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Abstract: This paper investigates the relationship between algebraic quantum field the-
ories and factorization algebras on globally hyperbolic Lorentzian manifolds. Functorial
constructions that map between these two types of theories in both directions are devel-
oped under certain natural hypotheses, including suitable variants of the local constancy
and descent axioms. The main result is an equivalence theorem between (Cauchy con-
stant and additive) algebraic quantum field theories and (Cauchy constant, additive and
time-orderable) prefactorization algebras. A concept of ∗-involution for the latter class
of prefactorization algebras is introduced via transfer. This involves Cauchy constancy
explicitly and does not extend to generic (time-orderable) prefactorization algebras.
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1. Introduction and Summary

Factorization algebras and algebraic quantum field theory are two mathematical frame-
works to axiomatize the algebraic structure of observables in a quantum field theory.
While from a superficial point of view these two approaches look similar, there are subtle
differences. A prefactorization algebra F assigns to each spacetime M a vector space
F(M) of observables and to each tuple f = ( f1 : M1 → N , . . . , fn : Mn → N ) of
pairwise disjoint spacetime embeddings a factorization product F( f ) : ⊗n

i=1 F(Mi ) →
F(N ) satisfying suitable properties, cf. [CG17] and Sect. 2.2. On the other hand, an
algebraic quantum field theory A assigns to each spacetime M an associative and uni-
tal ∗-algebra A(M) of observables and to each spacetime embedding f : M → N
a ∗-algebra morphism A( f ) : A(M) → A(N ) such that suitable axioms hold true,
cf. [BFV03,FV12,BDFY15,BSW17] and Sect. 2.3. The main differences are that, in
contrast to an algebraic quantum field theory A, a prefactorization algebra F does not
in general come endowed with (1) a multiplication of observables in F(M), i.e. on the
same spacetime M , because (idM : M → M, idM : M → M) is not a pair of disjoint
spacetime embeddings, and (2) a concept of ∗-involution on observables in F(M).

In this paper we shall develop functorial constructions (cf. Theorems 3.11 and 4.7)
that allow us to relate prefactorization algebras and algebraic quantum field theories,
provided that we assume certain natural hypotheses on both sides. We shall focus on the
case where spacetimes are described by oriented and time-oriented globally hyperbolic
Lorentzian manifolds, i.e. on the case of relativistic quantum field theory, and disregard
until Sect. 5.2 the ∗-involutions on algebraic quantumfield theories because prefactoriza-
tion algebras are usually considered without a concept of ∗-involution. Ourmain result is
an equivalence theorem between (Cauchy constant and additive) algebraic quantum field
theories and (Cauchy constant, additive and time-orderable) prefactorization algebras,
cf. Theorem 5.1. Our equivalence theorem is considerably more general than the earlier
comparison result byGwilliamandRejzner [GR17]: (1)Wework in amodel-independent
setup, supplemented by natural additional hypotheses such asCauchy constancy, additiv-
ity and time-orderability, while [GR17] only studies linear quantum field theories, such
as e.g. the free Klein–Gordon field. (2)We investigate in detail uniqueness, associativity,
naturality and Einstein causality of themultiplicationsμM : F(M)⊗F(M) → F(M) de-
termined by a Cauchy constant additive prefactorization algebra F, which requires rather
sophisticated arguments from Lorentzian geometry. These questions were not addressed
in [GR17]. (3) Our equivalence theorem admits an interpretation in terms of operad
theory (cf. Remark 5.2), which provides a suitable starting point for generalizations to
higher categorical quantum field theories [CG17,BSS15,BS17,BSW19b,BS19] such as
gauge theories. (The present paper does not study this generalization and will focus on
the case of 1-categorical quantum field theories.) We would like to state very clearly that
our results prove an equivalence theorem between certain categories of prefactorization
algebras and algebraic quantum field theories, hence they do not make any statements
about the relationship between explicit construction methods for examples. We refer to
[GR17] for a concrete comparison between BV quantization [CG17] and perturbative
canonical quantization [FR13,Rej16].

Let us nowexplain inmoredetail our constructions and resultswhile outlining the con-
tent of the present paper: in Sect. 2 we recall the necessary preliminaries fromLorentzian
geometry, factorization algebras and algebraic quantum field theory. All prefactorization
algebras and algebraic quantum field theories will be defined on the usual category Loc
of oriented and time-oriented globally hyperbolic Lorentzianmanifolds.We introduce an
additivity axiom for both prefactorization algebras and algebraic quantum field theories,
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which roughly speaking demands that the observables in a spacetime M are generated
by the observables in the relatively compact and causally convex open subsets U ⊆ M .
It is shown that factorization algebras, i.e. prefactorization algebras satisfying Weiss
descent, are in particular additive prefactorization algebras. We also introduce a Cauchy
constancy (or time-slice) axiom for both kinds of theories, which formalizes a concept
of time evolution in a globally hyperbolic Lorentzian manifold. In Sect. 3 we construct
a functor A : PFAadd,c → AQFTadd,c that assigns a Cauchy constant additive algebraic
quantum field theory A[F] to each Cauchy constant additive prefactorization algebra F,
see Theorem 3.11 for the main result. The crucial step is to define canonical multipli-
cations μM : F(M) ⊗ F(M) → F(M) for such F (cf. (3.1)), which is done by using
Cauchy constancy. Proving naturality and Einstein causality of these multiplications re-
quires the additivity axiom, cf. Propositions 3.7 and 3.10. In Sect. 4we construct a functor
F : AQFT → tPFA that assigns a time-orderable prefactorization algebra F[A] to each
algebraic quantum field theory A, see Theorem 4.7 for the main result. The difference
between time-orderable and ordinary prefactorization algebras on Loc is that the former
just encode factorization products F( f ) : ⊗n

i=1 F(Mi ) → N for tuples of pairwise dis-
joint morphisms f that are in a suitable sense time-orderable, see Definition 4.1. There
is a natural forgetful functor PFA → tPFA from ordinary to time-orderable prefactor-
ization algebras, which is however not full, see Remarks 4.2 and 4.5. Our results suggest
that the concept of time-orderable prefactorization algebras from Sect. 4 is better suited
to the category of Lorentzian spacetimesLoc than the more naive concept from Sect. 2.2
that allows also for factorization products for non-time-orderable tuples of pairwise dis-
joint morphisms. In Sect. 5 we explain that the constructionA : PFAadd,c → AQFTadd,c

from Sect. 3 factors through the forgetful functor PFAadd,c → tPFAadd,c, thereby defin-
ing a functor A : tPFAadd,c → AQFTadd,c that assigns a Cauchy constant additive
algebraic quantum field theory to each Cauchy constant additive time-orderable prefac-
torization algebra. Our main Equivalence Theorem 5.1 proves that this functor admits
an inverse that is given by the restriction F : AQFTadd,c → tPFAadd,c of the functor
from Sect. 4 to Cauchy constant and additive theories. Hence, Cauchy constant additive
algebraic quantum field theories are naturally identified with Cauchy constant additive
time-orderable prefactorization algebras. In Sect. 5.2, we use our main Equivalence
Theorem 5.1 to transfer ∗-involutions from algebraic quantum field theories to Cauchy
constant additive time-orderable prefactorization algebras. By construction, we obtain
an equivalence ∗AQFTadd,c � ∗tPFAadd,c between theories with ∗-involutions. We
show that the transferred concept of ∗-involutions for Cauchy constant additive time-
orderable prefactorization algebras involves Cauchy constancy explicitly, hence it does
not extend to generic time-orderable prefactorization algebras in tPFA. In Sect. 5.3, we
apply our general results to the simple example given by the free Klein–Gordon field
AKG ∈ AQFTadd,c. We observe as in [GR17] that the corresponding time-orderable
prefactorization algebra FKG ∈ tPFAadd,c describes the time-ordered products from
perturbative algebraic quantum field theory, cf. [FR13,Rej16].

2. Preliminaries

2.1. Lorentzian geometry. In order to fix our notations, we shall briefly recall some basic
definitions and properties of Lorentzian manifolds. We refer to [BGP07] for a concise
introduction.

A Lorentzian manifold is a manifold M together with a metric g of signature (− +
· · ·+). A non-zero tangent vector 0 �= v ∈ TxM at a point x ∈ M is called time-like
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if g(v, v) < 0, light-like if g(v, v) = 0 and space-like if g(v, v) > 0. It is called
causal if it is either time-like or light-like, i.e. g(v, v) ≤ 0. A curve γ : I → M ,
where I ⊆ R is an open interval, is called time-like/light-like/space-like/causal if all
its tangent vectors γ̇ are time-like/light-like/space-like/causal. A Lorentzian manifold
is called time-orientable if there exists a vector field t ∈ �∞(T M) that is everywhere
time-like. Such t determines a time-orientation.

In what follows we always consider time-oriented Lorentzian manifolds, denoted
collectively by symbols like M , suppressing the metric g and time-orientation t from our
notation. A time-like or causal curve γ : I → M is called future directed if g(t, γ̇ ) < 0
and past directed if g(t, γ̇ ) > 0. The chronological future/past of a point x ∈ M is
the subset I±

M (x) ⊆ M of all points that can be reached from x by future/past directed
time-like curves. The causal future/past of a point x ∈ M is the subset J±

M (x) ⊆ M of all
points that can be reached from x by future/past directed causal curves and x itself. Given
any subset S ⊆ M , we define I±

M (S) := ⋃
x∈S I

±
M (x) and J±

M (S) := ⋃
x∈S J±

M (x).

Definition 2.1. LetM be a time-oriented Lorentzianmanifold. A subset S ⊆ M is called
causally convex if J+M (S) ∩ J−

M (S) ⊆ S. Two subsets S, S′ ⊆ M are called causally
disjoint if

(
J+M (S) ∪ J−

M (S)
) ∩ S′ = ∅.

