediately after
surgery and then

1 week later.

When compared with control vehicle,
anti-IL-1β Ab limit left ventricular
enlargement and improve systolic

dysfunction by inhibiting
cardiomyocyte apoptosis.

Toldo et al.
[117] 2014 Anti-IL-1β Ab

10 mg/kg 1 week
after surgery and
then weekly for

9 weeks.

After 10 weeks, anti-IL-1β Ab prevents
reduction of LVEF, impairment in the
myocardial performance index. and

contractile reserve.

De Jesus et al.
[118] 2017 Anakinra

(10 mg/kg)
Daily, starting 24 h

after surgery

Anakinra improved conduction velocity
and reduced action potential duration

dispersion, thus determining a
reduction of spontaneous and inducible

ventricular arrhythmias.

Mauro et al.
[119] 2017

IL-1α-blocking
antibody

(15 µg/kg)

Single dose after
reperfusion

At 24 h, IL-1α blockade significantly
reduced inflammasome formation and

infarct size, thus preserving LVFS.

Herouki et al.
[120] 2017 Anti-IL-1β Ab

Single dose after
reperfusion or

7 days after
reperfusion

Immediate, but not delayed,
administration of anti-IL-1β Ab reduces

ischemia/reperfusion-related infarct
size, left ventricular remodeling, and

heart-failure-related coronary
dysfunction.

IL: interleukin; rhIL-1Ra: recombinant human interleukin-1 receptor antagonist; LVEF: left ventricular ejection
fraction; LVFS: left ventricular fractional shortening.



J. Clin. Med. 2019, 8, 1764 9 of 18

Unfortunately, the few randomized clinical trials and observational and cohort studies that have
evaluated the effect of IL-1β inhibition in relation to the development of post-MI cardiac remodeling
have provided conflicting results [121–124] (Table 2). Of interest, most of them were based on the
unspecific blockage of IL-1 receptor, which recognizes both IL-1α and β isoforms; whether a more
specific targeting of the IL-1β pathway via canakinumab might provide additional beneficial effects
on top of statins in the context of post-myocardial remodeling remains to be fully determined.
Recently, a sub-analysis of the previously mentioned CANTOS trial suggested post-MI treatment
with canakinumab to dose-dependently reduce hospitalization for heart failure and the composite
of hospitalization for heart failure or heart-failure-related mortality as compared to a placebo [125].
In this regard, it is important to take into consideration that the CV-protective role of canakinumab
has been demonstrated only in patients with residual inflammatory risk, while that of statins is not
restricted to this group. Furthermore, lipid-lowering therapies hold a very competitive risk/benefit
balance even when very low LDL levels are reached [126], while this is not the case for IL-1β blockade,
which is associated with a higher risk of sepsis and fatal infections.

Similarly, given the relevance of inflammatory mediators, and particularly IL-1β, in the
pathophysiology of diabetes and diabetic cardiomyopathy [127], targeting the NLRP3/IL1β pathway
could effectively reduce the burden of this disease. Given the high number of diabetic individuals
under cardio-protective treatment with statins and the possible deleterious effect of these drugs on
Il-1β activation and thus glycemic control, adding IL-1β inhibition on top of statin treatment might
give additional benefit in terms of CV protection. In this sense, it will be very important to understand
whether the inflammasome could be safely targeted without altering the general anti-inflammatory
effect of statins. How statins could be generally anti-inflammatory and thus protective in the CV
setting while increasing the risk of diabetes remains to be fully explained. In other words, on which
pathophysiological aspect of the two diseases does the mechanism of action of statins differ? Different
investigators have previously tried to address this question, with different hypotheses being made [78].
Statins might have different effects on different cells with different roles in the diseases. In this sense,
the effect of statins on endothelial cells should drive the protective CV effects, while their roles on
adipocytes, pancreatic islet cells, or myocytes could be of more relevance in diabetes onset and diabetic
cardiomyopathy [78]. In addition, the cholesterol-lowering effect might play a more important role in
the prevention of CV disease as compared to that played in diabetes development. The connection
between statins, NLRP3/IL-1β, and insulin resistance remains to be characterized in depth, and many
mechanistic questions are still unsolved; understanding these aspects might pave the way for new
therapeutic strategies, including a combination of statins and IL-1β inhibition.

Table 2. Clinical studies investigating the effect of IL-1 inhibition in preventing cardiac remodeling
after myocardial infarction.

Author Year Drug Treatment Disease
(cohort) Results

Abbate et al.
VCU-ART [128] 2010 Anakinra 100 mg/daily sc

for 14 days
STEMI
(n = 10)

In this pilot double blind RCT,
treatment with anakinra showed to
be safe and to reduce left ventricular

remodeling (assessed by both
echocardiography and cardiac

magnetic resonance) after STEMI as
compared to placebo.

Morton et al.
MRC-ILA-HEART

[129]
2015 Anakinra 100 mg/daily sc

for 14 days
NSTEMI
(n = 182)

In this proof-of-principle double
blind RCT, patients treated with

anakinra showed reduced levels of
hsCRP and IL-6 as compared to

those receiving a placebo.
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Table 2. Cont.

Author Year Drug Treatment Disease
(cohort) Results

Abbate et al.
VCU-ART2 [121] 2013 Anakinra 100 mg/daily sc

for 14 days
STEMI
(n = 30)

In this pilot double blind RCT,
treatment with anakinra could

reduce hsCRP levels as compared to
a placebo. Anakinra-treated

patients also showed a numerically
lower incidence of heart failure,

although this was not statistically
significant.

Ridker et al.
CANTOS [125] 2019 Canakinumab

50, 100 or
150 mg/daily sc
every 3 months

STEMI
(n = 10’061)

In this double blind RCT, treatment
with canakinumab after STEMI was
shown to dose-dependently reduce
hospitalization for heart failure and
the composite of hospitalization for
heart failure or heart-failure-related
mortality as compared to a placebo.

Van Tassell et al.
VCU-ART3 [130] 2019 Anakinra

100 mg once or
twice/daily for

14 days

STEMI
(n = 99)

Preliminary results of this double
blind RCT were presented at the
2019 Congress of the European
Society of Cardiology. Patients
treated with anakinra showed

significant improvement in cardiac
systolic function after STEMI, as

compared to a placebo.

CANTOS: Canakinumab Anti-Inflammatory Thrombosis Outcomes Study; hsCRP: high-sensitivity C-reactive
protein; IL-6: interleukin-6; NSTEMI: non-ST-elevation myocardial infarction; RCT: randomized clinical trial; STEMI:
ST-elevation myocardial infarction; VCU-ART: Virginia Commonwealth University Anakinra Remodeling Trial.

