1	Chapter 27
2	Modulation OOf the Host-Parasite Redox Metabolism to Potentiate Antimalarial Drug
3	Efficiency
4	
5	Federica Turrini ^{1*} francesco.turrini@unito.it;
6	Raffaella Boggia ¹ ;
7	Paola Zunin ¹ ;
8	Francesco Michelangelo Turrini ²
9	
10	¹ Department of Pharmacy
11	University of Genoa
12	VialeCembrano, 4 I-16148 Genoa, Italy
13	
14	² Department of Genetics, Biology and Biochemistry
15	University of Turin
16	Turin, Italy
17	
18	

19 Abstract

20 Artemisinin-based combination therapy (ACT) is nowadays the most effective treatment 21 for *P. falciparum* malaria: artemisinin is the most active drug able to rapidly kill all 22 erythrocyte stages of the malaria parasite. However, due to its short half-life, it requires the 23 association with other long-acting drugs. Even if the exact mechanism of action of most 24 antimalarial drugs is still unknown, many of these compounds are able to interact directly 25 or indirectly with the redox metabolism of the parasite and-/-or the host, enhancing the 26 effectiveness of the antimalarial therapy. This review focuses on many natural compounds, 27 isolated mainly from plants, and used as traditional antimalarial treatments, known to possess a potent antimalarial activity (IC50 lower than 1 ug/mL). These compounds belong 28 29 to some specific chemical family, mainly alkaloids, terpenoids, quassinoids, limonoids, 30 and polyphenols, sharing some common chemical features. These natural molecules could 31 offer new possibilities of combination therapies development as antimalarials when 32 associated with artemisinin.

33

34 Keywords

- 35 Antimalarial drugs
- 36 Artemisinin-based combination therapy
- 37 Natural antimalarial compounds
- 38 Host-parasite redox metabolism;
- 39

40 27.1. Introduction

41 27.1.1. Current Antimalarial_-Therapy

42 The natural antimalarial product artemisinin and its semi-synthetic derivatives represent 43 the front-line treatment of *P. falciparum* malaria, as they are the most active antimalarials 44 available, rapidly killing all blood stages of the malaria parasite. Artemisining contain an 45 endoperoxide bridge which plays a key role in the antimalarial activity with a mode of 46 action starting from radical transient species initiated by the cleavage of this bridge. Few 47 other natural compounds with such a peroxide bridge are known. On the other hand, the oxygen-oxygen bridge, being chemically unstable, determines a very short plasma half-48 49 life, constituting a major limiting factor to the use of artemisinin as a single drug [1]. -To 50 solve this problem, artemisinin was early used early on in combination with partner drugs 51 characterized by much longer half-life. -Artemisinin-based combination therapy (ACT) is 52 the most effective treatment for *P. falciparum* malaria. Artemisinin derivatives such as: 53 dihydroartemisinin, artesunate, and artemether, are combined with a partner drug such asincluding lumefantrine, mefloquine, amodiaquine, and piperaquine. Since the 54 55 introduction of artemisinin-combination therapies (ACTs), the overall number of malaria cases displayed a marked decline, but, since the last few years, the rate of decline has 56 57 stalled or even reversed in some regions [2].

58 The reasons of the recent increase of the number of malaria cases is are plausibly multi-

59 factorial, including: insufficient investments for treatment and prevention, insecticide

60 resistance, and antimalarial drug resistance. The relative role of each factor is undefined.

61 In the Greater Mekong <u>s</u>-ub-region, artemisinin resistance raised concern and <u>it</u> is

62 currently defined as "partial artemisinin resistance" in patients showing a delayed parasite 63 clearance following treatment with an ACT. Notably, in the same region, resistance to the

64 partner drugs is present. To rule out between artemisinin and partner drugs resistance in the

65 development, treatment failure is obviously very difficult. Currently, no evidence of

66 artemisinin resistance has been observed in African countries accounting for about 90% of

67 malaria cases and deaths worldwide.

69 27.2. Interactions $\underline{o}\Theta f$ Antimalarial Drugs $\underline{w}W$ ith Host-Parasite

70 Redox Homeostasis

71 27.2.1. Antimalarial Drugs Showing Redox Activity

72 Although the precise mechanism of action of most of the antimalarial drugs is still 73 unknown, most of the antimalarial drugs have the potential of interacting directly or unin-74 directly with redox metabolism of the parasite and/or of the host. 75 A direct redox effect exerted by some antimalarial drugs on the host cells is clearly 76 evidenced as hemolysis (oxidative damage and rapid destruction of erythrocytes leading to 77 variable degrees of anemia) in G6PD--deficient individuals. Powerful antimalarial drugs 78 such as primaquine, methylene blue, and sulfphonamides cause acute and severe 79 haemolytic anemia in G6PD--deficient subjects [3, 4]. In addition, popular antimalarial drugs and their combinations such as halofantrine, quinine, chloroquine, and 80 81 chlorproguanil-dapsone have been associated withte variable degrees of haemolytic 82 anemia, generation of ROS, and depletion of erythrocyte GSH [5, 6]. Artemisinin and its 83 derivatives also cause delayed hemolysis. The central role of the endoperoxide bridge of 84 artemisinin and the generation of free radicals following its cleavage has been clearly 85 established. Artemisinin activation needs iron provided by the host cells, resulting in the rapid generation of free radicals and the formation of heme-artemisinin adducts. To explain 86 87 its high activity (IC50 \approx 2 nM), specific molecular targets are expected to play a role in its

88 89 mechanism of action.

27.2.2. Antimalarial Drugs Causing the Accumulation of Free Heme Through the Inhibition of Hemozoin Synthesis Many antimalarial drugs including chloroquine, lumefantrine, mefloquine, amodiaquine, and piperaquine, show the capability to inhibit heme polymerization into form hemozoin, an inert crystal, in a specialized digestive vacuole of *P. falciparum* [7, 8]. Heme

95 detoxification and its polymerization constitute a central step of the parasite metabolism.

and its inhibition leads to parasite death. On the other hand, free iron released during

97 haemoglobin digestion, and heme constitute a powerful source of free radicals needing to

98 be neutralized <u>both</u> by <u>both</u> parasite and erythrocyte enzymes [9, 10]. Although the

99 chemical and metabolic interactions occurring between artemisinin derivatives and heme

100 polymerization inhibitory drugs are scarcely understood, it is interestingly to notice that the

101 drugs that inhibit haemoglobin metabolism are the best candidates to be utilized in

102 combination with artemisinin in ACTs [11] suggesting a combined mechanism of action 103 [12, 13].

