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Abstract: Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with 
an exiguous life expectancy. Standard treatments are not curative and the resistance to both 
chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. 
Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. 
In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, 
named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, 
dose modifying factor calculation and linear-quadratic model were performed to evaluate 
radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by 
microarray was also conducted after PT treatments alone or combined, to identify gene signatures 
as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a 
radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, 
microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated 
by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in 
combination with PT, overcoming resistance to conventional treatments. 

Keywords: glioblastoma multiforme; proton therapy; combined treatments; gene signatures 
 

1. Introduction 

Glioblastoma multiforme (GBM) is a central nervous system tumor classified as grade IV of high-
grade malignant gliomas (HGG), according to the World Health Organization (WHO) guidelines [1]. 
GBM belongs to the group of diffuse astrocytic and oligodendroglial tumor, joining 
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oligodendrocytomas, ependymomas, and mixed gliomas, under the glioma classification [2]. 
According to the ASTRO guidelines statements, the current standard care for GBM is surgical 
resection to the feasible extent, followed by conventional radiotherapy (RT) of 60 Gy delivered by 
fractions of 2 Gy, up to seven weeks. Moreover, chemotherapy is concurrent to RT with daily 
temozolomide (TMZ) administration [3–5]. These treatment modalities are not currently curative and 
the resistance to both chemotherapy and RT plans is the main cause of GBM care failures (the median 
survival time is 14.6 months) [6]. Moreover, the percentage of relapses and side effects post TMZ and 
RT treatments is more than 90% [7]. More precisely, even if the application of TMZ has significantly 
improved clinical GBM outcomes, cases of drug resistance related to the activity of the enzyme 
methyl guanine methyl transferase (MGMT) have been observed [8]. The hypermethylation of its 
promoter, is indeed associated with a better survival rate in patients receiving TMZ with or without 
RT [9]. In addition, the dose release onto healthy brain tissue or surrounding organs at risk during 
irradiation may, substantially, contribute to late tissue toxicities, such as radionecrosis and 
neurocognitive dysfunction, because of their limited dose tolerance. 

In recent years, different dose fractionation schedules have been improved to have a better 
prognosis, avoiding the large side effect even in case of focal re-irradiation of recurrences. In this 
scenario, proton therapy (PT) could be used as a successful strategy for GBM treatment, being able 
to regulate the balance between tumor control and the normal tissue tolerance [10–14]. In particular, 
when heavy particles cross the tissues, they deposit a minimal radiation dose on their track to the 
tumor. The depth-dose distribution, described by the Bragg peak trend, gradually increases as a 
function of the depth. So, the so-called spread-out Bragg peak (SOBP) lead to a complete irradiation 
of the target volume and a more conformal dose distribution, sparing the surrounding healthy tissues 
from damage [15,16]. This specific dose distribution curve represents a key topic for GBM tumor 
treatments in which the sparing of healthy tissue is a key factor for the patient’s quality of life. 
Therefore, there is a robust scientific rationale motivating the need to enlarge studies that guide 
towards new clinical trials for PT combined with targeted therapy rather than conventional RT with 
photons or electrons [17,18]. 

Today, in the context of personalized medicine, prognostic and predictive molecular biomarkers 
are useful to select cancer therapeutic planning [19,20]. A critical point in RT success is the prediction 
of cancer radiosensitivity. At the molecular level, the idea that genes may behave as biomarkers of a 
disease response represents the base for the development of gene signatures, to predict response to 
cancer radiation treatments [21]. Several genes have been shown to be responsive to radiation 
exposure and thanks to the use of high-throughput technologies, such as gene expression profiling 
(GEP) by microarray, radiosensitivity assays have been developed with gene signatures predicting 
radioresponse in many cancer types, including GBM [22]. However, the response to radiation is 
highly cell-line dependent and some specific genes and pathways may be linked both to tumor 
subtypes and dose delivered [23–25]. 

Actually, few published studies have evaluated the effectiveness of radiosensitizing agents 
combined with PT in GBM and none of them consider genes and response pathways induced by RT. 
Most studies have demonstrated that different genetic pathways and molecular features can provide 
reliable prognostic biomarkers, overlooking the treatment responses and predictive outcomes. 
However, according to WHO guidelines, IDH1/IDH2 gene status distinguishes a more radioresistant 
tumor type (primary GBM, IDH-wild type) from a more sensitive one (secondary GBM, IDH-mutant). 
IDH mutation is correlated with epigenetic modifications of the MGMT gene and assumes a 
prognostic value together with other biomarkers such as, the presence of LOH 10q, epidermal growth 
factor receptor (EGFR) amplification, p16INK4a deletion, TP53 mutation, PTEN mutation, and the co-
deletion of 1p/19q [26–28]. 

Based on this evidence, a large group of molecularly targeted agents have been designed, but 
none of them seem to overcome tumor radioresistance [29]. Previous studies support an involvement 
of the SRC-family protein kinases in the irradiation induction of radioresistance mechanisms. SRC 
protein is a non-receptor tyrosine kinase that interacts with many intracellular proteins involved in 
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GBM carcinogenesis and progression. In addition, in vitro and in vivo studies confirmed the 
correlation between SRC activity and GBM carcinogenesis. [30]. 

In this work we analyzed the GEP on the U87 MG human glioblastoma cell line after treatment 
with PT alone or in combination with a new targeted compound, named Si306 (Lead Discovery Siena, 
Siena, Italy), inhibiting SRC proteins. The Si306 molecule is a new TKI, chosen among the family of 
pyrazolo[3,4-d] pyrimidines, that exhibited the ability to specifically bind the ATP site of SRC protein, 
making it inactive. Furthermore, previous in vitro and in vivo studies have shown that the Si306 
determines a significant reduction of the β-PDGFR active phosphorylated form and a greater loss of 
the migratory ability in GBM cells stimulated by Epidermal Growth Factor (EGF). In addition, the 
antiproliferative effect of Si306 has been tested in association with conventional RT treatments both 
in vitro and in vivo [31]. 

