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Abstract: Cellular prion protein (PrPC) is a membrane-anchored glycoprotein representing the
physiological counterpart of PrP scrapie (PrPSc), which plays a pathogenetic role in prion diseases.
Relatively little information is however available about physiological role of PrPC. Although PrPC

ablation in mice does not induce lethal phenotypes, impairment of neuronal and bone marrow
plasticity was reported in embryos and adult animals. In neurons, PrPC stimulates neurite growth,
prevents oxidative stress-dependent cell death, and favors antiapoptotic signaling. However, PrPC

activity is not restricted to post-mitotic neurons, but promotes cell proliferation and migration
during embryogenesis and tissue regeneration in adult. PrPC acts as scaffold to stabilize the binding
between different membrane receptors, growth factors, and basement proteins, contributing to
tumorigenesis. Indeed, ablation of PrPC expression reduces cancer cell proliferation and migration
and restores cell sensitivity to chemotherapy. Conversely, PrPC overexpression in cancer stem cells
(CSCs) from different tumors, including gliomas—the most malignant brain tumors—is predictive for
poor prognosis, and correlates with relapses. The mechanisms of the PrPC role in tumorigenesis and
its molecular partners in this activity are the topic of the present review, with a particular focus on
PrPC contribution to glioma CSCs multipotency, invasiveness, and tumorigenicity.
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1. Introduction

The discovery of molecules with pleiotropic functions in heterogeneous pathophysiologic
conditions, is a common event in cell biology. A relevant example of such molecules is the cellular
prion protein (PrPC), the physiological counterpart of the pathogenic prion protein scrapie (PrPSc). Its
name was introduced by Stanley B. Prusiner to indicate the proteinaceous etiologic agent of Scrapie,
an endemic and infective neurodegenerative disorder of sheep, representing the prototype of prion
diseases, also known as transmissible spongiform encephalopathies (TSEs) [1]. Until a few years
ago, PrPC, whose precise physiological role is still debated, was almost exclusively associated with
the development of TSEs after its tridimensional conformation alteration [2–4]. However, recently
a possible key role of PrPC in tissue plasticity, embryogenesis, and cancer development is also
emerging [5]. PrPC plays a central role in the development of TSEs, being expression in neurons,
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immunocompetent cells, and peripheral organs, crucial for the neuro-invasion by the infective PrPSc

counterpart, and for the consequent neuronal death. In the absence of PrPC, cells become resistant
to prion infection, brain propagation, and neurodegeneration [6–8]. Several potential roles for PrPC

in adult central and peripheral nervous systems (CNS and PNS) were proposed. For example, as
far as PrPC homeostatic role in PNS, its axonal expression was reported to be required to peripheral
myelin maintenance [9], but a definitive role has yet to be proved. On the other hand, a required-to-life
role for PrPC is still unclear: transgenic mice in which PrPC expression was ablated do not evidence
lethal abnormalities in adult life [10,11], although alterations in neural development were reported [12].
Remarkable efforts have been performed to identify differential pattern of tissue expression of PrPC in
mammals, evidencing the highest expression within CNS and PNS, followed by lymphoid organs, bone
marrow (BM) hematopoietic cells, and circulating monocytes [13–18]. PrPC expression increases along
with postnatal growth, but can be identified, at lower level, also in embryonic nerve tissue, particularly
in the late stages of pre-natal development [19–21]. Analogously, PrPC is expressed in pluripotent cells,
including neuron and glial precursors, hematopoietic and mesenchymal progenitors, both in embryos
and in adults, suggesting a potential role of such protein in driving ontogenesis and maintenance of
tissue homeostasis [12,22,23]. Importantly, the identification of PrPC expression in stem cells could be
at the basis of the observation that the absence of PrPC induces some abnormalities during the brain
development as well as in the self-renewal capability of hematopoietic stem cells [24–29].

Given the peculiar topology of PrPC and the very high levels of expression with the CNS, it has
long been hypothesized that it could represent an adaptor molecule for putative neuroprotective
factors. Indeed, a growing number of extracellular ligands and extracellular matrix (ECM) proteins are
recently known to form multimers in which PrPC acts as scaffold [30].

Finally, at the beginning of the twenty-first century, PrPC also became a relevant player in the
oncology field. In fact, evidence was provided about a relevant role of PrPC in tumorigenesis, cancer
progression, acquisition of multidrug resistance (MDR), and metastatic propagation [31–33].

Gliomas are malignant astrocytic brain tumors that, according to the World Health
Organization (WHO), are classified as grade I (pilocytic astrocytoma), grade II (diffuse
astrocytoma/oligodendroglioma), grade III (anaplastic astrocytoma/oligodendroglioma), and grade
IV (glioblastoma) [34]. Glioblastoma (GBM) is the most aggressive primary brain tumor with a poor
prognosis even after multimodal therapeutic approaches [35]. In fact, GBM rapidly relapses after
surgical resection, and is able to resist radio- and chemo-therapies. Several hypotheses, not reciprocally
exclusive, have been proposed to determine which cell population gives origin to gliomas [36]. It was
reported that malignant transformation can occurs even from mature astrocytes, and neurons, which
undergo dedifferentiation [37]. However, in most cases, gliomas might arise from tumor transformation
of neural stem cells (NSCs) or committed neural progenitors, along their differentiation path into the
subventricular zone [38,39]. In fact, as observed in many other solid tumors, a major cause of GBM
development, aggressiveness and relapse is the presence, within the tumor mass, of multipotent cells
from which more differentiated cells origin to form the bulk of tumor mass. These poorly differentiated
cells grow into specific stem cell microenvironments called tumor niches, which contain heterogeneous
cell populations including, beside tumor-promoting stem-like cells, ependymal and endothelial cells,
astrocytes, and immune system cells. These tumorigenic cell subpopulations have been named
glioblastoma stem cells (GSCs), because somehow represent the pathogenic counterpart of normal
neural stem cells (NSCs) [40,41]. As most of the normal stem cells, GSCs display low proliferation rate,
self-renewal capability, high activity of DNA-repair machinery and drug extrusion pumps, allowing
them to survive to the toxicity of most conventional chemotherapies and provide, upon differentiation,
a continuous cellular supply to the tumor mass (see [42] for a specific review). Being GSCs the major
cause of tumor relapse and pharmacologic resistance, increasing efforts are currently addressed to
identify the cellular determinants that account for their self-renewal capacity.

