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Abstract—With the advent of network “softwarization”, Net-
work Functions Virtualization (NFV) is foreseen to provide
flexibility and programmability levels that would essentially help
in coping with tomorrow’s demands. However, energy efficiency
and the resulting complexity of network/service management
pose serious sustainability and scalability issues that may hinder
NFV’s advantages. This paper considers these aspects in the
context of datacenter networks. We propose an energy-aware
resource allocation scheme to manage virtual machines, dedicated
to perform certain (virtualized) network functions, among a pool
of energy-tunable physical resources (processors/cores). We use
online measurements to periodically estimate some statistical
features of the offered workloads by considering a fairly general
renewal model that captures traffic burstiness and hardware
operational settings. Then, resources are dynamically managed
by jointly performing power scaling and in-server consolida-
tion according to the actual workload variations. The average
power consumption generated by this strategy is evaluated and
compared with that of a classical bin-packing consolidation,
over processors running always with the highest-performance
configuration. Results show that the proposed approach can
reduce the average power consumption of the datacenter by up
to 10%, suggesting a considerable amount of annual savings.

I. INTRODUCTION

In recent years, the integration of networking paradigms
with Information Technology (IT) services has become a trend
in the networking community due to their notable poten-
tial for supporting tomorrow’s demands. Network Functions
Virtualization (NFV), for instance, allows for improved time
to market of network services, at lesser capital expense, by
software implementation of networking functionalities [1].
However, energy efficiency and the resulting complexity of
network/service management are foreseen to be major sources
of sustainability and scalability issues, and this open problem,
if not addressed, will definitely hinder the upcoming network
“softwarization” revolution.

With regard to the energy efficiency aspect, several ini-
tiatives have focused on the adoption of power management
techniques — i.e., Adaptive Rate (AR) and Low Power Idle
(LPI), which are already widespread in general-purpose com-
puter systems through the Advanced Configuration and Power
Interface (ACPI) specification [2]. Such techniques allow for
the reduction of the power requirements of network devices,
at the cost of lower performance [3]. Therefore, to fully
utilize such capabilities, it is necessary to optimize the trade-
off between power saving and network performance. In this
respect, efforts have been made in modelling the behaviour of

energy-aware network devices, wherein power consumption
models based on traffic characteristics are developed using
classical principles of renewal theory (e.g., [4] and [5]).

On the other hand, while numerous studies have addressed
the virtual machine (VM) consolidation problem in datacenter
management, none of them has (completely) considered the
AR and LPI capabilities of today’s network devices. To the
best of the authors’ knowledge, the closest attempts only con-
sider making underutilized servers idle (i.e. via live migration)
and turning them off (e.g., [6] and [7]).

With this scenario in mind, we propose an energy- and
performance-aware consolidation policy that takes into ac-
count the aforementioned capabilities and incorporates a power
consumption model in the consolidation decision. Towards
this end, the classical First-Fit Decreasing (FFD) bin-packing
algorithm [8] is considered as a baseline for VM consolidation
in this paper, although our approach can be easily adapted to
other packing algorithms. Moreover, we consider a set of VMs
dedicated to perform certain (virtualized) network functions
(VNFs) on incoming traffic streams of various nature. For
the sake of simplicity, a one-to-one correspondence between
VNFs and VMs is supposed in this work; the rationale behind
this is that for a VNF consisting of multiple VMs the overall
VNF performance can be derived from the individual VM
performances according to the chaining defined by the VNF
provider. In any case, the VNF consolidation reduces to a VM
consolidation problem.

The VMs are initially placed among a given set of multi-
core servers through FFD based on the workloads specified in
the Service Level Agreement (SLA). Since such specifications
are generally derived from peak workloads, our main goal
is to dynamically manage VM consolidation in each server
according to actual workload variations, by jointly tuning
the ACPI configuration and minimizing the number of active
cores, as shown in Fig. 1. Additionally, by limiting the
dynamic reconsolidation within a server, costly VM migrations
in datacenters will be reduced. In more detail, we want to:
(i) estimate statistical features of the offered workloads starting
from easily measurable parameters (e.g., utilization, idle and
busy times, etc.), (ii) find which subset of VMs should be
assigned to each of their cores, and (iii) find the AR and LPI
configurations of the active processors. These actions are the
basis of a novel energy- and performance-aware consolidation
policy, addressing the aforementioned open problem.



Fig. 1: Conceptual framework.

The remainder of this paper is organized as follows. Sec-
tions II and III discuss the proposed model and consolidation
policy, respectively. Performance evaluation results are then
presented in Section IV. Finally, conclusions are drawn in
Section V.