Here, in order to clarify the Si306 activity in GBM cells exposed to PT, we firstly evaluated 
radiosensitive effects of different amounts of the Si306 compound on the U87 cell line in combination 
with PT exposed at the doses of 1, 2, 3, 4, 10, and 21 Gy. Clonogenic assay and dose modifying factor 
(DMF) calculations were performed. We also analyzed the U87 cell radiosensitivity by applying the 
radiobiological linear-quadratic (LQ) model and calculated the α, β, and ఈఉ ratio, commonly used to 

predict radiosensitivity of normal and tumor cells [32]. 
In addition, at molecular level we selected 2 and 10 Gy of proton radiation doses combined with 

the Si306 to evaluate GEP induced responses, by using whole genome cDNA microarray. We 
described networks and specific gene signatures of response to both treatments, highlighting for the 
first time, the cell pathways induced by Si306. 

2. Results 

2.1. IC50 Determination 

In order to evaluate cytotoxicity ability of Si306 in term of concentration that determined the 
50% of growth inhibition (IC50), U87 cells were incubated with Si306 at increasing concentrations of 
0.1, 1.0, 10, and 100 μM for 24, 48, and 72 h under normal cell culture conditions. Cell numbers and 
viability were evaluated and the IC50 values calculated at each time points (Table 1). 

Table 1. IC50 values calculated after 24, 48, and 72 h of treatment with Si306 on U87 glioblastoma cell line. 

IC50 IC50 IC50 
24 h 48 h 72 h 

17.3 μM 6.8 μM 1.98 μM 

2.2. Cell Radiosensitization Following Combined Treatments with Protons and Si306 

To evaluate the radiosensitizing ability of Si306 compound, we investigated the combined effects 
of this molecule on U87 cells exposed to different proton doses (1, 2, 3, 4, 10, and 21 Gy). Surviving 
fraction values, obtained by clonogenic assay, after irradiation with protons alone or after 
pretreatment with 10 and 20 μM Si306, are shown in Table 2. These surviving fraction (SF) values 
were plotted to obtain dose-response curves with the exception of the 10 Gy and 21 Gy doses because 
of the lack of LQ model validity at high doses (Figure 1). We then calculated the DMF, which 
represents the relative reduction of dose to be delivered following a combined treatment with Si306 
to get the isoeffect of SF = 0.5 compared to radiation treatment without modification. The DMF values 
were 1.09 (10 μM of Si306) and 1.21 (20 μM of Si306), showing a radiosensitive effect at both 
concentrations (Table 3). 
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Table 2. Surviving fraction (SF) values of U87 cells after irradiation with only protons and after 
combined treatments with 10 and 20 μM of Si306. 

Dose (Gy) SF (Only Protons) SF (Protons + 10 µM Si306) SF (Protons + 20 µM Si306) 
0 1.000 ± 0.185 1.000 ± 0.121 1.000 ± 0.127 
1 0.756 ± 0.126 0.722 ± 0.107 0.694 ± 0.104 
2 0.516 ± 0.066 0.509 ± 0.088 0.474 ± 0.078 
3 0.409 ± 0.069 0.342 ± 0.057 0.305 ± 0.051 
4 0.257 ± 0.050 0.239 ± 0.050 0.216 ± 0.044 
10 0.109 ± 0.022 0.072 ± 0.018 0.064 ± 0.018 
21 0.056 ± 0.015 0.039 ± 0.009 0.035 ± 0.012 

 

Figure 1. Cell survival curves of U87 cells. Cells treated with protons only (black line), protons plus 
10 μM of Si306 (red line), and protons plus 20 μM of Si306 (blue line). 

Table 3. Dose modifying factor (DMF) values calculated as isoeffective dose at surviving fraction of 0.5. 

Treatment SF 50% (Gy) DMF 
Protons 2.22 1 

Protons + 10 μM Si306 2.03 1.09 
Protons + 20 μM Si306 1.84 1.21 

2.3. LQ Model 

We calculated LQ parameters α and β of U87 cells, which provided information about the 
intrinsic cell radiosensitivity. Together with ఈఉ ratio they have a pivotal role for a reliable estimation 

of radiation response, although most of the studies reported a large heterogeneity in LQ parameters 
and limited data is published about PT [33,34]. The U87 fitted survival curve, generated after only 
protons administration, gives us the values of 0.292 Gy-1 for 𝛼 and of 0.010 Gy−2 for 𝛽, that result in 
an ఈఉ ratio of 28.6 Gy (Table 4). 

The higher ఈఉ  ratio showed, when the Si306 is added, especially at higher concentrations, 

determines a more linear cell survival as reasonably expected and demonstrates the molecule 
radiosensitivity role. Moreover, the shape variations at the origin of survival curves are linked with 
the DMF values. Other points are evident for the relationship between the LQ parameters and 
survival curve. Si306 affects substantially the linear component (α), whereas the quadratic component 
(β) is slightly decreased at higher concentrations. These results can be interpreted according to the 
LQ model, in which the cell death is lead, in our case, to the greater accumulation of lethal lesions. 
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The use of Si306, both at concentrations of 10 and 20 μM, combined with PT contributes to sensitize 
GBM cells to protons exposure with an increase in cell killing. 

Table 4. Values of the α and β parameters estimated by fitting the cell survival to the linear-quadratic 
(LQ) model. 

