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Abstract 

Statistical learning (SL) is the ability to implicitly extract 
regularities in the environment, and likely supports various 
higher-order behaviors, from language to music and vision. 
While specific patterns experience are likely to influence SL 
outcomes, this ability is tacitly conceptualized as a fixed 
construct, and few studies to date have investigated how 
experience may shape statistical learning.  
  We report one experiment that directly tested whether SL 
can be modulated by previous experience.  We used a pre-
post treatment design allowing us to pinpoint what specific 
aspects of “previous experience” matter for SL.  The results 
show that performance on an artificial grammar learning task 
at post-test depends on whether the grammar to be learned at 
post-test matches the underlying grammar structures learned 
during treatment. Our study is the first to adopt a pre-post test 
design to directly modulate the effects of learning on learning 
itself. 
 
Keywords: experience; implicit learning; pre-post test 
design; sequential learning; statistical learning; statistical 
training; transition probabilities. 

Introduction 
Statistical learning (SL) is the ability to acquire 
patterned regularities in the environment, and 
abstract over them to find structural relations 
among sequences of stimuli and events. This core 
human ability is believed to involve a set of basic 
cognitive mechanisms that are sensitive to 
probabilistically distributed spatial and sequential 
information.  

Underlying most of the research in SL to date is 
the tacit assumption that SL mechanisms are a 
fixed set, and do not change substantially in 
individuals as a function of either time or 
experience (Reber, 1993). This assumption is 
corroborated by studies finding parallel results 
when infants, children, and adults are exposed to 

similar statistical cues and similar tasks, 
reinforcing the ubiquitous role of SL in human 
cognition across the lifespan. For example, 
Meulemans, Van der Linden, and Perruchet 
(1998) found no age-related performance 
differences in a serial reaction time in 6- or 10-
year-olds, nor in adults, pointing to the stable 
persistence of this ability in humans (although see 
Simon et al., 2011 for evidence of a decline in 
ageing population). Here we challenge the long-
held assumption of fixedness of SL abilities, and 
ask whether SL can be augmented through prior 
learning experiences. In particular we ask whether 
participants in tasks that involve tracking 
probabilistic relations among sequential stimuli 
can be trained to implicitly attend to statistics that 
differ from the ones they would be normally 
inclined to detect. 

If statistical learning involves a form of 
optimization and reduction of uncertainty about 
the environment (Onnis, Christiansen, Chater, & 
Gomez, 2003), we would expect statistical 
learning to result in adaptations to the specific 
sensory environments of the learner.  A few 
studies have begun to assess this possibility of 
learning to learn.  In most of these cases, 
however, the adaptations involved characteristics 
of the input (such as phonotactic or phonological 
patterns) that might be learned via mechanisms 
other than statistical learning (e.g., Saffran & 
Thiessen, 2003). Lany and Gomez (2008) found 
that in 12-month olds the initial familiarization 
with adjacent dependencies resulted in enhanced 
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learning of nonadjacent dependencies, a type of 
relation that is difficult to learn at that age. 
Similarly, word learning in infants (Graf-Estes et 
al., 2007) and adults (Mirman et al., 2008) can be 
facilitated when words are consistent with 
expectations based on a previous word 
segmentation task containing statistical cues to 
word boundary.  

These studies established that learners can build 
on certain types of computations to better attend 
to other regularities in the input for different 
aspects of language learning. However, they did 
not assess directly whether the same statistical 
computations that learners process by default are 
altered by their past experience.  

One recent experiment, though, found that the 
patterns of transitional probabilities to which 
learners are sensitive varies as a function of 
linguistic background (Onnis & Thiessen, 2013). 
The authors interpreted these results to mean that 
years of exposure to specific statistical patterns in 
different linguistic environments induced changes 
in statistical learning of novel artificial grammars. 
This interpretation suggests that learners carry 
with them statistical biases developed over years 
of exposure to their native language(s) that lead to 
different expectations about novel subsequent 
input. Onnis & Thiessen (2013) represents the 
point of departure of the current study.  Because a 
putative correlation between language background 
and subsequent performance in a SL  task cannot 
establish any direction of causality, in this study 
we set out to directly manipulate the statistical 
landscape of a first artificial grammar to establish 
whether it differentially affects parsing 
preferences in a subsequent artificial grammar 
task. To our knowledge, our pre-post test design is 
the first to be applied to the statistical learning 
literature to assess effects of experience on 
learning. 