II. THE ANALYTICAL MODEL

In this section, we recall a model already proposed and
analysed for the single core case [5], which represents the
behaviour and performance of a network device with AR and
LPI capabilities; then, we use it in a core sharing scenario.
For the sake of simplicity, we adopt the ACPI representation
of power management primitives.

We consider to have Λ servers, each containing a set of
multi-core processors. The VMs are mapped among these
servers, with each VM being allocated a certain number
of cores, depending on the processing requirements of the
applications running inside. In this work, however, we limit the
VM workloads to be less than the maximum core capacity for
the sake of simplicity, and each core serves a subset of VMs.
Suppose that the system has Γ cores; we assume to model
each core as a single server queueing system with an average
packet service rate µ(j) , j ∈ {1, . . . ,Γ}. We further assume
that packets arrive at a core in batches, with batch arrival rate
λ(j) and average batch size β(j). The server utilization can
be expressed as ρ(j) = λ(j)β(j)/µ(j), which is assumed to be
less than 1 for system stability.

Sub-section II-A outlines how the ACPI specification mod-
els AR and LPI functionalities. The main parameters to be con-
sidered in a device equipped with AR and LPI capabilities are
introduced in Sub-section II-B. Further on, Sub-sections II-C,
II-D and II-E present the proposed queueing model, the traffic
model and the power consumption model for the energy-aware
core, respectively. Finally, the latency aspect of the model is
remarked in Sub-section II-F. In order to make the equations
in this section more readable, we omit the index (j) of the
core.

A. The ACPI Specification

The ACPI specification is an open industrial standard for de-
vice configuration and power management in general-purpose
computer systems. It models the AR and LPI functionalities
through two sets of energy-aware states — the performance
and power states (P− and C− states, respectively).

As regards the C− states, C0 indicates the processor oper-
ating state where instructions are executed, while C1 through
CX are the LPI states where the processor is sleeping (hence
also called sleeping states). The deeper the sleeping state
(higher C− state index), the less power is consumed, but the
transitions between active and sleeping states require longer
times.

Conversely, the P− states tune the performance of the pro-
cessor’s cores by modifying the operating energy point via the
working frequency and/or voltage. By means of these states, a
core can consume different amounts of power corresponding
to different processing performances at the C0 state. Like the
C− states, the higher the P− state index, the less power is
consumed, where P0 is the highest performance state. At a
given P− state, the core can transition to deeper C− states
when idle.

B. Energy-aware Parameters

For a generic core, let C1, . . . , CX and P0, . . . , PY be the
sets of sleeping and performance states, respectively, and C0

be the active state in a given Py configuration.
Each sleeping state is associated to a specific value of idle

power consumption Φidle, as well as different transition times
τoff and τon, required to enter and to wake-up from the
sleeping state, respectively. We recall that Φidle decreases,
while τoff and τon increase with the C− state index. Similarly,
each performance state is associated to a specific value of
active power consumption Φa, as well as an average packet
processing capacity µ, both of which decrease with increasing
P− state index.

Since transitions between the active state C0 and Cx are not
instantaneous, the server is assumed to have an instantaneous
power consumption equal to Φt during the τon and τoff
periods. However, the average power consumed during τoff
approximates Φidle [9]; hence, τoff is neglected in the power
consumption model. Furthermore, depending on the specific
device architecture and implementation, an additional time τr
is required to set up and to suitably reconfigure packet pro-
cessing. It is worth noting that while τon (and τoff ) depends
on Cx, τr depends on Py , representing a certain number of
operations that have to be performed by the server before it
starts processing packets. The sum τ = τon + τr defines the
setup time of the core; however, we assume τ ≈ τon in this
work. In summary, the instantaneous power requirements for
each state pair (Cx, Py) can be expressed as:

Φ =


Φa(Py) if the core is in the C0(Py) state,
Φidle(Cx) if the core is in the Cx state,
Φt(Cx) if the core is in Cx → C0.

(1)



C. The Queueing Model

It has been established in [10] and [11] that a Batch Markov
Arrival Process (BMAP) can effectively estimate the network
traffic behaviour. Hence, we assume that the traffic incoming
to the i–th VM is represented as a BMAP with batch arrival
rate λi and average batch size βi, i ∈ {1, . . . , |I|}, where |I|
is the cardinality of the set I of VMs served by a core.

Suppose that each VM has its own queue and is allocated
a virtual CPU (vCPU) that is subject to scheduling. Although
this suggests a multiple-queue single-server queueing model
for the core, an equivalent single-queue model can be easily
derived considering the aggregate workload, as described in
[12].