Treatment α (Gy-1) β (Gy-2) α/β (Gy) 
Proton 0.292 ± 0.036 0.010 ± 0.003 28.6 

Proton + 10 μM Si306 0.322 ± 0.011 0.010 ± 0.003 32.2 
Proton + 20 μM Si306 0.372 ± 0.018 0.004 ± 0.001 93.0 

2.4. Gene Expression Profiles (GEP) Experiments 

As a second aim of this work, here we have reported GEP data obtained applying a Two-Color 
cDNA Microarray-Based Gene Expression Analysis (Agilent technologies) on U87 cells exposed to 
PT, with or without 10 μM Si306 compound. Comparative differential gene-expression analysis 
revealed that multiple deregulated genes (DEG) were significantly altered, by 2-fold or greater 
according to the specific experimental configuration reported as follows. 

In addition, as described by several authors and also by our group [35,36], we have studied GEP 
lists, using PubMatrix, a tool for multiplex literature mining, in order to confirm our assumptions 
and to test their involvement in selected queries, radiation related, to draw assumptions described in 
the “Discussion” section. In this way, lists of terms, such as gene names, were assigned to a genetic, 
biological, or clinical relevance in a flexible systematic fashion in order to confirm our hypothesis, 
highlighting the involvement of known and lesser known genes able to drive cell radiation responses 
(Table S1). 

2.4.1. GEP Induced by Proton Irradiation in U87 Glioblastoma Cells 

Firstly, we analyzed the gene expression changes uniquely induced by protons irradiation with 
2 and 10 Gy of IR doses. It should be remembered that 2 Gy is the daily dose delivered in fractionated 
RT treatments, so it is a dose of clinical interest, while 10 Gy represents a high dose of interest for 
comparisons with high-dose GEP studies of our research group [36]. 

In particular, U87 cell line treated with 2 Gy changed the expression levels of 936 genes (215 
down regulated and 721 up regulated). On the other hand, 1018 DEGs were selected in U87 cells 
treated with 10 Gy and, among these, 251 were down regulated while 767 up regulated (Table 5). 

Table 5. Number of genes significantly deregulated by 2-fold or greater in all the configuration 
modalities assayed in this work. 

Configuration Number of Genes Down Up 
U87 2 Gy versus U87 n.t 936 215 721 
U87 10 Gy versus U87 n.t 1018 767 251 

U87 +Si306 + 2 Gy versus U87 2 Gy 1419 563 856 
U87 + Si306 + 10 Gy versus U87 10 Gy 969 353 616 

Deregulated transcripts obtained were grouped by using the DAVID tool [37,38] according to 
pathway analysis and the top-five molecular pathways selected are reported in Table 6. The analysis 
on DEGs induced by PT treatment with 2 Gy revealed the involvement of a set of factors controlling 
cellular processes, such as Hippo signaling pathway, cAMP signaling pathway, antigen processing 
and presentation, Wnt signaling pathway, and cell adhesion molecules (CAMs). 

On the other hand, U87 glioblastoma cells exposed to 10 Gy of proton irradiation activate specific 
cell pathways as displayed in Table 6: PI3K-Akt signaling pathway, p53 signaling pathway, 
proteoglycans in cancer, Hippo signaling pathway, and cAMP signaling pathway. Finally, the GEP 
lists were analyzed by Venn diagrams in order to identify the overlapping deregulated genes (537 
DEGs), between the two configurations of 2 and 10 Gy assayed (Figure 2A). Some genes were 
specifically deregulated following the dose provided, showing a dose-dependent transcriptional 
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response. Moreover, cells respond to radiation treatment also in a common manner with activation 
of common genes and pathways, as displayed in Table 6 and listed as follows: Hippo signaling 
pathway; cAMP signaling pathway; proteoglycans in cancer; neuroactive ligand-receptor interaction; 
and antigen processing and presentation. Except for the neuroactive ligand-receptor interaction 
pathway, formed overall by molecules driving neuronal cell signaling, the involvement of these 
cellular processes in U87 cells proton exposed, has described above. 

Table 6. Top-five statistically relevant pathways activated in U87 cells exposed to proton therapy (PT). 

  Pathway Name Genes 
Count  

% p Value Genes  

2 
G

y 

1 Hippo signaling pathway 19 0.016 0.000255 
WNT5A, DVL3, WNT10A, NF2, FZD3, TCF7L2, LLGL1, 

LATS2, TP73, DVL1, CTNNB1, PPP1CA, CCND3, CSNK1E, 
CCND2, DLG4, PARD6G, WNT6, BMP8B 

2 cAMP signaling pathway 18 0.015 0.012333 
FXYD2, HCN2, VAV3, MAP2K2, GRIN1, GRIN2A, ATP1A4, 

VIPR2, ADORA1, AKT1, ATP2B2, PPP1CA, GRIN2D, 
ABCC4, CALML6, HCN4, PIK3R3, HTR1D 

3 
Antigen processing and 

presentation 9 0.007 0.026474 
CIITA, KLRC2, HLA-A, NFYC, HLA-C, HSPA1A, HLA-B, 

CTSB, HLA-E 

4 Wnt signaling pathway 13 0.011 0.029905 
WNT5A, WNT10A, DVL3, FZD3, TCF7L2, DVL1, CTNNB1, 

SFRP1, CCND3, CSNK1E, CCND2, NFATC2, WNT6 

5 
Cell adhesion molecules 

(CAMs) 
13 0.011 0.036193 

PVR, LRRC4, ITGAL, CD276, HLA-A, HLA-C, HLA-B, HLA-
E, SDC4, NRCAM, SDC1, ITGB8, CLDN1 

10
 G

y 

1 
PI3K-Akt signaling 

pathway 
31 0.025 0.000968 

CSH1, PHLPP1, FGF7, PGF, KITLG, RPS6KB2, BCL2L1, 
GNG8, AKT1, COL6A5, COL6A3, TEK, COL6A2, COL6A1, 

PRKAA2, INSR, GHR, AKT2, FN1, TNXB, PKN2, HSP90B1, 
CDKN1A, EIF4E, CCND3, GNB2, CCND2, ITGA5, VEGFA, 

MDM2, LAMC2 

2 p53 signaling pathway 11 0.008 0.001175 
PPM1D, CDKN1A, CCND3, CCND2, BBC3, BAX, MDM2, 