Remark 2.2. In words, a subset S ⊆ M is causally convex if every causal curve that starts
and ends in S is contained entirely in S. Two subsets S, S′ ⊆ M are causally disjoint if
there exists no causal curve in M connecting S and S′. �
Definition 2.3. A time-oriented Lorentzian manifold M is called globally hyperbolic
if it admits a Cauchy surface, i.e. a subset � ⊂ M that is met exactly once by each
inextensible time-like curve in M .

The following category of Lorentzianmanifolds plays a fundamental role in algebraic
quantum field theory, see e.g. [BFV03,FV12,BDFY15,BSW17].

Definition 2.4. We denote by Loc the category whose objects are all oriented and time-
oriented globally hyperbolic Lorentzian manifolds M and morphisms are all orientation
and time-orientationpreserving isometric embeddings f : M → N with causally convex
and open image f (M) ⊆ N .

We introduce the following terminology to specify important (tuples of) Loc-
morphisms that enter the definitions of algebraic quantumfield theories and factorization
algebras.

Definition 2.5. (a) A Loc-morphism f : M → N is called a Cauchy morphism if its
image f (M) ⊆ N contains a Cauchy surface of N . We shall write f : M

c→ N for
Cauchy morphisms.
(b) A pair of Loc-morphisms ( f1 : M1 → N , f2 : M2 → N ) to a common target is

called causally disjoint if the images f1(M1) ⊆ N and f2(M2) ⊆ N are causally
disjoint subsets of N . We shall write f1 ⊥ f2 for causally disjoint morphisms.

(c) A tuple of Loc-morphisms ( f1 : M1 → N , . . . , fn : Mn → N ) to a common target
is called pairwise disjoint if the images fi (Mi ) ⊆ N are pairwise disjoint subsets of
N , i.e. fi (Mi ) ∩ f j (Mj ) = ∅, for all i �= j . We shall write f : M → N for tuples
f = ( f1, . . . , fn) of pairwise disjoint morphisms.

Remark 2.6. By convention, a 1-tuple f = ( f ) : M → N of pairwise disjoint mor-
phisms is just a Loc-morphism f : M → N and there exists a unique empty tuple
∅ → N for each N ∈ Loc. �
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2.2. Factorization algebras. Factorization algebras are typically considered in the con-
text of topological, complex or Riemannian manifolds, see [CG17] for a detailed study.
In order to obtain a meaningful comparison to algebraic quantum field theory, which is
typically considered in the context of globally hyperbolic Lorentzianmanifolds, we shall
introduce below a variant of factorization algebras on the category Loc from Definition
2.4. A similar concept of factorization algebras on Loc appeared before in [GR17]. For
what follows let us fix any cocomplete closed symmetricmonoidal category (C,⊗, I, τ ),
e.g. the category of vector spaces Vec

K
over a field K.

A prefactorization algebra F on Loc with values in C is given by the following data:

(i) for each M ∈ Loc, an object F(M) ∈ C;
(ii) for each tuple f = ( f1, . . . , fn) : M → N of pairwise disjoint morphisms, a

C-morphism F( f ) : ⊗n
i=1 F(Mi ) → F(N ) (called factorization product), with the

convention that to the empty tuple ∅ → N is assigned a morphism I → F(N ) from
the monoidal unit.

These data are required to satisfy the following conditions:

1. for every f = ( f1, . . . , fn) : M → N and g
i

= (gi1, . . . , giki ) : Li → Mi , for
i = 1, . . . , n, the diagram

n⊗

i=1

ki⊗

j=1
F(Li j )

F( f (g
1
,...,g

n
))

����
���

���
���

⊗
i F(g

i
)
��
n⊗

i=1
F(Mi )

F( f )

��

F(N )

(2.1)

inC commutes, where f (g
1
, . . . , g

n
) := ( f1 g11, . . . , fn gnkn ) : (L1, . . . , Ln) → N

is given by composition in Loc;
2. for every M ∈ Loc, F(idM ) = idF(M) : F(M) → F(M);
2. for every f = ( f1, . . . , fn) : M → N and every permutation σ ∈ �n , the diagram

n⊗

i=1
F(Mi )

permute
��

F( f )
�� F(N )

n⊗

i=1
F(Mσ(i))

F( f σ)

��������������

(2.2)

in C commutes, where f σ := ( fσ(1), . . . , fσ(n)) : Mσ → N is given by right
permutation.

A morphism ζ : F → G of prefactorization algebras is a family ζM : F(M) → G(M)

of C-morphisms, for all M ∈ Loc, that is compatible with the factorization products,
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i.e. for all f : M → N the diagram

n⊗

i=1
F(Mi )

⊗
i ζMi

��

F( f )
�� F(N )

ζN

��n⊗

i=1
G(Mi )

G( f )
�� G(N )

(2.3)

in C commutes.

Definition 2.7. We denote by PFA the category of prefactorization algebras on Loc.

Factorization algebras are prefactorization algebras that satisfy a suitable descent
condition with respect toWeiss covers [CG17]. For proving our results in this paper, it is
sufficient to assume a weaker descent condition that we shall call additivity in reference
to a similar property in algebraic quantum field theory [Few13]. As explained below,
this includes in particular all factorization algebras on Loc. Before we can formalize the
additivity property, we have to introduce some further terminology and notations.

Definition 2.8. For M ∈ Loc, we denote byRCM the category of all relatively compact
and causally convex open subsets U ⊆ M with morphisms given by subset inclusions.

Remark 2.9. Note that the assignmentM �→ RCM maybepromoted to a functorRC(−) :
Loc → Catwith values in the category of (small) categories. Concretely, given anyLoc-
morphism f : M → N , then the functor RC f : RCM → RCN sends each relatively
compact and causally convex open subset U ⊆ M to its image f (U ) ⊆ N . Since f is
continuous, it follows that this is a relatively compact and causally convex open subset
of N . �
Lemma 2.10. For every M ∈ Loc, the category RCM is a directed set.

Proof. Let U1,U2 ∈ RCM . We shall construct U ∈ RCM such that Ui ⊆ U , for
i = 1, 2. Since K := U1 ∪ U2 is compact, there exists a Cauchy surface � of M such
that K ⊆ I−

M (�). We set S := J+M (K )∩ J−
M (�) and observe that this is a compact subset

of M by [BGP07, Corollary A.5.4]. Using also [BGP07, Lemma A.5.12], it follows that
U := I +M (K )∩ I−

M (S) belongs to RCM . By construction,U contains bothU1 andU2. ��
We may restrict the orientation, time-orientation and metric on M to the causally

convex open subsets U ∈ RCM and thereby define objects U ∈ Loc. Every inclusion
U ⊆ V in RCM then defines a Loc-morphism ιVU : U → V . Hence, we can regard
RCM ⊆ Loc as a subcategory, for every M ∈ Loc, and restrict any prefactorization
algebra F ∈ PFA to a functor F|M : RCM → C.

Definition 2.11. A prefactorization algebra F ∈ PFA is called additive if, for every
M ∈ Loc, the canonical morphism

colim
(
F|M : RCM → C

) ∼= �� F(M) (2.4)

is an isomorphism in C. We denote by PFAadd ⊆ PFA the full subcategory of additive
prefactorization algebras.
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Remark 2.12. The additivity condition formalizes the idea that F(M) is “generated” by
the images of the maps F(U ) → F(M), for all relatively compact and causally convex
open subsets U ⊆ M . Interpreting F(M) as a collection of observables for a quantum
field theory, this means that all observables described by F(M) arise from relatively
compact regions U ⊆ M . �
Proposition 2.13. Every factorization algebra F on Loc is an additive prefactorization
algebra.

Proof. Suppose that F is a factorization algebra [CG17], i.e. it satisfies a cosheaf condi-
tion with respect to all Weiss covers of every M ∈ Loc. For every M ∈ Loc, the cover
defined by RCM is a Weiss cover. Indeed, given finitely many points x1, . . . , xn ∈ M ,
there exist Ui ∈ RCM with xi ∈ Ui and hence U ∈ RCM with x1, . . . , xn ∈ U because
RCM is directed by Lemma 2.10. The property of being a factorization algebra then
implies that the canonical diagram

∐

U,V∈RCM
U∩V �=∅

F(U ∩ V )
��
��

∐

U∈RCM

F(U ) �� F(M) (2.5)

is a coequalizer in C. Our claim then follows by observing that the cocones of (2.4) are
canonically identified with the cocones of (2.5). Indeed, any cocone {αU : F(U ) → Z}
of (2.4) defines a cocone of (2.5) because U ∩ V ∈ RCM (whenever nonempty) and
hence the diagram

F(U )
αU

����
���

�

F(U ∩ V )
αU∩V ��

F(ιVU∩V )
�����

���

F(ιUU∩V ) ��������
Z

F(V )
αV

��������

(2.6a)

in C commutes. Vice versa, any cocone {αU : F(U ) → Z} of (2.5) defines a cocone of
(2.4) because U ∩ V = U , for all U ⊆ V , and hence the diagram

F(U )
αU

����
���

�

F(ιVU )

��

F(U ∩ V )

F(ιVU∩V )
�����

���

������
������

Z

F(V )
αV

��������

(2.6b)

in C commutes. ��
As a last definition, we would like to introduce a suitable local constancy property

that is adapted to the category Loc. This property will play a crucial role in establishing
our comparison results. Recall from Definition 2.5 the concept of Cauchy morphisms.

Definition 2.14. Aprefactorization algebraF ∈ PFA is calledCauchy constant ifF( f ) :
F(M) → F(N ) is an isomorphism in C, for every Cauchy morphism f : M

c→ N .
We denote by PFAc ⊆ PFA the full subcategory of Cauchy constant prefactorization
algebras. The full subcategory PFAadd,c ⊆ PFAadd of Cauchy constant additive prefac-
torization algebras is defined analogously.
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2.3. Algebraic quantumfield theories. LetCbe a cocomplete closed symmetricmonoidal
category as in the previous subsection. We briefly review the basic definitions for C-
valued algebraic quantum field theories on Loc following [BSW17]. Algebraic quan-
tum field theories with ∗-involutions are defined later in Sect. 5.2. We also refer to
[BFV03,FV12,BDFY15] for a broader introduction to algebraic quantum field theories
and their applications to physics.