104

27.3. Response of the Host Cell tTo Redox Changes Exerted 105 **b**By Parasite Growth aAnd/oOr Antimalarial Drugs 106

107 Redox metabolism of the parasitized erythrocyte depends on the equilibrium between the 108 antioxidant defences defenses of both erythrocyte and parasite and, on the free radicals 109 produced by the parasite and by the erythrocyte [14]. Iron plays a central role in free 110 radical production in the parasite through hemoglobinaemoglobin digestion and in the 111 parasitized erythrocyte which accumulates large amounts of denatured

112 hemoglobinaemoglobin generated by the oxidative stress exerted by the parasite [15, 16].

113 As an evidence of this unstable equilibrium, a large number of mutations have been selected by malaria such as G6PD deficiency (defect of production of NADPH), sickle cell 114 115 anemia, thalassemias, HbC, HbE, and many other hemoglobinaemoglobin disorders 116 triggering oxidative stress through haemoglobin denaturation and plausibly amplifying the 117 redox stress exerted by the intracellular parasite. More than 500 million people living in 118 malaria endemic areas are affected by one or more of those mutations conferring variable 119 levels of protection to severe malaria [17, 18].

120 It has been demonstrated that mild oxidative stress exerted by malaria parasite activates a-121 specific redox signalling pathway in the host erythrocyte inducing the Tyr phosphorylation 122 of some membrane proteins [19] which, in turn, appear to be essential for the remodelling 123 of the parasitized erythrocyte membrane needed to activate new functions essential for the parasite growth such as import of nutrients and insertion of parasite proteins binding to 124 125 endothelium [20]. The activation of Syk kinase, constituting a key element of such 126 pathway, has been directly implicated both in the egress of merozoites and in the infection of new erythrocytes occurring after the 48--hours life cycle of the parasite. A new class of 127 128 drugs has been developed to interfere with this pathway revealing good antiplasmodial 129 efficacy [21].

130 Targeting the redox metabolism of *P. falciparum* by antimalarial drugs is believed to create

an overload of oxidative stress leading to parasite death [22]. Anyway, much more 131

132 complex mechanism of action appears to be involved in the interactions occurring between

133 parasite and host cell metabolism and in the interference exerted by a large number of

134 redox active antimalarial drugs (Fig. 27.1).

135

136

137

27.4. Natural Antimalarial Compounds 138

139 In addition to artemisinin, a large number of natural compounds present in plants, are 140 known to possess a potent antimalarial activity. In some cases, their clinical efficiency and 141 activity have been demonstrated by their use as traditional antimalarial treatments. 142 A comprehensive list of plant compounds with antimalarial activity, quantified as in vitro 143 IC50, is reported in Table 27.1. Only the compounds, whose IC50 is lower than 1 ug/mL_{5} 144 have been selected. 145 It shall be noticed that most of these compounds belong to the families of alkaloids, in 146 particular, indole and naphthoisoquinoline alkaloids, with few exceptions including sequipertenessequiterpenes, quassinoids, limonoids, and a polyphenolic compound (ellagic 147

148

acid).

149

Alkaloids 27.4.1. 150

151 Alkaloids are one of the most important antimalarial compound classes known from 152 ancient time. Quinine, which represents the first antimalarial natural drug used, belongs to 153 this group. It is a quinidine alkaloid isolated from the bark of *Cinchona succirubra* and it has 154 been used for more than three centuries for the treatment of malaria [23]. Numerous 155 studies reported in literature described the significant antimalarial activity of over 100 156 natural alkaloids, which have been considered more potent than chloroquine [24]. Some of 157 the active reported alkaloids can be also grouped according to their structural chemical 158 classes. In particular, indole alkaloids which from a chemical point of view contain an 159 important indole group in their structure and derive from the amino acid tryptophan, 160 represent one of the largest class of alkaloids grouping together many antimalarial 161 compounds [25]. The naphthoisoquinoline alkaloids represent as well potential antimalarial 162 compounds. These compounds are secondary metabolites naturally present mainly in some 163 plants of the Ancistrocladaceae and Dioncophyllaceae families. Structurally, they are chiral 164 molecules characterized by the presence of C₋-C and C₋N bonds typical of the 165 naphthalene and isoquinoline structures contained in them. In addition to the antimalarial 166 activity, these alkaloids have shown many biological activities including anti-leishmanial, 167 anti-trypanosomal, fungicidal, insecticidal, and larvicidal [26]. 168

169 27.4.2. Sesquiterpenes

170 An important medicinal plant used from ancient time because of its content in antimalarial 171 artemisinins is the Artemisia annua, an herb used in Chinese traditional medicine. As already 172 mentioned, artemisinin-combination therapies (ACTs) are nowadays the standard treatment 173 in the world against *P. falciparum* [1,; 27]. Chemically, artemisinin belongs to sesquiterpenes, 174 namely, terpenes characterized by three isoprene units $(C_{15}H_{24})$, which represent a very 175 important class of secondary metabolites obtained from plants. In addition to artemisinin, 176 several other sesquiterpene compounds have shown a potentially antimalarial activity [25]. 177 Structurally, as already mentioned, artemisinin presents a characteristic endoperoxidic 178 group which is considered responsible for its activity. However, the other sesquiterpene 179 compounds reported in Table 27.1, do not contain the typical peroxide group of artemisinin. 180 Interestingly, this chemical group is found in another antimalarial compound, named 181 Plakortin, recently isolated from a tropical sponge instead of from plants. It is a polyketide 182 endoperoxide isolated from the sponge *Plakortis simplex*, and it has shown antiparasitic activity against *P. falciparum*. It has been shown that the activity of this compound also 183 depends on the functionality of the peroxide [28]. 184

185

186 27.4.3. Quassinoids

187Quassinoids are related to terpenes group too. They are a class of degraded triterpenes, and188most of them are characterized by a C-20 and δ-lactone skeleton [22]. Concerning the189quassinoids, in particular, three compounds have reported significant antimalarial-malarial190activity with very low IC50 values as a result of our free research: Ailanthone and 6-alpha-191tTigloyloxychaparrinone isolated from Ailanthus altissima and sSimalikalactone D obtained192from the roots of Simabaorinocensis. The presence of the ester function seems to be193important for in vitro antiplasmodial activity of these compounds [29].

194

195 27.4.4. Limonoids

Limonoids present a similar structure to <u>qQuassinoids</u>. These compounds, classed as
tetranortriterpenes, present different variations of the furanolactone core structure.