Interestingly, GSCs were reported to be high dependent on PrPC to:

(i) maintain tumor-initiating activity,
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(ii) sustain proliferation and invasiveness,
(iii) acquire multidrug resistance, and
(iv) preserve multipotency and ability to differentiate in non-tumorigenic glioma cells [43–46]. Finally,

as observed in normal tissues, in CSCs PrPC seems to act as receptor or scaffold protein for several
extracellular signals dealing with maintenance of self-renewal, adherence, invasiveness, and
migration of cells [47].

This review aims to collect and critically analyze the most recent discoveries about the role of PrPC

in cancer development and progression, particularly focusing on gliomas and GSCs, and to analyze
the possible role of PrPC as a target candidate for novel therapeutic approaches.

2. The Cellular Prion Protein

PrPC, encoded by the PRNP gene, is an extracellular syaloglycoprotein, highly enriched in neurons,
that is tethered to the outer leaflet of plasma membrane by a glycosylphosphatidyl-inositol (GPI)
anchor [48]. It is structured by an α-helix rich C-terminus, and an unstructured N-terminus tail.
In TSEs, PrPC undergoes a structural alteration generating a pathogenic isoform (PrPSc) in which a
significant part of the unstructured tail is converted in β-structures [1,49]. This alteration allows PrPSc

to become protease-insensitive, forming intra- and extracellular aggregates responsible of neuronal
death. PrPSc generation is not limited to Scrapie, but is the pathogenic mechanism of all fatal, albeit
rare, human prion diseases including Kuru, fatal familiar insomnia, Gerstmann–Straussler–Sheinker,
and Creutzfeldt Jacob diseases. These forms have sporadic, inherited, and infectious etiologies in
which PrPC either spontaneously converts into PrPSc form, bear conversion-favoring mutations, or
bind to exogenous PrPSc which acts as a template, respectively [1]. The peculiarity of TSEs is their
infective behavior, since PrPSc can interact with newly synthesized PrPC causing its conversion into
the pathological isoform, favoring the spreading of the neurodegenerative lesions. A very recent
and intriguing theory proposes that similar pathogenic activity induced by protein misfolding occurs
independently from the specific protein involved, in TSEs as well as in other more common and
fatal neurodegenerative disorders of the central nervous system including Alzheimer’s, Parkinson’s,
and Huntington’s diseases and amyotrophic lateral sclerosis [50–54]. In this context, PrPC was
proposed to represent the cellular receptor for Aβ and tau in Alzheimer disease, and α-synuclein
in Parkinson disease, being these interactions required for the different misfolded protein neuronal
internalization and neurotoxicity [55–58]. Moreover, the biological activity of oligomers from the
different misfolded proteins responsible of all these neurodegenerative diseases, was evaluated
using different disease models in vitro and reported to activate similar proapoptotic and gliotrophic
pathways [59–64]. In particular, data using purified PrPSc or amyloidogenic PrPSc-mimicking peptide
models demonstrated the activation of p38 MAP kinase, excitotoxicity via NMDA receptors and
dysregulation of Ca+2 homeostasis or autophagy to be the main neurotoxic activity on neurons,
while the same treatments caused activation of astrocytes and microglia leading to proliferation via
ERK1/2 MAP kinase and release of cytokines, chemokines, prostaglandins and nitric oxide [62,65–74].
In another experimental setting, ERK1/2 MAP kinase activity, relocated in the cytosol, was shown to
favor prion replication, while JNK activity counteracted the formation of prions [75,76].

Given its widespread expression among mammals, it is reasonable that PrPC plays a significant
role in brain and other organs functioning that extends beyond sensitivity to prion illness, driving
critical processes for the physiology of the nervous and immunity systems. Although PrPC ablation
does not induce lethal phenotypes, important evidence showed that nervous tissue development
during embryogenesis, as well as the maintenance of hematopoietic and mesenchymal pluripotent
cells in adult mammals, requires the presence of PrPC on the cell surface [9–12,22,28,77].
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3. Physiology of PrPC in the Development and Homeostasis of Normal Tissues

Mammalian PrPC is mostly expressed in the CNS where it becomes detectable at late stages of
embryonal development and strongly increases shortly after birth, though maintaining a marked
heterogeneity among different brain areas [19], under the control of nerve growth factor activity [78].
Noteworthy, PrPC mRNA is detectable, although at lower levels, also along peripheral nerves and
ganglia and in the sensory neurons as gut plexus, olfactory membrane and retina [19]. Beyond the
nervous system, the expression of PrPC is also detectable in adult bone marrow, lymphoid organs,
heart, skeletal muscles, and lung [79,80]. Altogether, these data strongly indicated that neuronal and
hematopoietic systems may particularly rely on PrPC for their development, survival, and homeostasis.