Let us denote byAlg := AlgAs(C) the categoryof associative andunital algebras inC.
An algebraic quantumfield theoryA onLocwith values inC is a functorA : Loc → Alg
that satisfies the Einstein causality axiom: for every pair of causally disjoint morphisms
( f1 : M1 → N ) ⊥ ( f2 : M2 → N ), the diagram

A(M1) ⊗ A(M2)

A( f1)⊗A( f2)
��

A( f1)⊗A( f2)�� A(N ) ⊗ A(N )

μ
op
N

��

A(N ) ⊗ A(N )
μN

�� A(N )

(2.7)

inC commutes, whereμ
(op)
N denotes the (opposite) multiplication onA(N ). Amorphism

κ : A → B of algebraic quantum field theories is a natural transformation between the
underlying functors.

Definition 2.15. We denote by AQFT the category of algebraic quantum field theories
on Loc.

For proving some of the results of this paper, we require a relatively mild variant of
an additivity property in the sense of [Few13]. Recall from Definition 2.8 the category
RCM of relatively compact and causally convex open subsets of M ∈ Loc.

Definition 2.16. An algebraic quantum field theory A ∈ AQFT is called additive if, for
every M ∈ Loc, the canonical morphism

colim
(
A|M : RCM → Alg

) ∼= �� A(M) (2.8)

is an isomorphism in Alg. We denote by AQFTadd ⊆ AQFT the full subcategory of
additive algebraic quantum field theories.

Remark 2.17. Because RCM is a directed set by Lemma 2.10, the colimit in Defini-
tion 2.16 can be computed in the underlying category C, see e.g. [Fre17, Proposi-
tion 1.3.6]. Hence, to check if an algebraic quantum field theory A ∈ AQFT is additive,
one can consider its underlying functor A : Loc → C to the category C (i.e. forget the
algebra structures) and equivalently check if colim

(
A|M : RCM → C

) → A(M) is an
isomorphism in C. �

Furthermore, we introduce a suitable local constancy property that is also known in
the literature as the time-slice axiom.

Definition 2.18. An algebraic quantum field theory A ∈ AQFT is called Cauchy con-
stant if A( f ) : A(M) → A(N ) is an isomorphism in Alg, for every Cauchy morphism
f : M

c→ N . We denote by AQFTc ⊆ AQFT the full subcategory of Cauchy con-
stant algebraic quantum field theories. The full subcategory AQFTadd,c ⊆ AQFTadd of
Cauchy constant additive algebraic quantum field theories is defined analogously.
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3. From PFA to AQFT

In this section we show that every Cauchy constant additive prefactorization algebra
F ∈ PFAadd,c (cf.Definitions 2.11 and 2.14) defines aCauchy constant additive algebraic
quantum field theory (cf. Definitions 2.16 and 2.18). This construction will define a
functor A : PFAadd,c → AQFTadd,c.

Our construction consists of three steps, which will be carried out in detail in in-
dividual subsections below. Step (1) consists of proving that, for each M ∈ Loc, the
object F(M) ∈ C carries canonically the structure of an associative and unital algebra
in C. This step relies on Cauchy constancy, while it does not require that the additivity
property holds true. Step (2) consists of proving that these algebra structures are com-
patible with the maps F( f ) : F(M) → F(N ) induced by Loc-morphisms f : M → N .
Here our additivity property turns out to be crucial. Finally, in step (3) we show that
the resulting functor Loc → Alg satisfies the properties of a Cauchy constant additive
algebraic quantum field theory, cf. Sect. 2.3.

3.1. Object-wise algebra structure. All results of this subsection do not use the addi-
tivity property from Definition 2.11. Hence, we let F ∈ PFAc be any Cauchy constant
prefactorization algebra.

Let us fix any M ∈ Loc. The basic idea to define a multiplication map μM : F(M)⊗
F(M) → F(M) is as follows: Consider two causally convex open subsetsU+,U− ⊆ M
satisfying (i) there exists a Cauchy surface� of M such thatU± ⊆ I±

M (�), and (ii) ιMU± :
U±

c→ M are Cauchy morphisms. In particular, U+ ∩ U− = ∅ are disjoint and hence
provide a pair of disjoint morphisms ιMU = (ιMU+

, ιMU−) : U → M . We define μM by the
commutative diagram

F(M) ⊗ F(M)
μM �� F(M)

F(U+) ⊗ F(U−)

∼=
F(ιMU+

)⊗F(ιMU− )

		������������� F(ιMU )

��											

(3.1)

where the upward-left pointing arrow is an isomorphism because F is by hypothesis
Cauchy constant. A priori, it is not clear whether different choices of such ιMU : U → M
lead to the same multiplication map in (3.1). The possible choices are recorded in the
following category.

Definition 3.1. Let M ∈ Loc. We denote by PM the category whose objects are all pairs
of disjoint morphisms ιMU = (ιMU+

, ιMU−) : U → M corresponding to causally convex
open subsets U+,U− ⊆ M that satisfy

(i) there exists a Cauchy surface � of M such that U± ⊆ I±
M (�), and

(ii) ιMU± : U±
c→ M are Cauchy morphisms.

There exists a unique morphism (ιMU : U → M) → (ιMV : V → M) if and only if
U± ⊆ V±.

Lemma 3.2. For every M ∈ Loc, the category PM is non-empty and connected.
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Proof. Non-empty Choose any Cauchy surface � of M and define �± := I±
M (�). Then

ιM� = (ιM�+
, ιM�−) : � → M defines an object in PM .

ConnectedWe have to prove that there exists a zig-zag of morphisms in PM between
every pair of objects ιMU : U → M and ιMV : V → M . For every object ιMU : U → M in

PM , there exists by hypothesis a Cauchy surface� of M such thatU± ⊆ �± := I±
M (�).

Hence, there exists a morphism (ιMU : U → M) → (ιM� : � → M). As a consequence,

our original problem reduces to finding a zig-zag of morphisms in PM between ιM� :
� → M and ιM

�′ : �′ → M , for any two Cauchy surfaces �,�′ of M . To exhibit such

a zig-zag, let us introduce Ũ+ := �+ ∩ �′
+ and Ũ− := �− ∩ �′−. If we could prove that

ιM
Ũ±

: Ũ±
c→ M are Cauchy morphisms, then

(
ιM� : � → M

) ←− (
ιM
Ũ

: Ũ → M
) −→ (

ιM
�′ : �′ → M

)
(3.2)

would provide a zig-zag that proves connectedness of PM .
It remains to show that Ũ+ = �+ ∩ �′

+ = I +M (�) ∩ I +M (�′) ⊆ M contains a Cauchy
surface of M . (A similar argument shows that Ũ− ⊆ M also contains a Cauchy surface
of M .) Because �,�′ are by hypothesis Cauchy surfaces of M , there exists a Cauchy
surface �1 ⊂ I +M (�) of M in the future of � and a Cauchy surface �′

1 ⊂ I +M (�′) of M
in the future of �′. We define the subset

�̃ := (
�1 ∩ J+M (�′

1)
) ∪ (

J+M (�1) ∩ �′
1

) ⊂ Ũ+ ⊆ M (3.3)

and claim that �̃ is a Cauchy surface of M . To prove the last statement, consider any
inextensible time-like curve γ : I → M , which we may assume without loss of general-
ity to be future directed. (If γ would be past directed, then change the orientation of the
interval I .) Because �1 and �′

1 are Cauchy surfaces of M , there exist unique t, t ′ ∈ I
such that γ (t) ∈ �1 and γ (t ′) ∈ �′

1. If t ≥ t ′, then γ (t) ∈ �1 ∩ J+M (�′
1) ⊆ �̃, and if

t ′ ≥ t , then γ (t ′) ∈ J+M (�1) ∩ �′
1 ⊆ �̃. Hence, γ meets �̃ ⊂ M at least once. Multiple

intersections are excluded by the definition of �̃ in (3.3) and the fact that both �1 and
�′

1 are Cauchy surfaces of M . ��
Corollary 3.3. For every M ∈ Loc, the multiplication mapμM in (3.1) does not depend
on the choice of object ιMU : U → M in PM.

Proof. By Lemma 3.2, it is sufficient to prove that ιMU : U → M and ιMV : V → M
define the same multiplication if U+ ⊆ V+ and U− ⊆ V−. This is a consequence of the
commutative diagram

F(V+) ⊗ F(V−)

∼=
F(ιMV+

)⊗F(ιMV− )





















 F(ιMV )

����
���

���
���

�

F(M) ⊗ F(M) F(M)

F(U+) ⊗ F(U−)

∼=
F(ιMU+

)⊗F(ιMU− )

���������������� F(ιMU )

��

F(ι
V+
U+

)⊗F(ι
V−
U− )

��
(3.4)

where one also uses the composition properties (2.1) of prefactorization algebras. ��
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To obtain a unit for F(M), we recall that there exists a unique empty tuple of disjoint
morphisms ∅ → M to which the prefactorization algebra assigns aC-morphism that we
shall denote by ηM : I → F(M). The main result of this subsection is as follows.

Proposition 3.4. Let F ∈ PFAc be any Cauchy constant prefactorization algebra. For
every M ∈ Loc, the object F(M) ∈ C carries the structure of an associative and unital
algebra in C with multiplication μM : F(M) ⊗ F(M) → F(M) given by (3.1) and unit
ηM : I → F(M) given by evaluating F on the empty tuple ∅ → M.

