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Thanks to the impressive progress of conformal bootstrap methods we have now very precise estimates
of both scaling dimensions and operator product expansion coefficients for several 3D universality classes.
We show how to use this information to obtain similarly precise estimates for off-critical correlators using
conformal perturbation. We discuss in particular the hσðrÞσð0Þi, hϵðrÞϵð0Þi and hσðrÞϵð0Þi two-point
functions in the high and low temperature regimes of the 3D Ising model and evaluate the leading and next
to leading terms in the s ¼ trΔt expansion, where t is the reduced temperature. Our results for hσðrÞσð0Þi
agree both with Monte Carlo simulations and with a set of experimental estimates of the critical scattering
function.
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I. INTRODUCTION

Our understanding of critical phenomena in three
dimensions has been greatly improved in the past few
years by the remarkable progress of the conformal boot-
strap program. In particular, using conformal bootstrap
techniques, very precise estimates of scaling dimensions
and operator product expansion (OPE) coefficients could
be obtained for several three dimensional models [1–7].
Among them a particular attention was devoted to the 3D
Ising model, which plays somehow a benchmark role in
this context, since in this case both high precision
Monte Carlo (MC) results [8–10] and accurate experimen-
tal estimates [11] exist for these quantities.
The aim of this article is to leverage the accurate

knowledge of the model that we have at the critical point
to predict the behavior of off-critical correlators in the
whole scaling region using conformal perturbation theory
(CPT). We shall discuss, as an example, the thermal
perturbation of the hσðrÞσð0Þi, hϵðrÞϵð0Þi and hσðrÞϵð0Þi
correlators in the 3D Ising model both above and below the
critical temperature, but our results are of general validity
and may be applied to any model for which scaling
dimensions and critical OPE constants are known with
sufficient precision. In this sense our work is a natural
extension of the conformal bootstrap approach.
It is important to stress the role played by conformal

symmetry in our analysis. In fact the general form of
correlation functions and in particular their dependence on
the expansion parameter (in our case the reduced temper-
ature t) was already understood more than fifty years ago
[12,13] and can be easily obtained using standard scaling
arguments valid in general for any critical point. The
additional bonus we have in the case of a conformally
invariant critical point is that the terms appearing in the
CPT expansion can be related to the derivatives of the

Wilson coefficients, calculated at the critical point [14–17].
In several cases these derivatives can be evaluated exactly
and only depend on the critical indices and OPE coeffi-
cients of the underlying conformal field theory (CFT).
Unfortunately the power of this approach is limited by the
fact that the vacuum expectation values (VEVs) of the
relevant operators which appear in the expansion must be
known to all orders in the perturbation parameter. This
means in practical applications that they appear in the CPT
expansion as external inputs, they are not universal and in
general cannot be fixed by using CFT data. In some cases
(in particular in two dimensions and for integrable pertur-
bations) these VEVs can be evaluated analytically [15–17]
or numerically using the truncated conformal space method
[18]. When this is not possible they must be evaluated using
independent nonperturbative methods, like strong coupling
expansions or Monte Carlo simulations. There are however
exceptions to this rule. The terms involving derivatives of
the Wilson coefficients of the type ∂tC1

OO do not require
any external information, they can be evaluated exactly (we
shall see below an example) and represent thus true,
universal, testable predictions of the CPT approach. In
this sense they are more informative than usual universal
amplitudes ratios since they test the presence of the whole
conformal symmetry in the critical theory and not only of
scale invariance, that is, instead, a sufficient requirement to
construct ordinary universal amplitude ratios.
The main goal of this paper is exactly to perform this

nontrivial “conformality test” in the case of the 3D Ising
model. As a side result of this analysis we shall be able to
give a very precise prediction for the scaling behavior of the
hσðrÞσð0Þi correlator in the scaling region which we shall
successfully compare both with Monte Carlo results and
with a set of experimental estimates of the critical scattering
function for a CO2 sample at critical density.
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II. THERMAL PERTURBATION THEORY

Let us consider the thermal perturbation of the 3D Ising
model, characterized by two relevant operators, the mag-
netization σ and the energy ϵ, whose dimensions are Δσ ¼
0.5181489ð10Þ and Δϵ ¼ 1.412625ð10Þ respectively [6,7].
The perturbed action is given by the conformal point

action Scft, plus a term proportional to the energy operator:

S ¼ Scft þ t
Z

ϵðrÞdr ð1Þ

where t is a parameter related in the continuum limit to the
deviation from the critical temperature. We shall denote in
the following with h…it expectation values with respect to
the perturbed action S and with h…i0 those with respect
to the unperturbed conformal invariant action Scft.
In [15] the correlators of two generic operatorsOi andOj

of the perturbed CFTwere expressed, by using the operator
product expansion, in terms of the Wilson coefficients,
calculated outside of the critical point:

hOiðrÞOjð0Þit ¼
X
k

Ck
ijðt; rÞhOkð0Þit: ð2Þ

In order to perform the CPT expansion one has to
expand in a Taylor series the Wilson coefficients, while the
VEVs must be determined in a nonperturbative way. The
first few terms of this CPT expansion read

hOiðrÞOjð0Þit ¼
X
k

½Ck
ijð0; rÞ þ ∂tCk

ijð0; rÞ

þ…:�hOkð0Þit ð3Þ

where ∂tCk
ijð0; rÞ denotes the derivatives of the Wilson

coefficients with respect to t evaluated at the critical point.
In [14] it was shown how to calculate these derivatives to

any order n and it was proved that they are infrared finite.
Defining Δt ¼ 3 − Δϵ, the perturbed one-point functions

are (see [19] for definitions and further information on the
scaling behavior of the model)

hϵit ¼ A�jtjΔϵΔt hσit ¼ Bσð−tÞ
Δσ
Δt : ð4Þ

We have the following expression for the first three
orders of perturbed two-point function of σ:

hσðrÞσð0Þit¼ C1
σσð0;rÞ

þCϵ
σσð0;rÞA�jtjΔϵΔt þt∂tC1

σσð0;rÞþ���: ð5Þ

To make contact with the usual definition for the
structure constants we factorize the r dependence in the
Wilson coefficients:

C1
σσð0; rÞ ¼

1

r2Δσ
; Cϵ

σσð0; rÞ ¼ Cϵ
σσrΔϵ−2Δσ

where we have chosen the usual normalization C1
σσ ¼ 1 and

we know from [6,7] that Cϵ
σσ ¼ 1.0518537ð41Þ.

Following [14] we can write the derivatives of the
Wilson coefficient as

∂tC1
σσð0; rÞ ¼ −

Z
ðhσðrÞσð0Þϵðr1Þi0

− Cϵ
σσhϵðr1Þϵð0Þi0Þdr1: ð6Þ

The three-point function reads

hσðrÞσð0Þϵðr1Þi0 ¼
Cϵ
σσ

rΔϵðr2 þ r21 − 2rr1 cos θÞ
Δϵ
2

while hϵðrÞϵð0Þi0 ¼ 1
r2Δϵ and the second term in the integral

acts as an infrared counterterm. The integral (6) can be
calculated using a Mellin transform technique (see [20]) or
numerically. In the first case only the first term gives a
contribution:

∂tC1
σσð0; rÞ ¼ rΔt−2ΔσCϵ

σσ

Z
1

yΔϵ
1

ð1þ y2 − 2ycosθÞΔϵ2
dy

where y ¼ r1
r . It is convenient to define

∂tC1
σσð0; rÞ≡ rΔt−2ΔσCϵ

σσI, so after performing the angular
integrals we get

I ¼ 2π

Z ð1þ yÞ−Δϵþ2 − ð1 − yÞ−Δϵþ2

−Δϵ þ 2
y−Δϵþ1dy

which can be solved in terms of Gamma functions giving as
a final result: I ¼ −62.5336.
Now we can write, introducing the scaling variable

s ¼ trΔt , the following expression for the perturbed two-
point function:

r2ΔσhσðrÞσð0Þit ¼ 1þ Cϵ
σσA�jsjΔϵΔt − Cϵ

σσIs: ð7Þ
Proceeding in the same way we have for the others
correlators of interest:

r2ΔϵhϵðrÞϵð0Þit ¼ 1þ Cϵ
ϵϵA�jsjΔϵΔt − Cϵ

ϵϵIsþ � � � ð8Þ

rΔϵþΔσhσðrÞϵð0Þit ¼ Cσ
σϵBσjsj

Δσ
Δt þ � � � : ð9Þ

Recalling the value of Cϵ
σσ and that Cϵ

ϵϵ ¼ 1.532435ð19Þ
[6,7] we finally obtain

−Cϵ
σσI ¼ 65.7762… −Cϵ

ϵϵI ¼ 95.8287…:

This is the main result of our paper. It is interesting to
compare these quantities with the second terms in the CPT
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expansions. To estimate these terms we need the values of
the A� which can be easily obtained from the very precise
estimates of their lattice values reported in [8]
Aþ
lat ¼ −8.572ð4Þ, A−

lat ¼ 15.987ð3Þ and the lattice to
continuum conversion constants Rϵ ¼ 0.2377ð9Þ, Rσ ¼
0.550ð4Þ [9,10]. We find Aþ ¼ −48.7ð3Þ and A− ¼
90.9ð6Þ to which correspond the following values for the
terms which appear in the CPT expansion:

Cϵ
σσAþ ¼ −51.2ð3Þ; Cϵ

σσA− ¼ 95.6ð6Þ

Cϵ
ϵϵAþ ¼ −74.6ð5Þ; Cϵ

ϵϵA− ¼ 139.3ð9Þ:

Thus we see that, in the range of value of s of experimental
interest, the third term in the CPT expansion is of the same
size of the second one and cannot be neglected in the
correlators. Moreover we shall see below, by comparing
with Monte Carlo simulations that, in the same range, the
sum of these two terms almost saturates the correlator, i.e.
that the higher order terms neglected in the above expan-
sion give a contribution to the correlator almost negligible
(and in any case never larger than 2%) with respect to the
first three terms. They can thus be safely neglected when
comparing with the experimental results. On the contrary,
within the precision of the experimental data, both the
second and the third term of the CPT expansion are
necessary to fit the data.

III. MONTE CARLO SIMULATIONS

We compared our results with a set of Monte Carlo
simulations of the Ising model using the standard nearest
neighbour action for which the critical temperature is
known with high precision βc ¼ 0.22165462 [8]. The
temperature perturbation from the critical point is defined
through the parameter tlat ≡ βc − β. With this convention in
the high temperature phase we have tlat > 0. We performed
our simulations with a standard Metropolis updating and
multispin coding technique on a cubic lattice with periodic
boundary conditions. We fixed the lattice size L ¼ 300,
which was the maximum value compatible with the
computational resources at our disposal. We evaluated
the correlators for many distances in different simulations,
so our data are uncorrelated, and we sampled about 109

configurations for each simulation, with a thermalization
time of 105 sweeps.
We defined the lattice discretization of the spin and

energy operators as

σlat ≡ 1=L3
X
i

σi; ϵlat ≡ 1=ð3L3Þ
X
hiji

σiσj − ϵan;

where ϵan is the energy analytic part that must be
subtracted. Also ϵan is known in the Ising case with high
precision: ϵan ¼ ϵcr þ Ctlat, where ϵcr ¼ 0.3302022ð5Þ

and C ¼ 9.7ð1Þ are respectively the energy and the specific
heat at the bulk [8].
We chose tlat small enough so as to have a large enough

value of the correlation length ξ, but not too small in order
to avoid finite size effects. The optimal choice turned out to
be tlat ≳ 10−4, for which ξþ ≲ 65 lattice spacings in the
high temperature phase and ξ− ≲ 34 lattice spacings for low
temperatures. We verified that the finite size effects were
negligible within our current precision for these
temperatures.
The results of our simulations are reported together with

the CPT expansion in Fig. 1. We also report the prediction
truncated at the second order. It is easy to see that the
universal third term of the expansion that we evaluate in
this article gives a large contribution to the correlator,
which cannot be neglected within the precision of current
data (and also, as we shall see, within the precision of
experimental estimates), and that our complete CPT
expansion agrees remarkably well with Monte Carlo data.
In order to estimate the contribution of the higher order

terms neglected in the CPT expansions of Eqs. (7), (8), (9)

FIG. 1. Comparison of the Monte Carlo data with our CPT
prediction.

TABLE I. Results of the fits to the spin-spin correlator
performed keeping ∂tC1

σσ as free parameter. The columns rmin,
rmax indicate the range of distances sampled. Statistical errors are
reported in round brackets, while the systematic ones, mainly due
to the constant Rσ , are reported in square brackets.

tlat rmin rmax ∂tC1
σσ χ2=d:o:f

þ10−4 6 20 61.4 (0.9)[1.2] 0.7
−10−4 6 20 60.9 (0.9)[1.5] 0.8
1.5 × 10−4 7 14 61.3 (0.8)[1.0] 1.0
−1.5 × 10−4 8 20 61.1 (0.9)[1.8] 1.1
2 × 10−4 6 13 61.0 (0.8)[1.0] 0.7
−2 × 10−4 8 20 61.6 (0.7)[1.5] 1.2

CONFORMAL PERTURBATION OF OFF-CRITICAL … PHYSICAL REVIEW D 94, 026005 (2016)

026005-3



we fitted the spin-spin correlator with Eq. (7), keeping the
coefficient of the last term (i.e. ∂tC1

σσ) as a free parameter.
The results of the fits are reported in Table I where we

quoted separately statistical and systematic (mainly due to
the uncertainty in A� and Rσ) errors. The results, for all
temperatures both above and below βc, turn out to be
remarkably close to the theoretical prediction ∂tC1

σσ ≃
65.7762 thus showing that in this range of values of the
scaling variable s higher order terms in the CPT expansion
are almost negligible, as also suggested by Fig. 1.