3.1. Role of PrPC in the Development of the Nervous System

During the embryonic development of neural tube, and in the limited process of adult neurogenesis,
pluripotent stem cells and neural precursors differentiate into neuronal and glial lineages [19,81–83].
In light of the potential role of PrPC as a scaffold that engages different soluble and/or membrane
factors, stabilizing ligand-receptor links [84–86], it was proposed that PrPC may work either as a
receptor or an adaptor that accompanies embryonic cells through neural differentiation and migration.
The enrichment of PrPC into lipid rafts and the growing number of soluble ligands or plasma membrane
and ECM molecules able to interact with PrPC led to the hypothesis that this protein might be involved
in cell adhesion to other cells or ECM. A growing number of soluble ligands or plasma membrane and
ECM molecules have been studied for their capability to interact with PrPC [87] (Figure 1).
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cells (NSCs), and cancer/cancer stem cells (CSCs). Partially overlapping interacting proteins between
NSCs and CSCs were reported, although the interaction can determine different cell responses (orange
in the figure). Abbreviations: NCAM: neural cell adhesion molecule; STI1: stress-inducible protein 1;
37LPR: 37-kDa laminin receptor; ECM: extracellular matrix; MAPK: mitogen-activated protein kinase;
PI3K: phosphatidylinositol-3-Kinase; mTOR: mammalian target of rapamycin; Wnt: Wingless-related
integration site family; Akt: Protein Kinase B; Hes1–2: hairy and enhancer of split 1–2.

Among the different actors controlling cell shape and migration during embryogenesis and
neuron regeneration in adults, particular relevance is held by adhesion proteins [88]. Laminins are
heterotrimeric proteins expressed on basement membrane which, interacting with members of the
integrin family, control the plasticity of cytoskeleton proteins [88,89]. In neurons, this interaction plays
fundamental importance in embryonal development of neural system while, in adults, it models cell
shape, migration, and neurite expansion or regeneration. The laminin-integrin system recognizes PrPC
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as a cofactor that can act either through direct binding to laminin or as a scaffold that regulates integrin
signaling [90,91]. PrPC also interacts with the non-integrin 37kDa laminin receptor precursor (37LRP)
on the cell surface [90,92–96]. Both laminin-PrPC and 37LRP-PrPC binding are specific and recognize
the same domain of PrPC. In the absence of PrPC expression, the proper interactions between basement
laminin and cell membrane are impaired, resulting in abnormalities in cell differentiation, particularly
affecting neuritogenesis and axonal growth [90–92].

Another plasma membrane protein involved in neural differentiation and plasticity is the neural
cell adhesion molecule (NCAM). NCAM is expressed by neurons and glial cells allowing their adhesion
to ECM [97]. Prusiner’s group reported, through the isolation of PrPC-containing lipid rafts, the
presence of high molecular mass protein complexes in which the major component is NCAM [98].
Following studies confirmed that NCAM and PrPC coexist within lipid rafts establishing a specific
binding [99,100]. It was proposed that NCAM recruitment by PrPC serves as a signal to promote
neuronal precursor differentiation [101,102], neurite sprouting, and elongation through the activation
of Fyn-dependent pathways [98,103].

Beyond adhesion molecules, transmembrane and secreted proteins are recently recognized
to play a role in nervous system plasticity. Among these, stress induced protein 1 (STI1) and
Notch complex are emerging as PrPC interactors. Stress-inducible protein 1 (STI1), also known as
Hsp70-Hsp90 organizing protein (HOP), acts a co-chaperonin involved in protein folding. STI1 is
mainly expressed as transmembrane protein in neurons, although its secretion from glial cells has
also been described. Importantly, this protein displays a specific amino acidic domain specifically
recognized by PrPC [104], and their interaction supports neuronal survival and axonal growth [105].
In particular, upon PrPC binding STI1 is retained on cell surface to sustain neuritogenesis and cell
survival through the activation of mitogen-activated protein kinase (MAPK) and protein kinase
A (PKA), respectively [106,107]. Moreover, PrPC/STI1 binding sustains mTOR-dependent protein
synthesis through the maintenance of the PI3 kinase-dependent mTOR phosphorylation [107,108]
Importantly, NSC self-renewal is also dependent on PrPC/STI1 interaction, since neural progenitors
from PrPC null mice, or in which PrPC or STI1 were blocked by antibodies, are less able to ensure
self-renewal in vitro even in the presence of exogenously added STI1 [109].

Notch1 is a transmembrane protein that contributes to maintain the stemness of neuronal
progenitors and to drive the migration of neuronal and glial progenitor cells in embryonal and
postnatal brain [110,111]. It has been demonstrated that PrPC depletion in neuroectodermal cells,
neuronal stem cells, and in mice embryos produced a down-regulation of Notch 1 receptor and
its cognate ligands, Jagged 1 and 2, and of the expression of target genes including nestin, OLIG2
and N-cadherin, depicting a molecular scenario in which PrPC plays a pivotal role in stemness and
self-renewal of NSCs [112].