5. Conclusions

Firstly introduced to reduce circulating LDL, statins soon became pillars of prevention and
treatment of CV diseases. Aside from their lipid-lowering actions, statins hold different pleiotropic
effects that are thought to deeply contribute to their CV-protective effect and involve the modulation
of the inflammatory response. Statins are recommended for prevention of myocardial infarction in
patients with dyslipidemia, high, or very high cardiovascular risk. In diabetic subjects, statins have been
hypothesized to reduce the development of diabetic cardiomyopathy thanks to their anti-inflammatory
effect. Despite the encouraging results of the pre-clinical tests, statins failed to effectively modify the
course of heart failure in diabetic patients and may even facilitate the onset of diabetes in patients
without previous glucose disturbances. Thanks to the CANTOS trial involving the IL-1β inhibitory
antibody canakinumab, this pro-inflammatory cytokine has recently emerged as an effective and
relatively safe target for secondary CV prevention in patients with residual inflammatory risk. Although
generally seen as anti-inflammatory drugs, statins may have different effects on IL-1β synthesis in
different cells, with some studies even demonstrating a paradoxical increase. In consideration of the
detrimental role of IL-1β in the pathophysiology of myocardial infarction and diabetic cardiomyopathy,
adding canakinumab on top of statins in these patients might then provide a stronger inhibition of
the IL-1β-mediated inflammatory response, with additional beneficial effects on the pathophysiology
of these diseases. In addition, in patients treated with statins, canakinumab might even be able to
reduce statin-induced insulin resistance as this is thought to depend on the activation of the NLRP3
inflammasome/IL-1β pathway. Further specific investigations will be needed to test this hypothesis in
order to reduce the very high global burden of myocardial infarction and diabetic cardiomyopathy.

Author Contributions: Conceptualization, L.L. and F.M.; writing—original draft preparation, L.L. and F.C.;
writing—review and editing, F.C., G.G.C., and F.M..; fund acquisition, G.G.C. and F.M.



J. Clin. Med. 2019, 8, 1764 11 of 18

Funding: This research was funded by a grant from the Italian Ministry of Health to the Italian Cardiovascular
Network Grant number 2754291 (to F.M.). Furthermore, the present work was supported by the Swiss National
Science Foundation (to G.G.C.) [310030_175546], the Alfred and Annemarie von Sick Grants for Translational and
Clinical Research Cardiology and Oncology (to G.G.C.), and the Foundation for Cardiovascular Research–Zurich
Heart House. G.G.C. is a recipient of an H.H. Sheikh Khalifa bin Hamad Al Thani Foundation Assistant
Professorship at the Faculty of Medicine of the University of Zurich.

Acknowledgments: Figure 1 was designed using Servier Medical Art by Servier under a Creative Commons
Attribution 3.0 Unported License.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Endo, A.; Kuroda, M. Citrinin, an inhibitor of cholesterol synthesis. J. Antibiot. (Tokyo) 1976, 29, 841–843.
[CrossRef] [PubMed]

2. Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of hmg-coa reductase. Science 2001,
292, 1160–1164. [CrossRef] [PubMed]

3. Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature 1990, 343, 425–430. [CrossRef]
[PubMed]

4. Sacks, F.M.; Pfeffer, M.A.; Moye, L.A.; Rouleau, J.L.; Rutherford, J.D.; Cole, T.G.; Brown, L.; Warnica, J.W.;
Arnold, J.M.; Wun, C.C.; et al. The effect of pravastatin on coronary events after myocardial infarction in
patients with average cholesterol levels. Cholesterol and recurrent events trial investigators. N. Engl. J. Med.
1996, 335, 1001–1009. [CrossRef] [PubMed]

5. Long-Term Intervention with Pravastatin in Ischaemic Disease Study Group. Prevention of cardiovascular
events and death with pravastatin in patients with coronary heart disease and a broad range of initial
cholesterol levels. N. Engl. J. Med. 1998, 339, 1349–1357. [CrossRef] [PubMed]

6. Schonbeck, U.; Libby, P. Inflammation, immunity, and hmg-coa reductase inhibitors: Statins as
antiinflammatory agents? Circulation 2004, 109, 18–26. [CrossRef]

7. Liao, J.K.; Laufs, U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 89–118. [CrossRef]
8. Liberale, L.; Montecucco, F.; Camici, G.G.; Dallegri, F.; Vecchie, A.; Carbone, F.; Bonaventura, A. Treatment

with proprotein convertase subtilisin/kexin type 9 (pcsk9) inhibitors to reduce cardiovascular inflammation
and outcomes. Curr. Med. Chem. 2017, 24, 1403–1416. [CrossRef]

9. Carbone, F.; Liberale, L.; Bonaventura, A.; Cea, M.; Montecucco, F. Targeting inflammation in primary
cardiovascular prevention. Curr. Pharm. Des. 2016, 22, 5662–5675. [CrossRef]

10. Montecucco, F.; Liberale, L.; Bonaventura, A.; Vecchie, A.; Dallegri, F.; Carbone, F. The role of inflammation
in cardiovascular outcome. Curr. Atheroscler. Rep. 2017, 19, 11. [CrossRef]

11. Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F.; Luscher, T.F.; Camici, G.G.; Liberale, L. Novel
findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc. Res. 2019, 115,
1266–1285. [CrossRef] [PubMed]

12. Liberale, L.; Camici, G.G. The role of vascular aging in atherosclerotic plaque development and vulnerability.
Curr. Pharm. Des. 2019. [CrossRef] [PubMed]

13. Carbone, F.; Bonaventura, A.; Liberale, L.; Paolino, S.; Torre, F.; Dallegri, F.; Montecucco, F.; Cutolo, M.
Atherosclerosis in rheumatoid arthritis: Promoters and opponents. Clin. Rev. Allergy Immunol. 2019, 1–14.
[CrossRef] [PubMed]

14. Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.;
Rosenberg, Y.; Iturriaga, E.; et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl.
J. Med. 2019, 380, 752–762. [CrossRef] [PubMed]

15. Bally, M.; Dendukuri, N.; Rich, B.; Nadeau, L.; Helin-Salmivaara, A.; Garbe, E.; Brophy, J.M. Risk of acute
myocardial infarction with nsaids in real world use: Bayesian meta-analysis of individual patient data. BMJ
2017, 357, 1909. [CrossRef]

16. Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.;
Koenig, W.; Anker, S.D.; et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease.
N. Engl. J. Med. 2017, 377, 1119–1131. [CrossRef]

http://dx.doi.org/10.7164/antibiotics.29.841
http://www.ncbi.nlm.nih.gov/pubmed/791911
http://dx.doi.org/10.1126/science.1059344
http://www.ncbi.nlm.nih.gov/pubmed/11349148
http://dx.doi.org/10.1038/343425a0
http://www.ncbi.nlm.nih.gov/pubmed/1967820
http://dx.doi.org/10.1056/NEJM199610033351401
http://www.ncbi.nlm.nih.gov/pubmed/8801446
http://dx.doi.org/10.1056/NEJM199811053391902
http://www.ncbi.nlm.nih.gov/pubmed/9841303
http://dx.doi.org/10.1161/01.CIR.0000129505.34151.23
http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095748
http://dx.doi.org/10.2174/0929867324666170303123734
http://dx.doi.org/10.2174/1381612822666160822124546
http://dx.doi.org/10.1007/s11883-017-0646-1
http://dx.doi.org/10.1093/cvr/cvz084
http://www.ncbi.nlm.nih.gov/pubmed/30918936
http://dx.doi.org/10.2174/1381612825666190830175424
http://www.ncbi.nlm.nih.gov/pubmed/31470777
http://dx.doi.org/10.1007/s12016-018-8714-z
http://www.ncbi.nlm.nih.gov/pubmed/30259381
http://dx.doi.org/10.1056/NEJMoa1809798
http://www.ncbi.nlm.nih.gov/pubmed/30415610
http://dx.doi.org/10.1136/bmj.j1909
http://dx.doi.org/10.1056/NEJMoa1707914