Based on the assumptions described up to this point, the
model we propose corresponds to a MX/G/1/SET queueing
system [13]. For each core, packets arrive in batches, at
exponentially distributed inter-arrival times with arrival rate
λ and are served by a single server at an average service rate
µ, with generally distributed service times. When the system
becomes empty, the server is put to sleep. In order to take
into account the case where an incoming packet experiences
a wake-up delay due to sleeping-active transitions, the model
includes a deterministic setup time τ , only after which service
can begin.

Using classical principles of renewal theory, we can identify
independent and identically distributed (iid) “cycles” of the
form:

T
(n)
R = T

(n)
I +

[
T

(n)
B + τ

]
(2)

where T (n)
I and

[
T

(n)
B + τ

]
are the n-th idle and delay busy

(i.e., actual busy period plus the setup) periods of a core,
respectively. As presented in [14], the average idle and actual
busy periods are given by:

TI = E{T (n)
I } =

1

λ
(3)

TB = E{T (n)
B } =

ρ(1 + λτ)

λ(1− ρ)
(4)

Then, the average duration of a renewal cycle can be obtained
as:

TR = TI + TB + τ =
1 + λτ

λ(1− ρ)
(5)

D. The Traffic Model

Since the sum of independent Poisson processes is a Poisson
process with rate given by the sum of the individual rates, then
the batch arrival rate at the core is given by:

λ =

|I|∑
i=1

λi (6)

which can also be easily measured by inverting (3). Moreover,
the average batch size at the core is obtained as:

β =
1

λ

|I|∑
i=1

λiβi (7)

The summation in the right-hand side is the average offered
workload λβ at the core, which can also be easily obtained
from measurements of the core utilization and service rate as
ρ/µ.

E. The Power Consumption Model

Using Eqs. (3)−(5), the average power consumption of a
core in a renewal cycle can be expressed as:

Φ̃ =
TB
TR

Φa +
τ

TR
Φt +

TI
TR

Φidle

= ρΦa +
λτ(1− ρ)

1 + λτ
Φt +

(1− ρ)

1 + λτ
Φidle (8)

Given the offered workload at a core, this model can be used
to determine which ACPI configuration gives the minimum
power consumption.

F. The Performance Model

As we will see in the following section, in the proposed
consolidation procedure we will only impose a limit on the
maximum utilization for each core to avoid unacceptable
performance degradation. In this first implementation of the
consolidation strategy adopted, we prefer to concentrate on
the evaluation of the potential power saving, by keeping
the enforcement of performance constraints in the simplest
possible form. However, the performance of a VNF can be
better controlled by considering the average system latency W .
For a MX/G/1/SET queueing model, W depends on the second
moments of the batch size and service time, as indicated in
[13]. Though the usage of the delay to impose performance
requirements in the problem will be left for future work,
nevertheless it is worth mentioning how the terms required
in such scenario could be obtained. The expression of W
derived in [13] (and also exploited in [4], [5]) requires the
knowledge of the second moments of the batch size and of
the packet service time. The latter can be directly obtained
from measurements; the former is analytically related to the
second moment of the busy period T

(n)
B , which can be also

easily obtained from measurements.

III. ENERGY- AND PERFORMANCE-AWARE
CONSOLIDATION

In this section, we introduce a novel policy that dynamically
manages the VM consolidation among cores in a server
according to actual workload variations. Suppose a datacenter
performs a global FFD bin-packing consolidation every time
period T . Considering that in typical consolidation policies
significant variations in the total number of active servers
and VMs might occur on a much longer timescale than the
dynamics of power scaling policies, we can suppose the time
interval T to be in the order of tens of minutes or even hours.
Similarly, the number of VMs in each server can be considered
relatively stationary over shorter time intervals ∆T . Then, we
assume that the number of VMs in the system does not change
in this interval (i.e. no arrival and/or departure of VMs — if
any occur, they will be accounted for with some delay in the



successive interval). We propose a consolidation policy that
can be performed in each active server at every sub-interval
∆T during T .

Firstly, we adopt a slightly looser provisioning than the
core network capacity planning rule-of-thumb, constraining
the offered workload to be less than 80% of the maximum
capacity, instead of 50% [15]. This still provides a safety
headroom for any fluctuation in the VMs’ workload, ensuring
that the required Quality of Service (QoS) constraints are not
violated [16]. Additionally, we limit the choices of sleeping
states {Cx} based on their sleeping times τoff (Cx) and the
batch arrival rate λ at the core such that τoff (Cx) < 1/λ, in
order to have a relatively low probability of arrivals during
C0 → Cx transitions.