FAS, GADD45B, SESN1, TP73 

3 Proteoglycans in cancer 21 0.017 0.001320 
ERBB2, RPS6KB2, IGF2, FLNC, FLNA, PXN, CTNNB1, 
AKT1, WNT7B, SDC1, PPP1CA, CDKN1A, MAPK12, 

ITGA5, VEGFA, MDM2, FAS, MSN, WNT6, FN1, AKT2 

4 Hippo signaling pathway 15 0.012 0.012836 
NF2, TEAD1, TCF7L2, LATS2, TP73, DVL1, CTNNB1, 
WNT7B, PPP1CA, CCND3, BBC3, CCND2, PARD6G, 

WNT6, BMP8B 

5 cAMP signaling pathway 18 0.014 0.013410 
FXYD2, HCN2, VAV3, GRIN1, HTR4, ATP1A4, VIPR2, 

ADORA1, AKT1, ATP2B2, FOS, PPP1CA, SSTR1, GRIN2D, 
HTR6, ABCC4, HCN4, AKT2 

C
om

m
on

 b
et

w
ee

n 
2 

an
d 

10
 G

y 1 Hippo signaling pathway 12 0.018 0.001636 
PPP1CA, CCND3, NF2, CCND2, PARD6G, WNT6, TCF7L2, 

BMP8B, LATS2, TP73, CTNNB1, DVL1 

2 cAMP signaling pathway 13 0.019 0.004726 
HCN2, FXYD2, VAV3, GRIN1, ATP1A4, VIPR2, ADORA1, 

AKT1, ATP2B2, PPP1CA, GRIN2D, ABCC4, HCN4 

3 Proteoglycans in cancer 12 0.018 0.013466 
AKT1, PPP1CA, SDC1, MAPK12, ERBB2, IGF2, MSN, 

FLNC, WNT6, FLNA, PXN, CTNNB1 

4 
Neuroactive ligand-
receptor interaction 

14 0.021 0.025160 
CSH1, PRLHR, GRIN1, DRD4, ADORA1, VIPR2, NTSR2, 

CRHR2, CHRM3, GALR3, GRIN2D, GALR2, UTS2R, 
CHRNA1 

5 
Antigen processing and 

presentation 
6 0.009 0.044750 NFYC, HLA-C, HSPA1A, HLA-B, CTSB, HLA-E 
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Figure 2. Venn diagrams showing the number of unique and shared differentially expressed genes 
after exposure to: (A) PT and (B) Si306 + PT combined treatments. 

2.4.2. GEP Induced by Si306 and Proton Combined Treatments in U87 Glioblastoma Cells 

In a second step, we have evaluated the effect on GEPs after a combined administration of 10 
μM Si306 compound and PT using the doses of 2 and 10 Gy, hereafter named as follows: U87 Si306 + 
2 Gy and U87 Si306 + 10 Gy, which were analyzed in comparison to the respective samples treated 
with PT alone (U87 2 Gy and U87 10 Gy). We selected a large amount of deregulated genes, caused 
by the Si306 compound addition to PT treatment: 1419 DEGs (563 down and 856 up regulated) in U87 
Si306 + 2 Gy, while 969 DEGs (353 down and 616 up regulated) changed their expression levels in 
U87 Si306 + 10 Gy (Table 5). Thus, also for these experimental configurations, up and down regulated 
transcripts were grouped according to their involvement in specific biological pathways using 
DAVID tool [38]. The top-five statistically relevant molecular pathways of deregulated gene datasets 
are reported in Table 7. In particular, the Si306 + 2 Gy combined treatments deregulated the 
expression levels of genes controlling: Phagosome, antigen processing and presentation, cell 
adhesion molecules, inflammatory disease, and calcium signaling pathway. 

Some of the above described pathways were also deregulated in U87 cells exposed to Si306 + 10 
Gy and following reported and listed in Table 7: Proteoglycans in cancer, leukocyte transendothelial 
migration, phagosome, cell adhesion molecules, and autoimmune disease. Three out of the five 
pathways selected in U87 Si306 + 10 Gy (proteoglycans in cancer, phagosome, and cell adhesion 
molecules), were also deregulated in the other configurations analyzed, underling once again their 
interesting role in U87 cells response to radiation and/or to the Si306 molecule. 

Finally, the Venn diagram shown in Figure 2B displays 552 deregulated common genes between 
the two configurations: U87 Si306 + 2 Gy and U87 Si306 + 10 Gy. The top-five statistically relevant 
pathways selected by DAVID tool using the 552 common gene list, are displayed in Table 7, and 
following listed: Autoimmune disease, antigen processing and presentation, proteoglycans in cancer, 
apoptosis, and inflammatory bowel disease. 
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Table 7. Top-five Statistically relevant pathways activated in U87 cells pretreated with Si306 and 
exposed to PT. 