J. Clin. Med. 2019, 8, 1764 12 of 18

17. Baylis, R.A.; Gomez, D.; Mallat, Z.; Pasterkamp, G.; Owens, G.K. The cantos trial: One important step for
clinical cardiology but a giant leap for vascular biology. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 174–177.
[CrossRef]

18. Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Group E.S.C.S.D.
Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [CrossRef]

19. Adhyaru, B.B.; Jacobson, T.A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol. 2018, 15, 757–769.
[CrossRef]

20. Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.;
Delgado, V.; Ference, B.A.; et al. 2019 esc/eas guidelines for the management of dyslipidaemias: Lipid
modification to reduce cardiovascular risk. Eur. Heart J. 2019. [CrossRef]

21. Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corra, U.;
Cosyns, B.; Deaton, C.; et al. 2016 european guidelines on cardiovascular disease prevention in clinical practice:
The sixth joint task force of the european society of cardiology and other societies on cardiovascular disease
prevention in clinical practice (constituted by representatives of 10 societies and by invited experts)developed
with the special contribution of the european association for cardiovascular prevention & rehabilitation
(eacpr). Eur. Heart J. 2016, 37, 2315–2381. [PubMed]

22. Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.;
Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 aha/acc/aacvpr/aapa/abc/acpm/ada/ags/apha/aspc/nla/pcna
guideline on the management of blood cholesterol: A report of the american college of cardiology/american
heart association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 2019, 73, 285–350. [CrossRef]
[PubMed]

23. Byrne, P.; Cullinan, J.; Murphy, C.; Smith, S.M. Cross-sectional analysis of the prevalence and predictors of
statin utilisation in ireland with a focus on primary prevention of cardiovascular disease. BMJ Open 2018, 8,
18524. [CrossRef] [PubMed]

24. Jang, T.L.; Bekelman, J.E.; Liu, Y.; Bach, P.B.; Basch, E.M.; Elkin, E.B.; Zelefsky, M.J.; Scardino, P.T.; Begg, C.B.;
Schrag, D. Physician visits prior to treatment for clinically localized prostate cancer. Arch. Intern. Med. 2010,
170, 440–450. [CrossRef] [PubMed]

25. Petretta, M.; Costanzo, P.; Perrone-Filardi, P.; Chiariello, M. Impact of gender in primary prevention of
coronary heart disease with statin therapy: A meta-analysis. Int. J. Cardiol. 2010, 138, 25–31. [CrossRef]

26. Brugts, J.J.; Yetgin, T.; Hoeks, S.E.; Gotto, A.M.; Shepherd, J.; Westendorp, R.G.; de Craen, A.J.; Knopp, R.H.;
Nakamura, H.; Ridker, P.; et al. The benefits of statins in people without established cardiovascular disease
but with cardiovascular risk factors: Meta-analysis of randomised controlled trials. BMJ 2009, 338, 2376.
[CrossRef]

27. de Vries, F.M.; Denig, P.; Pouwels, K.B.; Postma, M.J.; Hak, E. Primary prevention of major cardiovascular
and cerebrovascular events with statins in diabetic patients: A meta-analysis. Drugs 2012, 72, 2365–2373.
[CrossRef]

28. Byrne, P.; Cullinan, J.; Smith, A.; Smith, S.M. Statins for the primary prevention of cardiovascular disease:
An overview of systematic reviews. BMJ Open 2019, 9, 23085. [CrossRef]

29. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients
with coronary heart disease: The scandinavian simvastatin survival study (4s). Lancet 1994, 344, 1383–1389.

30. Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.;
Pfeffer, M.A.; Skene, A.M.; et al. Intensive versus moderate lipid lowering with statins after acute coronary
syndromes. N. Engl. J. Med. 2004, 350, 1495–1504. [CrossRef]

31. Rodriguez, F.; Maron, D.J.; Knowles, J.W.; Virani, S.S.; Lin, S.; Heidenreich, P.A. Association between intensity
of statin therapy and mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2017, 2,
47–54. [CrossRef] [PubMed]

32. Armitage, J.; Bowman, L.; Wallendszus, K.; Bulbulia, R.; Rahimi, K.; Haynes, R.; Parish, S.; Peto, R.; Collins, R.
Intensive lowering of ldl cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of
myocardial infarction: A double-blind randomised trial. Lancet 2010, 376, 1658–1669. [PubMed]

33. Ference, B.A.; Majeed, F.; Penumetcha, R.; Flack, J.M.; Brook, R.D. Effect of naturally random allocation to
lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms
in npc1l1, hmgcr, or both: A 2 × 2 factorial mendelian randomization study. J. Am. Coll. Cardiol. 2015, 65,
1552–1561. [CrossRef] [PubMed]

http://dx.doi.org/10.1161/ATVBAHA.117.310097
http://dx.doi.org/10.1093/eurheartj/ehy462
http://dx.doi.org/10.1038/s41569-018-0098-5
http://dx.doi.org/10.1093/eurheartj/ehz455
http://www.ncbi.nlm.nih.gov/pubmed/27222591
http://dx.doi.org/10.1016/j.jacc.2018.11.003
http://www.ncbi.nlm.nih.gov/pubmed/30423393
http://dx.doi.org/10.1136/bmjopen-2017-018524
http://www.ncbi.nlm.nih.gov/pubmed/29439070
http://dx.doi.org/10.1001/archinternmed.2010.1
http://www.ncbi.nlm.nih.gov/pubmed/20212180
http://dx.doi.org/10.1016/j.ijcard.2008.08.001
http://dx.doi.org/10.1136/bmj.b2376
http://dx.doi.org/10.2165/11638240-000000000-00000
http://dx.doi.org/10.1136/bmjopen-2018-023085
http://dx.doi.org/10.1056/NEJMoa040583
http://dx.doi.org/10.1001/jamacardio.2016.4052
http://www.ncbi.nlm.nih.gov/pubmed/27829091
http://www.ncbi.nlm.nih.gov/pubmed/21067805
http://dx.doi.org/10.1016/j.jacc.2015.02.020
http://www.ncbi.nlm.nih.gov/pubmed/25770315


J. Clin. Med. 2019, 8, 1764 13 of 18

34. Kannel, W.B.; McGee, D.L. Diabetes and cardiovascular disease. The framingham study. JAMA 1979, 241,
2035–2038. [CrossRef] [PubMed]

35. Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this
clinical entity. Circ. Res. 2018, 122, 624–638. [CrossRef]

36. Holscher, M.E.; Bode, C.; Bugger, H. Diabetic cardiomyopathy: Does the type of diabetes matter? Int. J.
Mol. Sci. 2016, 17, 2136. [CrossRef]

37. Zarich, S.W.; Arbuckle, B.E.; Cohen, L.R.; Roberts, M.; Nesto, R.W. Diastolic abnormalities in young
asymptomatic diabetic patients assessed by pulsed doppler echocardiography. J. Am. Coll. Cardiol. 1988, 12,
114–120. [CrossRef]

38. Palmieri, V.; Bella, J.N.; Arnett, D.K.; Liu, J.E.; Oberman, A.; Schuck, M.Y.; Kitzman, D.W.; Hopkins, P.N.;
Morgan, D.; Rao, D.C.; et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic
function in hypertensive subjects: Hypertension genetic epidemiology network (hypergen) study. Circulation
2001, 103, 102–107. [CrossRef]