3.2. PrPC Stimulates Hematopoiesis

Early studies on PrPSc infectivity showed that prion neuroinvasion is preceded by its accumulation
in spleen, lymph nodes, thymus, and follicular dendritic cells (FCDs), which represent a relevant
site where PrPSc binds PrPC to induce its conversion into the pathologic conformation [15,113,114].
Remarkably, immunodeficient mice are resistant to PrPSc passage from periphery to the brain but BM
restoration can reintroduce the capacity of PrPSc to replicate into the mice spleen after intracerebral or
peripheral inoculation. These observations clearly indicate the importance of the immune cells in TSE
pathogenesis [6,115–118]. Beyond FDCs, PrPC is expressed in hematopoietic cells including myeloid
dendritic cells (DC) and, at a lower level, in circulating blood cells as erythrocytes, platelets, and B
and T lymphocytes and monocytes, although still discordant reports were produced on the latter cell
populations [13,80,119]. It is hence reasonable to hypothesize a role of PrPC in the immune system
functionality and development. The ablation of PrPC in mice produces only minor abnormalities in
the mature immune system as alteration in monocytes/neutrophils ratio and in DC-T lymphocytes
cross-activation, although it does not cause immunodeficiency [120,121]. However, the lack of PrPC
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is detrimental under prolonged stressful conditions as can be experimentally induced after serial
bone marrow transplantation in irradiated animals. Under these conditions, the presence of PrPC is
necessary for the regeneration of hematopoietic cells [28]. Moreover, the expression of PrPC in myeloid
progenitors increases after total body irradiation, and post-irradiation recovery of hematopoietic stem
cells is hampered in PrPC-null mice [122]. These studies indicate that PrPC is highly expressed in BM
stem cells of mesenchymal and hematopoietic origin, where, in analogy with NSCs, it sustains their
indefinite self-renewal. PrPC expression is inducible by stressful conditions in order to sustain the
capacity of BM hematopoietic cells to replenish the pools of circulating mature blood cells.

4. PrPC and Cancer Stem Cells in Gliomas and Other Tumors

Metastasization, the capacity of neoplastic cells to detach from a primary tumor mass, diffuse
through blood and lymph streams, and form tumor colonies in distant body areas, is one of the main
causes of cancer deaths. Metastatic cells often display an enhanced proliferation rate, self-repair
capacity, and insensitivity to conventional chemio- and radiotherapy. In CNS malignant solid tumors,
such as GBM, fatal outcome is caused by the rapid invasion of brain parenchyma that causes tumor
relapse, even after extensive reduction of the mass induced by surgical and chemo-radiotherapy.
The current hypothesis to explain cancer’s ability to relapse post-surgery and resist cytotoxic drug
treatment, indicates that tumor development and progression is sustained by a minority of cells that
combine malignant transformation with stem-like multipotency. These cancer stem cells (CSCs) divide
indefinitely and originate non-stem differentiated cells that form the bulk mass of tumors [5,40,41,123].
CSCs theory states that alterations of maturation and self-renewal of organ-specific stem cells could be
the main factor at the basis of tumorigenesis. Virtually any kind of tumor, even benign in nature [124]
possibly contains CSCs. Notably, CSCs display a high MDR efficiency that, altogether with the low
proliferation rate and self-renewal capability, confers resistance to conventional chemotherapy. Since
CSCs fuel, upon differentiation, a continuous supply of cells to the tumor mass, it is conceivable that
they represent the most notable target for really effective cancer eradicating therapies.

Present in virtually all types of gliomas, CSCs are particularly relevant for the rapid recurrence
and dissemination of GBM, whence they have been named GBM stem cells (GSCs) [41,125,126].
GBM is characterized by heterogeneous cell populations comprising GSCs and non-stem cancer cells,
intermingled with multiple cell types such immune cells (microglia, peripheral macrophages, leukocytes,
CD4+ T cells, and Treg), pericytes, and endothelial cells recruited from non-tumor vasculature or by
trans-differentiated GSCs, and includes necrotic areas forming a complex microenvironment [127–129].
GSCs are functionally resident in niches, due to the homing activity of the chemokine CXCL12 produced
by stromal cells [130], whose microenvironment protects them by external insults, including cytotoxic
drugs, and favor their maintenance of stemness. GBM niches have been currently characterized in
five different typologies, of which the best characterized is the perinecrotic hypoxic niche, in which
the relative scarcity of oxygen sustains GSC stemness, and the perivascular niche in which GSCs
contribute to the neovascularization of the tumor mass and form which they migrate to distant brain
areas [131,132]. Thus, GBM development proceeds by misleading the same pathways that sustain
NSCs in brain sub-ventricular zone [42,132].

The characterization of the cellular mechanisms involved in GSC balance between maintenance
of stemness and self-renewal capacity, and the differentiation in non-stem tumor cells, represents an
extremely challenging issue with potential therapeutic value, though still largely unmet. Particularly
complex is also the definition of those elements that mediates GSCs contact with extracellular ligands
or with surrounding cells to modulate their self-renewal or differentiation.

Given its peculiar topology on the cell surface, PrPC may act as a receptor for extracellular
ligands and proteins, which interacting with the plasma membrane or basement matrix, transduce cell
responses favoring cancer development and progression, including enhancement of protein synthesis,
apoptosis blockade, maintenance of multipotency, detachment from extracellular membrane, and
acquisition of MDR. One of the first indications concerning the relevance of PrPC in cancer biology
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dates back to the studies by Fan et al., which demonstrated the overexpression of PrPC in gastric
carcinomas and gastric cancer cell line, that was correlated with doxorubicin resistance and a highly
invasive behavior in vivo [33,133]. PrPC-dependent resistance to doxorubicin was showed to be
mediated by the expression of P-glycoprotein, a main effector of MDR, and the increase in the Bcl-2/Bax
ratio [31]. Similarly, in colorectal and breast cancers, PrPC expression level was shown to be predictive
of resistance to chemotherapy, metastatic behavior and, in general, poorer prognosis [31,44,134,135].