The scheme includes energy- and performance-aware work-
load classification rules that define the most energy efficient
configuration to be applied to the serving core. Specifically,
given a certain aggregate workload characterized by λ and an
average batch size β, as in (6) and (7), we evaluate the quantity
Φ̃(Cx, Py) for all possible pairs of (Cx, Py), ensuring at the
same time the satisfaction of the aforementioned constraints,
in order to find the ACPI configuration that yields the mini-
mum average power consumption. It is worth noting that this
computation can be performed offline for a whole range of
values of λ and λβ for a specific CPU architecture, giving
rise to regions in the (λ, λβ) space that correspond to the most
suitable configuration for the points in the region (a specific
example of such regions will be provided in Section IV).
When two or more configurations give the minimum value, the
one with the better performance (i.e., greater capacity and/or
lighter sleeping state) is selected.

Taking into account that some states are set on a per-
processor basis [17], for the sake of simplicity in the power
management of the server farm, we suppose that all cores in a
processor package have the same configuration. Hence, if the
optimum configuration varies among the cores in a package,
a suboptimal solution is to set them according to the one with
the highest requirement.

The workload in each VM can be monitored via its vCPU’s
usage, and we exploit these data to perform a dynamic VM
consolidation inside the server. Now, let Γk indicate the set of
cores of the k–th server, and Ik =

⋃
j∈Γk

I
(j)
k the set of VMs

they serve (where I
(j)
k is the set of VMs served by the j–th

core). Based on the actual VM workload in a sub-interval ∆T ,
the FFD algorithm is jointly performed with power scaling to
find the minimum core capacity required to serve Ik, obtaining
|Γk| updated groupings of VMs, {Î(j)

k , j ∈ Γk}. At this point,
some groups may be empty — this only means that some
cores will be idle. Considering the new aggregate workload
of each group, the core classification rules are then applied to
determine their optimum configuration. The groups are ordered
with decreasing performance requirement and each one is
allocated a core accordingly. Finally, the configuration of each
processor package is set according to the core with the highest
requirement and all idle packages are put to a deep sleep. The

proposed energy- and performance-aware consolidation policy
is summarized in Algorithm 1.

Algorithm 1 In–Server Consolidation Policy

Ik, λi, βi, ∀i ∈ {1, . . . , |Ik|}
P← {}
for y = 0 to Y do
µ(j) ← µ(PY−y), ∀j ∈ Γk
perform the FFD algorithm to obtain Î

(j)
k , ∀j ∈ Γk

if all VMs have been allocated then
P← {P0, . . . , PY−y}
{I(j)
k , j ∈ Γk} ← {Î(j)

k , j ∈ Γk}
break

end if
end for
for j = 1 to |Γk| do
λ(j) ←

∑|I(j)k |
i=1 λi

λ(j)β(j) ←
∑|I(j)k |
i=1 λiβi

C(j) ← {}, ∀j ∈ Γk
for x = 0 to X − 1 do

if τoff (CX−x) < 1
λj

then
C(j) ← {C1, . . . , CX−x}
break

end if
end for
evaluate Eq. (8) considering the states in P and C(j), and
apply classification rules

end for
re-order {I(j)

k , j ∈ Γk} with decreasing performance re-
quirement
for j = 1 to |Γk| do

allocate a core to I
(j)
k

end for
set processor package to most suitable configuration

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed policy,
a simulation framework for a scaled-down datacenter is im-
plemented in Matlab, considering Intel Xeon E5-2690 2.9GHz
processors [17]. Besides being configurable through the ACPI,
this processor has also been used by Intel in evaluating the
Data Plane Development Kit (DPDK) virtual switch (vSwitch)
for NFV [18].

For the sake of simplicity, but without loss of generality, in
this work we only consider the following subset of configu-
rations: {(C1, P0), (C3, P0), (C1, P8), (C3, P8)}. The C1 and
C3 power states correspond to the Halt and Sleep modes, while
the P0 and P8 performance states are supposed to correspond
to the maximum and minimum core frequencies, respectively.
Based on the data presented in [18], [9] and [19], the parameter
values listed in Table I can be derived. ΦOH is the power
consumption overhead for each active server, and ΦDS is the
power consumption of a core in deep sleep.



TABLE I: Configuration parameters.

Parameter
Configuration

(C1, P0) (C3, P0) (C1, P8) (C3, P8)

Φa (W) 16.75 16.75 10.5 10.5

Φt (W) 40 25 17 13

Φidle (W) 7 5.4 7 5.4

µ (pps) 891875 891875 515539 515539

τ (µs) 100 200 100 200

τoff (µs) 5 10 5 10

ΦOH (W) 195

ΦDS (W) 2

Fig. 2: Regions defined by the core classification.