  Pathway Name 
Genes 
Count  

% p Value Genes  

2 
G

y 

1 Phagosome 23 0.013 0.00014 

HLA-DQB1, NOS1, HLA-DRB1, MRC2, HLA-A, HLA-C, 
HLA-B, ITGB3, SFTPA1, HLA-E, CLEC4M, FCAR, CD209, 
COMP, TUBAL3, HLA-DPA1, SCARB1, HLA-DPB1, HLA-

DOA, TUBB1, ATP6V0D2, TUBB4A, HLA-DRA 

2 
Antigen processing and 

presentation 
15 0.009 0.00017 

CIITA, HLA-DQB1, HLA-DRB1, HLA-A, HLA-C, HSPA1A, 
HLA-B, HLA-E, CD74, KIR3DL3, HSPA6, HLA-DPA1, HLA-

DPB1, HLA-DOA, HLA-DRA 

3 
Cell adhesion molecules 

(CAMs) 
21 0.012 0.00036 

PVR, HLA-DQB1, HLA-DRB1, SELL, CLDN5, HLA-A, 
NLGN1, CTLA4, HLA-C, HLA-B, HLA-E, CLDN15, ALCAM, 
NCAM2, SDC1, CD2, MADCAM1, HLA-DPA1, HLA-DPB1, 

HLA-DOA, HLA-DRA 

4 
Inflammatory bowel 

disease (IBD) 
13 0.007 0.00041 

HLA-DQB1, HLA-DRB1, TBX21, RORC, STAT1, STAT3, 
IL12RB2, IL17A, IL1B, HLA-DPA1, HLA-DPB1, HLA-DOA, 

HLA-DRA 

5 
Calcium signaling 

pathway 
19 0.011 0.02473 

ORAI2, PTGER1, NOS1, ERBB4, TNNC1, ERBB3, ERBB2, 
STIM2, OXTR, EDNRA, ATP2B2, P2RX1, CHRM3, LTB4R2, 

GRPR, CHRNA7, CALML6, PLCB2, CACNA1B 

10
 G

y 

1 Proteoglycans in cancer 22 0.019 0.000094 
NANOG, ERBB4, ROCK2, HCLS1, ERBB2, FASLG, IGF2, 
FZD3, HGF, DCN, ITGB3, MMP2, PXN, KDR, CTNNB1, 

SMO, MAPK13, HPSE, PLCG2, HSPB2, PRKACA, TWIST1 

2 
Leukocyte 

transendothelial migration 
12 0.010 0.01064 

ITGAL, ROCK2, MAPK13, PLCG2, CLDN5, CTNND1, 
MYLPF, RAPGEF3, JAM2, MMP2, PXN, CTNNB1 

3 Phagosome 14 0.012 0.01214 
HLA-DQB1, HLA-DRB1, SFTPA1, ITGB3, COLEC11, TUBA8, 
CD36, FCGR2B, PIKFYVE, TUBAL3, HLA-DPA1, HLA-DPB1, 

TUBB1, TUBB4A 

4 
Cell adhesion molecules 

(CAMs) 
12 0.010 0.03671 

HLA-DQB1, NRCAM, ITGAL, HLA-DRB1, CLDN5, NLGN1, 
CTLA4, HLA-DPA1, HLA-DPB1, JAM2, SELE, PDCD1LG2 

5 Autoimmune disease 6 0.005 0.06648 
HLA-DQB1, HLA-DRB1, CTLA4, FASLG, HLA-DPA1, HLA-

DPB1 

C
om

m
on

 b
et

w
ee

n 
2 

an
d 

10
 

G
y 

1 Autoimmune disease 6 0.009 0.00768 
HLA-DQB1, HLA-DRB1, CTLA4, FASLG, HLA-DPA1, HLA-

DPB1 

2 
Antigen processing and 

presentation 
6 0.009 0.03468 

HLA-DQB1, HLA-DRB1, KIR3DL3, HLA-DPA1, HLA-
DPB1, CD74 

3 Proteoglycans in cancer 10 0.015 0.04961 
ERBB4, MAPK13, ERBB2, FASLG, FZD3, HGF, ITGB3, 

MMP2, KDR, TWIST1 
4 Apoptosis 5 0.007 0.06011 DFFB, CYCS, CASP8, FASLG, IL3RA 

5 
Inflammatory bowel 

disease (IBD) 
5 0.007 0.06604 HLA-DQB1, HLA-DRB1, TBX21, HLA-DPA1, HLA-DPB1 

3. Discussion 

The first purpose of this study was to evaluate the radiosensitizing effects mediated by 
combination of the new compound, the Si306 targeting SRC proteins, with PT on the U87 human 
glioblastoma cell line. The IC50 evaluation showed that this cell line is sensitive to treatment with the 
Si306 compound. Based on the IC50 values, we tested the radiosensitizing effect of Si306, used at 
concentrations of 10 and 20 μM, in combination with proton irradiation at increasing doses of 1,2, 3, 
4, 10, and 21 Gy, in order to generate dose/response curves for the dose configurations tested. 

The radiosensitizing effect was evaluated by calculating the DMF, obtained at the SF of 50%, in 
order to highlight the combined treatment capacity of enhancing tumor cells killing in respect of 
irradiation only [39]. Our data show that pretreatment with Si306 at both concentrations leads to a 
synergic cytotoxic effect with PT on the U87 cell line, further suggesting this compound as a new 
possible candidate to treat GBM in combination with PT. Indeed, the possibility to use drug/IR 
combined treatments, permits to increase the tumor control probability (TCP) even for radioresistant 
tumors, such as GBM. In addition, we also analyzed the U87 cell radiosensitivity by applying the 
radiobiological LQ model calculating the α, β parameters, and ఈఉ  ratio, which predict the 

radiosensitivity of normal and tumor cells [32]. The LQ model is considered to be the best-fitting 
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model to describe cell survival and, therefore, is of great interest in radiation oncology to highlight 
the link existing between the ఈఉ ratio and the following RT-induced tissue reactions [34,40,41]. The ఈఉ 

ratio obtained on U87 cell line is in line with the ఈఉ ratio calculated for a population of glioma cells 

reported by Barazzuol et al., who used a mathematical model to extract radiobiological information 
from clinical GBM patients data [42]. In addition, our results showed a higher ఈఉ  ratio by using 

combined treatments of Si306 and protons. Therefore, we speculate that the clinical effect of using 
combined treatments of PT/Si306 administration, with an optimized Si306 pharmacological quantity 
for the patients, could be translated into the possibility of modifying the PT schedule treatment. Thus, 
all of this gains an efficacy in TCP, by using a more tolerable fractionated PT treatment plan and a 
reduced total dose delivered to the tumor [43,44]. 