39. Boudina, S.; Abel, E.D. Diabetic cardiomyopathy revisited. Circulation 2007, 115, 3213–3223. [CrossRef]
40. Frati, G.; Schirone, L.; Chimenti, I.; Yee, D.; Biondi-Zoccai, G.; Volpe, M.; Sciarretta, S. An overview of

the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic
cardiomyopathy. Cardiovasc. Res. 2017, 113, 378–388. [CrossRef]

41. Thomas, C.M.; Yong, Q.C.; Rosa, R.M.; Seqqat, R.; Gopal, S.; Casarini, D.E.; Jones, W.K.; Gupta, S.; Baker, K.M.;
Kumar, R. Cardiac-specific suppression of nf-kappab signaling prevents diabetic cardiomyopathy via
inhibition of the renin-angiotensin system. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, 1036–1045.
[CrossRef] [PubMed]

42. Mariappan, N.; Elks, C.M.; Sriramula, S.; Guggilam, A.; Liu, Z.; Borkhsenious, O.; Francis, J. Nf-kappab-
induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type ii diabetes.
Cardiovasc. Res. 2010, 85, 473–483. [CrossRef] [PubMed]

43. Fuentes-Antras, J.; Picatoste, B.; Ramirez, E.; Egido, J.; Tunon, J.; Lorenzo, O. Targeting metabolic disturbance
in the diabetic heart. Cardiovasc. Diabetol. 2015, 14, 17. [CrossRef] [PubMed]

44. Costantino, S.; Akhmedov, A.; Melina, G.; Mohammed, S.A.; Othman, A.; Ambrosini, S.; Wijnen, W.J.;
Sada, L.; Ciavarella, G.M.; Liberale, L.; et al. Obesity-induced activation of jund promotes myocardial lipid
accumulation and metabolic cardiomyopathy. Eur. Heart J. 2019, 40, 997–1008. [CrossRef]

45. Van Linthout, S.; Riad, A.; Dhayat, N.; Spillmann, F.; Du, J.; Dhayat, S.; Westermann, D.; Hilfiker-Kleiner, D.;
Noutsias, M.; Laufs, U.; et al. Anti-inflammatory effects of atorvastatin improve left ventricular function in
experimental diabetic cardiomyopathy. Diabetologia 2007, 50, 1977–1986. [CrossRef]

46. Carillion, A.; Feldman, S.; Na, N.; Biais, M.; Carpentier, W.; Birenbaum, A.; Cagnard, N.; Loyer, X.;
Bonnefont-Rousselot, D.; Hatem, S.; et al. Atorvastatin reduces beta-adrenergic dysfunction in rats with
diabetic cardiomyopathy. PLoS ONE 2017, 12, 180103. [CrossRef]

47. Luo, B.; Li, B.; Wang, W.; Liu, X.; Liu, X.; Xia, Y.; Zhang, C.; Zhang, Y.; Zhang, M.; An, F. Rosuvastatin
alleviates diabetic cardiomyopathy by inhibiting nlrp3 inflammasome and mapk pathways in a type 2
diabetes rat model. Cardiovasc. Drugs Ther. 2014, 28, 33–43. [CrossRef]

48. Heart Protection Study Collaborative Group. Mrc/bhf heart protection study of cholesterol lowering with
simvastatin in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet 2002, 360, 7–22.
[CrossRef]

49. Colhoun, H.M.; Betteridge, D.J.; Durrington, P.N.; Hitman, G.A.; Neil, H.A.; Livingstone, S.J.; Thomason, M.J.;
Mackness, M.I.; Charlton-Menys, V.; Fuller, J.H.; et al. Primary prevention of cardiovascular disease
with atorvastatin in type 2 diabetes in the collaborative atorvastatin diabetes study (cards): Multicentre
randomised placebo-controlled trial. Lancet 2004, 364, 685–696. [CrossRef]

50. Gaede, P.; Lund-Andersen, H.; Parving, H.H.; Pedersen, O. Effect of a multifactorial intervention on mortality
in type 2 diabetes. N. Engl. J. Med. 2008, 358, 580–591. [CrossRef]

51. Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.;
Grobbee, D.E.; Hansen, T.B.; et al. 2019 esc guidelines on diabetes, pre-diabetes, and cardiovascular diseases
developed in collaboration with the easd. Eur. Heart J. 2019. [CrossRef] [PubMed]

52. Paseban, M.; Butler, A.E.; Sahebkar, A. Mechanisms of statin-induced new-onset diabetes. J. Cell. Physiol.
2019, 234, 12551–12561. [CrossRef] [PubMed]

http://dx.doi.org/10.1001/jama.1979.03290450033020
http://www.ncbi.nlm.nih.gov/pubmed/430798
http://dx.doi.org/10.1161/CIRCRESAHA.117.311586
http://dx.doi.org/10.3390/ijms17122136
http://dx.doi.org/10.1016/0735-1097(88)90364-6
http://dx.doi.org/10.1161/01.CIR.103.1.102
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.679597
http://dx.doi.org/10.1093/cvr/cvx011
http://dx.doi.org/10.1152/ajpheart.00340.2014
http://www.ncbi.nlm.nih.gov/pubmed/25085967
http://dx.doi.org/10.1093/cvr/cvp305
http://www.ncbi.nlm.nih.gov/pubmed/19729361
http://dx.doi.org/10.1186/s12933-015-0173-8
http://www.ncbi.nlm.nih.gov/pubmed/25856422
http://dx.doi.org/10.1093/eurheartj/ehy903
http://dx.doi.org/10.1007/s00125-007-0719-8
http://dx.doi.org/10.1371/journal.pone.0180103
http://dx.doi.org/10.1007/s10557-013-6498-1
http://dx.doi.org/10.1016/S0140-6736(02)09327-3
http://dx.doi.org/10.1016/S0140-6736(04)16895-5
http://dx.doi.org/10.1056/NEJMoa0706245
http://dx.doi.org/10.1093/eurheartj/ehz486
http://www.ncbi.nlm.nih.gov/pubmed/31497854
http://dx.doi.org/10.1002/jcp.28123
http://www.ncbi.nlm.nih.gov/pubmed/30618154


J. Clin. Med. 2019, 8, 1764 14 of 18

53. Barylski, M.; Nikolic, D.; Banach, M.; Toth, P.P.; Montalto, G.; Rizzo, M. Statins and new-onset diabetes.
Curr. Pharm. Des. 2014, 20, 3657–3664. [CrossRef] [PubMed]

54. Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.;
Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with
elevated c-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207. [CrossRef]

55. de Lemos, J.A.; Blazing, M.A.; Wiviott, S.D.; Lewis, E.F.; Fox, K.A.; White, H.D.; Rouleau, J.L.; Pedersen, T.R.;
Gardner, L.H.; Mukherjee, R.; et al. Early intensive vs. a delayed conservative simvastatin strategy in
patients with acute coronary syndromes: Phase z of the a to z trial. JAMA 2004, 292, 1307–1316. [CrossRef]

56. Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.;
Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl.
J. Med. 2015, 372, 2387–2397. [CrossRef]

57. Liu, L.; Moesner, P.; Kovach, N.L.; Bailey, R.; Hamilton, A.D.; Sebti, S.M.; Harlan, J.M. Integrin-dependent
leukocyte adhesion involves geranylgeranylated protein(s). J. Biol. Chem. 1999, 274, 33334–33340. [CrossRef]