Proof. To prove that the multiplication μM is associative, we consider two Cauchy sur-
faces �0, �1 of M such that �1 ⊂ I +M (�0), i.e. �1 is in the future of �0. Using the
independence result from Corollary 3.3 and the composition properties of prefactoriza-
tion algebras from Sect. 2.2, one easily confirms that μM (id ⊗ μM ) is the upper path
and μM (μM ⊗ id) the lower path from F(M)⊗3 to F(M) in the commutative diagram

F(�1+) ⊗ F(�1− ∩ �0+) ⊗ F(�0−)

∼=F(ιM�1+
)⊗F(ιM�1−∩�0+

)⊗F(ιM�0− )

��

id⊗F(ι
�1−
�1−∩�0+

,ι
�1−
�0− )

�� F(�1+) ⊗ F(�1−)

F(ιM�1+
,ιM�1− )

��

F(M) ⊗ F(M) ⊗ F(M) F(M)

F(�1+) ⊗ F(�1− ∩ �0+) ⊗ F(�0−)

∼=F(ιM�1+
)⊗F(ιM�1−∩�0+

)⊗F(ιM�0− )

��

F(ι
�0+
�1+

,ι
�0+
�1−∩�0+

)⊗id

�� F(�0+) ⊗ F(�0−)

F(ιM�0+
,ιM�0− )

��

(3.5)

where as before we denote by �± := I±
M (�) ⊆ M the chronological future/past of

a Cauchy surface � of M . Unitality of the product follows immediately from the fact
that there exists a unique empty tuple ∅ → N for each N ∈ Loc and the composition
properties (2.1) of prefactorization algebras. ��

3.2. Naturality of algebra structures. The aim of this subsection is to investigate com-
patibility between the algebra structures from Proposition 3.4 and the maps F( f ) :
F(M) → F(N ) induced by Loc-morphisms. For our main statement to be true it will
be crucial to assume that F ∈ PFAadd,c is a Cauchy constant additive prefactorization
algebra in the sense of Definitions 2.11 and 2.14. As a first partial result, we prove the
following general statement.

Lemma 3.5. Let F ∈ PFAc be any Cauchy constant prefactorization algebra (not nec-
essarily additive). Let further f : M → N be a Loc-morphism such that the image
f (M) ⊆ N is relatively compact. Then F( f ) : F(M) → F(N ) preserves the mul-
tiplications and units from Proposition 3.4, i.e. μN (F( f ) ⊗ F( f )) = F( f ) μM and
ηN = F( f ) ηM.

Proof. The units are clearly preserved for every Loc-morphism f : M → N because
composing the unique empty tuple ∅ → M with f : M → N yields the unique empty
tuple ∅ → N .

Let us focus now on the multiplications. Because f (M) ⊆ N is by hypothesis
relatively compact, its closure f (M) ⊆ N is compact. Let us take any Cauchy surface



M. Benini, M. Perin, A. Schenkel

� of M and note that f (�) ⊆ N is a compact subset. Using further that f (M) ⊆ N is
causally convex and that the causality relation induced by time-like curves is open (cf.
[ONe83, Lemma 14.3]), it follows that f (�) ⊆ N is achronal, i.e. every time-like curve
in N meets this subset at most once. By [BS06, Theorem 3.8], there exists a Cauchy
surface �̃ of N such that f (�) ⊆ �̃.

Using the Cauchy surfaces constructed above, we can define the multiplication μM
in terms of�± := I±

M (�) and the multiplicationμN in terms of �̃± := I±
N (�̃), cf. (3.1).

By construction, f : M → N restricts to Loc-morphisms f �̃±
�± : �± → �̃±. Our claim

that F( f ) : F(M) → F(N ) preserves the multiplications then follows by observing that
the diagram

F(M) ⊗ F(M)

F( f )⊗F( f )

��

F(�+) ⊗ F(�−)∼=
F(ιM�+

)⊗F(ιM�− )


F( f �̃+
�+

)⊗F( f
�̃−
�− )

��

F(ιM� )
�� F(M)

F( f )

��

F(N ) ⊗ F(N ) F(�̃+) ⊗ F(�̃−)
∼=

F(ιN
�̃+

)⊗F(ιN
�̃− )



F(ιN
�̃

)

�� F(N )

(3.6)

commutes. ��
Remark 3.6. Wewould like to emphasize that our assumption that the image f (M) ⊆ N
is relatively compact was crucial for the proof of Lemma 3.5. In fact, if one does not
assume that the image of the Loc-morphism f : M → N is relatively compact, then it
is not true that the image f (�) ⊂ N of a Cauchy surface � of M can be extended to a
Cauchy surface �̃ of N . A simple example that demonstrates this feature is given by the
subset inclusion ιVU : U → V of the following two diamond regions in 2-dimensional
Minkowski spacetime (note that U is not relatively compact as a subset of V ):

V

U

�

time

(3.7)

It is evident that no Cauchy surface � of U admits an extension to a Cauchy surface
of V . Hence, F(ιVU ) : F(U ) → F(V ) may fail to preserve the multiplications. We shall
show below that the issues explained in this remark are solved by considering additive
prefactorization algebras as in Definition 2.11. �

The main result of this subsection is as follows.

Proposition 3.7. Let F ∈ PFAadd,c be any Cauchy constant additive prefactorization
algebra. For everyLoc-morphism f : M → N, theC-morphismF( f ) : F(M) → F(N )

preserves the multiplications and units from Proposition 3.4.

Proof. We already observed in the proof of Lemma 3.5 that F( f ) preserves the units.
For the multiplications we have to prove that μN (F( f ) ⊗ F( f )) = F( f ) μM as

C-morphisms from F(M) ⊗ F(M) to F(N ). Because F is by hypothesis additive (cf.
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Definition 2.11) and themonoidal product⊗ in a cocomplete closed symmetricmonoidal
category preserves colimits in both entries, it follows that

F(M) ⊗ F(M) ∼= colimU,V∈RCM

(
F(U ) ⊗ F(V )

) ∼= colimU∈RCM

(
F(U ) ⊗ F(U )

)
,

(3.8)

where in the last step we also used that RCM is directed by Lemma 2.10. For every
U ∈ RCM , consider the diagram

F(U ) ⊗ F(U )

F( fU )⊗F( fU )

���
��

��
��

��
��

��
��

��
��

��
�

F(ιMU )⊗F(ιMU )

�����
����

����
����

μU �� F(U )
F(ιMU )

����
���

���
���

���

F( fU )

��
��

��
��

�

���
��

��
��

��F(M) ⊗ F(M)

F( f )⊗F( f )
��

μM �� F(M)

F( f )
��

F(N ) ⊗ F(N )
μN

�� F(N )

(3.9)

where fU : U → N denotes the restriction of f : M → N to U ⊆ M . The top and
bottom squares of this diagram commute because of Lemma 3.5 and the fact that both
U ⊆ M and f (U ) ⊆ N are relatively compact subsets. The two triangles commute by
direct inspection. By universality of the colimit in (3.8), this implies that the front square
in (3.9) commutes, proving our claim. ��
Corollary 3.8. Every Cauchy constant additive prefactorization algebra F ∈ PFAadd,c

defines a functor A[F] : Loc → Alg to the category of associative and unital algebras.
Explicitly, this functor acts on objects M ∈ Loc as A[F](M) := (F(M), μM , ηM ) and
on Loc-morphisms f : M → N as A[F]( f ) := F( f ). The assignment F �→ A[F]
canonically extends to a functor A : PFAadd,c → AlgLoc, where AlgLoc denotes the
category of functors from Loc to Alg.

Proof. It remains to prove that every morphism ζ : F → G in PFAadd,c defines a natural
transformation A[ζ ] : A[F] → A[G] between Alg-valued functors on Loc, i.e. that all
components ζM : F(M) → G(M) preserve the multiplications and units. For the units
this is immediate, while for the multiplications it follows from the fact that the diagram

F(M) ⊗ F(M)

ζM⊗ζM

��

F(U+) ⊗ F(U−)∼=
F(ιMU+

)⊗F(ιMU− )


ζU+⊗ζU−
��

F(ιMU )
�� F(M)

ζM

��

G(M) ⊗ G(M) G(U+) ⊗ G(U−)
∼=

G(ιMU+
)⊗G(ιMU− )



G(ιMU )

�� G(M)

(3.10)

commutes by the compatibility properties (2.3) of prefactorization algebra morphisms.
��

3.3. Algebraic quantum field theory axioms. The goal of this subsection is to show
that the construction above assigns to each Cauchy constant additive prefactorization
algebra a Cauchy constant additive algebraic quantum field theory. More precisely, we
shall prove that the functor A : PFAadd,c → AlgLoc established in Corollary 3.8 factors
through the full subcategoryAQFTadd,c ⊆ AlgLoc of Cauchy constant additive algebraic
quantum field theories.
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Lemma 3.9. Let F ∈ PFAc be any Cauchy constant prefactorization algebra (not nec-
essarily additive). Let further ( f1 : M1 → N ) ⊥ ( f2 : M2 → N ) be any causally
disjoint pair of Loc-morphisms such that the images f1(M1), f2(M2) ⊆ N are rela-
tively compact. Then μ

op
N (F( f1) ⊗ F( f2)) = μN (F( f1) ⊗ F( f2)), where μ

(op)
N denotes

the (opposite) multiplication on F(N ) from Proposition 3.4.