PrPC is expressed at high levels also in glioma tissues [107,136] and cell lines [137,138], and cells
from this tumor histotype were reported to be dependent on the presence of PrPC to proliferate and
acquire multidrug resistance [139]. The expression of PrPC was also analyzed in patient-derived
GSC-enriched cultures that are able to continuously grow in stem cell-permissive, EGF/bFGF-containing
medium [43]. Among GSC features, these cultures evidenced the capacity to grow as neurosphere,
an in vitro index of self-renewal, and, when intracranially injected into immunodeficient mice, are
able to develop tumors which reproduce the characteristics of the original GBM. In this study, several
evidences supported the role of PrPC in the tumorigenic activity of GSCs: on one hand PrPC protein
levels were directly correlated to the in vitro proliferation rate of these cells, and, on the other, most of
GSC-like cellular behaviors were strongly affected by PrPC silencing. Down-regulation of PrPC reduced
cell growth, clonogenensis and spherogenesis activities, and the ability to develop tumors in animal
models [43]. Phenotypically the loss of GSC-like activity was associated with the down-regulation of
stem cell marker expression (e.g., Sox2 and Nanog) in favor of differentiation markers, such as glial
fibrillary acidic protein (GFAP) [43]. Similarly, it was also shown that stem-like cells derived from
established GBM cell lines (U87, U251) contain higher levels of PrPC than the GBM differentiated cell
counterpart [137].

These data suggest that the presence of PrPC is critical to maintain of GSC stemness and that its
reduction could represent a strategy to force GSC shift towards more chemotherapy-sensitive and
differentiated cancer cells.

Another major reason for GBM relapse after adjuvant chemotherapy is the selection, induced by
the pharmacological treatment, of GSCs with increased DNA-repairing and antiapoptotic capacities.
For example, this phenomenon was observed after treatment with the alkylating agent temozolomide
(TMZ), the most commonly used cytotoxic drug for GBM [140,141]. It was observed that, after
TMZ treatment of recurrent GBM samples, PrPC expression is increased, possibly contributing to
the acquisition of resistance through the binding and inhibition of nuclear translocation of the
transcriptional receptor prostate apoptosis response-4 (Par-4) [45], which normally favors apoptosis
via the inhibition of the anti-apoptotic protein Bcl2 [142]. Importantly, the down-regulation of PrPC

restores Par-4 activity and GBM sensitivity to TMZ [45].
Acknowledging the ability of PrPC to interact with several NSC receptors involved in the control

of self-renewal and differentiation, the role of PrPC interaction with stemness-related ligands in GSCs
proliferation, invasiveness, and drug resistance has become a major topic of research and is currently
under intense investigation. Indeed, a growing number of interactors has been recently identified
and proposed to promote GBM malignancy through their co-operation with PrPC, also suggesting
that PrPC itself could become a relevant target for therapies specifically directed against the CSC
subpopulation [47] (Figure 1). Some of the most extensively studied PrPC-interacting molecules in
cancer cells and, in particular, in CSCs are discussed below.

4.1. PrPC and CD44

CD44 is a transmembrane glycoprotein originally described in lymphocytes [143], that functions
as adhesion protein to the ECM components hyaluronic acid, fibronectin, and laminin. Although
expressed in a wide variety of normal cells, CD44 is overexpressed in cancer cells, including CSCs,
in which favors cell survival via hyaluronic acid binding and allowing distant tissue homing after
metastasization [144]. In GBM, CD44 is highly expressed in GSCs lying into niches, and it is regarded
as a marker for a poor prognosis [145–147]. A definite role of CD44 in sustaining GSC activity is still to
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be determined and it has been proposed that it may vary according to the location of CD44-positive
GSCs within the tumor mass: CD44 is involved in the control of stemness in the cells present in
hypoxic niches, while it favors their tissue dissemination if it is predominant in perivascular niche
GSCs [148–150].

Although no evidence is presently available about a CD44-PrPC direct interaction in GBM,
such interaction has been demonstrated in gastric and colorectal cancers [33,44], where it allows the
formation of metastasis. Moreover, both CD44 and PrPC are overexpressed in breast cancer cell lines
resistant to doxorubicin, and PrPC silencing, disrupting this interaction, allows the recovery of drug
sensitivity. Similarly, in breast carcinoma tissues, a direct correlation between the overexpression of
both CD44 and PrPC was detected in patients unresponsive to neoadjuvant chemotherapy [31].

4.2. PrPC and Stress-Inducible Protein 1

Stress-inducible protein 1 (STI1), is a co-chaperonin, firstly described to stabilize the binding
between Hsp 70 and 90. STI1 is mostly resident into the cytoplasm although nuclear, membrane-bound
and secreted forms have also been described [151,152]. Pull-down experiments demonstrated that
STI1 binds PrPC in a high affinity manner, interacting with PrPC hydrophobic region 113–128 [104].
Furthermore, it has been demonstrated that treatment of retinal neurons with STI1 or synthetic peptides
matching its PrPC-binding site can prevent anisomycin toxicity in vitro, indicating that STI1 represents
a trigger for the anti-apoptotic activity of PrPC [106].

PrPC and STI1 are upregulated in GBM and associated with increased tumor growth and poorer
survival of patients [153,154]. PrPC-STI1 complex has been reported to occur in GBM and, more in
general, the relative abundance of PrPC in GSCs has been hypothesized to sustain, through complexing
STI1, the maintenance of stemness in astrocytic tumors. In particular, STI1 is overexpressed and
secreted by GBM-associated lymphocytes, macrophages, microglia, and astrocytes, and its secretion
stimulates the proliferation and migration of tumor cells, but not of normal astrocytes, only if PrPC is
present and available for binding [155–158]. Moreover, PrPC contribution to stemness maintenance in
GSC neurospheres, is impaired after STI1 downregulation which inhibits proliferation and self-renewal,
both in vitro and in vivo [137]. Of therapeutic relevance, Martin’s group, reported that the formation
of PrPC/STI1 complexes induces proliferation of GBM cell lines, via the activation of PI3K and ERK1/2,
conversely the blockade of this interaction, depleting PrPC or using a STI1-derived peptide mimicking
PrPC-interacting sequence which prevents the binding, inhibited cell growth [153]. Also using in vivo
experimental models, the intratumor delivery of a peptide able disrupt PrPC/STI1 interaction, impaired
proliferation and promoted apoptosis of GBM cells [153]. Thus, the contemporary presence of both
proteins is required to promote GBM growth and this interaction could represent a potential target for
innovative therapies.