IV. SCATTERING FUNCTION AND COMPARISON
WITH EXPERIMENTAL RESULTS

By Fourier transforming the spin-spin correlator it is
easy to construct the scattering function (for a detailed
discussion see for instance [21]) which turns out to have
exactly the form predicted by Fisher and Langer [12]

gðqÞ ¼ C�
1

q2−η

�
1þ C�

2

qð1−αÞ=ν
þ C�

3

q1=ν

�
ð10Þ

with q ¼ kξ, where k is the momentum-transfer vector and
ξ the correlation length. The coefficients of the expansion
can be deduced exactly from the CPT analysis discussed
above:

C�
2 ξ

−Δϵ
� ¼ afCϵ

σσA�jtjΔϵΔt ; C�
3 ξ

−Δt
� ¼ bf∂tC1

σσt

where af ≃ −0.668025… and bf ≃ −1.02863… are
numerical coefficients coming from the Fourier transform
of the power law terms of Eq. (7). Combining all the factors
we finally obtain

Cþ
2 ¼ 2.54ð2Þ; C−

2 ¼ −1.86ð1Þ;

Cþ
3 ¼ −3.64ð1Þ; C−

3 ¼ 1.28ð1Þ:

This result allows a set of interesting theoretical end
experimental checks. First of all they agree remarkably well
with the results obtained in [21] with the ϵ expansion within
the Bray approximation [22] (see Table II). They also show

that the Bray approximation which assumes Cþ
2 þ Cþ

3 ∼
−0.9 is indeed a good approximation of the CPT result
which gives Cþ

2 þ Cþ
3 ¼ −1.10ð3Þ. This is reassuring,

since it shows that (as we would expect) the ϵ expansion
actually “knows” that the 3D Ising model is conformally
invariant. As expected they also agree with the Fourier
transform of our Monte Carlo results (see the first column
of Table II). What is more interesting is that they also agree
with a set of experimental measures of the scattering
function obtained from a small-angle neutron scattering
experiment on a sample of CO2 at critical density [11]. We
report our result together with the experimental estimates in
Fig. 2 where we plotted the scattering function in a log-log
scale so as to show the large q scaling behavior as a straight
line and normalized it (as usual) to the Ornstein-Zernicke
(OZ) function: gOZ ¼ 1=ð1þ q2Þ so as to evidentiate the
large q deviations with respect to the OZ behavior (which
describes the small q behavior of the scattering function).
We plot our results with a red line and in light blue the
region of�σ uncertainty quoted in [11] as the best fit result
of their experimental scattering data within the Bray
approximation. We report their best fit estimates for C�

3 ,
C�
2 in the last column of Table II, together with the results

from our conformal perturbation theory, the MC simula-
tions, and the estimates obtained via ϵ expansion in [21].

V. CONCLUSIONS

Our main goal in this article was to extend the knowledge
reached in these last years on higher dimensional CFTs to
the off-critical, scaling, regime of the models. We con-
centrated in particular on two-point functions in the 3D
Ising model perturbed by the thermal operator, but we see
no obstruction to extend this program to other universality
classes or to three-point functions. An important aspect of

TABLE II. Values of C�
2 , C�

3 obtained with different ap-
proaches. The column MC shows the result of the fit to our
Monte Carlo simulations. The second column contains the CPT
estimates (for C�

2 we used the amplitudes A� taken from Ref. [8]
as additional external input). The third column shows the results
of the ϵ expansion within the Bray approximation [22] from [21],
and the last one reports the experimental estimates from [11].

MC CPT ϵ Expansion Experiment

Cþ
2 2.54 (2) 2.56 2.05 (80)

C−
2 −1.86 (1) −1.3 −1.5 (8)

Cþ
3 −3.42 (6) −3.64 (1) −3.46 −2.95 (80)

C−
3 1.20 (2) 1.28 (1) 0.9 1.0 (8)

FIG. 2. Plot of hðqÞ ¼ lnðgðqÞ=gOZðqÞ. The continuous line is
our prediction while the light-blue region marks the experimental
estimate quoted in [11].
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our analysis was the identification of a set of terms in the
CPT expansion which are universal as a consequence of
the conformal symmetry of the underlying fixed point
theory. These universal amplitude combinations were
already discussed, and compared with two-dimensional
data, in [23]. Our results are in good agreement both with
Monte Carlo simulations and with a set of experimental
results in systems belonging to the 3D Ising universality
class. We think that in the future these techniques will allow

us to vastly extend our ability to describe experimental data
in the scaling regime of three dimensional critical points.
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