198 Meliaceae, Cucurbitaceae, and Rutaceae are the plant families richer of these

199 phytochemical compounds, some of which have demonstrated different biological

200 properties such as antimalarial activity [23].

201

202 27.4.5. Polyphenolic Compounds

203 As regards the polyphenolic compounds, only the ellagic acid (EA) has shown a very 204 interesting IC50 value. This is an antioxidant molecule which chemically belongs to the 205 hydrolysable tannins class, known for its antimalarial activity. EA is deriveds from the 206 hydrolysis of ellagitannins (ETs). ETs are hydrolyzsed, chemically by acids or bases or 207 enzymatically, into hexahydroxy diphenic acid, which spontaneously tends to EA [30]. EA 208 explains its antiplasmodial activity by interfering with haemoglobin metabolism and, in 209 particular, inhibiting the β -haematin formation [31]. For these reasons, ellagic acid could be a potential candidate to be utilized in combination with artemisinin in ACTs. 210 211

 212
 Table 27.1 Summary of antimalarial malarial natural compounds selected for their activity

 213
 "in vitro" (IC50 < 1 ug/mL)</td>

UPAC name	Chemical_ <u>s</u> Structure	Chemical group	Botanical source	Anti- <u>m</u> Malarial activity	IC5 (µg/ stra
2S,3R,12bS)-3-ethenyl-2-[[(1S)-2-methyl-1,3,4,9-tetrahydropyrido[3,4- o]indol-1-yl]methyl]-1,2,3,4,6,7,12,12b-octahydroindolo[2,3- o]quinolizin-9-ol		Indole <u>a</u> Alkaloids	Strychnos_usambarensis	In vitro [32]	0.48 20) 0.16
2,16,19,20- <u>t</u> Fetradehydrocuran-17-oic <u>a</u> Acid <u>m</u> Hethyl <u>e</u> Ester		Indole <u>a</u> Alkaloids	Picralima <u>n</u> itida	In vitro_ [34]	0.45
Methyl(1S,9S,14Z,15R)-14-ethylidene-6-hydroxy-2-methyl-18-oxa- 2,12-diazahexacyclo[13.3]2.01,9.03,8.09,16.012,19]icosa-3,5,7-triene-16- carboxylate		Indole alkaloids	Picralima <u>n</u> itida	In vitro [34]	0.95 0.66
19α ,20 α)-16-(Methoxy carbonyl)-19-methyl-3,4,5,6,16,17-hexadehydro- 8-oxay ohimban-4-ium		Indole <u>a</u> Alkaloids	Picralima_nitida ; Alstonia_ scholaris	In vitro_ [34] In vivo [35]	0.01
5,6-dihydro-9,10-dimethoxybenzo[g]-1,3-benzodioxolo[5,6-]quinolizinium		Indole <u>a</u> Alkaloids	Enantia <u>C</u> ehlorantha	In vitro [36] In vitro and in vivo [37]	0.14
5-methy lindolo[3,2-b]qui holine		Indole alkaloids	Quassia_indica	[23]	0.19

3,8,9-trimethoxy-5-methylbenzo[c]phenanthridin-5-ium-2-ol	Indole alkaloids	Fagara zanthoxyloides	In vitro [40]	0.01
2,9,10- <u>t</u> T rimethoxy-5,6-dihy droisoquinolino[2,1-b] isoquinolin-7-ium-3- bl	Indole alkaloids	Enantia <u>C</u> ehlorantha ; Penianthus_longifolius	In vitro_ [41] In vitro and in vivo [42]	0.42
2,3,9,10-tetramethoxy -5,6-dihy droisoquinolino[2,1-b] isoquinolin-7-ium	Indole alkaloids	Enantia <u>C</u> ehlorantha ; Penianthus_longifolius	In vitro [41;43] In vitro and in vivo [42]	0.28 0.16
Methyl(1R,9S,11S,14Z,15S,17S,19S)-19-[(acetyloxy)methyl]-14- ethylidene-18-oxa-2,12- diazahexacyclo[9.6.1.1^{9,15}0.0^{1,9}0.0^{3,8}0.0^{12,17}]nonadeca- 8,5,7-triene-19-carboxylate	Indole alkaloids	Picralimanitida<u>Picralima</u> <u>nitida</u>	[45]	0.44
7aS,8S,11aS,12aR)-8-Methyl-5,6,7a,8,11a,12,12a,13-octahydro-7H-9- oxa-6a,13-diaza-indeno[2,1-a]anthracene-11-carboxylic acid methylester	Indole alkaloids	Picralima_nitida	[45]	0.42
Methy12-[(1R,2S,5R,6R,13R,14S,16S)-14-(acetyloxy)-6-(furan-3-yl)-13- nydroxy-1,5,15,15-tetramethyl-8,17-dioxo-7- pxatetracyclo[11.3.1.0^{2,11}0.0^{5,10}]heptadec-10-en-16-yl]-2- nydroxyacetate	Limonoids	Khaya senegalensis	In vitro [46]	0.12 (chle sens (3D <i>Falc</i> strai
4aR,6R,6aS,6bR,7aS,10S,10aS,12aR,12bR)-10-(3-Furyl)- 4,4,6a,10a,12b-pentamethyl-3,8-dioxo- 8,4,4a,5,6,6a,7a,8,10,10a,11,12,12a,12b-tetradecahydronaphtho[2,1-f] oxireno [d]isochromen-6-yl acetate	Limonoids	Azadirachta indica ; Cedrela odorata ; Khaya_grandifoliola	In vitro [47, 48] In vivo [49]	0.03 0.02 1.25 Inde clon
2-[(3S)-6,8-dimethoxy-1,3-dimethyl-3,4-dihydroisoquinolin-7-yl]-8- nethoxy-3-methylnaphthalen-1-ol	Naphthoisoquinolines	Ancistrocladustanzaniensis	In vitro_ [51]	0.3 (
1R,3S)-7-(1-hydroxy-8-methoxy-3-methylnaphthalen-2-yl)-8-methoxy-	Naphthoisoquinolines	Ancistrocladustanzaniensis	In vitro_	0.1
	1 (up nono o quino inte			011