As a second aim of this work, we carried out a transcriptomic study in order to define gene 
signatures as biomarkers of treatment response. GEP by whole genome cDNA microarray was firstly 
performed to analyze the gene expression changes uniquely induced by proton irradiation with 2 
and 10 Gy of IR doses, which represent two clinical doses of interest and also for comparison with 
high-dose GEP studies of our research group [23,24,36,45]. 

In particular, the treatment of U87 with 2 Gy revealed that a large number of genes were 
deregulated and involved in the regulation of specific cellular processes (Table 6). One of the 
activated pathways was the Hippo signaling pathway, an emerging growth control and tumor 
suppressor pathway that regulates cell proliferation and stem cell functions; the hyperactivation of 
its downstream effectors (such as TAZ protein, up regulated in U87 2 Gy with a fold change of 1,89) 
contributes to the development of cancer including GBM, suggesting that pharmacological inhibition 
of these factors may be an effective anticancer strategy [46,47]. In turn, in GBM cells Yang et al. 
recently reported that the Hippo transducer TAZ promotes cell proliferation and tumor formation 
through the EGFR pathway [48]. In addition, Hippo and Wnt signaling, up regulated in U87 2 Gy 
cells, reciprocally regulate each other’s activity through a variety of mechanisms that needs to be 
better clarified in GBM cells [49]. As known, Wnt/β-catenin signaling plays important roles in 
maintaining the stemness of cancer stem cells in various cancer types and in promoting cellular 
invasiveness. Multimodality in vivo and in vitro studies revealed a key role of Wnt activation in GBM 
radiation resistance. In turn, literature data report a pivotal role of the Wnt/β-catenin signaling 
pathway in IR-induced invasion of U87 GBM cells, indicating that β-catenin is a potential therapeutic 
target for overcoming evasive radioresistance [50,51]. 

In U87 2 Gy the involvement of cAMP signaling pathway was also observed. Existing evidence 
suggests that intracellular cAMP level and signaling may affect the survival of cancer cells, including 
resistant cancer cells to standard chemotherapeutic drugs. Suppression of the cAMP pathway is a 
common feature across different cancers including GBM. [52,53]. In addition, IR is known to be able 
to activate the transcription of genes, through the presence of cAMP responsive elements (CREs) in 
their promoters, in order to guide cell response and survival after radiation exposure [54]. 

Moreover, the activation of antigen processing and presentation pathway after proton exposure 
with dose of 2 Gy in GBM cells is sustained by an up regulation of genes belonging to the human 
leukocyte antigen (HLA) class family (probably activated by β-catenin), factors involved in antigen 
presentation. As reported by Ghosh et al., HLA genes increasing level, often caused by a hypoxic 
tumor microenvironment, is associated with evasion of immune responses in cancer cells [55]. 
Finally, an overall activation of several cell adhesion molecules was highlighted in U87 2 Gy cells, 
involved in the activation of inflammation process and in the regulation of cancer invasiveness. 

On the other hand, U87 cells exposed to 10 Gy of proton irradiation activate specific cell 
pathways, including the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling 
pathway (Table 6). As known, the PI3K/AKT pathway is commonly activated in cancer initiation and 
progression, including GBM, as it regulates different processes, such as proliferation, apoptosis, and 
migration [56], therefore representing a key target for cancer therapeutics. Moreover, the activation 
of TP53 pathway was observed in U87 10 Gy and driven by TP53 gene that was significantly altered 
by 1.77-fold. As described, TP53, exerts a crucial role following IR-induced DNA damage because it 
is able to cause cell cycle arrest, DNA repair, and apoptosis processes. Moreover, the influence of 
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TP53 status on DNA damage repair after cell irradiation has been studied in several malignancies and 
also reported by our group in breast cancer cells after a high dose of electron irradiation [45,57]. Finally, 
in U87 10 Gy, an activation of proteoglycan signaling was observed. Proteoglycans are known to have 
many roles in tumor progression and are the main extracellular matrix (ECM) components of normal 
brain tissue, playing an important role in brain development; an overproduction of different molecules 
of this family were found in GBM cells [58,59]. 

Interestingly, in U87 10 Gy Hippo and cAMP signaling pathways were activated, as above 
described in U87 2 Gy configuration, underling once again the important role of these processes in 
GBM cells after proton exposure. 

In a second step, we evaluated the GEPs induced by Si306 molecule in U87 cells irradiated with 
2 and 10 Gy of proton doses and we selected a large number of deregulated genes, grouped according 
to their involvement in specific biological pathways (Table 7). In particular, in U87 Si306 + 2 Gy 
combined treatments a deregulated expression level of genes controlling phagosome was observed. 

In GBM an intensive autophagic activity regulated by several signaling pathways was described 
[60]. As recently reported by Yasui et al., an altered autophagic flux was described in GBM cell lines 
exposed to 10 Gy of γ-rays. Our data also confirms this trend after proton exposure. These altered 
fluxes represent a useful biomarker of metabolic stress induced by IR and provide a metabolic context 
for radiation sensitization [61]. Here the Si306 radiosensitization effect seems to act by stressing this 
molecular mechanism. In addition, in U87 Si306 + 2 Gy configuration the involvement of antigen 
processing and presentation and cell adhesion molecules pathways were observed, similarly to that 
shown in U87 cells proton treated with only 2 Gy. Therefore, the Si306 treatment seems to cause an 
overall down regulation of HLA molecules (up regulated in U87 2 Gy), suggesting the activation of 
immune surveillance escaping mechanism induced by Si306 [55,62]. 