Proof. In order to compare the two morphisms μN (F( f1) ⊗ F( f2)) and μ
op
N (F( f1) ⊗

F( f2)) from F(M1) ⊗ F(M2) to F(N ), we introduce convenient ways to compute these
composites. Let us choose arbitrary Cauchy surfaces �1 of M1 and �2 of M2. As in
the proof of Lemma 3.5, we deduce that f1(�1), f2(�2) ⊆ N are achronal compact
subsets. Causal disjointness of the pair f1 ⊥ f2 entails achronality of the union f1(�1)∪
f2(�2) ⊆ N . By [BS06,Theorem3.8], there exists aCauchy surface �̃ of N that contains
the union f1(�1)∪ f2(�2) ⊆ �̃. Similarly, choosing anyCauchy surface�′

1 ⊂ I +M1
(�1)

of M1 that lies in the future of �1 and any Cauchy surface �′
2 ⊂ I−

M2
(�2) of M2 that

lies in the past of �2, there exists a Cauchy surface �̃′ of N that contains the union
f1(�′

1) ∪ f2(�′
2) ⊆ �̃′. Let us introduce

U1 := I +M1
(�1) ∩ I−

M1
(�′

1) ⊆ M1, U2 := I +M2
(�′

2) ∩ I−
M2

(�2) ⊆ M2, (3.11)

and also consider �̃± := I±
N (�̃) ⊆ N and �̃′± := I±

N (�̃′) ⊆ N . By construction,

ι
Mi
Ui

: Ui
c→ Mi , for i = 1, 2, and ιN

�̃
(′)
±

: �̃
(′)
±

c→ N are Cauchy morphisms. The

following picture illustrates in dark gray the chosen subsets U1 ⊆ M1 and U2 ⊆ M2:

N

M1 M2

�̃

�̃′

time

(3.12)

With these preparations, we can compute μN (F( f1) ⊗ F( f2)) by

F(M1) ⊗ F(M2)
F( f1)⊗F( f2) �� F(N ) ⊗ F(N )

μN �� F(N )

F(U1) ⊗ F(U2)

∼=F(ι
M1
U1

)⊗F(ι
M2
U2

)

��

F
(
( f1)

�̃+
U1

)
⊗F

(
( f2)

�̃−
U2

)�� F(�̃+) ⊗ F(�̃−)

∼=F(ιN
�̃+

)⊗F(ιN
�̃− )

��

F(ιN
�̃

)

������������������

(3.13)
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where ( f1)
�̃+
U1

: U1 → �̃+ denotes the restriction of f1 : M1 → N to U1 ⊆ M1, and

analogously for ( f2)
�̃−
U2

. Similarly, μop
N (F( f1) ⊗ F( f2)) can be computed by

F(M1) ⊗ F(M2)

flip
��

F( f1)⊗F( f2) �� F(N ) ⊗ F(N )
μ
op
N ��

flip
��

F(N )

F(M2) ⊗ F(M1)
F( f2)⊗F( f1) �� F(N ) ⊗ F(N )

μN

�������������������

F(U2) ⊗ F(U1)

∼=F(ι
M2
U2

)⊗F(ι
M1
U1

)

��

F
(
( f2)

�̃′
+

U2

)
⊗F

(
( f1)

�̃′−
U1

)
�� F(�̃′

+) ⊗ F(�̃′−)

∼=F(ιN
�̃′
+
)⊗F(ιN

�̃′−
)

�� F(ιN
�̃

′ )

������������������������

(3.14)

The claim follows from the equivariance property (2.2) of prefactorization algebras. ��
The main result of this subsection is as follows.

Proposition 3.10. Let F ∈ PFAadd,c be any Cauchy constant additive prefactorization
algebra. Let further ( f1 : M1 → N ) ⊥ ( f2 : M2 → N ) be any causally disjoint pair of
Loc-morphisms. Thenμ

op
N (F( f1)⊗F( f2)) = μN (F( f1)⊗F( f2)), whereμ

(op)
N denotes

the (opposite) multiplication on F(N ) from Proposition 3.4.

Proof. Because F is by hypothesis additive (cf. Definition 2.11) and the monoidal prod-
uct ⊗ in a cocomplete closed symmetric monoidal category preserves colimits in both
entries, it follows that

F(M1) ⊗ F(M2) ∼= colim(U1,U2)∈RCM1×RCM2

(
F(U1) ⊗ F(U2)

)
. (3.15)

For every (U1,U2) ∈ RCM1 × RCM2 , consider the diagram

F(U1) ⊗ F(U2)

F
(
( f1)U1

)
⊗F

(
( f2)U2

)

��

F
(
( f1)U1

)
⊗F

(
( f2)U2

)

��

F(ι
M1
U1

)⊗F(ι
M2
U2

)

����
���

���
���

���
���

�

F(M1) ⊗ F(M2)

F( f1)⊗F( f2)

��

F( f1)⊗F( f2)�� F(N ) ⊗ F(N )

μ
op
N

��

F(N ) ⊗ F(N )
μN

�� F(N )

(3.16)

where ( fi )Ui
: Ui → N denotes the restriction of fi : Mi → N to Ui ⊆ Mi , for

i = 1, 2. The two triangles coincide and commute by direct inspection. Furthermore,
for every (U1,U2) ∈ RCM1 × RCM2 , the outer square commutes as a consequence
of Lemma 3.9 applied to the causally disjoint pair ( f1)U1

⊥ ( f2)U2
, whose images

f1(U1), f2(U2) ⊆ N are relatively compact subsets.Hence, byuniversality of the colimit
in (3.15), the inner square commutes as well, which is our claim. ��
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Proposition 3.10 leads to the following refinement of Corollary 3.8.

Theorem 3.11. Every Cauchy constant additive prefactorization algebra F ∈ PFAadd,c

defines a Cauchy constant additive algebraic quantum field theory A[F] ∈ AQFTadd,c.
Hence, the functor A : PFAadd,c → AlgLoc from Corollary 3.8 factors through the full
subcategory AQFTadd,c ⊆ AlgLoc.

Proof. Proposition 3.10 implies that the functor A[F] : Loc → Alg defined in Corol-
lary 3.8 is an algebraic quantum field theory, i.e. it satisfies the Einstein causality axiom
(2.7). Because F is by hypothesis Cauchy constant, it follows that A[F] is Cauchy con-
stant too. Because the underlying functors A[F]|M = F|M : RCM → C to the category
C coincide, additivity of F ∈ PFAadd,c and Remark 2.17 immediately imply additivity
of A[F]. Hence, A[F] ∈ AQFTadd,c. ��

4. From AQFT to PFA

In this section we show that every algebraic quantum field theory A ∈ AQFT defines a
variant of a prefactorization algebra on Loc where the factorization products are defined
only for those tuples of pairwise disjoint morphisms f : M → N that are in a suitable
sense time-orderable. We shall call this type of prefactorization algebras time-orderable
and denote the corresponding category by tPFA. Our construction defines a functor
F : AQFT → tPFA to the category of time-orderable prefactorization algebras. Cauchy
constancy and additivity do not play a role in this section, however we shall prove that
these properties are preserved by our functor.

Let A ∈ AQFT be an algebraic quantum field theory. Our aim is to construct from
this data factorization products F[A]( f ) : ⊗n

i=1 A(Mi ) → A(N ), for suitable tuples of
pairwise disjoint morphisms f = ( f1, . . . , fn) : M → N . For n = 0, i.e. the empty
tuples ∅ → N , we may take the unit ηN : I → A(N ) of the associative and unital
algebra A(N ) that is assigned by A to N ∈ Loc. For n = 1, the tuples of pairwise
disjoint morphisms are just Loc-morphisms f : M → N , hence we may take the C-
morphism F[A]( f ) := A( f ) : A(M) → A(N ) that is obtained from theAlg-morphism
assigned by A to f : M → N via the forgetful functor Alg → C. For n ≥ 2, the
envisaged construction becomes far less obvious. Let us consider for the moment n = 2
and a pair of disjoint morphisms f = ( f1, f2) : M → N . Inspired by our previous
construction (3.1) of multiplications from factorization products, we propose to define
F[A]( f ) : A(M1) ⊗ A(M2) → A(N ) by the commutative diagram

A(M1) ⊗ A(M2)

A( f1)⊗A( f2) ����
���

���
���

��

F[A]( f )
�� A(N )

A(N ) ⊗ A(N )

μN

�������������

(4.1)

in C. This is however problematic in view of the equivariance property (2.2) of pref-
actorization algebras. In fact, if we used (4.1) for all pairs of disjoint morphisms
f = ( f1, f2) : M → N , then (2.2) would be satisfied if and only if the diagram in (2.7)
commutes, which is in general not the case unless f1 ⊥ f2 are causally disjoint. By closer
inspection of (3.1), one observes that (4.1) is not supposed to be the correct definition for
all pairs of disjoint morphisms, but only for those pairs f = ( f1, f2) : M → N where
f1(M1) ⊆ N is “later” (in a suitable sense) than f2(M2) ⊆ N . This would solve the
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problem concerning the equivariance property discussed above. The following definition
formalizes a concept of time-ordering that allows us to prove our desired statements.

Definition 4.1. (a) Let M ∈ Loc. A tuple (U1, . . . ,Un) of causally convex open subsets
Ui ⊆ M is called time-ordered if J+M (Ui ) ∩Uj = ∅, for all i < j .

(b) A tuple of pairwise disjoint morphisms f = ( f1, . . . , fn) : M → N is called
time-ordered if the tuple ( f1(M1), . . . , fn(Mn)) of causally convex open subsets
fi (Mi ) ⊆ N is time-ordered.

(c) A tuple of pairwise disjoint morphisms f = ( f1, . . . , fn) : M → N is called
time-orderable if there exists a permutation ρ ∈ �n such that the tuple f ρ =
( fρ(1), . . . , fρ(n)) : Mρ → N is time-ordered. We call ρ a time-ordering permuta-
tion for f and note that time-ordering permutations are not necessarily unique.

Remark 4.2. By convention, all empty tuples ∅ → N and all 1-tuples f : M → N are
time-ordered. However, we would like to stress that for n ≥ 2 not every tuple of pairwise
disjoint morphisms f : M → N is time-orderable. For example, consider n = 2 and
f = ( f1, f2) : M → N the inclusion of the following causally convex open subsets
into the Lorentzian cylinder N :

M2

M1

M1

Ntime

(4.2)

In this picture the left and right boundaries are identified as indicated, thereby producing
the Lorentzian cylinder N = (R × S

1, g = −dt2 + dφ2, t = ∂
∂t ). �

The following technical lemma is the crucial ingredient for our proofs below.We shall
use the same notation and conventions for permutation group actions as in [Yau16].