58. Li, X.; Liu, L.; Tupper, J.C.; Bannerman, D.D.; Winn, R.K.; Sebti, S.M.; Hamilton, A.D.; Harlan, J.M. Inhibition
of protein geranylgeranylation and rhoa/rhoa kinase pathway induces apoptosis in human endothelial cells.
J. Biol. Chem. 2002, 277, 15309–15316. [CrossRef]

59. Rasmussen, L.M.; Hansen, P.R.; Nabipour, M.T.; Olesen, P.; Kristiansen, M.T.; Ledet, T. Diverse effects
of inhibition of 3-hydroxy-3-methylglutaryl-coa reductase on the expression of vcam-1 and e-selectin in
endothelial cells. Biochem. J. 2001, 360, 363–370. [CrossRef]

60. Hodge, R.G.; Ridley, A.J. Regulating rho gtpases and their regulators. Nat. Rev. Mol. Cell Biol. 2016, 17,
496–510. [CrossRef]

61. Simanshu, D.K.; Nissley, D.V.; McCormick, F. Ras proteins and their regulators in human disease. Cell 2017,
170, 17–33. [CrossRef] [PubMed]

62. Nimnual, A.S.; Taylor, L.J.; Bar-Sagi, D. Redox-dependent downregulation of rho by rac. Nat. Cell Biol. 2003,
5, 236–241. [CrossRef] [PubMed]

63. Satoh, M.; Ogita, H.; Takeshita, K.; Mukai, Y.; Kwiatkowski, D.J.; Liao, J.K. Requirement of rac1 in the
development of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 2006, 103, 7432–7437. [CrossRef] [PubMed]

64. Stout, M.C.; Asiimwe, E.; Birkenstamm, J.R.; Kim, S.Y.; Campbell, P.M. Analyzing ras-associated cell
proliferation signaling. Methods Mol. Biol. 2014, 1170, 393–409. [PubMed]

65. Treasure, C.B.; Klein, J.L.; Weintraub, W.S.; Talley, J.D.; Stillabower, M.E.; Kosinski, A.S.; Zhang, J.;
Boccuzzi, S.J.; Cedarholm, J.C.; Alexander, R.W. Beneficial effects of cholesterol-lowering therapy on
the coronary endothelium in patients with coronary artery disease. N. Engl. J. Med. 1995, 332, 481–487.
[CrossRef] [PubMed]

66. Anderson, T.J.; Meredith, I.T.; Yeung, A.C.; Frei, B.; Selwyn, A.P.; Ganz, P. The effect of cholesterol-lowering
and antioxidant therapy on endothelium-dependent coronary vasomotion. N. Engl. J. Med. 1995, 332,
488–493. [CrossRef]

67. Yamakuchi, M.; Greer, J.J.; Cameron, S.J.; Matsushita, K.; Morrell, C.N.; Talbot-Fox, K.; Baldwin, W.M., 3rd;
Lefer, D.J.; Lowenstein, C.J. Hmg-coa reductase inhibitors inhibit endothelial exocytosis and decrease
myocardial infarct size. Circ. Res. 2005, 96, 1185–1192. [CrossRef]

68. Meda, C.; Plank, C.; Mykhaylyk, O.; Schmidt, K.; Mayer, B. Effects of statins on nitric oxide/cgmp signaling
in human umbilical vein endothelial cells. Pharmacol. Rep. 2010, 62, 100–112. [CrossRef]

69. Dichtl, W.; Dulak, J.; Frick, M.; Alber, H.F.; Schwarzacher, S.P.; Ares, M.P.; Nilsson, J.; Pachinger, O.;
Weidinger, F. Hmg-coa reductase inhibitors regulate inflammatory transcription factors in human endothelial
and vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 58–63. [CrossRef]

70. Crisby, M.; Nordin-Fredriksson, G.; Shah, P.K.; Yano, J.; Zhu, J.; Nilsson, J. Pravastatin treatment increases
collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human
carotid plaques: Implications for plaque stabilization. Circulation 2001, 103, 926–933. [CrossRef]

71. Aikawa, M.; Rabkin, E.; Sugiyama, S.; Voglic, S.J.; Fukumoto, Y.; Furukawa, Y.; Shiomi, M.; Schoen, F.J.;
Libby, P. An hmg-coa reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix
metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001, 103, 276–283. [CrossRef] [PubMed]

72. Xenos, E.S.; Stevens, S.L.; Freeman, M.B.; Cassada, D.C.; Goldman, M.H. Nitric oxide mediates the effect of
fluvastatin on intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 expression
on human endothelial cells. Ann. Vasc. Surg. 2005, 19, 386–392. [CrossRef] [PubMed]

http://dx.doi.org/10.2174/13816128113196660678
http://www.ncbi.nlm.nih.gov/pubmed/24040871
http://dx.doi.org/10.1056/NEJMoa0807646
http://dx.doi.org/10.1001/jama.292.11.1307
http://dx.doi.org/10.1056/NEJMoa1410489
http://dx.doi.org/10.1074/jbc.274.47.33334
http://dx.doi.org/10.1074/jbc.M201253200
http://dx.doi.org/10.1042/bj3600363
http://dx.doi.org/10.1038/nrm.2016.67
http://dx.doi.org/10.1016/j.cell.2017.06.009
http://www.ncbi.nlm.nih.gov/pubmed/28666118
http://dx.doi.org/10.1038/ncb938
http://www.ncbi.nlm.nih.gov/pubmed/12598902
http://dx.doi.org/10.1073/pnas.0510444103
http://www.ncbi.nlm.nih.gov/pubmed/16651530
http://www.ncbi.nlm.nih.gov/pubmed/24906326
http://dx.doi.org/10.1056/NEJM199502233320801
http://www.ncbi.nlm.nih.gov/pubmed/7830728
http://dx.doi.org/10.1056/NEJM199502233320802
http://dx.doi.org/10.1161/01.RES.0000170229.49776.81
http://dx.doi.org/10.1016/S1734-1140(10)70247-4
http://dx.doi.org/10.1161/01.ATV.0000043456.48735.20
http://dx.doi.org/10.1161/01.CIR.103.7.926
http://dx.doi.org/10.1161/01.CIR.103.2.276
http://www.ncbi.nlm.nih.gov/pubmed/11208689
http://dx.doi.org/10.1007/s10016-005-0011-7
http://www.ncbi.nlm.nih.gov/pubmed/15818460


J. Clin. Med. 2019, 8, 1764 15 of 18

73. Ito, T.; Ikeda, U.; Yamamoto, K.; Shimada, K. Regulation of interleukin-8 expression by hmg-coa reductase
inhibitors in human vascular smooth muscle cells. Atherosclerosis 2002, 165, 51–55. [CrossRef]

74. Weitz-Schmidt, G.; Welzenbach, K.; Brinkmann, V.; Kamata, T.; Kallen, J.; Bruns, C.; Cottens, S.; Takada, Y.;
Hommel, U. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin
site. Nat. Med. 2001, 7, 687–692. [CrossRef]

75. Simon, D.I.; Dhen, Z.; Seifert, P.; Edelman, E.R.; Ballantyne, C.M.; Rogers, C. Decreased neointimal formation
in mac-1(-/-) mice reveals a role for inflammation in vascular repair after angioplasty. J. Clin. Investig. 2000,
105, 293–300. [CrossRef]

76. Kwak, B.; Mulhaupt, F.; Myit, S.; Mach, F. Statins as a newly recognized type of immunomodulator. Nat.
Med. 2000, 6, 1399–1402. [CrossRef]