The latest two pathways deregulated in U87 Si306 + 2 Gy were linked to inflammation and 
calcium signaling. As known, the inflammation process is often activated in cell exposed to radiation, 
affecting cell fate by the activation of key transcription factors (TFs), such as NF-KB and STATs (i.e., 
STAT1 and STAT3) [63]. Interestingly, the combined Si306 + 2 Gy treatment induced a down 
regulation of STAT1 and STAT3 proteins. Thus, we speculate that this inhibition could promote 
radiation sensitivity decreasing angiogenesis and cell survival as hypothesized in other malignancies 
by several authors [64,65]. Indeed, a number of studies confirm that selective inhibitors of these 
proinflammatory pathways driven by STAT TFs, could be combined to conventional radiation or 
chemotherapy to increase their effectiveness [66,67]. 

On the other hand, the combined treatment with Si306 and 2 Gy PT seem to affect survival/death 
balance by modulating the intracellular calcium levels, a mechanism known to be involved in 
regulating IR-induced cell cycle arrest, apoptosis, and chromatin structure modifications [45,68,69]. 

Some of these pathways were also deregulated in U87 cells exposed to Si306 + 10 Gy, such as: 
Proteoglycans in cancer, leukocyte transendothelial migration, phagosome, cell adhesion molecules, 
and autoimmune disease. Three of the five pathways (proteoglycans in cancer, phagosome, and cell 
adhesion molecules), were also deregulated in the other configurations analyzed, suggesting once 
again their important role in U87 cells in response to radiation and/or to Si306 molecule. The other 
two selected pathways in U87 Si306 + 10 Gy (i.e., leukocyte transendothelial migration and 
autoimmune disease), highlight the involvement of a complex immunological response induced by 
IR, as known from the literature, and by the Si306 compound addition, as observed in this study. 

Finally, we reported the number of overlapping deregulated genes between the two 
configurations of the combined treatments, such as U87 Si306 + 2 Gy and U87 Si306 + 10 Gy (Figure 
2B). The top-five statistically relevant pathways selected and displayed in Table 7, were previously 
described. 

Summarizing, our GEP results show that combined treatments on U87 cells can activate multiple 
signal transduction pathways described, to our knowledge, for the first time, to be new targets of 
Si306. Finally, considering that the main target of Si306 is the tyrosine kinase SRC, we analyzed the 
known cellular target downstream to this transducer, in order to better clarify its role as molecular 
radiosensitizing. Thus, we observed that the combined treatment Si306 + protons (with 2 and 10 Gy) 
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in U87 cells, is able to inhibit several signal transduction pathways, normally regulated by SRC as 
shown in Figure 3. 

 

Figure 3. The figure displays the main targets of Si306 compound observed. The arrows define an 
activation and the T bars the inhibition. Red arrows define gene upregulation and green arrows gene 
downregulation. 

In particular, the STAT1, STAT3, c-MYC, and Cyclin D1 genes, which are able to control the cell 
cycle, were downregulated in our analysis. Cell survival was negatively regulated by the 
downstream PI3K, AKT, and mTOR downregulation and by the BAD upregulation. In addition, Si306 
is able to cause a partial inhibition of cell proliferation, downregulating RAS and RAF gene 
expression. However, the MAPK and FOS genes were not targets of Si306, so these factors (up 
regulated in our data), were probably activated by other cellular pathways. Finally, Si306 is also able 
to negatively regulate cell motility, through the downregulation of the paxilin gene. 

These data confirm the SRC role as a main target of Si306 compound and highlight the 
transcriptional events occurring downstream of SRC inhibition by the combined treatments. The SRC 
blockage observed after Si306 and PT combined treatments seems to increase the single treatments 
effectiveness, thus promoting a radiosensitizing effect. 

Today, very little data is available regarding the combination of molecularly targeted drugs and 
PT. Indeed, many studies debate about chemotherapeutic agents combined with high-linear energy 
transfer (LET) particle beams or protons for GBM treatment, overlooking the clinical perspective of 
target therapy [70,71]. 

The results obtained from this work have highlighted the radiosensitizing capacity of the Si306 
targeted compound on U87 GBM cell line, acting in tandem with PT. Taking into account previously in 
vivo pharmacokinetic data, demonstrating that Si306 was able to reach the brain, overcoming the hurdle 
represented by the blood–brain barrier [31], this compound can be considered a new candidate for 
combined treatments of GBM. In addition, our GEP results confirm the important role of SRC as the 
main Si306 target and highlight new genes and pathways modulated by the combined action of Si306 
and PT, which can be further explored as new radiosensitizing therapeutic targets in GBM. 
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4. Materials and Methods 

4.1. Proton Irradiation Configuration and Cell Irradiation 

The proton beam irradiation was performed at the CATANA (Centro di Adroterapia ed 
Applicazioni Nucleari Avanzate) facility of INFN-LNS (Catania, Italy) [72], using 62 MeV of proton 
beams accelerated by a cyclotron superconducting. The beamline is composed of several passive 
elements optimized for the clinical application: Scattering foils to spread the beam laterally, 
collimators to define beam profile in accordance to the tumor shape, and monitoring chambers to 
measure the dose delivered [73]. In order to irradiate the entire 25 cm2 (T25) standard tissue culture 
flasks, a motorized system for biological samples irradiation was used. Radiochromic film detectors 
were adopted to check the delivered dose and the lateral dose distribution during each irradiation. 
The dosimetric system was calibrated under reference conditions according to the International 
Atomic Energy Agency Technical Reports Series No. 398 “Absorbed Dose Determination in External 
Beam Radiotherapy” [74]. 

For combined treatments with Si306, U87 irradiations were carried out using six dose values of 
1, 2, 3, 4, 10, and 21 Gy. Cell irradiations were conducted placing the cell at the middle spread-out 
Bragg peak, to simulate a clinical condition, with a dose rate of 15 Gy/min. 