,2,3-trimethyl-3,4-dihydro-1H-isoquinolin-6-ol				[51]	4.2
2-[(1R,3S)-6,8-dimethoxy-1,2,3-trimethyl-3,4-dihydro-1H-isoquinolin-7- /l]-8-methoxy-3-methylnaphthalen-1-ol		Naphthoisoquinolines	Ancistrocladustanzaniensis	In vitro_ [51]	0.7 (9.1 (
1R,3R)-7-[5-hy droxy -2-(hy droxy methy l)-4-methoxy naphthalen-1-y l]- l,3-dimethy l-1,2,3,4-tetrahy droisoquinolin-8-ol		Naphthoisoquinolines	Triphyophyllumpeltatum	In vitro and in vivo [52, 53]	0.00 0.00 (NF
1R,3R)-5-(5-hydroxy-4-methoxy-2-methylnaphthalen-1-yl)-1,3- limethyl-1,2,3,4-tetrahydroisoquinolin-8-ol		Naphthoisoquinolines	Triphyophyllumpeltatum	In vitro and in vivo [52, 53]	0.01 form <i>falce</i> 0.01 form <i>berg</i>
1R,3R)-7-[2-(hy droxy methy l)-4,5-dimethoxy naphthalen-1-y l]-1,3- limethy l-1,2,3,4-tetrahy droisoquinolin-8-ol		Naphthoisoquinolines	Triphyophyllumpeltatum	In vitro [55]	0.00 0.00 (NF
2,3,7,8-Tetrahydroxychromeno[5,4,3-cde]chromene-5,10-dione		Polyphenoliccompounds	Alchorneacordifolia	In vitro [56]	0.10 0.03 0.09 0.10 0.05
1β,11β,12α)-1,11,12-Trihy droxy-11,20-ep oxy picrasa-3,13(21)-diene- 2,16-dione		Quassinoids	Ailanthus altissima	In vitro_ [57]	0.00
		Quassinoids	Ailanthus altissima	In vitro_ [57]	0.0
1β , 11β , 12α , 15β b)-1, 11 , 12 -trihy droxy-2, 16 -dioxo-13, 20 -epoxy picras <u>a</u> -3-en-15-y1 (2R)-2-methy lbutanoate		Quassinoids	Simaba_orinocensis	In vitro_ [58]	0.00 0.00 (W2
(3aR,4R,6R,7E,10Z,11aR)-6-hydroxy-6,10-dimethyl-3-methylidene-2,9-		Sesquiterpenes	Tithonia_diversifol <u>i</u> a	In vitro	0.3
					-

lioxo-3a,4,5,11a-tetrahydrocyclodeca[b]furan-4-yl] 2-methylpropanoate			[59]	Cyt
				IC5
				(H7
(3aR,4R,6E,10Z,11aR)-6-formyl-4-hydroxy-3-methylidene-2-oxo-	Sesquiterpenes	Disoma tomontosa	In vitro	0.92
8a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-10-yl]methyl acetate	Sesquiterpenes	Dicoma_tomentosa	[60]	0.7′
4S,5R,8S,9R,12S,13R)-1,5,9-Trimethyl-11,14,15,16- etraoxatetracyclo[10.3.1.04,13.08,13]hexadecan-10-one	Sesquiterpenes	Artemisia annua	In vitro [61]	0.00 W2
<u>M</u> methyl2-[(3R,4R,6S)-4-ethyl-6-[(E,2R)-2-ethylhex-3-enyl]-6- nethyldioxan-3-yl]acetate	Endoperoxy ketal poly ketides	Plakortiscfr. Simplex	In vitro [63, 64]	0.11 0.2

n.a not available

215 27.5. Conclusions

216

217 This work has revealed a wide range of natural products with potent antimalarial activity,

218 belonging to some specific chemical group, mainly alkaloids, terpenoids, quassinoids,

219 limonoids, and polyphenols.

220 Selected compounds from a physicochemical point of view are characterizsed for larger

221 molecular mass and higher hydrophobicity index (logP). These properties may be

222 considered necessary for the achievement of the intracellular target [66]. Furthermore,

223 most of these compounds are hydrogen bond acceptors. Structurally, there are recurrent

224 chemical groups that share these molecules. Most compounds present a rigid scaffold of at

- 225 least 3 cycles which confers high rigidity to the molecule. However, further structure-
- activity relationship studies are necessary for the possible identification of a pattern of
- 227 functional groups (pharmacophore) responsible for the antimalarial activity.

228 Many of the selected compounds, including artemisinin, are likely expected to exert redox 229 activity in biological systems, but, in most instances, a direct evidence is missing. 230 At this regard, it should be considered that the erythrocyte-plasmodium system represents a 231 unique environment combining two interconnected oxidative defencedefense systems, 232 extremely high concentration of heme iron contained in the host compartment and intense 233 hemoglobinaemoglobin digestion and heme detoxification in the parasite [22]. 234 Experiments to test the interference with the host-parasite redox state of any potential 235 antimalarial malarial compounds should be, therefore, tested in infected erythrocytes at 236 different development stages.

It should be also noticed that, the antimalarial mechanism of action of redox compounds is
complex involving very sensitive host targets [67]_that could be considered for the
screening of antimalarial drug candidates.

- 240
- 241

242 References

243	1.	Cui L, Su X (2007) Discovery, mechanisms of action and combination
244		therapy of artemisinin. Expert Rev Anti-infective Therapy 7(8):999-1013
245	2.	World Health Organization (2017) World malaria report. WHO, Geneva
246	3.	Gassner C (2012) Aging and \underline{c} -learance of \underline{e} -Frythrocytes. Transfus Med
247		Hemother 39(5):297–298
248	4.	Luzzatto L, Arese P (2018) Favism and Glucose-6-pPhosphate
249		<u>d</u> Pehydrogenase <u>d</u> Peficiency. N Engl J Med 378(1):1067–1069
250	5.	AnabaF C, Ahiante BO, Pepple DJ (2012) In vitro hemolytic effect of
251	l	sulfadoxine/pyrimethamine and artemether/lumefantrine on malaria
252		parasitized erythrocytes of female patients. Pak J Pharm Sci 25(4):851-5
253	6.	Chikezie PC, Monago CC, Uwakwe A_(2009)_Studies of mMethemoglobin
254		<u>c</u> Concentrations of <u>t</u> Three <u>h</u> Human <u>e</u> Erythrocyte <u>g</u> Genotypes (Hb AA,
255		HbAS, and Hb SS) in the <u>p</u> Presence of <u>f</u> Five <u>a</u> Antimalarial <u>d</u> Prugs. Iranian
256		J Blood Cancer_4:151–157
257	7.	Niles JC, DeRisi JL, Marletta MA (2009) Inhibiting Plasmodium falciparum
258		growth and heme detoxification pathway using heme-binding DNA
259		aptamers. Proc Natl Acad Sci U S A 106(32):13266-13271