77. Hillyard, D.Z.; Cameron, A.J.; McDonald, K.J.; Thomson, J.; MacIntyre, A.; Shiels, P.G.; Panarelli, M.;
Jardine, A.G. Simvastatin inhibits lymphocyte function in normal subjects and patients with cardiovascular
disease. Atherosclerosis 2004, 175, 305–313. [CrossRef]

78. Henriksbo, B.D.; Schertzer, J.D. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte
2015, 4, 232–238. [CrossRef]

79. Libby, P. Interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of cantos and beyond.
J. Am. Coll. Cardiol. 2017, 70, 2278–2289. [CrossRef]

80. Swanson, K.V.; Deng, M.; Ting, J.P. The nlrp3 inflammasome: Molecular activation and regulation to
therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [CrossRef]

81. Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.;
Wu, J.; Monks, B.G.; Fitzgerald, K.A.; et al. Cutting edge: Nf-kappab activating pattern recognition and
cytokine receptors license nlrp3 inflammasome activation by regulating nlrp3 expression. J. Immunol. 2009,
183, 787–791. [CrossRef] [PubMed]

82. Franchi, L.; Eigenbrod, T.; Nunez, G. Cutting edge: Tnf-alpha mediates sensitization to atp and silica via the
nlrp3 inflammasome in the absence of microbial stimulation. J. Immunol. 2009, 183, 792–796. [CrossRef]
[PubMed]

83. Xing, Y.; Yao, X.; Li, H.; Xue, G.; Guo, Q.; Yang, G.; An, L.; Zhang, Y.; Meng, G. Cutting edge: Traf6 mediates
tlr/il-1r signaling-induced nontranscriptional priming of the nlrp3 inflammasome. J. Immunol. 2017, 199,
1561–1566. [CrossRef] [PubMed]

84. Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Zhan, X.Y.; et al. Nlrp3
phosphorylation is an essential priming event for inflammasome activation. Mol. Cell 2017, 68, 185–197.
[CrossRef]

85. Juliana, C.; Fernandes-Alnemri, T.; Kang, S.; Farias, A.; Qin, F.; Alnemri, E.S. Non-transcriptional priming and
deubiquitination regulate nlrp3 inflammasome activation. J. Biol. Chem. 2012, 287, 36617–36622. [CrossRef]

86. Murakami, T.; Ockinger, J.; Yu, J.; Byles, V.; McColl, A.; Hofer, A.M.; Horng, T. Critical role for calcium
mobilization in activation of the nlrp3 inflammasome. Proc. Natl. Acad. Sci. USA 2012, 109, 11282–11287.
[CrossRef]

87. Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; et al. Clics-dependent
chloride efflux is an essential and proximal upstream event for nlrp3 inflammasome activation. Nat. Commun.
2017, 8, 202. [CrossRef]

88. Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica
crystals and aluminum salts activate the nalp3 inflammasome through phagosomal destabilization. Nat.
Immunol. 2008, 9, 847–856. [CrossRef]

89. Munoz-Planillo, R.; Kuffa, P.; Martinez-Colon, G.; Smith, B.L.; Rajendiran, T.M.; Nunez, G. K(+) efflux is the
common trigger of nlrp3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013,
38, 1142–1153. [CrossRef]

90. Wang, Z.; Hu, W.; Lu, C.; Ma, Z.; Jiang, S.; Gu, C.; Acuna-Castroviejo, D.; Yang, Y. Targeting nlrp3
(nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome in
cardiovascular disorders. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2765–2779. [CrossRef]

91. Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of nlrp3 inflammasome
activation and its inhibitors. Cell Death Dis. 2019, 10, 128. [CrossRef] [PubMed]

92. Mauro, A.G.; Bonaventura, A.; Abbate, A. Drugs to inhibit the nlrp3 inflammasome: Not always on target.
J. Cardiovasc. Pharmacol. 2019, 74, 225–227. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0021-9150(02)00194-6
http://dx.doi.org/10.1038/89058
http://dx.doi.org/10.1172/JCI7811
http://dx.doi.org/10.1038/82219
http://dx.doi.org/10.1016/j.atherosclerosis.2004.03.018
http://dx.doi.org/10.1080/21623945.2015.1024394
http://dx.doi.org/10.1016/j.jacc.2017.09.028
http://dx.doi.org/10.1038/s41577-019-0165-0
http://dx.doi.org/10.4049/jimmunol.0901363
http://www.ncbi.nlm.nih.gov/pubmed/19570822
http://dx.doi.org/10.4049/jimmunol.0900173
http://www.ncbi.nlm.nih.gov/pubmed/19542372
http://dx.doi.org/10.4049/jimmunol.1700175
http://www.ncbi.nlm.nih.gov/pubmed/28739881
http://dx.doi.org/10.1016/j.molcel.2017.08.017
http://dx.doi.org/10.1074/jbc.M112.407130
http://dx.doi.org/10.1073/pnas.1117765109
http://dx.doi.org/10.1038/s41467-017-00227-x
http://dx.doi.org/10.1038/ni.1631
http://dx.doi.org/10.1016/j.immuni.2013.05.016
http://dx.doi.org/10.1161/ATVBAHA.118.311916
http://dx.doi.org/10.1038/s41419-019-1413-8
http://www.ncbi.nlm.nih.gov/pubmed/30755589
http://dx.doi.org/10.1097/FJC.0000000000000729
http://www.ncbi.nlm.nih.gov/pubmed/31415453


J. Clin. Med. 2019, 8, 1764 16 of 18

93. Mitchell, P.; Marette, A. Statin-induced insulin resistance through inflammasome activation: Sailing between
scylla and charybdis. Diabetes 2014, 63, 3569–3571. [CrossRef] [PubMed]

94. Banach, M.; Malodobra-Mazur, M.; Gluba, A.; Katsiki, N.; Rysz, J.; Dobrzyn, A. Statin therapy and new-onset
diabetes: Molecular mechanisms and clinical relevance. Curr. Pharm. Des. 2013, 19, 4904–4912. [CrossRef]
[PubMed]

95. Henriksbo, B.D.; Lau, T.C.; Cavallari, J.F.; Denou, E.; Chi, W.; Lally, J.S.; Crane, J.D.; Duggan, B.M.; Foley, K.P.;
Fullerton, M.D.; et al. Fluvastatin causes nlrp3 inflammasome-mediated adipose insulin resistance. Diabetes
2014, 63, 3742–3747. [CrossRef]

96. Massonnet, B.; Normand, S.; Moschitz, R.; Delwail, A.; Favot, L.; Garcia, M.; Bourmeyster, N.; Cuisset, L.;
Grateau, G.; Morel, F.; et al. Pharmacological inhibitors of the mevalonate pathway activate pro-il-1
processing and il-1 release by human monocytes. Eur. Cytokine Netw. 2009, 20, 112–120. [CrossRef]

97. Montero, M.T.; Hernandez, O.; Suarez, Y.; Matilla, J.; Ferruelo, A.J.; Martinez-Botas, J.; Gomez-Coronado, D.;
Lasuncion, M.A. Hydroxymethylglutaryl-coenzyme a reductase inhibition stimulates caspase-1 activity and
th1-cytokine release in peripheral blood mononuclear cells. Atherosclerosis 2000, 153, 303–313. [CrossRef]