4.3. PrPC and Laminin

The 37LRP and its 67 kDa form (67LR) are both overexpressed in cancers, contributing to
tumor dissemination, preventing apoptosis of cancer cells and favoring adhesion to ECM in distant
tissues [159,160]. 37LRP is overexpressed in GBM cells than in normal astrocytes, and its activity
is necessary to grant these cells with high proliferating and metastatic behavior [160]. Given the
role of ECM and laminin in tumor development, it is likely that its activity in promoting tumor cell
survival depends on specific receptors or scaffolding proteins present at cell membrane, including PrPC

that was shown to specifically bind 37LRP [90,94,96]. Interestingly, also the PrPC paralogue Doppel
(Dpl, see below) interacts with 37LRP although the binding sites for Dpl and PrPC were identified
in different 37 LRP regions [161]. Importantly, PrPC co-localized with 37LRP in gastric carcinoma
tissues and cell lines, to cause P-glycoprotein-dependent and -independent resistance to conventional
anticancer agents’ apoptosis [162]. In this model, 37LRP silencing significantly attenuated PrPC induced
multi-drug-resistance by sensitizing vincristine-dependent apoptosis through inhibition of Ser/Thr
kinase Akt activation. Thus it was proposed that the activation of the PI3K/Akt intracellular signaling



Cells 2019, 8, 1458 9 of 23

may be required to transduce the PrPC-37LPR-dependent acquisition of MDR via anti-apoptotic
signals [162].

4.4. PrPC and Notch

Notch signaling controls multiple developmental processes and adult tissue homeostasis. Notch
was shown to mediate cell-to-cell interaction signaling and to control stem cell maintenance, particularly
in the CNS [163]. The activation of the four heterodimeric transmembrane receptors (Notch1–4) occurs
upon their binding to a high number of specific transmembrane receptors (Delta-like-1-3-4, and
Jagged-1-29) expressed by adjacent cells. Upon activation, Notch receptor family release their
intracellular domains (NCID) that translocate into the nucleus to regulate the transcription of target
genes (e.g., Hairy Enhancer of Split: Hes, p21/Waf1, cyclin D1 and 3, c-Myc, HER2, and Sox2) [164].
Notch1 signaling sustains the progression of some of the most aggressive human malignancies, including
leukemia, pancreatic carcinomas, and GBM [164–167]. In GBM, upregulated Notch1 signaling is often
identified in poorly differentiated, high grade tumors and correlates with reduced survival [168,169].
Human GBM tissues and cell lines overexpress Notch1 and its receptors Jagged-1 and Delta-like -1,
showing also nuclear localization of NCID and enhanced expression of Notch-induced proteins, Hes1
and Hes2 [165,170]. Independent investigations showed that genetic or pharmacologic downregulation
of Notch signaling in GSC primary cultures and cell lines promote antiproliferative and pro-apoptotic
activity in vitro, impairing self-renewal and tumorigenicity [165,168,170–174]. Importantly, Notch1
modulation surveils the balance between self-renewal and differentiation of GSCs with the latter,
enhanced by Notch1 inhibition [173,174]. In pancreatic carcinomas co-expression of PrPC and Notch1
correlates with poor survival. Moreover, Notch1 binding to PrPC, forming a complex with filamin A
(FLNA), is necessary to sustain the proliferative and invasive phenotype of pancreatic carcinoma cell
lines. Accordingly, PrPC silencing reduced the expression of either Notch1 and Notch target genes,
and inhibited cell proliferation and invasiveness [167].

The depletion of PrPC from neuroepithelial cells and transgenic mice [112] or its pathological
conversion during mouse Scrapie infection [175] impair Notch activation and altered the early phases
of embryonal neurogenesis, indicating that PrPC expression in neural progenitors is required for
Notch-dependent maintenance of cell stemness. Starting from the idea that the stem component of
GBM arises from glial progenitors and hijacks physiological pathways to ensure its long-term survival,
PrPC expression could represent a possible requisite for Notch signaling in tumor tissues. At this regard,
the demonstration that PrPC silencing in GSCs hampers stemness and promotes differentiation [43]
may suggest the possibility that impairing PrPC signaling or scaffolding activity interferes with Notch
activity to induce the differentiation of GSCs in more chemotherapy-sensitive GBM cells. Further
studies are warranted to address this issue.

4.5. PrPC and Wnt Pathway

Wnt family is composed by several secreted glycoproteins, which directs through the coactivator
β-catenin developmental processes during embryogenesis and homeostasis and repair in adult
tissues [176]. Among the pathways involved in the regulation of stem cell function, canonical
Wnt/β-catenin signaling is pivotal in the control of proliferation, self-renewal, stemness maintenance,
and epithelial–mesenchymal transition (EMT) [177,178]. In the absence of Wnt proteins, cytosolic
β-catenin is ubiquitinated and degraded by proteasome, keeping the signaling shut down. Conversely,
in presence of Wnt, β-catenin accumulates in cytosol, translocates into the nucleus, and activates Wnt
target gene transcription [179–182].