260	8.	Abshire JR, Rowlands CJ, Ganesan SM, So PTC, Niles JC (2017)
261		Quantification of labile heme in live malaria parasites using a genetically
262		encoded biosensor. Proc Natl Acad Sci US A 114(11): E2068-E2076
263	9.	Amri I <mark>,</mark> Mancini E <mark>,</mark> De Martino L <mark>,</mark> Marandino A <mark>,</mark> Lamia H <mark>,</mark> Bassem J,
264		Scognamiglio_M, Reverchon_E, De Feo V (2012) Chemical <u>c</u> omposition
265		and <u>b</u> Biological <u>a</u> Activities of the <u>e</u> Essential <u>o</u> Oils from <u>t</u> Three Melaleuca
266		sspecies gGrown in Tunisia. Int J Mol Sci 13(12): 16346–16372
267	10.	Francis SE, Sullivan DJ, Goldberg DE (1997) Hemoglobin metabolism in
268		the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97-123
269	11.	World Health Organization (2015) Guidelines for treatment of malaria.
270		WHO, Geneva
271	12.	Gupta S, Thapar MM, Wernsdorfer WH, Björkman A (2002) In v¥itro
272		interactions of aArtemisinin with Atovaquone, gQuinine, and Mefloquine
273		against Plasmodium falciparum. Antimicrob Agents Chemother 46(5): 1510-
274		1515
275	13.	Ekong R, Warhurst DC (1990) Synergism between artemether and
276		mefloquine or quinine in a multidrug-resistant strain of Plasmodium falciparum
277		in vitro. Trans R Soc Trop Med Hyg 84(6): 757-758
278	14.	Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H
279		(2004) Oxidative stress in malaria parasite-infected erythrocytes: host-
280		parasite interactionsInt J Parasitol 34 (2): 163-189
281	15.	Giribaldi G, Ulliers D, Mannu F, Arese P, Turrini F (2001) Growth of
282		Plasmodium falciparum induces stage-dependent haemichrome formation,
283		oxidative aggregation of band 3, membrane deposition of complement and
284		antibodies, and phagocytosis of parasitized erythrocytes. Br J Haematol
285		113(2):492–9
286	16.	Parker PD, Tilley L, Klonis N (2004)_Plasmodium falciparum induces
287		reorganization of host membrane proteinsduring intraerythrocytic growth.
288		Blood 103(6): 2404–2406
289	17.	Lelliott PM, McMorran BJ, Foote SJ, Burgio G (2015) The influence of
290		host geneticson erythrocytes and malaria infection: is there_therapeutic
291		potential?_Malar J 14:289
292	18.	Williams TN (2011) How \underline{d} Do Hemoglobins S and C <u>r</u> Result in <u>m</u> Aalaria
293		pProtection?_J Infect Dis_204(11): 1651–1653
I		

294	19.	Mohandas N, An X (2012) Malaria and human red blood cells. Med
295		Microbiol Immunol 201(4): 593–598
296	20.	Udeinya_IJ, Schmidt_JA, Aikawa_M, Miller_LH, GreenI (1981) Falciparum
297	I	malaria-infected erythrocytes specifically bind to cultured human
298		endothelial cells. Science 213(4507): 555-557
299	21.	Pantaleo A, Kesely KR, Pau MC, Tsamesidis I, Schwarzer E, Skorokhod
300		OA, Chien HD, Ponzi M, Bertuccini L, Low PS, Turrini FM(2017) Syk
301		inhibitors interfere with erythrocyte membrane modification during P
302		falciparum growth and suppress parasite egress. Blood 130(8):1031-1040
303	22.	Nepveu F, Turrini F (2013) Targeting the redox metabolism of Plasmodium
304		falciparum. Future Med Chem 5(16): 1993–2006
305	23.	Kirandeep K, Meenakshi J, Tarandeep K, Rahul J (2009) Antimalarials
306		from nature. Bioorg Med Chem 17: 3229-3256
307	24.	Saxena S, Pant N, Jaic DC, Bhakuni RS (2003) Antimalarial agents from
308		plant sources. Curr Sci 85: 1314–1329
309	25.	Onguéné A(2013) The potential of anti-malarial compounds derived from
310		African medicinal plants, part I: a pharmacological evaluation of alkaloids
311		and terpenoids. Malar J 12:449
312	26.	Ibrahim SRM, Mohamed GA (2015) Naphthylisoquinoline alkaloids
313		potential drug leads. Fitoterapia 106: 194–225
314	27.	World Health Organization (2018) SS tatus report on artemisinin resistance
315	ļ	and ACT efficacy. WHO, Geneva
316	28.	Skorokhoda OA, Davalos-Schaflera D, Gallo V, Valente E, Ulliersa D,
317		Notarpietro A, Mandili G, Novelli F, Persico M, Taglialatela-Scafati O,
318		Arese P, Schwarzer E (2015) Oxidative stress-mediated_antimalarial activity
319		of plakortin, a natural_endoperoxide from the tropical_sponge_Plakortis simplex.
320	ļ	Free Radic Biol Med 89: 624–637
321	29.	Mojab F (2012) Antimalarial natural products: a review. Avicenna journal
322		of Phytomedicine 2(2): 52–62
323	30.	Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites:
		aA review about source, metabolism, functions and health. Food Res Intl
324		=
		44(5): 1150–1160
324	31.	-
324 325	31.	44(5): 1150–1160