98. Liao, Y.H.; Lin, Y.C.; Tsao, S.T.; Lin, Y.C.; Yang, A.J.; Huang, C.T.; Huang, K.C.; Lin, W.W. Hmg-coa reductase
inhibitors activate caspase-1 in human monocytes depending on atp release and p2 × 7 activation. J. Leukoc.
Biol. 2013, 93, 289–299. [CrossRef]

99. Frenkel, J.; Rijkers, G.T.; Mandey, S.H.; Buurman, S.W.; Houten, S.M.; Wanders, R.J.; Waterham, H.R.; Kuis, W.
Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia d and
periodic fever syndrome. Arthritis Rheum. 2002, 46, 2794–2803. [CrossRef]

100. Henriksbo, B.D.; Tamrakar, A.K.; Xu, J.; Duggan, B.M.; Cavallari, J.F.; Phulka, J.; Stampfli, M.R.; Ashkar, A.A.;
Schertzer, J.D. Statins promote interleukin-1beta-dependent adipocyte insulin resistance through lower
prenylation, not cholesterol. Diabetes 2019, 68, 1441–1448. [CrossRef]

101. Bonaventura, A.; Liberale, L.; Carbone, F.; Vecchie, A.; Diaz-Canestro, C.; Camici, G.G.; Montecucco, F.;
Dallegri, F. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb.
Haemost. 2018, 118, 6–27. [CrossRef] [PubMed]

102. Liberale, L.; Dallegri, F.; Montecucco, F.; Carbone, F. Pathophysiological relevance of macrophage subsets in
atherogenesis. Thromb. Haemost. 2017, 117, 7–18. [CrossRef] [PubMed]

103. Liberale, L.; Bertolotto, M.; Carbone, F.; Contini, P.; Wust, P.; Spinella, G.; Pane, B.; Palombo, D.;
Bonaventura, A.; Pende, A.; et al. Resistin exerts a beneficial role in atherosclerotic plaque inflammation by
inhibiting neutrophil migration. Int. J. Cardiol. 2018, 272, 13–19. [CrossRef] [PubMed]

104. Carbone, F.; Rigamonti, F.; Burger, F.; Roth, A.; Bertolotto, M.; Spinella, G.; Pane, B.; Palombo, D.; Pende, A.;
Bonaventura, A.; et al. Serum levels of osteopontin predict major adverse cardiovascular events in patients
with severe carotid artery stenosis. Int. J. Cardiol. 2018, 255, 195–199. [CrossRef]

105. Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J.; Group, C.T. Relationship
of c-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab:
A secondary analysis from the cantos randomised controlled trial. Lancet 2018, 391, 319–328. [CrossRef]

106. Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.;
Nunez, G.; Schnurr, M.; et al. Nlrp3 inflammasomes are required for atherogenesis and activated by
cholesterol crystals. Nature 2010, 464, 1357–1361. [CrossRef]

107. Rajamaki, K.; Lappalainen, J.; Oorni, K.; Valimaki, E.; Matikainen, S.; Kovanen, P.T.; Eklund, K.K. Cholesterol
crystals activate the nlrp3 inflammasome in human macrophages: A novel link between cholesterol
metabolism and inflammation. PLoS ONE 2010, 5, 11765. [CrossRef]

108. Warner, S.J.; Auger, K.R.; Libby, P. Interleukin 1 induces interleukin 1. Ii. Recombinant human interleukin 1
induces interleukin 1 production by adult human vascular endothelial cells. J. Immunol. 1987, 139, 1911–1917.

109. Liberale, L.; Bonaventura, A.; Vecchie, A.; Casula, M.; Dallegri, F.; Montecucco, F.; Carbone, F. The role of
adipocytokines in coronary atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 10. [CrossRef]

110. Feingold, K.R.; Grunfeld, C. The Effect of Inflammation and Infection on Lipids and Lipoproteins. In Endotext;
Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G.,
Koch, C., Kopp, P., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000.

111. Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev.
Cardiol. 2014, 11, 255–265. [CrossRef]

http://dx.doi.org/10.2337/db14-1059
http://www.ncbi.nlm.nih.gov/pubmed/25342725
http://dx.doi.org/10.2174/1381612811319270014
http://www.ncbi.nlm.nih.gov/pubmed/23278491
http://dx.doi.org/10.2337/db13-1398
http://dx.doi.org/10.1684/ecn.2009.0162
http://dx.doi.org/10.1016/S0021-9150(00)00417-2
http://dx.doi.org/10.1189/jlb.0812409
http://dx.doi.org/10.1002/art.10550
http://dx.doi.org/10.2337/db18-0999
http://dx.doi.org/10.1160/TH17-09-0630
http://www.ncbi.nlm.nih.gov/pubmed/29304522
http://dx.doi.org/10.1160/TH16-08-0593
http://www.ncbi.nlm.nih.gov/pubmed/27683760
http://dx.doi.org/10.1016/j.ijcard.2018.07.112
http://www.ncbi.nlm.nih.gov/pubmed/30075966
http://dx.doi.org/10.1016/j.ijcard.2018.01.008
http://dx.doi.org/10.1016/S0140-6736(17)32814-3
http://dx.doi.org/10.1038/nature08938
http://dx.doi.org/10.1371/journal.pone.0011765
http://dx.doi.org/10.1007/s11883-017-0644-3
http://dx.doi.org/10.1038/nrcardio.2014.28


J. Clin. Med. 2019, 8, 1764 17 of 18

112. Hartman, M.H.T.; Groot, H.E.; Leach, I.M.; Karper, J.C.; van der Harst, P. Translational overview of cytokine
inhibition in acute myocardial infarction and chronic heart failure. Trends Cardiovasc. Med. 2018, 28, 369–379.
[CrossRef] [PubMed]

113. Abbate, A.; Salloum, F.N.; Vecile, E.; Das, A.; Hoke, N.N.; Straino, S.; Biondi-Zoccai, G.G.; Houser, J.E.;
Qureshi, I.Z.; Ownby, E.D.; et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits
apoptosis in experimental acute myocardial infarction. Circulation 2008, 117, 2670–2683. [CrossRef] [PubMed]

114. Van Tassell, B.W.; Varma, A.; Salloum, F.N.; Das, A.; Seropian, I.M.; Toldo, S.; Smithson, L.; Hoke, N.N.;
Chau, V.Q.; Robati, R.; et al. Interleukin-1 trap attenuates cardiac remodeling after experimental acute
myocardial infarction in mice. J. Cardiovasc. Pharmacol. 2010, 55, 117–122. [CrossRef] [PubMed]

115. Toldo, S.; Schatz, A.M.; Mezzaroma, E.; Chawla, R.; Stallard, T.W.; Stallard, W.C.; Jahangiri, A.; Van
Tassell, B.W.; Abbate, A. Recombinant human interleukin-1 receptor antagonist provides cardioprotection
during myocardial ischemia reperfusion in the mouse. Cardiovasc. Drugs Ther. 2012, 26, 273–276. [CrossRef]

116. Toldo, S.; Mezzaroma, E.; Van Tassell, B.W.; Farkas, D.; Marchetti, C.; Voelkel, N.F.; Abbate, A. Interleukin-1beta
blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome
in the mouse. Exp. Physiol. 2013, 98, 734–745. [CrossRef]