Method 
We exposed participants consecutively to two 
artificial grammars that shared no surface 
features, and looked at participants’ preferences 
for grouping percepts – here syllables – based on 
how they utilized information from forward and 
backward transition probabilities (TPs). A pre-

post test design manipulated two statistical 
training conditions, allowing us to directly assess 
their impact on subsequent statistical learning. 
Participants. We recruited 62 Korean students at 
Konkuk University, Seoul. They received the 
equivalent of US$9 for their participation. 
Materials. Two types of artificial grammar were 
created. Grammar A was a sequence of 711 letter 
symbols generated according to the rules of a 
stochastic Markovian grammar chain. The process 
started by choosing one of eight possible symbols 
(X, Y, A, B, C, D, E, F) at random, and then 
generating the next symbol according to a set of 
probabilistic sequencing rules. The actual 
sequence was realized as the continuous 
concatenation of eight monosyllabic words to 
form a pauseless 3.5 minute speech stream. We 
randomly assigned each letter placeholder to a 
given word, in which 80 ms was allotted for 
consonants and 260 ms for vowels. Because we 
were interested in the perception of grouping 
boundaries as driven by statistical biases alone, 
we synthesized the speech stimuli eliminating 
possible prosodic cues. The resulting audio was   
faded in and faded out over 5 seconds, giving the 
impression of an infinite loop. The Italian diphone 
set in MBROLA (http://tcts.fpms.ac.be/synthesis/ 
mbrola.html) created words that sounded different  
in vocal quality from Korean, but were still 
clearly perceivable, so as to engage participants in 
an “alien language” learning task. All phonemes 
had equivalent phonemic realizations in Korean, 
and all syllable sequences were phonotactically 
permitted. Crucially, the sequence of concatenated 
syllables in Grammar A contained conflicting 
forward and backward transitional probabilities, 
as in the following training sample: 
a) . .  fushezirafunizitifugezibu . .  
Previous research has shown that infants and 
adults alike are independently sensitive to both 
forward and backward transition probabilities, and 
use them implicitly to make judgments about the 
likely groupings of otherwise unsegmented 
streams of speech. Unlike previous studies in 
which forward and backward TPs worked 
together to assist speech segmentation (e.g., 
Saffran et al., 1996), in our Grammar A, forward 
TPs and backward TPs were pitted against each 
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other and thus competed as cues for grouping 
boundaries. Thus, Grammar A was statistically 
ambiguous such that whenever forward 
probability was low between any two adjacent 
syllables, (e.g., fwd-TP(zi|she) = .33), backward 
probability was high (back-TP(she|zi) = 1), and 
vice versa (e.g., fwd-TP(ra|zi) = 1; back-
TP(zi|ra) = .33). A consequence of this statistical 
ambiguity is that two parses of sample a) into 
two-syllable linguistic units were thus equally 
acceptable and possible – namely parses b) and c) 
below. In b), one segments the signal such that the 
two syllables of a unit have a high forward 
probability and a low backward probability (the 
Hi-Lo patterns), while in c), the word-internal 
forward probabilities are low and the backward 
probabilities are high (the Lo-Hi pattern). 
b) (Hi-Lo parse):..fushe zira  funi ziti fuge zibu .. 
c) (Lo-Hi parse): .. shezi rafu nizi tifu  gezi .. 
At test, two-word groupings corresponding to the 
Hi-Lo and Lo-Hi patterns were pitted one against 
the other in a two-alternative forced-choice (AFC) 
task. Six test pair trials were presented in random 
sequential order, while the order within a pair was 
counterbalanced by repeating each test pair twice, 
for a total of 12 test trials. 

The other type of grammar was split into two 
varieties, namely, B-forward and B-backward, 
and their sequential structure contained opposite 
statistical cues to group boundaries. We first 
created a training corpus of 12 new synthesized 
monosyllabic words (‘do’ ‘te’ ‘ma’ ‘ke’ ‘ne’ ‘tu’ 
‘bi’ ‘ge’ ‘da’ ‘pa’ ‘vo’ ‘po’). The total length of 
the sequence, as well as the length of individual 
syllables, were the same as Grammar A, with the 
difference that the voice used was male. Likewise, 
test stimuli were created by grouping two 
monosyllabic words at a time at each transition 
point in the stream.  

Each of these two Grammar B varieties were 
randomly assigned to participants. Modeled after 
the grammar of Perruchet & Desaulty (2008; see 
also Onnis & Thiessen, 2013), in the Grammar B-
Forward, forward transition probabilities were 
informative, with syllables alternating between 
high and low forward TPs (1 and 0.11 
respectively). Backward probabilities were 
uninformative. In Grammar B-Backward 

,backward transition probabilities were 
informative, with words alternating between high 
and low backward TPs (1 and 0.11 respectively). 
This time forward probabilities were 
uninformative.  