Lemma 4.3. (i) Let ρ ∈ �n be a time-ordering permutation for the tuple of pairwise
disjoint morphisms f = ( f1, . . . , fn) : M → N and σ ∈ �n a permutation. Then

σ−1ρ ∈ �n is a time-orderingpermutation for f σ = ( fσ(1), . . . , fσ(n)) : Mσ → N.
(ii) Let ρ0 ∈ �n be a time-ordering permutation for f = ( f1, . . . , fn) : M → N

and ρi ∈ �ki a time-ordering permutation for g
i
= (gi1, . . . , giki ) : Li → Mi , for

i = 1, . . . , n. Then the permutation

ρ0〈k1, . . . , kn〉 (ρρ0(1) ⊕ . . . ⊕ ρρ0(n)) ∈ �k1+···+kn , (4.3)

whereρ0〈k1, . . . , kn〉 denotes the block permutation corresponding to ρ0 andρρ0(1)⊕
. . . ⊕ ρρ0(n) the sum permutation of the ρρ0(i), is a time-ordering permutation for

f (g
1
, . . . , g

n
) := ( f1 g11, . . . , fn gnkn ) : (L1, . . . , Ln) −→ N . (4.4)
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(iii) Let f : M → N be a time-orderable tuple of pairwise disjoint morphisms and

ρ, ρ′ ∈ �n time-ordering permutations for f . Then the right permutation ρ−1ρ′ :
f ρ → f ρ′ is generated by transpositions of adjacent causally disjoint pairs of
morphisms.

Proof. (i) Trivial.
(ii) Since

f (g
1
, . . . , g

n
) ρ0〈k1, . . . , kn〉 (ρρ0(1) ⊕ . . . ⊕ ρρ0(n))

= ( f ρ0)(gρ0(1)
ρρ0(1), . . . , gρ0(n)

ρρ0(n)), (4.5)

it is sufficient to prove that the composition of time-ordered tuples of pairwise disjoint
morphisms is time-ordered. Therefore, assuming that f and g

i
, for i = 1, . . . , n,

are time-ordered, we have to show that ( f1 g11, . . . , fn gnkn ) is time-ordered, i.e.
J+N ( fi gii ′(Lii ′))∩ f j g j j ′(L j j ′) = ∅ for the following two cases: Case 1 is i < j and
arbitrary i ′ = 1, . . . , ki and j ′ = 1, . . . , k j . Case 2 is i = j and j < j ′. Case 1 follows
immediately from the hypothesis that f is time-ordered, i.e. J+N ( fi (Mi ))∩ f j (Mj ) =
∅ for all i < j . For case 2 we use that g

i
is time-ordered, i.e. J+Mi

(gii ′(Lii ′)) ∩
gi j ′(Li j ′) = ∅ for all j < j ′, and hence by the properties of Loc-morphisms

J+N ( fi gii ′(Lii ′)) ∩ fi gi j ′(Li j ′) = fi
(
J+Mi

(gii ′(Lii ′)) ∩ gi j ′(Li j ′)
)

= ∅. (4.6)

This proves that ( f1 g11, . . . , fn gnkn ) is time-ordered.
(iii) Suppose that ρ−1ρ′ : f ρ → f ρ′ reverses the time-ordering between fk and f�,

i.e. ρ(i) = k = ρ′(i ′) and ρ( j) = � = ρ′( j ′) with i < j and j ′ < i ′ or vice versa
with j < i and i ′ < j ′. Let us consider the case i < j and j ′ < i ′, the other one
being similar. By hypothesis, we have that J+N ( fρ(i)(Mρ(i))) ∩ fρ( j)(Mρ( j)) = ∅
and J+N ( fρ′( j ′)(Mρ′( j ′))) ∩ fρ′(i ′)(Mρ′(i ′)) = ∅, which is equivalent to fk ⊥ f� being
causally disjoint. Summing up, this proves that every pair ( fk, f�) of morphisms
whose time-ordering is reversed by ρ−1ρ′ is causally disjoint fk ⊥ f�.
To conclude the proof, let us recall that every permutation σ : (h1, . . . , hn) →

(hσ(1), . . . , hσ(n)) admits a (not necessarily unique) factorization into adjacent transpo-
sitions that flip only elements whose order is reversed by σ . (One way to obtain such a
factorization is as follows: Start from (h1, . . . , hn) and move by adjacent transpositions
the element hσ(1) to the leftmost position. Then move by adjacent transpositions the ele-
ment hσ(2) to the second leftmost position, and so on.) This implies that we obtain a fac-
torization ρ−1ρ′ = τ1 · · · τN : f ρ → f ρ′, where each τl : f ρτ1 · · · τl−1 → f ρτ1 · · · τl
transposes two adjacentLoc-morphisms whose time-ordering is reversed by ρ−1ρ′. Our
result in the previous paragraph then implies that each τl is a transposition of adjacent
causally disjoint pairs of morphisms, which completes our proof. ��

Lemma 4.3 plays a crucial role in the following definition of time-orderable pref-
actorization algebras because it ensures that time-orderable tuples of pairwise disjoint
morphisms are composable and carry permutation actions. A time-orderable prefactor-
ization algebra F on Loc with values in C is given by the following data:

(i) for each M ∈ Loc, an object F(M) ∈ C;
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(ii) for each time-orderable tuple f = ( f1, . . . , fn) : M → N of pairwise disjoint
morphisms, a C-morphism F( f ) : ⊗n

i=1 F(Mi ) → F(N ) (called time-ordered
product), with the convention that to the empty tuple ∅ → N is assigned a morphism
I → F(N ) from the monoidal unit.

These data are required to satisfy the analogs of the prefactorization algebra axioms
from Sect. 2.2 for time-orderable tuples. A morphism ζ : F → G of time-orderable
prefactorization algebras is a family ζM : F(M) → G(M) of C-morphisms, for all
M ∈ Loc, that is compatible with the time-ordered products as in (2.3).

Definition 4.4. Wedenote by tPFA the category of time-orderable prefactorization alge-
bras onLoc. In analogy to Definitions 2.11 and 2.14, we introduce the full subcategories
tPFAadd, tPFAc, tPFAadd,c ⊆ tPFA of additive, Cauchy constant and Cauchy constant
additive time-orderable prefactorization algebras.

Remark 4.5. Each ordinary prefactorization algebra onLoc defines a time-orderable one
by restriction to time-orderable tuples of pairwise disjoint morphisms. This defines a
functor PFA → tPFA, which is faithful, but not necessarily full due to the fact that not
all pairwise disjoint tuples f : M → N are time-orderable, cf. Remark 4.2. This functor
clearly preserves both additivity and Cauchy constancy. �

With these preparations we can now carry out our envisaged construction of a time-
orderable prefactorization algebra F[A] ∈ tPFA from a given algebraic quantum field
theory A ∈ AQFT. In particular, we can now complete our attempt from the beginning
of this section to define the time-ordered factorization products. Let f = ( f1, . . . , fn) :
M → N be a time-orderable tuple of pairwise disjoint morphisms with time-ordering
permutation ρ ∈ �n . We define the corresponding time-ordered product F[A]( f ) :
⊗n

i=1 A(Mi ) → A(N ) by the commutative diagram

n⊗

i=1
A(Mi )

permute
��

F[A]( f )
�� A(N )

n⊗

i=1
A(Mρ(i)) ⊗

i A( fρ(i))
�� A(N )⊗n

μ
(n)
N

��
(4.7)

in C, where μ
(n)
N denotes the n-ary multiplication in the associative and unital algebra

A(N ) in the given order, i.e.μ(n)
N (a1⊗· · ·⊗an) = a1 · · · an with juxtaposition denoting

multiplication in A(N ). As before, for n = 0 we assign to the empty tuple ∅ → N the
C-morphism ηN : I → A(N ) corresponding to the unit of A(N ).

Lemma 4.6. The C-morphism F[A]( f ) : ⊗n
i=1 A(Mi ) → A(N ) defined in (4.7) does

not depend on the choice of time-ordering permutation for f : M → N.

Proof. Consider time-orderingpermutationsρ, ρ′ ∈ �n for f . RecallingLemma4.3 (iii),

the right permutation ρ−1ρ′ : f ρ → f ρ′ is generated by transpositions of adjacent
causally disjoint pairs of morphisms. Hence, the claim follows from the Einstein causal-
ity axiom (2.7) of the algebraic quantum field theory A ∈ AQFT. ��
Theorem 4.7. LetA ∈ AQFT be an algebraic quantum field theory. Then the following
data defines a time-orderable prefactorization algebra F[A] ∈ tPFA:
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(i) for each M ∈ Loc, define F[A](M) := A(M) ∈ C via the forgetful functor Alg →
C;

(ii) for each time-orderable tuple of pairwise disjoint morphisms f = ( f1, . . . , fn) :
M → N, define the time-ordered product F[A]( f ) : ⊗n

i=1 F[A](Mi ) → F[A](N )

according to (4.7) and Lemma 4.6 and, for each empty tuple ∅ → N, assign the unit
ηN : I → F[A](N ) of A(N ).

The assignment A �→ F[A] canonically extends to a functor F : AQFT → tPFA.

Proof. Lemma 4.3 immediately implies that F[A] satisfies the axioms of time-orderable
prefactorization algebras. More explicitly, Lemma 4.3 (i) implies the equivariance ax-
iom (2.2) for all time-orderable tuples and Lemma 4.3 (ii) implies the composition
axiom (2.1) for all time-orderable tuples. By definition, we also have that F[A](idM ) =
idF[A](M), for all M ∈ Loc.