329trimethoxyphenyl(6'-O-aalloyl)-beta-D-glucopyranoside. Planta Med33069(2):162–16433132.Frederich M, Hayette MP, Tits M, De Mol P, Angenot L (1999)In vitro332activities of strychnos alkaloids and extracts against Plasmodium fakiparum_333Antimicrob Agents Chemother 43(9):2328–233133433.Wright CW, Bray DH, O'Neill MJ, Warhurst DC, Phillipson JD, Quetin-335Leckrcq J, Angenot L (1991)_Antiamoebic and antiplasmodial activities of336alkaloids isolated from Strychnos_usambarensisPlanta Med 57(4):337–34033734.Adebayo JO, Krettli AU (2011).Potential antimalarials from Nigerian plants:338aA review. J Ethnopharmacol 133(2): 289–30233935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC (1986) 14 gGlutamine influx in malaria-infected erythrocytes: a343ffarget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL (1988).Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhatuacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404-41334939.Fata J, Rakhshandeh H, Berenji F, Jaklianfard A (2006) Treatment of351gGrowth and sStage dEistribution of Pasmodiam fakiparum_Antimicrob352	328		compounds with antiplasmodial activity: ellagic acid and 3,4,5-
33132.Frederich M, Hayette MP, Tits M, De Mol P, Angenot L (1999)In vitro332activities of strychnos alkaloids and extracts against Plasmodium falciparum.333Antimicrob Agents Chemother 43(9):2328–233133433.Wright CW, Bray DH, O'Neill MJ, Warhurst DC, Phillipson JD, Quetin-335Leclercq J, Angenot L (1991)_Antiamoebic and antiplasmodial activities of336alkaloids isolated from Strychnos_usambarensisPlanta Med 57(4):337–34033734.Adebayo JO, Krettli AU (2011).Potential antimalarials from Nigerian plants:338af review. J Ethnopharmacol 133(2): 289–30233935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC (1986) Ll-gGlutamine influx in malaria-infected erythrocytes: a (farget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL (1988).Protoberberine alkaloids as antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani: aArmastigote inhibition and mode of action of berberine. Experim Parasitol 60(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of cCutaneous Leishmaniasis in mMurine mModel by aAkoholic gExtract of Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of rRoot gExtracts of Fagarazanthoxyloides on the Jin yAvitro gGrowth and sStage dDistribution of	329		trimethoxyphenyl(6'-O-aalloyl)-beta-D-glucopyranoside. Planta Med
332activities of strychnos alkaloids and extracts against Plasmodium falciparum333Antimicrob Agents Chemother 43(9):2328–233133433.Wright CW, Bray DH, O'Neill MJ, Warhurst DC, Phillipson JD, Quetin-335Leclercq J, Angenot L (1991)_Antiamoebic and antiplasmodial activities of336alkaloids isolated from Strychnos_usambarensisPlanta Med 57(4):337–34033734.Adebayo JO, Krettli AU (2011).Potential antimalarials from Nigerian plants:338gA review. J Ethnopharmacol 133(2): 289–30233935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC (1986) Ll-gGlutamine influx in malaria-infected erythrocytes: a [4arget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL (1988).Protoberberine alkaloids as antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani: aArmastigote inhibition and mode of action of berberine. Experim Parasitol 60(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of cCutaneous Leishmaniasis in mMurine mModel by gAkoholic gExtract of Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of rRoot gExtracts of Fagarazanthoxyloides on the jin y4/itro gGrowth and §Stage dDistribution of Plasmodium falciparumAntimicrob	330		69(2):162–164
333Antimicrob Agents Chemother 43(9):2328–233133433.Wright CW, Bray DH, O'Neill MJ, Warhurst DC, Phillipson JD, Quetin-335Leclercq J, Angenot L (1991)_Antiamoebic and antiplasmodial activities of336alkaloids isolated from Strychnos_usambarensis. Planta Med 57(4):337–34033734.Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants:38aAreview. J Ethnopharmacol 133(2): 289–3023935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC_(1986)_L+gGlutamine influx in malaria-infected erythrocytes: a343(Farget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL_(1988) Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.39.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mAurine mAodel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353gGrowth and gStage dDistribution of Plasmodium falciparum_Antimicrob	331	32.	Frederich M, Hayette MP, Tits M, De Mol P, Angenot L (1999)In vitro
33433.Wright CW, Bray DH, O'Neill MJ, Warhurst DC, Phillipson JD, Quetin-335Leclercq J, Angenot L (1991)_Antiamoebic and antiplasmodial activities of336alkaloids isolated from Strychnos_usambarensisPlanta Med 57(4):337–34033734.Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants:338a.A review. J Ethnopharmacol 133(2): 289–30233935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC_(1986)_1-gellutamine influx in malaria-infected erythrocytes: a343I_Farget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL_(1988) Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347a_Amastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.39.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350c_Cutaneous Leishmaniasis in mMurine mModel by aAlcoholic gExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353c2005) Effects of fRoot gExtracts of Fagarazanthoxyloides on the ifn yVitro354gerowth and gStage dDistribution of Plasmodium falciparumAntimicrob	332		activities of strychnos alkaloids and extracts against Plasmodium falciparum
335Leckercq J, Angenot L (1991)_Antiamoebic and antiplasmodial activities of alkaloids isolated from Strychnos_usambarensisPlanta Med 57(4):337-34033734.Adebayo JO, Krettli AU (2011)_Potential antimalarials from Nigerian plants: aA review. J Ethnopharmacol 133(2): 289-30233935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51-5734236.Elford BC_(1986)_L_gGlutamine influx in malaria-infected erythrocytes: a [Farget for antimalarials?_Parasitol Today 2 (11): 309-31234437.Vennerstrom JL, Klayman DL_(1988) Protoberberine alkaloids as antimalarials. J Med Chem 31(6): 1084-108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani: aArmastigote inhibition and mode of action of berberine. Experim Parasitol 60(3): 404-41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of ccCutaneous Leishmaniasis in mMurine mModel by aAlcoholic gExtract of Berberis vulgaris. Iran J Parasitol 1(1): 39-4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of rRoot gExtracts of Fagarazanthoxyloides on the Jin vVitro gGrowth and sStage dDistribution of Plasmodium falciparumAntimicrob	333	l	Antimicrob Agents Chemother 43(9):2328-2331
336alkaloids isolated from Strychnos_usambarensis. Planta Med 57(4):337–34033734.Adebayo JO, Krettli AU (2011).Potential antimalarials from Nigerian plants: aA review. J Ethnopharmacol 133(2): 289–30233935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC (1986) Ll-gGlutamine influx in malaria-infected erythrocytes: a tTarget for antimalarials? Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL (1988).Protoberberine alkaloids as antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani: aAmastigote inhibition and mode of action of berberine. Experim Parasitol 34834939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of cefutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the ifn vVitro gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	334	33.	Wright CW, Bray DH, O'Neill MJ, Warhurst DC, Phillipson JD, Quetin-
33734.Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants: 	335		Leclercq J, Angenot L (1991)_Antiamoebic and antiplasmodial activities of
338aA review. J Ethnopharmacol 133(2): 289–30233935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC_(1986) L+gGlutamine influx in malaria-infected erythrocytes: a343tFarget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL_(1988) Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic gExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353c2005) Effects of tRoot gExtracts of Fagarazanthoxyloides on the ifn gVitro354gGrowth and gStage dDistribution of Plasmodium falciparumAntimicrob	336		alkaloids isolated from Strychnos_usambarensisPlanta Med 57(4):337-340
33935.Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC_(1986) Ll-gGlutamine influx in malaria-infected erythrocytes: a343[Farget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL_(1988) Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347a_Amastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350c_Gutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vi/itro354gGrowth and gStage dDistribution of Plasmodium falciparum_Antimicrob	337	34.	Adebayo JO, Krettli AU (2011)_Potential antimalarials from Nigerian plants:
340Alstoniascholaris bark for in vivo antimalarial activity in mice. J341Ethnopharmacol 29 (1): 51–5734236.Elford BC_(1986)_Ll-gGlutamine influx in malaria-infected erythrocytes: a343[Target for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL_(1988)_Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mAurine mModel by aAlcoholic gExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot gExtracts of Fagarazanthoxyloides on the iln vVitro354gGrowth and gStage dDistribution of Plasmodium falciparum_Antimicrob	338		<u>a</u> A review. J Ethnopharmacol 133(2): 289–302
341Ethnopharmacol 29 (1): 51–5734236.Elford BC_(1986)_L+gGlutamine influx in malaria-infected erythrocytes: a (Farget for antimalarials?_Parasitol Today 2 (11): 309–31234337.Vennerstrom JL, Klayman DL_(1988)_Protoberberine alkaloids as antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani: aAmastigote inhibition and mode of action of berberine. Experim Parasitol 60(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of cCutaneous Leishmaniasis in mMurine mModel by aAkoholic eExtract of Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the ifn yVitro gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	339	35.	Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of
34236.Elford BC_(1986)_L-gGlutamine influx in malaria-infected erythrocytes: a tFarget for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL_(1988)_Protoberberine alkaloids as antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani: aAmastigote inhibition and mode of action of berberine. Experim Parasitol 60(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic gExtract of Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of rRoot gExtracts of Fagarazanthoxyloides on the in vy itro gGrowth and sStage dDistribution of Plasmodium falciparumAntimicrob	340		Alstoniascholaris bark for in vivo antimalarial activity in mice. J
343[Target for antimalarials?_Parasitol Today 2 (11): 309–31234437.Vennerstrom JL, Klayman DL_(1988) Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353c2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn yYitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	341		Ethnopharmacol 29 (1): 51–57
34437.Vennerstrom JL, Klayman DL_(1988)_Protoberberine alkaloids as345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mAurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the ifn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparumAntimicrob	342	36.	Elford BC (1986) Ll-gGlutamine influx in malaria-infected erythrocytes: a
345antimalarials. J Med Chem 31(6): 1084–108734638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353c2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	343		tFarget for antimalarials?_Parasitol Today 2 (11): 309-312
34638.Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353c2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	344	37.	Vennerstrom JL, Klayman DL_(1988)_Protoberberine alkaloids as
347aAmastigote inhibition and mode of action of berberine. Experim Parasitol34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	345	I	antimalarials. J Med Chem 31(6): 1084–1087
34860(3): 404–41334939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	346	38.	Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani:
34939.Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of350cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	347		aAmastigote inhibition and mode of action of berberine. Experim Parasitol
350cCutaneous Leishmaniasis in mMurine mModel by aAlcoholic eExtract of351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	348	I	60(3): 404–413
351Berberis vulgaris. Iran J Parasitol 1(1): 39–4235240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	349	39.	Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of
35240.Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	350		<u>c</u> \subseteq utaneous Leishmaniasis in <u>m</u> M urine <u>m</u> M odel by <u>a</u> Alcoholic <u>e</u> Extract of
353(2005) Effects of rRoot eExtracts of Fagarazanthoxyloides on the iIn vVitro354gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	351	I	Berberis vulgaris. Iran J Parasitol 1(1): 39-42
354 gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob	352	40.	Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR
	353		(2005) Effects of <u>r</u> Root <u>e</u> Extracts of Fagarazanthoxyloides on the <u>iIn v</u> Vitro
355 Agents Chemother 49 264–268	354		gGrowth and sStage dDistribution of Plasmodium falciparum. Antimicrob
	355	I	Agents Chemother 49 264–268
356 41. Bidla G <mark>,</mark> Titanji VPK, Joko B, El-Ghazali G, Bolad A, Berzins K (2004)_	356	41.	Bidla G <mark>,</mark> Titanji VPK <mark>,</mark> Joko B <mark>,</mark> El-Ghazali G <mark>,</mark> Bolad A <mark>,</mark> Berzins K (2004)_
357 Antiplasmodial activity of seven plants used in African folk medicine.	357	I	Antiplasmodial activity of seven plants used in African folk medicine.
358Indian J Pharmacol 36: 245–246	358		Indian J Pharmacol 36: 245–246
35942.Vennerstrom_JL, Klayman DL (1988) Protoberberine <u>a</u> Alkaloids as	359	42.	Vennerstrom_JL, Klayman DL (1988) Protoberberine <u>a</u> Alkaloids as
antimalarials. J Med Chem 31: 1084–1087	360	1	antimalarials. J Med Chem 31: 1084–1087