Dysregulation of Wnt signaling has been described in many human cancers, including GBM [183].
In human intestinal cancer cell lines (Caco-2/TC7 and SW480) and normal crypt-like cells, PrPC interacts
in cytoplasm and nucleus with the canonical Wnt pathway effectors, β-catenin and transcription factor
7–like 2 (TCF7L2), upregulating their transcription activity [184]. From a functional point of view, PrPC

down-regulation, impairing Wnt signaling, inhibits the proliferation of intestinal progenitors [185].
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Moreover, PrPC is involved in the growth and formation of intestinal organoids, since they were
defective if derived from PrPC-knockout mice, in which an altered nuclear β-catenin localization
in intestinal crypts was observed, being likely involved in survival and proliferative mechanisms
of intestinal progenitors [184]. In virtue of this evidence, PrPC is considered a modulator of Wnt
signaling in proliferating intestinal epithelial cells. Moreover, PrPC interaction with Wnt and its
pathway effectors was suggested as molecular correlate of oncogenic processes, since they control
cell–cell junctions, and Src kinase family activity and are dysregulated during tumorigenesis [185].

5. Pro-Prion and Cancer

In normal cells, immature, neo-synthesized PrPC undergoes to endo-proteolytic processing, in
endoplasmic reticulum and Golgi before being exposed at plasma membrane. During this process,
PrPC loses the 22 amino acid N-terminal signal peptide and a variable C-terminal sequence that is
substituted by a glycosylphosphatidyl-inositol (GPI) anchor, and one or two N-linked oligosaccharide
residues are potentially added forming mature GPI-anchored PrPC [186]. Intriguingly, a precursor form
of PrPC, named Pro-PrP is expressed in alternative to the mature form in different cancers, including
human pancreatic ductal carcinoma and melanoma cell lines and tissues [187–189]. Pro-PrP lacks the
N-terminal signal peptide, both sugar moieties and GPI, but retains the C-terminal GPI anchor signal
sequence (GPI-PSS). As a result, Pro-PrP is not anchored to the plasma membrane outer face, as mature
PrPC, but rather it is inserted into the phospholipid bilayer being GPI-PSS domain rich in hydrophobic
amino acids (Figure 2). As a potential interactor of Pro-PrP, the actin-binding protein FLNA has been
identified in melanoma cells [187]. FLNA connects the cytoskeleton with membrane proteins including
integrin β1, promoting cell motility and migration [190]. In particular, Sy et al. [191] identified a
specific hydrophobic region of FLNA that recognize GPI-PSS of Pro-PrP (Figure 2). Silencing Pro-PrP in
pancreatic carcinoma cell lines, although did not determine a net reduction of FLNA content, modified
its intracellular distribution. While in the presence of Pro-PrP, FLNA is remarkably adherent to plasma
membrane, in Pro-PrP silenced cells it is diffuse within the cytosol. In both pancreatic cancer and
melanoma, the expression of Pro-PrP is associated with a higher propensity to disseminate and a
significantly lower mean survival time [191]. It is important to remark that the expression of Pro-PrP
was absent in non-neoplastic pancreatic tissues and it was not detectable in all tumors (~40%), but
rather it was limited to specimens from most aggressive pancreatic malignancies [191]. Somehow in
analogy, FLNA is not expressed in all melanomas indicating that it is not an absolute requirement
for the development of these tumors, but its co-expression with Pro-PrP significantly enhance the
capacity of melanoma cells to migrate [187]. Altogether, these reports indicate that the unconventional
insertion of an immature form of PrPC into the plasma membrane can modify crucial interactions
between cytoskeleton and extracellular environment increasing the malignant phenotype of cancer
cells. The incomplete processing of PrPC in not associated to any mutation in its coding gene PRNP,
rather it is plausible the intervention of mutations in any gene that encodes for proteins involved in the
post-translational maturation of PrPC [192].
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Figure 2. Structural features, cell membrane anchorage and interactions with schematic representation
of PrPC, Pro-PrP, and Dpl. (A) Cellular prion protein (PrPC) contains a N-terminal octapeptide repeat
domain (OR), a highly conserved hydrophobic signal domain (HD), and a C-terminal hydrophobic
region comprising a glycosylphosphatidyl-inositol (GPI) which anchors to the plasma membrane outer
face in the lipid raft; (B) Pro-prion (Pro-PrP), lacks the N-terminal signal peptide, N-glycan chains and
GPI, while it retains the C-terminal GPI anchor peptide signal sequence (GPI-PSS). As a result, Pro-PrP
is inserted into the phospholipid bilayer by GPI-PSS rich in hydrophobic amino acids; (C) Doppel (Dpl),
an N-terminally truncated PrPC protein lacking the octamer repeats. (D) Differently form PrPC, Pro-PrP
interacts with filamin A (FLNA) a cytoplasmic protein involved in actin organization. FLNA acts as
cytolinker, which allows the binding of cell surface receptors such as integrins, to F-actin filaments,
and forming an actin network responsible for the maintenance of membrane integrity, cell-cell, and
cell-matrix interactions.

6. Role of the Prion-Like Protein Doppel in Gliomas and Other Cancers

Doppel (Dpl) is a PrP-like protein, encoded by the gene PRND, located downstream PRNP locus.
Structurally, human Dpl and PrPC proteins are similar (Figure 2). Both molecules are glycoproteins
exposed on the outside of cell membrane via a GPI anchor, whereas they display a limited amino acid
homology (25%). Although Dpl partially overlaps the C-terminal part of PrPC, it does not contain the
octa-repeats N-terminal region, and the amyloidogenic central sequence 106–126 [193,194]. Moreover,
in contrast to PrPC, Dpl expression in adults is low in brain and it is mainly confined to testis where it
controls spermatogenesis [195,196].