We reasoned that participants may perceive 
grouping boundaries in the sequence 
probabilistically when it is most informative (i.e., 
whenever the backward or forward TPs are 
lowest) in accordance with previous research 
(Perruchet & Desaulty, 2008; Pelucchi et al., 
2009). Thus, we expected the two Grammar Bs to 
differentially bias learners toward one type of 
transition probability, resulting in different 
groupings at test. 
Procedure. All participants listened to the same 
Grammar A at pre- and post-test, while they were 
randomly assigned to one of the Grammar Bs 
during treatment/biasing. Listening lasted 3.5 min 
for both grammars. The forced-choice tests 
occurred at the end of each listening session. As 
customary for these types of segmentation 
experiments, for each stimuli pair participants 
were asked to choose which one formed a 
grouping in the sequence they had just heard. 
Participants wore headphones and instructions 
were administered in Korean. The experiment was 
conducted on two separate days one week apart.  
Pre-test (Grammar A) on Day 1, and treatment + 
post-test (Grammar B + Grammar A again) on 
Day 2. 

Results 
We analyzed results separately in terms of group 
scores at pre-test, treatment, and in terms of 
change of scores between pre- and post-test. In all 
analyses and for each test trial LoHi preference 
was coded as 1 and Hilo preference was coded as 
0. We then averaged across test trials to obtain a 
proportion preference for LoHi patterns for each 
participant. 
Pretest results. After establishing that the 
distribution of participants’ preference for LoHi 
patterns was not uniform (Shapiro-Wilk normality 
test, W = 0.96, p = 0.026), the nonparametric one-
way Wilcoxon signed-rank test with continuity 
correction revealed that participants’ mean as a 
group was not significantly different from the 
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random baseline of 0.5 (M = 0.52, SD = 0.19, V = 
746.5, p = 0.70). As apparent from the standard 
deviation, there was individual variation in 
participants’ degree of bias. Further inspection 
revealed a non-unimodal distribution of data, 
suggesting one mode with preference for HiLo 
patterns and another one with preference for LoHi 
patterns. This may be due to differences in 
participants’ linguistic backgrounds, as many of 
the participants spoke multiple languages, which 
may influence their bias for forward-going or 
backward-going directionality (Onnis & Thiessen, 
2013). Regardless, these results demonstrate that 
as a group, these participants have no strong bias 
for forward-going or backward-going TPs. 
Treatment results. Participants assigned to 
Grammar B-backward preferred LoHi patterns (M 
= 0.73, SD = 0.18), while those assigned to 
Grammar B-forward dispreferred LoHi patterns 
(M = 0.37, SD = 0.23), showing a preference for 
HiLo patterns. A one-way ANOVA with Biasing 
condition as a two-level between-subject factor 
(Grammar B-backward versus Grammar B-
forward) revealed highly significant differences 
between the two Biasing groups, F(1,59)=41.64, 
p<0.001). Thus both groups differed in pattern 
endorsements in opposite directions, and in the 
direction consistent with the statistical cues 
present in each grammar. This result suggests that 
learners attend to different types of statistical cues 
when they are weighted in such a way to be 
uniquely informative. 
Pre-post test. We noted earlier that some 
participants demonstrated strong pre-test biases in 
both directions. To account for this heterogeneity 
in the pre-test data we computed pre-post test 
difference scores for each participant as the 
dependent measure. A one-way ANOVA with 
Biasing Condition (Grammar B-forward versus 
Grammar B-backward) as a between-subject 
factor revealed significant differences between the 
two Biasing groups, F(1,58)=5.49, p<0.05 (one 
participant did not complete the post-test and her 
difference scores were not computed). 
Importantly, the differences were in the expected 
direction (see Figure 1). The Grammar B-forward 
group did not modify their preference much from 
pre- to post-test, arguably because the cues for 

segmenting at low points of forward TP were 
present in both Grammar A and Grammar B-
forward. In comparison, Grammar B-backward 
contained all cues in the opposite direction, and 
participants trained on Grammar B-backward 
shifted (as a group) their initial preference at pre-
test upward on the gradient from HiLo to LoHi at 
post-test. These results suggest that it is possible 
to alter participants’ biases to attend to different 
statistics in the environment. 
 

 
Figure 1. Mean score differences and standard deviations 

of participants preferences for LoHi patterns, presented by 
biasing condition. Pre-test scores were subtracted from Post-

test scores. 