361	43.	Jia F, Zou G, Fan J, Yuan Z (2010)Identification of palmatine as an
362		inhibitor of West Nile virus. Arch Virol 155(8): 1325-1329
363	44.	Kim JH, Ryu YB, Lee WS, Kim YH (2014)_Neuraminidase inhibitory
364		activities of quaternary isoquinoline alkaloids from Corydalis
365		turtschaninovii rhizome. Bioorg Med Chem 22: 6047-6052
366	45.	Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants:
367		<u>a</u> A review. J Ethnopharmacol 133: 289–302
368	46.	Khalid SA, Friedrichsen GM, Kharazmi A, Theander TG, Olsen_CE, Chris-
369		tensen SB (1998) Limonoids_from_Khaya senegalensis_Phytochemistry 49:
370		1769–1772
371	47.	MacKinnon S, Durst T, Arnason JT (1997)_Antimalarial aActivity of
372		<u>t</u> T ropical Meliaceae <u>e</u> E xtracts and Gedunin <u>d</u> D erivatives. J Nat Prod 60:
373		336–341
374	48.	Bickii J, NjifutieN, Foyere JA, Basco LK, Ringwald P (2000) In vitro
375		antimalarial activity of limonoids from Khaya grandifoliola C.D.C.
376		(Meliaceae). J Ethnopharmacol 69: 27-33
377	49.	Omar S, Godard K, Ingham A, Hussain H, Wongpanich V, Pezzuto J, Durst
378		T, Eklu C, Gbeassor M, Sanchez-Vindas P, Poveda L, Philogene BJR,
379		Arnason JT (2005) Antimalarial activities of gedunin and 7-
380		methoxygedunin and synergistic activity with dillapiol. Ann Appl Biol
381		143(2): 135–141
382	50.	Suresh G,_Gopalakrishnan G, Wesley SD, Singh NDP, Malathi R, Rajan SS
383		(2002) Insect Antifeedant <u>a</u> Activity of Tetranortriterpenoids from the
384		Rutales. A <u>p</u> Perusal of <u>s</u> Structural <u>r</u> Relations. J Agric Food Chem 50: 4484–
385		4490
386	51.	Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Stærk D, Jaroszewski
387		JW, Ndangalasi H, Mbago F, Brun R, Christensen SB (2004)
388		Ancistrotanzanine C and <u>r</u> Related 5,1'- and 7,3'- <u>c</u> Coupled
389		Naphthylisoquinoline <u>a</u> Alkaloids from Ancistrocladustan_zaniensis. J Nat
390		Prod 67(5): 743–748
391	52.	François G, Bringmann G, Dochez C, Schneider C, Timperman G, Assi LA
392		(1995) Activities of extracts and naphthylisoquinoline alkaloids from
393		Triphyophyllumpeltatum, Ancistrocladus_abbreviatus and