Upregulation of Dpl expression has been identified in an increasing number of cancers including
leukemia, lung, colon, and astrocytomas [136,197,198]. Comincini et al. analyzed and compared the
expression of PrPC and Dpl in tissue samples obtained from more than 100 astrocytomas encompassing
both low and high grade glioma cell lines, as well as other malignancies (anaplastic meningiomas and
gastric adenocarcinomas), using adult and fetal normal cortical tissues as controls [136,199]. Dpl was
detectable in fetal normal brain, in nearly all analyzed tumors (86%) and in most astrocytoma cell lines,
with maximum levels displayed by GBM, and lowest in adult normal brain. In contrast, PrPC showed
a strongest expression in normal brain tissues than in GBM samples. The increase of Dpl expression
from low to high grade astrocytic tumor samples, allowed the authors to propose that Dpl might
represent an early event in tumorigenesis subsequently associated with tumor grading progression.

Little information is presently available to place ectopic expression Dpl within oncogenic events,
but recent evidence indicated that its expression may favor tumor cell growth and migration. Al-Hilal et
al. demonstrated the presence of Dpl in endothelial cells in tumor-associated vessels in lung and colon
carcinomas, and showed that Dpl interacts with vascular endothelial growth factor receptor 2 (VEGFR2)
promoting angiogenesis [197]. Noteworthy, a synthetic glycosaminoglycan that binds Dpl causes
antiangiogenic effects downregulating VEGFR2 expression [197]. Moreover, genetic manipulation of
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Dpl levels in astrocytoma cell lines affects migration ability, showing reduced cell motility induced
after Dpl silencing and enhanced migratory capacity when Dpl was overexpresses [200]. In virtue of
its restriction to neoplastic tissues, Dpl protein could represent either a potential biomarker or a target
for selective anti-cancer therapies in the next future.

Intriguing differences between PrPC and Dpl concern also their intracellular localization in GBM
cells. While PrPC displayed a typical expression around Golgi and at plasma membrane, Dpl showed
mostly cytoplasmic distribution indicating retention into the endosomal-lysosomal system [201,202].
Such unconventional topology of Dpl is more evident in GBM than in low grade astrocytomas, in which
most Dpl is tethered at plasma membrane as in normal adult testis [203]. Cancer-related differences of
Dpl expression have been found also in BM from patients affected by acute myeloid leukemia [198].
It is thereafter conceivable that Dpl expression and intracellular processing may represent a novel
diagnostic marker for different cancer types and its activity, when defined, a potential target for
therapy [199,203].

7. Concluding Remarks and Future Perspectives

GBM is still one of the deadliest cancers even after aggressive multimodal therapies, but the
discovery of GSCs, a milestone for the comprehension of the mechanisms underlying aggressiveness
and resistance to therapies, may pave the way for novel targeted therapies. Thus, the main therapeutic
challenge is represented by the eradication of GSC subpopulation, which confers the tumor with
aggressive behavior, including high invasive activity, and drug resistance. In this scenario, targeting
selective molecular drivers which sustain GSC aggressive phenotype, in combination with standard
therapies, might improve cancer patients’ treatment response. PrPC is overexpressed in several cancer
types, including GBM, and its content is closely related to tumor progression and poor clinical outcome.
Multiple CSC-related features, such as resistance to apoptosis, CD44 expression, FLNA activity, MDR,
among others, provide this tumor cell subpopulation with a survival, growth, and migratory advantage.
Intriguingly, PrPC represents a connecting factor among key stem-related molecules and functions: it
interacts with CD44 fueling MDR phenotype, FLNA to promote cell migration, and also with Wnt and
Notch signaling exerting pro-survival and proliferative activity.

It is important to remark that several issues are still to be addressed to definitely ascribe to PrPC

a prominent role in CSC malignant behavior. For example, it seems contradictory that post-mitotic
neurons have the highest PrPC expression but do not proliferate, while GSCs proliferate only in the
presence of this protein. While no explanations were provided on experimental basis, it is possible to
speculate that in GSCs, at odd with mature neurons, PrPC is irregularly processed to give origin to
Pro-PrP which in turn is responsible of the tumor-like behavior. While this could represent a relevant
field of study, to date no data were available in GBM, possibly due to the difficulties to discriminate
between the two isoforms, that besides topology show very few differences to be evaluated with
standard approaches.

It has also to be understood whether PrPC and Dpl have complementary or independent activities
in GSCs, to control of tumor cell proliferation and invasiveness.

Few attempts to translate PrPC-targeted strategies in anticancer therapeutic applications have been
so far published [47]. Considering that PrPC is highly expressed in adult brain and its physiological
role in humans is still largely undefined, it is unlikely that a gene therapy for GBM focused on PrPC

downregulation, can be devoid of general unacceptable side effects. Thus it is reasonable that effective
and low-risk approaches may pursue the inhibition of PrPC and its partners’ specific interactions or
the downstream signal transduction pathways. For example, encouraging preclinical results have been
obtained by treating GBM xenograft in mouse brains with a peptide that competes with STI1 for PrPC,
resulting in an inhibition of GBM cell proliferation, without affecting normal astrocyte functioning [153].
Indeed, such interactions, beyond exerting a physiological control of embryonal development and
tissue remodeling might also be considered a molecular signature of CSCs in adult tissues, granting
a relative tumor-specific interference with GBM cell activity. In prospective, the characterization at
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the molecular level of PrPC interactions with its partners in tumors and normal cells or the molecules
involved in signal transduction activated after the binding is an absolute requirement to develop
therapeutic approaches able to discriminate between normal brain cell and tumor signaling.

In conclusion, aimed to propose a view of integration of PrPC-associated functions to the GSC
malignant phenotype, this review highlighted the relevance of PrPC in oncology, emphasizing its role
in cancer prognosis and particularly in CSC phenotype. Future progress in understanding the function
of PrPC (and/or Pro-PrP and Dpl) could represent an effective advancement for the development and
implementation of PrPC-targeting therapeutic strategies improving cancer patient management.
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