Concerning functoriality of the assignment A �→ F[A], we have to show that every
AQFT-morphism κ : A → B canonically defines a tPFA-morphism F[κ] : F[A] →
F[B]. Observe that, for every time-orderable tuple f : M → N with time-ordering
permutation ρ ∈ �n , the diagram

n⊗

i=1
A(Mi )

permute
��

⊗
i κMi

��

n⊗

i=1
A(Mρ(i))

⊗
i A( fρ(i))

��

⊗
i κMρ(i)

��

A(N )⊗n
μ

(n)
N ��

κ⊗n
N

��

A(N )

κN

��n⊗

i=1
B(Mi ) permute

��
n⊗

i=1
B(Mρ(i)) ⊗

i B( fρ(i))
�� B(N )⊗n

μ
(n)
N

�� B(N )

(4.8)

in C commutes. Hence, the family κM : A(M) → B(M) of C-morphisms defines a
tPFA-morphism F[κ] : F[A] → F[B]. ��
Proposition 4.8. A ∈ AQFT is additive (respectively Cauchy constant) if and only
if F[A] ∈ tPFA is additive (respectively Cauchy constant). In particular, the functor
F : AQFT → tPFA from Theorem 4.7 restricts to full subcategories asF : AQFTadd →
tPFAadd, F : AQFTc → tPFAc and F : AQFTadd,c → tPFAadd,c.

Proof. Let us recall that, by our construction, the underlying functors F[A] = A :
Loc → C to the category C coincide. It is then a consequence of Remark 2.17 that
F[A] is additive if and only if A is additive. Furthermore, because the forgetful functor
Alg → C preserves and detects isomorphisms, it follows that F[A] is Cauchy constant
if and only if A is Cauchy constant. ��

5. Equivalence Theorem

5.1. Main result. The aim of this section is to prove that our two constructions from
Sects. 3 and 4 are inverse to each other when restricted to their common domain of
validity. Recall that in Sect. 3 we considered Cauchy constant additive prefactorization
algebras and constructed a functor A : PFAadd,c → AQFTadd,c to the category of
Cauchy constant additive algebraic quantum field theories, cf. Theorem 3.11. Because
the construction presented in Sect. 3 only involves time-orderable tuples of disjoint
morphisms, this functor factors through the forgetful functor PFAadd,c → tPFAadd,c (cf.
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Remark 4.5) to the category of Cauchy constant additive time-orderable prefactorization
algebras, cf. Definition 4.4.We shall denote the resulting functor by the same symbolA :
tPFAadd,c → AQFTadd,c. Let us further recall the functor F : AQFTadd,c → tPFAadd,c

from Theorem 4.7 and Proposition 4.8. Our main result is the following equivalence
theorem.

Theorem 5.1. The two functors A : tPFAadd,c → AQFTadd,c and F : AQFTadd,c →
tPFAadd,c are inverses of each other. As a consequence, the category AQFTadd,c of
Cauchy constant additive algebraic quantum field theories is isomorphic to the category
tPFAadd,c of Cauchy constant additive time-orderable prefactorization algebras.

Proof. The only non-trivial check to confirm that A ◦ F = idAQFTadd,c amounts to

show that, for every A ∈ AQFTadd,c, the multiplications on A[F[A]](M) and on A(M)

coincide, for all M ∈ Loc. By (3.1) and (4.7), the multiplication on A[F[A]](M) is
given by

A(M) ⊗ A(M) A(U+) ⊗ A(U−)
A(ιMU+

)⊗A(ιMU− )

∼=


A(ιMU+
)⊗A(ιMU− )

�� A(M)⊗2 μM �� A(M) ,

(5.1)

where ιMU = (ιMU+
, ιMU−) : U → M is any object of PM . This clearly coincides with the

original multiplication μM on A(M).
Conversely, to show that F◦A = idtPFAadd,c , we have to confirm that the time-ordered

products ofF[A[F]] ∈ tPFAadd,c coincidewith the original time-ordered products ofF ∈
tPFAadd,c. In arity n = 0 and n = 1 this is obvious. For n ≥ 2, this is more complicated
and requires some preparations. Using equivariance under permutation actions, it is
sufficient to compare the time-ordered products for time-ordered (in contrast to time-
orderable) tuples f = ( f1, . . . , fn) : M → N . Because of additivity, we can further
restrict to the case where f : M → N has relatively compact images, i.e. fi (Mi ) ⊆ N
is relatively compact, for all i = 1, . . . , n. We shall now show that, due to Cauchy
constancy, we can further restrict our attention to time-ordered tuples h = (h1, . . . , hn) :
L → N with relatively compact images for which there exists a Cauchy surface � of
N such that

h1(L1), . . . , hn−1(Ln−1) ⊆ �+ := I +N (�) ⊆ N and hn(Ln) ⊆ �− := I−
N (�) ⊆ N .

(5.2)

Indeed, given any time-ordered tuple f : M → N with relatively compact images, we

shall prove below that there exists a family of Cauchy morphisms gi : Li
c→ Mi , for

i = 1, . . . , n, such that h := f (g1, . . . , gn) = ( f1 g1, . . . , fn gn) : L → N admits a
Cauchy surface� that satisfies (5.2). Cauchy constancy and the fact that the time-ordered
products of F[A[F]] and F agree in arity n = 1 then implies that F[A[F]]( f ) = F( f )
if and only if F[A[F]](h) = F(h). To exhibit such a family of Cauchy morphisms for
f : M → N , let us choose Cauchy surfaces �i of Mi , for i = 1, . . . , n, and define

Li := I +Mi
(�i ), for i = 1, . . . , n − 1, and Ln := I−

Mn
(�n). Let us further define

gi := ι
Mi
Li

: Li
c→ Mi by subset inclusion, for i = 1, . . . , n. A Cauchy surface � of N

is constructed by extending via [BS06, Theorem 3.8] the compact and achronal subset

�̃ :=
n⋃

i=1

(

fi (�i )
∖
I +N

( n⋃

j=i+1

f j (� j )
))

⊆ N . (5.3)
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By direct inspection one observes that � fulfills (5.2).
Using (5.2), we obtain a factorization

h = ιN�
(
(h�+

1 , . . . , h�+
n−1), h

�−
n

)
, (5.4)

where on the right-hand side we regard h�+
i : Li → �+ as morphisms to �+, for i =

1, . . . , n−1, and h�−
n : Ln → �− as a morphism to �−. Iterating this construction, we

observe that it is sufficient to prove that F[A[F]](ιN�) = F(ιN�), for all ιN� = (ιN�+
, ιN�−) :

� → N , where N ∈ Loc and the Cauchy surface � of N is arbitrary. Using (4.7) and
(3.1), we obtain that F[A[F]](ιN�) : F(�+) ⊗ F(�−) → F(N ) is given by

F(�+) ⊗ F(�−)
F(ιN�+

)⊗F(ιN�− )
�� F(N ) ⊗ F(N ) F(�+) ⊗ F(�−)

F(ιN�+
)⊗F(ιN�− )

∼=


F(ιN�)
�� F(N ) ,

(5.5)

which clearly coincideswith theoriginal time-orderedproductF(ιN�) : F(�+)⊗F(�−) →
F(N ). This concludes our proof. ��
Remark 5.2. Wewould like to mention very briefly a more abstract operadic perspective
on the Equivalence Theorem 5.1. Recall from [BSW17] that there exists a Set-valued
colored operadO(Loc,⊥) whose category ofC-valued algebras is the category of algebraic
quantum field theories, i.e. AQFT = AlgO(Loc,⊥)

(C). We can also define a Set-valued
colored operadPLoc such that tPFA = AlgPLoc

(C). Concretely, the colors ofPLoc are the
objects of Loc and the sets of operations are PLoc

(N
M

) := {
all time-orderable tuples f :

M → N
}
. Operadic composition is given by (4.4), the operadic units are idM ∈ PLoc

(
M
M

)

and the permutation actions are PLoc(σ ) : PLoc
(N
M

) → PLoc
( N
Mσ

)
, f �→ f σ , for

σ ∈ �n . Using Lemma 4.3 and the definition of the colored operad O(Loc,⊥) given in
[BSW17], one immediately observes that the component maps

� : PLoc
(N
M

) −→ O(Loc,⊥)

(N
M

)
, f �−→ [

ρ−1, f
]

(5.6)

define a colored operad morphism � : PLoc → O(Loc,⊥), where ρ ∈ �n is any time-
ordering permutation for f . The associated pullback functor �∗ : AlgO(Loc,⊥)

(C) →
AlgPLoc

(C) is then precisely our functor F : AQFT → tPFA from Theorem 4.7. By
operadic left Kan extension, there exists an adjunction

�! : tPFA �� AQFT : �∗ = F . (5.7)

Theorem 5.1 then states that restricting both sides of this adjunction to Cauchy constant

and additive theories induces an adjoint equivalence A : tPFAadd,c
∼
� AQFTadd,c : F.

We expect that this operadic perspective will become important when considering the
case where the target categoryC is a higher category or model category. This generaliza-
tion is crucial for the description of quantum gauge theories in terms of factorization al-
gebras [CG17] or algebraic quantum field theories [BSS15,BS17,BSW19b,BS19]. The
adjunction (5.7) then becomes aQuillen adjunction betweenmodel categories, and a rea-
sonable equivalence theoremwould state that suitable restrictions to homotopy-invariant
analogs of Cauchy constant and additive theories induce a Quillen equivalence. Proving
such an equivalence theorem in a higher categorical context is technically complicated
and will not be considered in the present paper. �
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5.2. Transfer of ∗-involutions. Algebraic quantum field theories are typically endowed
with the structure of a ∗-involution, i.e. they assign ∗-algebras to spacetimes. The aim of
this subsection is to introduce ∗-involutions for Cauchy constant additive time-orderable
prefactorization algebras by transferring via our Equivalence Theorem 5.1 the usual
concept of ∗-involution for algebraic quantum field theories. The formalization of ∗-
structures requires the underlying category C to be an involutive category, see e.g.
[BSW19a]. To simplify our presentation, we consider only the most relevant case where
C = Vec

C
is the symmetric monoidal category of complex vector spaces, endowed with

the usual involution functor (−) : Vec
C

→ Vec
C
that assigns to a complex vector space

V ∈ Vec
C
its complex conjugate vector space V ∈ Vec

C
. The complex conjugate of a

C-linear map L : V → W is denoted by L : V → W . We note that V = V , for all V ∈
Vec