With this, Sub-section IV-A illustrates how the optimum
configuration varies with the workload. Then, as an initial
evaluation of the proposed policy, a numerical example is
presented in Sub-section IV-B.

A. Core Classification

We express the power consumption model as a function of
λ and λβ by substituting the given configuration parameters
into (8). By varying the workload and applying the core
classification rules, regions in the (λ, λβ) space are obtained.
Fig. 2 shows that the resulting regions are simply defined by
constant discriminant functions. However, as we add more
variables (e.g., latency constraint, trade-off parameters, etc.)
into the rules, we also expect to add complexity into these
functions.

B. Numerical Example

We consider a system with 500 servers and 10000 VMs.
Each server is supposed to have 2 octa core processors, as in
[18].

For this example, the maximum workload [λiβi]
max

of each VM is generated from the uniform distribu-
tion U(0.05µmax, 0.8µmax). To consider the time vari-
ability of the VMs’ workloads, the minimum workload
[λiβi]

min is also generated from the uniform distribution
U(0.5[λiβi]

max, 0.8[λiβi]
max), i ∈ {1, . . . , 10000}. In addi-

Fig. 3: VM workload variations.

Fig. 4: Datacenter workload.

tion, the minimum βmini and maximum βmaxi batch sizes are
generated from U(1, 15) and U(βmini + 1, 50), respectively.

Moreover, the number of sub-intervals is set to 48 — this
corresponds to the number of times the consolidation policy
is performed in a simulation run. In each sub-interval, the
workloads vary according to U([λiβi]min, [λiβi]max), while
the batch sizes according to U(βmini , βmaxi ). Fig. 3 shows
the workload variations of five representative VMs in the
system, indicating the diversity among the VM workloads and
behaviours in this implementation. As regards the reliability
of the results, 10 runs with different seeds are performed for
a given set of VMs to show the 95% confidence intervals of
the data through error bars.

Taking a look at the entire system, Fig. 4 illustrates the
average workload of the scaled-down datacenter. Despite the
workload variations among the VMs, the total workload in
the system remains stable at around 3.1 Gpps, which is
approximately 18% lower than the one specified in the SLA.

In this evaluation, we want to compare the average data-
center power consumptions generated by the proposed pol-
icy (C+PS) and two baseline scenarios — (xC+xPS) and
(C+xPS). C and PS denote in-server consolidation and power
scaling, respectively, and x is appended to indicate the absence
of the specified capability. Fig. 5 shows that simply performing
in-server consolidation reduces the power consumption by
around 4%, which can be further improved to 10% when
jointly performed with power scaling.



Fig. 5: Datacenter power consumption.

To better grasp the impact of this improvement, we can put it
into figures by deriving the annual savings S of the datacenter
as:

S = φ ·
[
Φ̃(xC+xPS) − Φ̃(C+PS)

]
· 1

1000
· 24 · 365 (9)

where φ is the energy cost per kilowatt hour (kWh). Based on
the values reported in [20], electricity prices for industrial con-
sumers in the European Union averaged 0.12 AC/kWh during
the second half of 2014. With this, we obtain around 19000 AC
of annual savings for the scaled-down datacenter considered
in this example, which is quite a good number given its size.
Now, imagine the potential savings for a datacenter operator
like Google that has been estimated to run over 1 million
servers since a couple of years back.

V. CONCLUSIONS

Energy efficiency and the complexity of network/service
management pose sustainability and scalability issues on the
upcoming network “softwarization” revolution. To address
these aspects in the context of datacenter networks, a novel
energy- and performance-aware consolidation policy that dy-
namically manages ACPI-enabled resources according to ac-
tual workload variations is proposed.

Starting from an MX/G/1/SET queueing model, the traffic
and power consumption models for a core serving multiple
VMs are derived considering the aggregate workload. The
queueing and traffic models are used to estimate some sta-
tistical features of the offered workloads, and together with
the power consumption model, core classification rules are
defined, and are used to perform joint power scaling and in-
server consolidation of VNFs according to actual workload
variations. To evaluate the performance of the proposed ap-
proach, a simulation framework for a scaled-down datacenter
is implemented. Results show that the average datacenter
power consumption can be reduced by up to 10%, suggesting
a considerable amount of annual savings. Moving forward,
the policy can better capture the network performance by
incorporating the latency aspect, which requires an extension
to the proposed model. In particular, it is necessary to derive
the second moments of the batch size and service time, and a
MX/DM/1/SET queueing model, as adopted in [4], can come
in handy for this concept.
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