Discussion 
Recent research has begun to investigate the 
effects of experience on statistical learning 
mechanisms (e.g., Lany & Gomez, 2008; Graf-
Estes et al., 2007; among others). These studies 
indicate that learners can use statistical 
information in one task to discover different 
relations in a new task. Our goal was to explore 
the possibility to modify learners’ sensitivity to 
the same statistical relations (here forward and 
backward probabilities) by directly manipulating 
and comparing different types of statistical 
exposure. Trainability of statistical learning was 
tested with a group  of adult Korean speakers who 
participated in a pre-test, treatment, post-test 
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design. To our knowledge, this is the first 
application of the design in the statistical learning 
literature, and has both theoretical and practical 
implications. 
  Theoretically, our results challenge the tacit 
assumption in the literature that implicit SL is a 
rather fixed skill, and there is relatively small 
variation, both across (Reber, 1989), and within 
individuals over time, as well as a function of 
experience. The possibility that experience with 
the perceptual world may modify statistical 
learning proclivities has been recently explored in 
the realm of language (e.g., Onnis & Thiessen, 
2013) and music (Shook et al., 2013). While those 
studies hinted at possible correlations between SL 
and experience, our pre-post test design helped 
establish an initial direct causal relation between 
specific types of statistical experience and their 
subsequent impact on learners’ statistical biases. 

Our study also explored the possibility of 
transfer for trained statistical bias to novel stimuli. 
Importantly, such transfer of statistical penchant 
can occur in the absence of surface similarity 
between the stimuli – here Grammar A and B did 
not share the same syllables. This is an important 
finding, because detractors of SL often see it as a 
set of mechanisms that operates only on the basis 
of surface similarity. Thus, SL may occur as a 
result of more powerful abstractive processes. 

Our results invite future explorations  into 
individual differences in statistical learning. 
Heterogeneity in both pre- and post-tests indicate 
that some learners had stronger initial biases, 
and/or they were be more or less susceptible to the 
biasing conditions than others. This has 
implications for studies that directly relate the 
ability to learn statistically to the ability to learn 
and process language. Infants exhibit individual 
differences in statistical learning skills that may 
modulate language development trajectories (e.g., 
Kidd, 2012). Direct predictive relations between 
statistical learning scores and online sentence 
processing and other linguistic tasks exist now 
both for children and adults (Yim & Windsor, 
2010). In addition, neurophysiological studies 
using within-subject designs suggest that similar 
neural mechanisms serve both syntactic 
processing of language and statistical learning of 

sequential patterns (Abla, Katahira, & Okanoya, 
2008; Christiansen, Conway, & Onnis, 2007). Our 
results using a pre-post design suggest the 
applicability of  future statistical training regimes 
adapted for non-normally developing populations 
of language learners. Studies with children have 
now linked poor implicit and statistical learning 
skills with reading difficulties (Yim & Windsor, 
2010), developmental dyslexia (Hedenius et al., 
2013), and specific language impairments (Hsu, 
Tomblin, & Christiansen, 2014; Lukács & 
Kemény, 2014). Poor language learners may be 
less sensitive to the statistics  inherent in natural 
language, or may pick up  statistics of the 
language that are less relevant to discovering 
linguistic structure. If this were so, one attractive 
potential of statistical learning training would be 
to help learners implicitly optimize their learning 
process, by targeting and scaffolding statistical 
relations that are harder for them to internalize. 

While the effect of experience we saw is in line 
with our predictions, it is preliminary and future 
research and comparisons would benefit from a 
larger effect size, which may be possible with 
alterations to this paradigm. First, exposure to  the 
Grammar B’s was limited to 4 minutes. Perhaps 
longer exposure would make the bias more robust. 
(though note that the post-test suggests 
participants picked up the bias, suggesting that 
increasing exposure may have limited effect) 
Another possible explanation for the small effect 
size of training is that most participants reported 
remembering Grammar A at post-test from the 
previous week at pre-test. Thus, the desired bias 
may have been obfuscated by participants’  fresh 
memories of the first exposure to the grammar at 
pre-test. A better way to promote transfer would 
thus be to create a novel Grammar C at post-test 
that has the same underlying sequence as 
Grammar A but no feature resemblance to either 
Grammar A and the Grammar B’s. 
  Another way to improve the paradigm would 
involve exposing participants to a bias in more 
modalities or stimulus sets.  Generally speaking, 
experiencing a pattern in multiple different 
contexts makes that pattern more generalizable to 
novel contexts (e.g, Hintzman, 1986; Lively, 
Logan, & Pisoni, 1993).  Thus, participants could 
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be exposed to forward or backward patterns in 
shapes and tones, or perhaps instantiated by 
multiple different speakers (as opposed to one 
speaker) to promote generalization and transfer. 
  In conclusion, we have shown that participants’ 
preference to parse a string of phonemes 
according to forward or backward transition 
probabilities can be directly manipulated via prior  
statistical learning experiences. Thus, rather than 
being a fixed process that learners use, implicit 
statistical learning might itself be a process that is 
trainable. 
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