C
, and that V ⊗W = V ⊗ W , for all V,W ∈ Vec

C
. Moreover, complex conjugation

on C defines a C-linear map ∗ : C → C that satisfies ∗ ◦ ∗ = idC : C → C = C.
The results in [BSW19a] allow us to endow the category AQFT of Vec

C
-valued

algebraic quantum field theories with an involutive structure, which we denote with an
abuse of notation also by (−) : AQFT → AQFT. Concretely, the complex conjugate
A ∈ AQFT of A ∈ AQFT is determined by the functor A : Loc → Alg that assigns
to M ∈ Loc the algebra A(M) whose underlying vector space is A(M) and whose

multiplication and unit are μ
op
M : A(M) ⊗ A(M) = A(M) ⊗ A(M) → A(M) and

ηM ◦ ∗ : C → C → A(M). (The opposite multiplication appears here because the
relevant ∗-involutions on algebras are order-reversing, i.e. (a b)∗ = b∗ a∗.) To a Loc-
morphism f : M → N , it assigns the algebra morphism determined by the complex

conjugate C-linear map A( f ) := A( f ) : A(M) → A(N ). We note that A = A, for all
A ∈ AQFT. A ∗-involution on an algebraic quantum field theory A ∈ AQFT is then
defined as an AQFT-morphism ∗A : A → A that satisfies ∗A ◦ ∗A = idA : A →
A = A. We denote by ∗AQFT the category whose objects are pairs (A, ∗A) consisting
of an A ∈ AQFT and a ∗-involution ∗A and whose morphisms are AQFT-morphisms
κ : A → B that preserve the ∗-involutions, i.e. κ ◦∗A = ∗B◦κ . It is easy to confirm that
our definition agrees with the usual one from the literature [BFV03,FV12,BDFY15] that
considers functors Loc → ∗Alg to the category of ∗-algebras over C, see [BSW19a]
for more details.

The involutive structure onAQFT restricts to an involution functor (−) : AQFTadd,c →
AQFTadd,c on the full subcategory of Cauchy constant additive algebraic quantum field
theories. By the Equivalence Theorem 5.1, we obtain a transferred involution func-
tor (−) : tPFAadd,c → tPFAadd,c on the category of Cauchy constant additive time-
orderable prefactorization algebras, which we denote with an abuse of notation by the
same symbol. Concretely, the complex conjugate F ∈ tPFAadd,c of F ∈ tPFAadd,c is
given by F := F[A[F]]. A ∗-involution on a Cauchy constant additive time-orderable
prefactorization algebra F ∈ tPFAadd,c is then defined as a tPFAadd,c-morphism ∗F :
F → F that satisfies ∗F◦∗F = idF : F → F = F.We denote by ∗tPFAadd,c the category
whose objects are pairs (F, ∗F) consisting of a F ∈ tPFAadd,c and a ∗-involution ∗F and
whose morphisms are tPFAadd,c-morphisms ζ : F → G that preserve the ∗-involutions,
i.e. ζ ◦ ∗F = ∗G ◦ ζ . By construction, the Equivalence Theorem 5.1 determines an
equivalence ∗AQFTadd,c � ∗tPFAadd,c between theories with ∗-involutions.

From our constructions above, it remains unclear if there exists an intrinsic definition
of the complex conjugate prefactorization algebra F = F[A[F]] ∈ tPFAadd,c that does
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not rely on Cauchy constancy and additivity, i.e. that is applicable to all time-orderable
prefactorization algebras in tPFA. Unfortunately, this does not seem to be the case. To
understand and explain these issues, let us compute explicitly the complex conjugate
factorization product F(ιM(�+,�−)) : F(�+) ⊗ F(�−) → F(M) for the time-ordered pair

of inclusions ιM�± : �± → M determined by a choice of Cauchy surface � ⊂ M via

�± = I±
M (�). Using (4.7) and (3.1), we obtain the commutative diagram

F(�+) ⊗ F(�−)
F(ιM

(�+,�−)
)

�� F(M)

F(�+) ⊗ F(�−)
F(ιM�+

)⊗F(ιM�− )

�� F(M) ⊗ F(M) F(�−) ⊗ F(�+)
∼=

F(ιM�− )⊗F(ιM�+
)



F(ιM
(�−,�+)

)

��

(5.8)

which relates the factorization product F(ιM(�+,�−)) of F to the factorization product

F(ιM(�−,�+)
) ofF. Note that the bottomhorizontal arrowusesCauchy constancy explicitly.

Physically speaking, it propagates observables from the future region �+ to the past
region�− and observables from�− to�+. In particular, in absence ofCauchy constancy,
the diagram in (5.8) can not be used to determine the factorization product F(ιM(�+,�−))

from the factorization products of F, because the second bottom horizontal arrow is in
general not invertible.

5.3. Example: the free Klein–Gordon field. We apply our general Equivalence Theo-
rem 5.1 to the simple example given by the free Klein–Gordon field and thereby recover
the results from [GR17]. Let us briefly recall the algebraic quantum field theory descrip-
tion of the free Klein–Gordon field. For every M ∈ Loc, consider the Klein–Gordon
operator PM := −�M + m2 : C∞(M) → C∞(M), where �M is the d’Alembert oper-
ator and m2 ≥ 0 is a mass parameter. PM admits a unique retarded/advanced Green’s
operator G±

M : C∞
c (M) → C∞(M), where the subscript ‘c’ denotes compactly sup-

ported functions. TheR-vector space V(M) of linear observables on M is defined as the
cokernel

C∞
c (M)

PM �� C∞
c (M) �� V(M) := C∞

c (M)
/
PM (C∞

c (M)) . (5.9)

Because C∞
c : Loc → Vec

R
is a cosheaf for (causally convex) open covers and

P : C∞
c → C∞

c is a natural transformation, it follows that V : Loc → Vec
R
is a

cosheaf too.Consider the complexified symmetric algebraSymC(V(M)) ∈ CAlg, which
is a commutative algebra in the closed symmetric monoidal category (Vec

C
,⊗,C, τ )

of complex vector spaces. This algebra is deformed to a noncommutative algebra by
introducing a �-product. For this we first define a (de Rham type) differential d :
SymC(V(M)) → SymC(V(M)) ⊗ V(M) by setting on monomials

d
(
ϕ1 · · · ϕn

) :=
n∑

i=1

ϕ1 · · · i∨. · · · ϕn ⊗ ϕi , (5.10)
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where
i∨. means omission of ϕi . Using the causal propagator GM := G+

M − G−
M :

V(M) → ker PM and the integration map
∫
M : V(M) ⊗ ker PM → R , ϕ ⊗ � �→∫

M ϕ � volM , we define the bi-differential operator

SymC(V(M))⊗2

(id⊗τ⊗id)◦(d⊗d)
��

〈GM ,d⊗d〉
�� SymC(V(M))⊗2

SymC(V(M))⊗2 ⊗ V(M) ⊗ V(M)
id⊗id⊗GM

�� SymC(V(M))⊗2 ⊗ V(M) ⊗ ker PM

id⊗∫
M

��

(5.11)

where we recall that τ is the symmetric braiding onVec
C
, i.e. the flipmap. The �-product

�M : SymC(V(M))⊗2 → SymC(V(M)) is then defined by composing

SymC(V(M))⊗2
exp

(
i
2 〈GM ,d⊗d〉

)

�� SymC(V(M))⊗2 ·M �� SymC(V(M)) , (5.12)

where ·M denotes the commutative product on SymC(V(M)). (The exponential series
converges because it terminates for polynomials.) Setting AKG(M) := (

SymC(V(M)),

�M , ηM
) ∈ Alg with ηM the unit of SymC(V(M)), for all M ∈ Loc, defines a Cauchy

constant additive algebraic quantum field theoryAKG ∈ AQFTadd,c. Note that additivity
is a consequence of V : Loc → Vec

R
being a cosheaf.

Theorem 5.1 provides a corresponding Cauchy constant additive time-orderable pref-
actorization algebra FKG := F[AKG] ∈ tPFAadd,c. To get some intuition on what
this prefactorization algebra does, let us analyze the explicit form of the binary time-
ordered products FKG( f ) : FKG(M1) ⊗ FKG(M2) → FKG(N ). In the case where
f = ( f1, f2) : M → N is time-ordered, i.e. J+N ( f1(M1)) ∩ f2(M2) = ∅, we obtain

from (4.7), (5.12) and the support properties of G±
N that

FKG( f ) = ·N ◦ exp
( i
2 〈G+

N , d ⊗ d〉) ◦ (
AKG( f1) ⊗ AKG( f2)

)
( f time-ordered).

(5.13a)

In the case where f = ( f1, f2) : M → N is anti-time-ordered, i.e. J+N ( f2(M2)) ∩
f1(M1) = ∅, we obtain
FKG( f ) = ·N ◦ exp

( i
2 〈G−

N , d ⊗ d〉) ◦ (
AKG( f1) ⊗ AKG( f2)

)
( f anti-time-ordered).

(5.13b)

Using again the support properties of G±
N , we observe that the the two cases in (5.13)

can be combined into a single formula

FKG( f ) = ·N ◦ exp
(
i 〈GD

N , d ⊗ d〉) ◦ (
AKG( f1) ⊗ AKG( f2)

)
( f time-orderable),

(5.14)

where GD
N := 1

2 (G
+
N + G−

N ) is the so-called Dirac propagator, that is valid for every
time-orderable tuple ( f1, f2). In perturbative algebraic quantum field theory (see e.g.
[FR13,Rej16]), the products ·TN

:= ·N ◦ exp
(
i 〈GD

N , d ⊗ d〉) are called time-ordered
products.
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Our observations in this subsection can thus be summarized as follows: The pref-
actorization algebra FKG ∈ tPFAadd,c corresponding to the free Klein–Gordon theory
AKG ∈ AQFTadd,c encodes the usual time-ordered products obtained by the Dirac
propagator. This agrees with the observations in [GR17].
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