117. Toldo, S.; Mezzaroma, E.; Bressi, E.; Marchetti, C.; Carbone, S.; Sonnino, C.; Van Tassell, B.W.; Abbate, A.
Interleukin-1beta blockade improves left ventricular systolic/diastolic function and restores contractility
reserve in severe ischemic cardiomyopathy in the mouse. J. Cardiovasc. Pharmacol. 2014, 64, 1–6. [CrossRef]

118. De Jesus, N.M.; Wang, L.; Lai, J.; Rigor, R.R.; Francis Stuart, S.D.; Bers, D.M.; Lindsey, M.L.; Ripplinger, C.M.
Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm 2017, 14, 727–736.
[CrossRef]

119. Mauro, A.G.; Mezzaroma, E.; Torrado, J.; Kundur, P.; Joshi, P.; Stroud, K.; Quaini, F.; Lagrasta, C.A.; Abbate, A.;
Toldo, S. Reduction of myocardial ischemia-reperfusion injury by inhibiting interleukin-1 alpha. J. Cardiovasc.
Pharmacol. 2017, 69, 156–160. [CrossRef]

120. Harouki, N.; Nicol, L.; Remy-Jouet, I.; Henry, J.P.; Dumesnil, A.; Lejeune, A.; Renet, S.; Golding, F.; Djerada, Z.;
Wecker, D.; et al. The il-1beta antibody gevokizumab limits cardiac remodeling and coronary dysfunction in
rats with heart failure. JACC Basic Transl. Sci. 2017, 2, 418–430. [CrossRef]

121. Abbate, A.; Van Tassell, B.W.; Biondi-Zoccai, G.; Kontos, M.C.; Grizzard, J.D.; Spillman, D.W.; Oddi, C.;
Roberts, C.S.; Melchior, R.D.; Mueller, G.H.; et al. Effects of interleukin-1 blockade with anakinra on adverse
cardiac remodeling and heart failure after acute myocardial infarction [from the virginia commonwealth
university-anakinra remodeling trial (2) (vcu-art2) pilot study]. Am. J. Cardiol. 2013, 111, 1394–1400.
[CrossRef]

122. Van Tassell, B.W.; Canada, J.; Carbone, S.; Trankle, C.; Buckley, L.; Oddi Erdle, C.; Abouzaki, N.A.; Dixon, D.;
Kadariya, D.; Christopher, S.; et al. Interleukin-1 blockade in recently decompensated systolic heart failure:
Results from redhart (recently decompensated heart failure anakinra response trial). Circ. Heart Fail. 2017,
10, 4373. [CrossRef] [PubMed]

123. Van Tassell, B.W.; Arena, R.; Biondi-Zoccai, G.; Canada, J.M.; Oddi, C.; Abouzaki, N.A.; Jahangiri, A.;
Falcao, R.A.; Kontos, M.C.; Shah, K.B.; et al. Effects of interleukin-1 blockade with anakinra on aerobic
exercise capacity in patients with heart failure and preserved ejection fraction (from the d-hart pilot study).
Am. J. Cardiol. 2014, 113, 321–327. [CrossRef] [PubMed]

124. Abbate, A.; Kontos, M.C.; Abouzaki, N.A.; Melchior, R.D.; Thomas, C.; Van Tassell, B.W.; Oddi, C.; Carbone, S.;
Trankle, C.R.; Roberts, C.S.; et al. Comparative safety of interleukin-1 blockade with anakinra in patients
with st-segment elevation acute myocardial infarction (from the vcu-art and vcu-art2 pilot studies). Am. J.
Cardiol. 2015, 115, 288–292. [CrossRef] [PubMed]

125. Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.;
Ridker, P.M. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart
failure. Circulation 2019, 139, 1289–1299. [CrossRef]

126. Giugliano, R.P.; Pedersen, T.R.; Park, J.G.; De Ferrari, G.M.; Gaciong, Z.A.; Ceska, R.; Toth, K.;
Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; et al. Clinical efficacy and safety of achieving very
low ldl-cholesterol concentrations with the pcsk9 inhibitor evolocumab: A prespecified secondary analysis
of the fourier trial. Lancet 2017, 390, 1962–1971. [CrossRef]

127. Peiro, C.; Lorenzo, O.; Carraro, R.; Sanchez-Ferrer, C.F. Il-1beta inhibition in cardiovascular complications
associated to diabetes mellitus. Front. Pharmacol. 2017, 8, 363. [CrossRef]

http://dx.doi.org/10.1016/j.tcm.2018.02.003
http://www.ncbi.nlm.nih.gov/pubmed/29519701
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.740233
http://www.ncbi.nlm.nih.gov/pubmed/18474815
http://dx.doi.org/10.1097/FJC.0b013e3181c87e53
http://www.ncbi.nlm.nih.gov/pubmed/19920765
http://dx.doi.org/10.1007/s10557-012-6389-x
http://dx.doi.org/10.1113/expphysiol.2012.069831
http://dx.doi.org/10.1097/FJC.0000000000000106
http://dx.doi.org/10.1016/j.hrthm.2017.01.027
http://dx.doi.org/10.1097/FJC.0000000000000452
http://dx.doi.org/10.1016/j.jacbts.2017.06.005
http://dx.doi.org/10.1016/j.amjcard.2013.01.287
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.117.004373
http://www.ncbi.nlm.nih.gov/pubmed/29141858
http://dx.doi.org/10.1016/j.amjcard.2013.08.047
http://www.ncbi.nlm.nih.gov/pubmed/24262762
http://dx.doi.org/10.1016/j.amjcard.2014.11.003
http://www.ncbi.nlm.nih.gov/pubmed/25482680
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038010
http://dx.doi.org/10.1016/S0140-6736(17)32290-0
http://dx.doi.org/10.3389/fphar.2017.00363


J. Clin. Med. 2019, 8, 1764 18 of 18

128. Abbate, A.; Kontos, M.C.; Grizzard, J.D.; Biondi-Zoccai, G.G.; Van Tassell, B.W.; Robati, R.; Roach, L.M.;
Arena, R.A.; Roberts, C.S.; Varma, A.; et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac
remodeling after acute myocardial infarction (virginia commonwealth university anakinra remodeling trial
[vcu-art] pilot study). Am. J. Cardiol. 2010, 105, 1371–1377. [CrossRef]

129. Morton, A.C.; Rothman, A.M.; Greenwood, J.P.; Gunn, J.; Chase, A.; Clarke, B.; Hall, A.S.; Fox, K.; Foley, C.;
Banya, W.; et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-st
elevation acute coronary syndromes: The mrc-ila heart study. Eur. Heart J. 2015, 36, 377–384. [CrossRef]

130. Van Tassell, B.W.; Lipinski, M.J.; Appleton, D.; Roberts, C.S.; Kontos, M.C.; Abouzaki, N.; Melchior, R.;
Mueller, G.; Garnett, J.; Canada, J.; et al. Rationale and design of the virginia commonwealth
university-anakinra remodeling trial-3 (vcu-art3): A randomized, placebo-controlled, double-blinded,
multicenter study. Clin. Cardiol. 2018, 41, 1004–1008. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.amjcard.2009.12.059
http://dx.doi.org/10.1093/eurheartj/ehu272
http://dx.doi.org/10.1002/clc.22988
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Statins in Myocardial Infarction and Diabetic Cardiomyopathy 
	Myocardial Infarction 
	Diabetic Cardiomyopathy 

	Statins, Inflammation, and IL-1 
	Perspective 
	Conclusions 
	References