394		Ancistrocladusbarteri against Plasmodium berghei (Anka strain) in vitro. J
395		Ethnopharmacol 46(2) 115–120
396	53.	François G, Timperman G, Eling W, Assi LA, Holenz J, Bringmann G.
397		(1997) Naphthylisoquinoline alkaloids against malaria: evaluation of the
398		curative potentials of dioncophylline C and dioncopeltine <u>a</u> A against
399	l	Plasmodium berghei in vivo. Antimicrob Agents Chemother41 (11):2533-
400		2539
401	54.	Ponte-Sucre A, Faber JH, Gulder T, Kajahn I, Pedersen SEH, Schultheis M,
402		Bringmann G, Moll H (2007) Activities of Naphthylisoquinoline aAlkaloids
403		and ssynthetic aAnalogs against Leishmania major. Antimicrob Agents
404		Chemother 51(1): 188–194
405	55.	Bringmann_G,_Messer K, Schwobel B, Brun R, Assi LA (2003)
406		Habropetaline AA, an antimalarial naphthylisoquinoline alkaloid from
407		Triphyophyllum_peltatumPhytochemistry 62: 345-349
408	56.	Soh PN, Witkowski B, Olagnier D, Nicolau_ML, Garcia-Alvarez MC, Berry
409		A, Benoit-Vical F (2009) In \underline{v} itro and \underline{i} In \underline{v} ivo \underline{p} Properties of Ellagic
410		<u>a</u> Acid in <u>m</u> Aalaria <u>t</u> Treatment. Antimicrob Agents Chemother 53(3): 1100-
411	I	1106
412	57.	Okunade AL, Bikoff RE, Casper SJ, Oksman A, Goldberg DE, Lewis WH
413	I	(2003) Antiplasmodial activity of extracts and quassinoids isolated from
414		seedlings of Ailanthus altissima (Simaroubaceae). Phytother Res 17(6):
415		675–677
416	58.	Muhammad_I,_Bedir E, Khan SI, Tekwani BL, Khan_IA, Takamatsu S,
417		Pelletier J, Walker LA (2004) A <u>n</u> New <u>a</u> Antimalarial <u>g</u> Quassinoid from
418		SimabaorinocensisJ Nat Prod 67(5): 772-777
419	59.	GoffinE, Ziemons E, De Mol P, Madureira M, Martins AP, Proença da
420		Cunha A, Philippe G, Tits M, Angenot L, Frederich M (2002) In vitro
421		Antiplasmodial <u>a</u> Activity of Tithoniadiversifolia and <u>i</u> Identification of its
422		Main <u>a</u> Active <u>c</u> Constituent: Tagitinin C. Planta Med 68(6): 543–545
423	60.	Jansen O, Tits M, Angenot L, Nicolas JP, De Mol P, PNikiema JB,_
424	1	Frédérich M (2012)Anti-plasmodial activity of Dicomatomentosa
425		(Asteraceae) and identification of urospermal A-15-O-acetate as the main
426		active compound. Malar J 11:289

427	61.	Labadie GR, Choi SR, Avery MA (2004) Diamine derivatives with
428		antiparasitic activities. Bioorg Med Chem Lett 14: 615-619
429	62.	Hassan GM, Ali HZ (2017)In-vitro effect of <u>a</u> Artemisinin on L. tropica
430		promastigotes. J Pharm Biol Sci 12(6):82-86
431	63.	Fattorusso C, Persico M, Calcinai B, Cerrano C, Parapini S, Taramelli
432		D,Novellino E, Romano A, Scala F, Fattorusso E, Taglialatela-Scafati O
433		(2010) Manadoperoxides A-D from the Indonesian <u>s</u> ponge_Plakortis cfr.
434		ssimplex. Further Hansights on the sstructure-aActivity rRelationships of
435		sSimple 1,2-Dioxane Antimalarials J Nat Prod 73 1138–1145
436	64.	Skorokhod OA, Davalos-Schafler D, Gallo V, Valente E, Ulliers D,
437		Notarpietro A, Mandili G, Novelli F, Persico M, Taglialatela-Scafati O,
438		Arese P, Schwarzer E (2015) Oxidative stress-mediated antimalarial activity
439		of plakortin, a natural endoperoxide from the tropical sponge plakortis simplex.
440		Free Rad Biol Med 89: 624–637
441	65.	Kossuga MH,_Nascimento_AM, Reimão_JQ, Tempone AG, Nosomi_
442		Taniwaki N, Veloso K, Ferreira AG, Cavalcanti BC, Pessoa C, Moraes MO,
443		Mayer AMS, Hajdu E, Berlinck RGS (2008) Antiparasitic,
444		antineuroinflammatory, and cytotoxic polyketides from the marine sponge
445		Plakortisangulospiculatus collected in Brazil. J Nat Prod 71(3):334-339
446	66.	Gamo_FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL,
447		Vanderwall DE, Green DVS, Kumar V, Hasan S, Brown JR, Peishoff CE,
448		Cardon LR, Garcia-Bustos JF (2010)Thousands of chemical starting points
449		for antimalarial lead identification. Nature 465: 305-312
450	67.	Pantaleo A, Ferru E, Vono R, Giribaldi G, Lobina O, Nepveu F, Ibrahim H,
451		Nallete JP, Carta F, Mannu F, Pippia P, Campanella E, Low PS, Turrini F
452		(2012) New antimalarial indolone-N-oxides, generating radical species,
453		destabilize the host cell membrane at early stages of Plasmodium falciparum
454		growth: role of band 3 tyrosine phosphorylation Free Rad Biol Med 52(2):
455		527-536