4.2. Cell Culture and IC50 Determination 

In vitro experiments were carried out using the U87 MG human glioblastoma cell line. Cells 
were purchased from European Collection of Authenticated Cell Cultures (ECACC, Public Health 
England, Porton Down Salisbury, UK) and cultured as previously described [31]. Cells were maintained 
in an exponentially growing culture condition in an incubator at 37 °C in a humidified atmosphere (95% 
air and 5% CO2) and were routinely sub-cultured in T25 standard tissue culture flasks. 

To calculate IC50 (drug concentration that determined the 50% of growth inhibition), 2.5 × 104 
U87 cells were plated in 12-well plates and incubated with Si306 dissolved in DMSO at increasing 
concentrations (0.1, 1.0, 10, and 100 μM) for 24, 48, and 72 h under normal cell culture conditions. Cell 
numbers and viability were evaluated using Z2 Coulter Counter (Beckman Coulter, Indianapolis, 
United States). IC50 was calculated by GraphPad Prism 6.0 software (GraphPad Software, San Diego, 
CA, USA) using the best fitting sigmoid curve. 

4.3. Clonogenic Survival Assay 

Forty-eight hours before irradiations U87 cells were seeded in T25 flasks and the day after were 
incubated with the concentrations of 10 and 20 μM of Si306, chosen on the base of IC50 results, for 24 
h prior to radiation treatment. Cells were irradiated at subconfluence. Combined effects of Si306 and 
protons were evaluated by clonogenic survival assay, performed as previously described [45,57]. 
Briefly, after irradiation, U87 cells were detached, counted by hemocytometer and seeded into a six-
well plate in triplicate at a density of 50–2000 cells per well, by plating an increasing cell quantity 
according to the dose delivered raising, in order to assay the SF. Colonies were allowed to grow under 
normal cell culture conditions for two weeks and then were fixed with 50% methanol and stained 
0.5% crystal violet (both from Sigma-Aldrich, St. Louis, MO, USA). Colonies with more than 50 cells 
were counted manually under Olympus CK30 phase-contrast microscope (Olympus, Tokyo, Japan) 
and also automatically with a computer-assisted methodology [75]. The calculation of SFs in U87 cells 
irradiated with protons and pre-treated with Si306 were determined taking into consideration the 
plating efficiency (PE) for all treatment modalities based on three independent experiments. 

4.4. The Linear-Quadratic Model 

The linear-quadratic model, introduced by Kellerer and Rossi in the 1970s [32], is the most 
widely used model in RT, in which a lethal event is supposed to be caused by one hit due to one 
particle track (the linear component 𝛼𝐷) or two particle tracks (the quadratic component 𝛽𝐷ଶ). 



Int. J. Mol. Sci. 2019, 20, 4745 13 of 17 

 

The clonogenic survival data were analyzed by means of non-linear regression, which utilizes a 
multi-parameter equation for curves, whose form is: S(D)/S(0)=e (-αD-βD^2) , so we get α[Gy-1] e β[Gy-2] 
with their own standard deviation. 

4.5. Dose Modifying Factor Calculation 

The parameter dose modifying factor was calculated in order to evaluate synergistic effect of 
protons combined with Si306 compound. This value, as the best measure of treatment effectiveness, 
was calculated at the SF of 50% and represents the relative dose of irradiation required to obtain the 
isoeffect of SF = 0.5 with radiation treatment alone in respect of combined treatments with a defined 
concentration of Si306 [39]. 

The SF data versus dose were plotted with the reported quadratic equation: 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥ଶ 
where y is ln(SF) and x is the dose, considering the positive solution. The experimental samples 
(pretreated with 10 or 20 μM of Si306 and proton irradiated) were normalized to coefficient 𝑎 of the 
previous equation in order to start the survival curves from the same origin. The results were 
achieved with the software OriginPro 8. 

The SF values take into account two errors: The first was derived from the equation 𝑦 = 𝑎 +𝑏𝑥 + 𝑐𝑥ଶ  and was calculated using error propagation; the second was derived from ratio 
normalization, but negligible compared to first one. 

4.6. Whole Genome cDNA Microarray Expression Analysis 

To study molecular pathways and cell networks activated at transcriptional level in U87 cells 
exposed to PT, with or without Si306 compound, we performed gene expression experiments by 
cDNA microarray. In particular, in this work we analyzed GEP of the following configurations: (i) 
U87 2 Gy versus U87 untreated cells; (ii) U87 10 Gy versus U87 untreated cells; (iii) U87 2 Gy + 10 μM 
Si306 versus U87 2 Gy; and iv) U87 10 Gy + 10 μM Si306 versus U87 10 Gy. 

RNA extraction and analyses were performed as previously described [45,57]. Microarray 
experiments conducted by using the protocol Two-Color Microarray-Based Gene Expression 
Analysis (Agilent Technologies, Santa Clara, CA, USA), statistical analyzes carried out with 
GeneSpring GX 10.0.2 software (Agilent Technologies), and pathway analysis conducted by using 
DAVID database, were performed as previously described [76]. 

The data showed in this work were deposited in the Gene Expression Omnibus (GEO) database 
(NCBI) [38] and are available by using the GEO Series accession number: GSE127989. 

5. Conclusions 

The data here described, supported by DMF calculation and LQ model analyses, indicate that a 
new compound, the Si306 targeting SRC protein, exerts a radiosensitizing action on the U87 MG cell 
line causing a synergic cytotoxic effect when combined with PT. This compound can be considered a 
new possible candidate to treat GBM in combination with PT. In addition, we provide for the first 
time a description of GEPs induced by Si306 and PT combined treatments, highlighting the 
modulated cellular networks and confirming the important role of SRC as the main target of the 
compound. Taking together our encouraging data suggest the use of Si306 compound in targeted 
therapies in tandem with PT, to obtain a more successful treatment modality in GBM disease. 
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